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Abstract: The constantly expanding losses caused by frequent natural disasters pose many challenges
to the traditional catastrophe insurance market. The purpose of this paper is to develop an innovative
and systemic trigger mechanism for pricing catastrophic bonds triggered by multiple events with an
extreme dependence structure. Due to the bond’s low cashflow contingencies and the CAT bond’s
high return, the multiple-event CAT bond may successfully transfer the catastrophe risk to the
huge financial markets to meet the diversification of capital allocations for most potential investors.
The designed hybrid trigger mechanism helps reduce the moral hazard and increase the bond’s
attractiveness with a lower trigger likelihood, displaying the determinants of the wiped-off coupon
and principal by both the magnitude and intensity of the natural disaster events involved. As the
trigger indicators resulting from the potential catastrophic disaster might be associated with heavy-
tailed margins, nested Archimedean copulas are introduced with marginal distributions modeled
by a POT-GP distribution for excess data and common parametric models for moderate risks. To
illustrate our theoretical pricing framework, we conduct an empirical analysis of pricing a three-event
rainstorm CAT bond based on the resulting losses due to rainstorms in China during 2006–2020.
Monte Carlo simulations are carried out to analyze the sensitivity of the rainstorm CAT bond price in
trigger attachment levels, maturity date, catastrophe intensity, and numbers of trigger indicators.

Keywords: extreme value theory; nested Archimedean copula; CAT bond pricing; ARMA model;
CIR model

1. Introduction

In recent years, the deterioration of the natural environment and growing human
activities have increased the level of damage caused by natural disasters, and the economic
losses incurred have been on the rise. According to the Sigma Catastrophe Database, the
global catastrophe data during 1970–2021 show that the frequency of catastrophes has
generally risen over the past fifty years. The same goes for losses, with 90% of all losses
over the last decade being in the tens of billions of dollars or more, placing a heavy burden
on insurance companies, government finances, and society.

Many countries disperse the catastrophe risk by issuing various types of catastrophe
securitization products. For example, in 1997, Hannover Re launched the first successful
issue of a CAT bond that included exposure to hurricane and earthquake disasters in Japan,
Australia, and Canada. This form filled in a gap in the traditional insurance approach,
transferring disaster risks to the huge capital market, effectively diversifying catastrophe
risk and improving the payment capacity of insurance companies (Braun 2016; Karagiannis
et al. 2016). Among these, catastrophe bonds are considered to be the most mature financial
instrument among catastrophe securitization products, attracting an increasing number
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of investors because it is almost uncorrelated with the returns of other financial market
instruments (Richter and Wilson 2020).

A CAT bond is a financial security that pays the issuer (i.e., collateralized special pur-
pose vehicles (SPVs)) when a predefined disaster risk materializes (Tang and Yuan 2019).
Figure 1 illustrates its flowchart. These SPVs receive reinsurance premiums from investors
and re-insurers in exchange for providing reinsurance coverage. The premiums, often
part of coupon payments, may also include a floating portion linked to a reference rate
like LIBOR, reflecting the trustee’s return. Upon the occurrence of the specified triggering
event, the principal and coupon payments are reduced to allocate funds for reimbursing
the sponsors for claims paid (Cummins 2008). Notably, the trigger mechanism, determining
when payouts are made to the bond issuer, is a key distinguishing feature among issuer
types (Cox and Pedersen 2000).

Figure 1. Flowchat of catastrophe bond.

As CAT bonds are designed to cover high layers of insurance losses, a single unprece-
dented event caused by catastrophic disasters might be selected as a trigger event (Aase
1999; Chen et al. 2013; Litzenberger et al. 1996; Nowak and Romaniuk 2013). Although
such industry loss trigger mechanisms can completely eliminate the basis risk for insurers,
the moral hazard is very high, since insurers may exaggerate losses in their loss statistics
for their own benefit, generating a vast information asymmetry with capital market in-
vestors (Pauly 1968). Additionally, as argued by Ibrahim et al. (2022), investors’ interest
in single-event-triggered catastrophe bonds is likely to decline in the future, since the
global trend of increasing year-on-year disaster losses and intensity may increase the risk of
catastrophe bond claims. Thus, issuing multi-trigger catastrophe bonds could be a solution
using both industry loss indices and physical parameters as the triggering conditions
(Cox and Pedersen 2000; Woo 2004). This hybrid trigger mechanism can avoid a basis
risk and moral hazard with a reduced triggering risk, attracting investors with a low risk
appetite in the market. In addition to understanding the tail behavior of the marginal
trigger indicators within the framework of extreme value theory (Anantapadmanabhan
1971; Deng et al. 2020; Leppisaari 2016; McNeil 1997; Zimbidis et al. 2007), the dependence
among multiple trigger indicators needs to be considered through a copula approach
(Chao and Zou 2018; Reshetar 2008; Wei et al. 2022).

This paper aims to develop an innovative and systemic trigger mechanism in the
design of CAT bond pricing models. It allows for a step-wise coupon paid out based on
both the intensity of catastrophic events and the severity of its resulting multiple dependent
catastrophe indicators. The innovation of our trigger mechanism is four-fold.

• First, the considerable selection of catastrophe indicators, incorporating the hazard
information from multiple recording indicators, may result in smaller trigger errors
with integrated advantages of the hybrid trigger mechanism. The dependence struc-
ture of the relevant indicators is completely described by a copula, including a nested
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Archimedean copula and its marginal tail behavior with peaks-over-threshold (POT)
under the framework of extreme value theory.

• Second, in our pricing setting, the principal-based coupon paid out is closely related
to the inter-annual and intra-annual variations of both the severity and frequency of
the catastrophe risks with operational flexibility via the utilization of functions (see
details in Section 2.1).

• Third, instead of modelling the occurrence process of disasters, we employ time series
models to describe the heterogeneity of catastrophic events up to the maturity date of
the CAT bonds. Note that the yearly paid coupon scenario facilitates the discretization
of the counting process of catastrophe events, and time series including auto-regressive
moving average models (ARMA) are helpful for modelling the time dependence of
the quantities involved.

• Finally, we conduct an empirical analysis of pricing a rainfall CAT bond using com-
prehensive trigger indicators of the affected population, crop affected area, and direct
economic losses in China during 2006–2020. Our pricing mechanism is well illustrated
with both annual maxima and annual average retention levels (cf.
Equations (10) and (11)). Monte Carlo simulations are carried out further to analyze
the sensitivity of the rainstorm CAT bond price to trigger attachment levels, maturity
date, catastrophe intensity, and numbers of trigger indicators (see details in Section 3).

The considerable CAT bond pricing mechanism is well-illustrated by pricing the flood
CAT bond in China. The empirical analysis enables us to draw the following conclusions.
First, the price of CAT bonds is negatively correlated with the maturity period, indicating
that long-term bonds have lower prices due to the potential for more severe and frequent
disasters, resulting in larger coupon and principal losses. Medium-term bonds tend to
have relatively lower prices. Second, the time of bond purchase also affects the bond price,
with earlier purchases leading to higher prices as they are associated with lower risks in
previous years. Third, the trigger levels and intensity measures of the major rainstorms
play significant roles in determining the bond prices. Higher trigger levels lead to increased
coupon and principal retention, resulting in higher bond prices, while higher intensity
measures of rainstorms lead to decreased bond prices due to reduced retained amounts.
Finally, we found that CAT bonds triggered by multiple events are more attractive. Those
CAT bonds triggered by more events have lower prices since they are more likely to have a
smaller concurrent trigger probability with a larger principal retention.

The remainder of this paper is organized as follows. Section 2 presents the CAT bond
pricing models with an innovative trigger mechanism. Section 3 gives an empirical analysis
of flood CAT bond pricing in China and a numerical analysis of pricing sensitivity. We
conclude this paper in Section 4 with extensional discussion. The relevant methodology
and proofs are deferred to Appendix A.

2. Model Formulation
2.1. CAT Bond Pricing Model

This paper considers the pricing of catastrophe bonds due to a single disaster, where
both the coupon and the principal are at risk in the case of a serious disaster. We refer to
the main idea in Chao and Zou (2018) to consider a coupon-paying CAT bond triggered
by m dependent catastrophe indicators x1, . . . , xm. The investors may receive a portion of
the coupon at the end of each year and a portion of the principal back at the maturity date.
These proportions are determined by the accumulated excesses of the trigger indicators
xi over their attachment levels ui. Different from Chao and Zou (2018), we incorporate a
triple of quantities (αt, βt, γt) to determine the step-wise coupon and principal triggered.
The triple plays an important role in the pricing of the CAT bond, which depends on
the stressful indicators vector x = (x1, . . . , xm) and the counting process of the disaster
{N(t), t ≥ 0}, i.e., an integer-valued, non-negative, and non-decreasing stochastic process.
We will develop a pricing mechanism reflecting both exceeding magnitude of the trigger
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indicators and its occurrence of the potential disaster below. We list all notations with
explanations involved in Table 1.

Table 1. Notation and its description involved in the pricing formula.

Notation Description

F Principal
Ct Coupon paid in year t, t = 1, . . . , T
R Coupon rate
N(t) Number of disasters up to year t
Nt = N(t)− N(t− 1) Number of disasters in year t
xij The jth observation of the ith trigger indicator up to year t, j = 1, . . . , N(t)
ui Attachment level of the ith trigger indicator, i = 1, . . . , m

Supposing that the observations of the m-dimensional indicator vector (x1j, . . . , xmj),
j = N(t− 1) + 1, . . . , N(t) are independent of the counting process {N(t), t ≥ 0} (Chao
and Zou 2018; Goda 2021; Ibrahim et al. 2022), we define the overall catastrophe risk
severity in year t as below:

αt = f
(

sN(t−1)+1, . . . , sN(t)

)
, sj =

m

∏
i=1

[
1−

(
xij − ui

)
+

xij

]
, (1)

where x+ = max(x, 0), f : [0, 1]N 7→ [0, 1], a component-wise, non-decreasing, non-
negative, and right-continuous function defined on a filtered physical probability space. We
make f a general function so as to allow for different designs of CAT bonds. In general, we
may suppose the coupon retention αt to be the yearly average of the cumulative non-excess
proportion caused by each disaster or its maxima as below.

(i) The average coupon retention proportion due to the disaster in year t is modeled by

αt =
1

N(t)− N(t− 1)

N(t)

∑
j=N(t−1)+1

m

∏
i=1

[
1−

(
xij − ui

)
+

xij

]
.

(ii) The maximum coupon retention proportion due to the disaster in year t is modeled by

αt = max
N(t−1)+1≤j≤N(t)

m

∏
i=1

[
1−

(
xij − ui

)
+

xij

]
.

Remark 1. Note that each sj ∈ (0, 1]. The case with sj = 1 shows that in the jth disaster, all
trigger indicators are below the attachment levels. The smaller sj is, the more likely indicator
xj = (x1j, . . . , xmj) is to be far larger than its attachment level u = (u1, . . . , um). It follows by the
component-wise non-decreasing property of the function f that the αt ∈ (0, 1] is appropriate to
quantify the coupon retention proportion.

To further trigger partial principal caused by multiple stressful indicators, i.e., more
than one indicator being over its attachment level, we define the following two new indices
βt and γt. Similar to sj and the function f in Equation (1), we define

βt = g
(

s∗N(t−1)+1, . . . , s∗N(t)

)
, s∗j = ∏

1≤i1<i2≤m

[
1−

(
xi1 j − ui1

)
+

xi1 j
·
(

xi2 j − ui2
)
+

xi2 j

]
, (2)

γt = h
(

s∗∗N(t−1)+1, . . . , s∗∗N(t)

)
, s∗∗j = ∏

1≤i1<i2<i3≤m

[
1−

(
xi1 j − ui1

)
+

xi1 j
·
(

xi2 j − ui2
)
+

xi2 j
·
(

xi3 j − ui3
)
+

xi3 j

]
, (3)
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where g and h are two functions that are component-wise, non-decreasing, non-negative,
and right-continuous functions from [0, 1]N to [0, 1]. The following proposition gives the
properties of (sj, s∗j , s∗∗j ) and (αt, βt, γt).

Proposition 1. Let (sj, s∗j , s∗∗j ) be defined by Equations (1)–(3) and (αt, βt, γt) be in [0, 1] ob-
tained by the three component-wise, non-decreasing, non-negative, and right-continuous functions
( f , g, h) from [0, 1]N to [0, 1].

(i) It follows that sj, s∗j , s∗∗j range over [0, 1]. The case with s∗j < 1 (or s∗∗j < 1) implies that
in the jth disaster, among all m trigger indicators, there are at least two (or three) indicators
above its attachment levels simultaneously. Similar to sj, the values of s∗j and s∗∗j quantify the
concurrent exceeding magnitude over its thresholds.

(ii) Quantitatively, we have 0 < sj ≤ s∗j ≤ s∗∗j ≤ 1. It follows further that

0 < αt ≤ βt ≤ γt ≤ 1,

when the three functions f , g, and h are taken as the same.
(iii) It follows by the component-wise non-decreasing monotonicity of the functions f , g, and h that

the quantities αt, βt, γt are negatively associated with both the severity and the frequency of
the disaster in the given year t.

Proposition 1 is key for our new pricing mechanism. The triple of resulting quantities
(αt, βt, γt) gives us the insight to trigger a partial coupon and principal when more indica-
tors are triggered simultaneously. The proof of Proposition 1 is deferred to Appendix A.
We will design below the cashflow of a CAT bond based on Proposition 1. Suppose that the
investor buys a CAT bond with a face value of F in year t and maturity in year T. Denote
by Ct,s the coupon paid in year s and Ft,T the redemption value in year T. We define

Ct,s =

{
αt+1 · C0, s = t + 1,
αs ·∏s−1

k=t+1

(
βk
2 I{γk<1} + βkI{γk≥1}

)
· C0, s = t + 2, . . . , T,

Ft,T = ∏T
k=t+1

(
βk
2 I{γk<1} + βkI{γk≥1}

)
· F,

(4)

where (αt, βt, γt) are defined by Equations (1)–(3) and C0 = F ·R, the coupon paid according
to a fixed coupon rate R for a bond with the face value of F. We can see from Equation (4)
that the coupon paid will be αt times the initial coupon if there is at most one indicator
triggered; otherwise, the principal will be wiped out and the coupon will be reduced
accordingly. In this scenario, there are two cases: the first is that exactly two indicators are
triggered simultaneously (i.e., βt < γt = 1), and the second is that at least three indicators
are triggered simultaneously, i.e., γt < 1. We differentiate these two cases with principal
wipe-out by βt and βt/2, respectively. This measure safeguards the initial investment
capital of investors by ensuring that a portion of the principal remains preserved (Tang and
Yuan 2019), thus increasing the investor’s interest in the investment of the CAT bond.

Remark 2.

(a) We see that the coupon retained in year t is closely related to inter-annual variation of the

catastrophe risks via the accumulative principal ∏k<t

(
βk
2 I{γk<1} + βkI{γk≥1}

)
, as well as the

intra-annual risk via αt with operational flexibility via the induction of functions f , g, and h.
(b) Our trigger mechanism in Equation (4) with the hierarchical proportional coupon and principal

paid out may attract more investors in comparison with the hybrid trigger mechanism given
by Wei et al. (2022), since therein the current and future coupons will be paid out once one of
the indicators is triggered and the principal at maturity will be completely wiped out once both
indicators are triggered simultaneously.
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Finally, the price of the CAT bond, as the present value of all future cashflows, denoted
by Pt, is given by

Pt =
T

∑
s=t+1

E{Ct,s}p(t, s) +E{Ft,T} · p(t, T), (5)

where p(t, s) represents the discount factor at time t of the zero-coupon bond with a
redemption value of 1 at time s, t < s ≤ T, given by

p(t, s) = E
{

exp
(
−
∫ s

t
r(u)du

)}
with interest rate process {r(t), t ≥ 0}. In the following, we consider a CIR model for the
interest rate risk, which will lead to an explicit expression of the discount factor.

2.2. Interest Rate Model

In our study, we adopt the Cox–Ingersoll–Ross (CIR) model to describe the continuous-
time interest rate process {r(t), t ≥ 0} (Cox et al. 1985). The CIR model offers specific
advantages over the Vasicek interest rate model, such as its simplicity, ease of handling,
mean-reverting behavior, and avoidance of negative interest rates (Mistry and Lombardi
2022; Vasicek 1977). It satisfies the following stochastic differential equation under the
risk-neutral probability measure:

dr(t) = k(θ − r(t))dt + ε
√

r(t)dWt, (6)

where k > 0 is the speed of mean reverting, ε > 0 is the volatility parameter, θ > 0 is the
long-run mean of the interest rate, and {Wt, t ≥ 0} denotes the standard Wiener process.
Consequently, the discount factor p(t, T) is given by

p(t, T) = A(t, T)e−B(t,T)r(t),

where

A(t, T) =

[
2ηe(κ+η)(T−t)/2

(κ + η)
(
eη(T−t) − 1

)
+ 2η

]2κθ/ε2

,

B(t, T) =
2
(

eη(T−t) − 1
)

(κ + η)
(
eη(T−t) − 1

)
+ 2η

,

η =
√

κ2 + 2ε2.

2.3. POT Model

The extreme value theory plays an important role in analysing statistical patterns of
extreme-value events. There are two typical approaches to extract the extreme samples:
the block maximum (BM) method and the peaks-over-threshold (POT) model. As the POT
model can make full use of the extreme-value data in comparison with the BM model, it is
widely used in the fields of insurance, hydrology, and finance (Ma et al. 2021).

Suppose that X1, X2, . . . , Xn, . . . is a random sample from parent X ∼ F(x), i.e., the Xi
values are independent and identically distributed with a common distribution function
(df) F(x). Given a threshold u, the distribution Fu(y) of the excess Y[u] = X − u|X > u is
thus given by

Fu(y) = P{X− u ≤ y | X > u} = P{u < X ≤ y + u}
P{X > u} =

F(y + u)− F(u)
1− F(u)

, y > 0.
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For sufficiently high thresholds, Pickands (1975) pointed out that the distribution of the
threshold-excess threshold Y[u] can be approximated by a generalized Pareto (GP) distribu-
tion Gξ,σ(·), i.e., for the right endpoint x∗ = sup{x ∈ R : F(x) < 1}

lim
u→x∗

sup
0≤y≤x∗−u

∣∣Fu(y)− Gξ,σ(y)
∣∣ = 0.

Therefore, the tail distribution function F(x) = 1− F(x) of X can be approximated by

F(x) = F(u)Fu(x− u) ≈ F(u)Gξ,σ(x− u), x > u. (7)

Here ξ ∈ R and σ > 0 are the shape and scale parameters of the GP distribution
Gξ,σ(y) = 1− [1 + ξy/σ]−1/ξ , y > 0. In practice, the exceedance probability F(x) gives
the insight into the potential risk. Its estimate can be obtained through the extrapolation
approach via Equation (7): we obtain the approximate tail probability of the GP model
using the maximum likelihood estimation of ξ, σ based on the excesses (x(i) − u) with
x(1) ≥ · · · ≥ x(nu) exceeding the threshold u and the estimate of F(u) as nu/n. Theoreti-
cally, the threshold u can be determined by minimizing the mean square error of the Hill
estimator of ξ, balancing the model bias and variance. A common graphical approach
to the determination of the threshold is to check both the linearity of the empirical mean
excess function

en(u) =
1

nu

nu

∑
i=1

(
x(i) − u

)
(8)

and its derived stable estimates of both scale and shape parameters.

2.4. Copula

The concept of a copula, proposed by Abe (1973), serves as a tool for describing
the dependence structure among the marginal variables. Namely, for a joint distribution
G(x1, . . . , xm) with marginal df Gi for the ith component, the copula C is thus determined by

C(u1, . . . , um) = G(G−1
1 (u1), . . . , G−1

m (um)), (u1, . . . , um) ∈ [0, 1]m.

Table 2 lists common Archimedean copulas, including the Clayton, Gumbel, and Frank
copulas, with a convex and decreasing generator φ(t) : [0, 1] 7→ (0, ∞) satisfying φ(1) = 0.
Its tail dependence is controlled by the parameter θ and its copula is given by

C(u1, . . . , um) = φ−1

(
m

∑
i=1

φ(ui)

)
.

Given the analytic tractability of Archimedean copulas, they are widely applied in
insurance, finance, hydrology, survival analysis, etc. In this paper, we consider hierarchi-
cal (or nested) Archimedean copulas representing the different dependence among the
components (Hofert 2010). Namely, the nested Archimedean copula is of the form

C(u1, . . . , um) = Couter(Cinner(u1, . . . , uk; θ1), uk+1, . . . , um; θ2), (9)

where the inner and outer copulas could be one of the three Archimedean copulas in
Table 2. The tail dependence could be measured by the parameters θ1 and θ2. As shown
in Charpentier and Segers (2009), the larger θ involved in the Gumbel, Clayton, or Frank
copulas indicates a stronger dependence among these variables.
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Table 2. Common Archimedean copulas.

Copula Generator C(u1, . . . , um; θ) Parameters

Gumbel (− ln t)θ exp
(
−
(

∑m
i=1(− ln ui)

θ
)1/θ

)
θ ≥ 1

Clayton t−θ−1
θ

(
∑m

i=1 u−θ
i −m + 1

)−1/θ
θ ≥ 0

Frank − ln e−θt−1
e−θ−1 − 1

θ ln
(

1 + ∏m
i=1

e−θui−1

(e−θ−1)
m−1

)
θ 6= 0

Combining the above pricing model and statistical model, this paper derives a rain-
storm catastrophe bond. An empirical analysis together with a numerical analysis is given
in Section 3.

3. Empirical Analysis and Numerical Analysis

To illustrate our pricing mechanism, this section develops the pricing of a severe
rainstorm in China based on all recorded 245 major rainstorms in China during 2006–2020
and three main hazard indicators from the China Statistical Yearbook of Natural Disasters.
These indicators cover all the disaster indicators, namely, the affected population (AP)
accumulating the number of deaths, missing, emergency re-locations, and people with
drinking water damaged; the crop affected area (CAA), reflecting both the cropland flood-
ing area and its harvest-affected area; and the direct economic loss (DEL) adjusted with the
Consumer Price Index (CPI) in 2020, summing the damaged losses of collapsed/damaged
houses and other properties multiplied by its damaged ratio.

In what follows, we will first present the descriptive statistics of our triple of trigger
indicators (X1, X2, X3) representing AP, CAA, and DEL in Section 3.1. The non-normality of
these indicators motivates us to split the full range of the data into bulk and tail parts using
classical parametric models and a peaks-over-threshold (POT) approach in Section 3.2,
followed by the investigation of the joint distribution functions for disaster indicator data
using a nested Archimedean copula in Section 3.3. The ARMA model is used to predict
the disaster intensity over the next 3 years in Section 3.4. Monte Carlo simulation of the
CAT bond price is carried out in Section 3.5. Here, we take the retention functions of f , h,
and g in Equations (1)∼(3) as the same as the average or maximum function unless stated
otherwise. That is,

αt = 1
N(t)−N(t−1) ∑

N(t)
j=N(t−1)+1 ∏m

i=1

[
1− (xij−ui)+

xij

]
.

βt = 1
N(t)−N(t−1) ∑

N(t)
j=N(t−1)+1 ∏1≤i1<i2≤m

[
1− (xi1 j−ui1)+

xi1 j
· (

xi2 j−ui2)+
xi2 j

]
,

γt = 1
N(t)−N(t−1) ∑

N(t)
j=N(t−1)+1 ∏1≤i1<i2<i3≤m

[
1− (xi1 j−ui1)+

xi1 j
· (

xi2 j−ui2)+
xi2 j

· (
xi3 j−ui3)+

xi3 j

] (10)

and

αt = maxN(t)
j=N(t−1)+1 ∏m

i=1

[
1− (xij−ui)+

xij

]
.

βt = maxN(t)
j=N(t−1)+1 ∏1≤i1<i2≤m

[
1− (xi1 j−ui1)+

xi1 j
· (

xi2 j−ui2)+
xi2 j

]
,

γt = maxN(t)
j=N(t−1)+1 ∏1≤i1<i2<i3≤m

[
1− (xi1 j−ui1)+

xi1 j
· (

xi2 j−ui2)+
xi2 j

· (
xi3 j−ui3)+

xi3 j

]
.

(11)

3.1. Descriptive Analysis of Trigger Indicators

We can see from Table 3 that the averages of all three main indicators are far larger
than their respective medians. Moreover, both the skewness and the kurtosis of these
indicators, which are far larger than 0 and 3, respectively, indicate that the right-skewed
pattern of these indicators have possible heavy tails. This is graphically consistent with the



Risks 2023, 11, 151 9 of 19

exponential QQ plots in Figure 2 with a downward convex deviation from the theoretical
straight line.

Table 3. Descriptive statistics of affected population (AP) in millions, crop affected area (CAA) in
million hectares, and direct economic loss (DEL) in billion yuan.

Trigger Indicators Maximum Minimum Mean Median Skewness Kurtosis

AP 1510.000 1.600 187.880 116.750 2.771 12.678
CAA 135.200 0.005 12.492 7.000 3.689 20.458
DEL 420.816 1.011 21.411 8.083 5.154 37.823

Figure 2. Exponential QQ plots of (a) affected population (AP), (b) crop affected area (CAA), and
(c) direct economic loss (DEL). The black dotted lines present concave features in the right tail, indi-
cating a heavier tail than exponential distribution. Here the solid red line represents the exponential
reference line.

3.2. POT-Based Tail Analysis of Trigger Indicators

In order to determine the threshold levels (u1, u2, u3) of the triple of indicators
(X1, X2, X3), we examine the mean residual life plots in Figure 3 (see Equation (8) for
details). We determine first the threshold u1 for the affected population X1. The possible
range of the threshold is detected to be in the interval of (150, 200) according to the sample
mean residual plot with a linear trend (see Figure 3a), and then we investigate the stability
of the estimations of the scale and shape parameters involved in the generalized Pareto
model of the threshold excesses of AP in Figure 4a,b. Consequently, the attachment level
u1 = 160 is determined for the affected population (AP). Similar arguments are given to
the attachment levels of u2 = 12 for the crop affected area (CAA) and u3 = 15 for the direct
economic loss (DEL).

Figure 3. The mean residual life plots for (a) affected population (AP), (b) crop affected area (CAA),
and (c) direct economic loss (DEL). The solid black lines represent the mean residual life plot, and the
blue dotted lines correspond to the 95% confidence intervals.

We model the probability distribution of our trigger indicators using the full range
of the data, with sufficient flexibility for separate control over the bulk and tail features.
Different from Chao and Zou (2018), we consider the Beta-GP models for the scaled non-
exceedances and threshold excesses, namely, Xi − ui|Xi > ui ∼ G(y) = 1−

(
1 + ξy

σ

)−1/ξ
, y > 0, for threshold excesses,

X∗i = Xi−mi
ui−mi

∼ Betaa,b(y) = 1
B(a,b) ya−1(1− y)b−1, 0 < y < 1, for non-exceedances,

(12)
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where (m1, m2, m3) = (1.6, 0.005, 1.011) are the sample minima of the trigger indicators
of AP, CAA, and DEL, respectively, given in Table 4, and (u1, u2, u3) = (160, 12, 15) are
given by the mean residual plots and parameter stability plots. All maximum likelihood
estimations of the parameters involved in the Beta-GP models are shown in Table 4. We
see that both CAA and DEL possess heavy tails with 95% confidence intervals of the
shape parameters of (0.03, 0.64) and (0.13, 0.84), respectively, while the estimated shape
parameter for AP excesses is 0.197, showing a certain power-decaying tail. Moreover, we
examine the model goodness-of-fit using a Chi-square test and obtain that all the p-values
are larger than 0.246, confirming that the Beta-GP model agrees with the observed trigger
indicators. Intuitively, Figure 5 illustrates the appropriateness of the GP model of the
threshold exceedances for each trigger indicator, since both the PP plots and QQ plots show
that almost all points are around the straight line.

Figure 4. Parameter stability plots on the top for affected population (AP), in the middle for crop
affected area (CAA), and on the bottom for direct economic loss (DEL). The shorter the bars are, the
more stable the estimations of the parameters are. Here, (a,c,e) are for scale parameter σ and (b,d,f)
for the shape parameter ξ. The red box indicates the selected threshold.
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Table 4. Estimates of the scale (σ) and shape (ξ) parameters in the GP models of the threshold
excesses and the two parameters α and β in the Beta model Betaα,β for the scaled bulk data below the
threshold. The p-value based on a Chi-square test confirms that the Beta-GP model fits the data well.

GP Beta

Scale (σ) 95% CI Shape (ξ) 95% CI p-Value a b p-Value

AP 173.369 (118.21, 226.38) 0.197 (−0.04, 0.44) 0.247 1.016 1.345 0.246
CAA 11.771 (7.41, 16.13) 0.341 (0.03, 0.64) 0.283 1.076 1.687 0.299
DEL 23.538 (13.96, 33.19) 0.492 (0.13, 0.84) 0.250 0.582 1.137 0.253

To conclude, the fitted distributions Fi, i = 1, 2, 3 corresponding to the trigger indicators
of the affected population (AP), the crop affected area (CAA), and the direct economic loss
(DEL) are given below

Fi(x) =

{
1− nui

n Gξi ,σi (x− ui), x > ui,
1

B(ai ,bi)

∫ (x−mi)/(ui−mi)
0 tai−1(1− t)bi−1dt, x ≤ ui,

(13)

where n = 245 and the threshold (u1, u2, u3), the excess numbers (nu1 , nu2 , nu3), the sample
minina (m1, m2, m3), and other parameters for the Beta-GP model are given by Equation (12)
and Table 4.

Given the distributions of each trigger indicator in Equation (13), it remains to discuss
the dependence via nested Archimedean copula in the following section in order to illustrate
our multiple-event-triggered pricing mechanism in Section 3.5.

Figure 5. The PP plots (left) and QQ plots (right) for (a) affected population (AP), (b) crop affected
area (CAA), and (c) direct economic loss (DEL). The solid lines represent the expected distribution,
the dotted lines represent a 95% confidence interval, and the hollow circles represent the distribution
of the observed data.
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3.3. Dependence Anaylsis of Trigger Indicators Based on Nested Archimedean Copula

We shall investigate first the non-exchangeable dependence among the trigger indica-
tors through the Spearman rank correlation ρ. The Spearman ρ for (AP, CAA), (AP, DEL),
and (CAA, DEL) are 0.771, 0.554, and 0.515, respectively. We see that all three pairs demon-
strate a certain degree of dependence, with a stronger dependence within (AP, CAA) than
between them. This motivates us to describe the dependence using a nested Archimedean
copula, with an inner copula for (AP, CAA) with Archimedean parameter θ1 and DEL
placed into the outer Archimedean copula with parameter θ2 (see Equation (9)).

Next, to model the dependence structure using a nested Archimedean copula, we
construct a uniformly distributed transformation of the raw data according to the marginal
analysis in Section 3.2, i.e., a straightforward application of Equation (13) given by

ũij = Fi(xij), i = 1, 2, 3, j = 1, 2, . . . , 245.

Finally, we examine the dependence structure using a nested Archimedean copula with
both the inner and outer copula being one of the Gumbel, Clayton, and Frank copulas listed
in Table 2. We suppose that

(ũ1j, ũ2j, ũ3j)
i.i.d.∼ Couter(Cinner(ũ1j, ũ2j; θ1), ũ3j; θ2), j = 1, 2, . . . , 245. (14)

We see from Table 5 that the maximum likelihood estimates of the inner parameter θ1
are all larger than that of the outer parameter θ2, agreeing with the stronger dependence
within the inner variables than between them. Moreover, we will select the most suitable
copula based on the Kolmogorov–Smirnov (KS) test. We see that all nested Archimedean
copulas fit the data well and the best nested Gumbel copula is determined with the minimal
KS test value of 0.04 and the maximum p-value of 0.61.

Table 5. Maximum likelihood estimates of the parameters involved in the inner and outer copulas in
Equation (9). The Kolmogorov–Smirnov (KS) test and its p-value indicates that the best model is the
nested Gumbel copula.

Inner and Outer Copula θ1 (Inner) θ2 (Outer) KS Test p-Value

Gumbel 44.68 22.80 0.06 0.12
Clayton 9.58 4.35 0.12 0.35
Frank 176.34 87.60 0.04 0.61

3.4. Modelling of Annual Frequency of Rainstorms in China

Note that our pricing mechanism is of discrete form. It follows from Equation (4) that
the proportion of the coupon and principal paid out depends not only on the severity of
the disasters (thus, the trigger indicators) but also on the independent annual frequency
of disasters. This was confirmed by our Pearson correlation analysis between the annual
number of rainstorms and its resulting annual average of losses in terms of AP, CAA, and
DEL, with values equal to 0.08,−0.09, and −0.1, respectively. Due to the changing climate,
the occurrence of major rainstorms becomes more and more frequent.The purpose of this
section is to model the intensity of annual major rainstorms during 1986–2020 in China
using an auto-regressive moving average (ARMA) model so as to forecast the frequency
in the next three years, i.e., 2021–2023. The relevant data are from the China Statistical
Yearbook of Natural Disasters.

The stationarity of the time series Λt is validated by the augmented Dickey–Fuller
(ADF) test at a significance level of 0.05. Next, we determine the autoregressive order
and moving-average order as p = 1, q = 3, respectively, by the position of the lag cut-
off in the partial autocorrelation function (PACF) and ACF plots in Figure 6. Thus, the
ARMA(1, 3) model is selected for modelling the annual intensity of major rainstorms in
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China and the maximum likelihood estimates of the parameters involved are obtained as
(φ1, θ1, θ2, θ3) = (0.816, 0.268, 0.240,−0.748).

The Jarque–Bera (JB) test with a p-value of 0.08 confirms the normality assumption
of the residuals ek, given in Equation (A1) in the ARMA model, and its i.i.d. assumption
is verified by the Ljung–Box (LB) test with p = 0.502. Before we apply this model for
prediction, we carried out an F-test, which confirmed the goodness of fit with p = 0.003.
Consequently, the straightforward application of ARMA(1,3) to the intensity measures for
2021, 2022, and 2023 predicts (41.86, 41.56, 39.39) a general upward trend in intensity for
the next three years, as shown in Figure 7, which will be used in Section 3.5 below for the
numerical analysis of pricing sensitivity.

Figure 6. (a) Partial autocorrelation function (PACF) and (b) autocorrelation function (ACF) diagram
for annual intensity of rainstorms in China during 1985−2020. The blue dashed lines represent the
significance boundary at the 95% confidence interval.

Figure 7. Annual number of major rainstorms in China during 1985–2020; data are from the China
Statistical Yearbook of Natural Disasters.

3.5. Pricing of CAT Bond and Numerical Analysis

This section will focus on the CAT bond pricing based on our pricing mechanism in
Equation (5) and the basic analyses of major rainstorms we conducted in Sections 3.1–3.4.
In the current pricing mechanism, we suppose mutual independence among interest rate,
disaster indicators, and counting process (Chao and Zou 2018; Goda 2021; Ibrahim et al.
2022; Reshetar 2008). This facilitates Monte Carlo simulations in both the numerical analysis
and the empirical analysis. In practice, there might be weak and ignorable dependence
between the financial market and natural disaster risks, which attracts investors for the
benefit of diversification of their investments. On the other hand, the dependence assump-
tion between the frequency and severity of disasters is more likely to bring about model
mis-specification. In what follows, we consider a T-year period CAT bond with a principal
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of F = CNY100 and a fixed coupon rate R = 3.5%. Note that the explicit expectation in
Equation (5) is not available. We thus simulate the price of the CAT bond and estimate it as
the average of the simulated price. The steps of the simulation are outlined as follows.

(1) Generate T random numbers N1, N2, . . . , NT independently from a Poisson distribu-
tion with intensity measure Λ1, Λ2, . . . , ΛT , standing for the number of major rain-
storms in year 1, 2, . . . , T. Here, (Λ1, Λ2, . . . , ΛT) can be provided by the ARMA(1, 3)
model in Section 3.4.

(2) Based on the marginal distribution in Equation (13) and the nested Frank copula
in Equation (14) with parameters given in Tables 4 and 5, we generate a sample of
(x1k, x2k, x3k) of size Nj for year j, 1 ≤ j ≤ T as

xik = F−1
i (ũik), i = 1, 2, 3, k =

j−1

∑
l=1

Nl + 1, . . . ,
j

∑
l=1

Nl .

(3) We suppose that the stochastic interest rate process {r(t), t ≥ 0} follows the CIR
model stated in Equation (6), and the parameter estimates involved are obtained
through maximum likelihood estimation based on one-year seven-day interest rate
data for 2021, available at the Shanghai Interbank Offered Rate. We select the interest
rate on 6 January 2021 as the initial interest rate, i.e.,{

dr(t) = 0.2(0.05− r(t))dt + 0.05
√

r(t)dWt,
r(0) = 2.962%.

(15)

We simulate the interest risk to give the discount factor p(t, T).
(4) Given a trigger level (u1, u2, u3), we calculate the price of the CAT bond based on the

cashflows in Equation (4) and the interest risk model in Equation (15).

We repeat m = 104 all the simulation steps above and obtain the sample mean of
the price Pt of a T-year CAT bond bought in year t = 0, 1, . . . , T− 1. In the following, we
will discuss the pricing sensitivity in the maturity period, the trigger level, and the trigger
indicators.

Price sensitivity in maturity period. Table 6 shows a T-year CAT bond triggered
by the triple of trigger indicators (AP, CAA, DEL) with trigger level (u1, u2, u3) being the
sample 90% quantile. The bond price decreases at the maturity period T and further,
the downward trend in the bond price gradually increases. As the bond is issued for
a long maturity period, future disasters might be more severe and frequent, causing a
larger magnitude of triggered events and thus a smaller proportion of the coupon and
principal retained. Consequently, a lower price is obtained for a medium-term CAT bond.
Meanwhile, for a given maturity period T = 2 or 3, the CAT bond might be sold in different
years during the bond issue period. We see that the price of a bond purchased in an earlier
year is higher, as the potential risk of major rainstorms might be lower in the previous
few years and the coupon and principal are more likely to remain. Therefore, the pricing
mechanism is fairly attractive in terms of raising capital for the purpose of reinsurance.
We see further that the CAT bond prices vary in coupon–principal retention functions.
Clearly, the coupon and principal remaining based on the annual average retention level
in Equation (10) are not larger than that based on the annual maximum retention level
in Equation (11), which results in the lower price of the former. Hence, our functional
mechanism of the retention levels provides sufficient flexibility to the CAT bond issuers.

https://www.shibor.org/
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Table 6. CAT bond pricing of major rainstorms in China purchased in year t and maturating in
year T = 1, 2, 3 based on Equation (5). Here the trigger level (u1, u2, u3) is taken as the sample 90%
quantile of (AP, CAA, DEL). The bond prices Pt1 and Pt2 are given based on the cashflows with an
average retention level in Equation (10) and max retention level in Equation (11).

T = 1 T = 2 T = 3

t = 0 t = 0 t = 1 t = 0 t = 1 t = 2

Bond price Pt1 80.392 70.881 66.255 56.006 54.865 52.321
Bond price Pt2 83.259 73.211 68.450 58.812 57.649 53.984

Price sensitivity to trigger level and intensity measure of major rainstorms. An
appropriate trigger level is important for balancing the benefits between the investors and
the bond issuers by means of the CAT bond price. In general, both the trigger levels and the
intensity measures are determined by the severity and frequency of the potential disasters
(here rainstorms), which can cause a change in the CAT bond price via the wiped-off
coupon and principal in Equation (4). Clearly, we see from Figure 8 that the bond prices
are positively correlated with the trigger levels but negatively associated with the intensity
measures. Indeed, as the trigger level increases, a bond is less likely to be triggered and thus
the coupon and principal retention level will increase, leading to an increase in the CAT
bond price. In contrast, if major rainstorms occur more frequently with a larger intensity
measure, the triggered indicators may accumulate a small amount of coupon and principal
retained, thus causing a decrease in bond prices.

Figure 8. Price sensitivity of one-year CAT bond to (a) trigger levels and (b) disaster intensity measure
Λ1 = 20, 25, . . . , 40. Here the trigger level in (a) is the sample quantile at level q = 0.80, 0.82, . . . , 0.90
for a given intensity measure in Step 1, while in (b) we fix the trigger level as its sample 90% quantile.

Price sensitivity in the selection of trigger indicators. As mentioned before, the
multiple-event-triggered CAT bond receives increasing attraction from both investors and
CAT issuers. In Table 7, we compare the one-year bond prices with different pairs of trigger
indicators under our pricing mechanism in Equation (5). Apparently, the three-event-
triggered CAT bond is issued with a lower price than that of two-event-triggered ones.
This is because the smaller trigger probability of concurrent trigger events leads to a lower
expectation of discounted cashflows. Additionally, the principal might be half-returned in
case all three indicators are triggered (recalling the utilization of γt).
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Table 7. Comparison of one-year CAT bond price with different selections of multiple-event triggers
under our pricing mechanism in Equation (5). The bond prices Pt1 and Pt2 are given according to
the annual average and annual maximum retention functions in Equation (10) and Equation (11),
respectively.

Trigger Indicator AP-CAA-DEL AP-CAA AP-DEL CAA-DEL

Bond price Pt1 80.3922 48.7558 48.7561 48.7564
Bond price Pt2 83.2592 48.7869 48.7871 48.7873

4. Conclusions and Extensional Discussions

In this paper, a multiple-event-triggered CAT bond pricing model is designed and a
pricing formula is derived based on the copula–POT model. Our pricing model is more
flexible and of more practical significance in terms of possessing a dynamic association
between the coupon and principal paid off, whose magnitude varies in both the severity
and frequency of the potential disasters. This model may provide a certain reference for the
pricing research and subsequent practical application of catastrophe bonds. Although the
multi-event trigger mechanism involves more elements and more complex processes and
requires higher technical capabilities, the multiple-event-triggered bonds receive increasing
attraction due to their low moral hazard and trigger risk (Chao and Zou 2018; Ibrahim
et al. 2022; Wei et al. 2022). Meanwhile, it turns out that the CAT bond price decreases in
the bond maturity period in the simulation, and it is negatively correlated with the trigger
level and positively correlated with the catastrophe intensity.

The pricing mechanism depends on the joint distribution of the target indicators
caused by the disaster (Goda 2021). In real life, catastrophic risks involve multiple disasters
over many regions. Thus, a forthcoming research direction is to design a regional CAT
bond pricing model that incorporates spatio-temporal extremes and the interaction of
simultaneous disasters. Furthermore, we may bring the insights from Eling and Wirfs
(2019) and incorporate relevant covariates such as the economic development level and
the vulnerability to real rainstorms for estimating the local parameter of the POT model,
which thus enables a region-specific pricing mechanism in practice. In addition, to relax the
independence assumption among the interest rate risk, disaster indicators, and counting
process might be more realistic in the CAT bond pricing models, with potential complexity
regarding the pricing simulations and statistical tests of the possible dependence structure.
Furthermore, the specific assumptions should be carefully verified since otherwise it is
more likely to result in a model mis-specification issue. In practice, there might be weak
dependence between the financial market risk and disaster risk, which hopefully enables
the investors to be protected from the diversification investment.
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Appendix A

Appendix A.1. Counting Process

The homogeneous Poisson process has smooth independent increments. When 0 ≤
t1 < t2 < · · · < tk, the distribution of the increment N(tj)− N(tj−1) depends only on the
length of the time interval ∆tj = tj − tj−1, not on the specific starting time point of tj, and
the increments over non-overlapped intervals are independent of each other. In this case, if
we denote by λ the average number of disasters per time unit interval, then

P{N(t) = k} = (λt)k exp(−λt)
k!

, k = 0, 1, 2, . . . .

The non-homogeneous Poisson process (NHPP) allows the instantaneous intensity
density λ(t) to be a function of t. Namely, the number of disasters up to time t follows a
Poisson distribution with mean Λ(t) satisfying

Λ(t) =
∫ t

0
λ(x)dx.

In general, the number of disasters in the time interval (s, s + ∆t] follows a Poisson
distribution with mean

Λ(s + ∆t)−Λ(s) =
∫ s+∆t

s
λ(x)dx.

Appendix A.2. ARMA Model

ARMA models are used for time-series analysis and forecasting by modeling the
autocorrelation and moving average of the series. ARIMA models can be reduced to an
ARMA process through differencing. This transforms the non-stationary series into a
stationary one, which can be modeled using an ARMA process. The ARMA model for the
intensity of annual rainstorms can be stated as follows (Ibrahim et al. 2022):

Λk = µ + φ1Λk−1 + · · ·+ φpΛk−p + θ1ek−1 + · · ·+ θqek−q + ek, (A1)

where Λt = Λ(t + 1)−Λ(t) represents the intensity measure of annual rainstorms in year
j, j = 1, 2, . . . , k; p and q represent autoregressive and moving-average order, respectively;
and ek represents the random error. The assumptions in the ARMA(p, q) are as follows:

• The random errors ek are independent and normally distributed with zero mean and

constant variance, denoted by ek
i.i.d.∼ N(0, σ2),

• The sequence Λk are weakly stationary, that is, ∀k,E{Λk} = µΛ and Var(Λk) = σ2
Λ.

Appendix A.3. Proof of Proposition 1

Proof. Without loss of generality, we will show the proposition for t = 1, N(1) = n, and
all the observed indicator samples (x1j, x2j, . . . , xmj), j = 1, . . . n are given. Recall that the
threshold (u1, . . . , um) is given to be positive.

(i). It follows by the fact that 0 ≤ (x− u)+ < x for x, u > 0 that

aij :=

(
xij − ui

)
+

xij
∈ [0, 1)

and 1− aij ∈ (0, 1]. Hence,

sj =
m

∏
i=1

(1− aij) ∈ (0, 1].
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And sj = 1 if and only if a1j = a2j = · · · = amj = 0, that is, xij < ui for all 1 ≤ i ≤ m.
Denote further

ai1 j =

(
xi1 j − ui1

)
+

xi1 j
, ai2 j =

(
xi2 j − ui2

)
+

xi2 j
, ai3 j =

(
xi3 j − ui3

)
+

xi3 j
.

We have

s∗j = ∏
1≤i1<i2≤m

(1− ai1 jai2 j), s∗∗j = ∏
1≤i1<i2<i3≤m

(1− ai1 jai2 jai3 j),

yielding that s∗j < 1 is equivalent to there being a pair (ai1 j, ai2 j) such that ai1 j, ai2 j > 0.
Hence, both indicators xi1 j and xi2 j are exceeding the threshold ui1 and ui2 in the j-th
disaster. Similarly, s∗∗j < 1 if and only if there are at least three indicators over its
threshold concurrently.

(ii). It follows from the fact that aij ∈ [0, 1) that

ai1 j ≥ ai1 jai2 j ≥ ai1 jai2 jai3 j and 0 < 1− ai1 j ≤ 1− ai1 jai2 j ≤ 1− ai1 jai2 jai3 j ≤ 1.

In addition, we have

∏
i:aij>0

(
1− aij

)
≤ ∏

(i1,i2):ai1 jai2 j>0

(
1− ai1 jai2 j

)
≤ ∏

(i1,i2,i3):ai1 jai2 jai3 j>0

(
1− ai1 jai2 jai3 j

)
, (A2)

i.e., 0 < sj ≤ s∗j ≤ s∗∗j ≤ 1. Moreover, since f is a component-wise, non-decreasing,

non-negative, and right-continuous function from [0, 1]N to (0, 1], we have

0 < f (s1, s2, . . . , sn) ≤ f (s∗1 , s∗2 , . . . , s∗n) ≤ f (s∗∗1 , s∗∗2 , . . . , s∗∗n ) ≤ 1, ∀n ≥ 1.

Consequently, 0 < αt ≤ βt ≤ γt ≤ 1 holds when f = g = h.
(iii). For a disaster year with more severe and frequent catastrophic events, the excess

proportion of aij increases with more terms of aij positive, leading to a smaller value
of sj. Finally, the component-wise non-decreasing monotonicity of f indicates a small
value of αt. Similar arguments apply for βt and γt.
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