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Abstract: We apply a Markov-switching Bayesian vector autoregression (MSBVAR) model to mortal-
ity forecasting. MSBVAR has not previously been applied in this context, and our results show that
it is a promising tool for mortality forecasting. Our model shows better forecasting accuracy than
the Lee–Carter and Bayesian vector autoregressive (BVAR) models without regime-switching and
while retaining the advantages of BVAR. MSBVAR provides more reliable estimates for parameter
uncertainty and more flexibility in the shapes of point-forecast curves and shapes of confidence
intervals than BVAR. Through regime-switching, MSBVAR helps to capture transitory changes in
mortality and provides insightful quantitative information about mortality dynamics.

Keywords: MSBVAR; BVAR; regime-switching; mortality forecast; parameter projection; mortality
structural change

1. Introduction

Accurate risk assessment and forecasting are essential for managing pensions, an-
nuities, and other portfolios with mortality risk; yet, changing mortality patterns cause
difficulties in mortality risk management and forecasting. Noting the importance of corre-
lations between parameters and parameter uncertainty for mortality forecasting, Njenga
and Sherris (2020) applied a Bayesian vector autoregressive (BVAR) model to forecast mor-
tality. In this paper, we use a Markov-switching Bayesian autoregression model (MSBVAR)
in mortality modeling for the first time. The resulting forecasts are more accurate than
previous Bayesian-only forecasts, and have more reasonable confidence intervals. The
model retains the strengths of BVAR, and is able to capture and quantify regime switches
in mortality patterns, including shifts specific to particular age groups.

We follow a long-standing and frequently used forecasting methodology that begins
with a parametric model for age-specific mortality. Many years of cross-sectional data
are fit to this model and the parameters are modeled in turn as time series. In order to
model the full age spectrum, many parameters are needed; one method of forecasting has
been to forecast the time series for each parameter separately using univariate models.
Njenga and Sherris (2020) applied multivariate models, namely, VAR and BVAR, to forecast
the parameters in the Heligman and Pollard (1980) age-specific mortality model, which
was the first time BVAR had been applied to a parametric model of the full age range.
Using multivariate models is appropriate because there may be cross-correlation among
parameter time series. They noted that BVAR is superior in several ways. BVAR provides
more accurate forecasts than VAR, and cointegration is more easily handled; in addition, the
Bayesian approach has a significant strength in that it can quantify both longevity risk and
parameter uncertainty. However, the VAR and BVAR forecasts exhibit decreased accuracy
compared to the well-known Lee and Carter (1992) model, and neither directly accounts
for potential structural changes in mortality patterns, nor does the Lee–Carter model.

We adopt a similar methodology, except that we use a refined parametric model for
the cross-sectional mortality and MSBVAR for the forecasts. Our MSBVAR forecasts (with
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rolling cross-validation; see Section 3.3) are more accurate than Lee–Carter forecasts for
one-, two-, and three-year forecasts. This accuracy persists, with average MSEs of one- to
five-year forecasts that are over 30% lower than those produced by Lee–Carter. Moreover,
the MSE of our MSBVAR model is less than half of that for the tested BVAR model with no
regime switching, and our MSBVAR uses fewer parameters. For both BVAR and MSBVAR,
we applied the reduced-form Sims–Zha Bayesian VAR model.

MSBVAR extends BVAR by including Markov-switching (MS) (also known as regime-
switching behavior) to explicitly allow for structural changes in mortality patterns. The
model automatically detects structural changes in which the training data appear to switch
to a new regime, and uses BVAR as the model within each regime. The model assumes that
regime switches follow a Markov process, and we assume for simplicity that there are only
two regimes.

Using BVAR within each regime accounts for correlation between parameters, main-
taining the advantages of BVAR identified by Njenga and Sherris (2020). For instance,
Section 3.3.2 provides a three-year forecast and confidence interval for cross-sectional
mortality of French civilian males. Direct comparison of MSBVAR and BVAR shows that
MSBVAR provides more reasonably-behaved confidence intervals for forecast parameters.
Consistently, MSBVAR provides narrower confidence intervals than BVAR for parameters
that exhibit stable historical linear trends, although it provides wider confidence intervals
for parameters that exhibit historical fluctuation or volatility. Moreover, point forecasts
and confidence interval forecasts using MSBVAR exhibit greater flexibility in terms of
their shape.

Other types of analysis show that MSBVAR is capturing two very different regimes. In
Section 3.3.2, we provide three-year forecast densities for intercepts and AR(1) parameters
when using MSBVAR with French civilian male data to forecast only those parameters
associated with the youngest ages. Most of these distributions show a clear separation
between the two regimes. The estimated error–covariance matrix within each regime
reveals that one regime exhibits substantially lower volatility than the other (as in Milidonis
et al. (2011)).

For our underlying age-specific parametric model, we selected an exemplar of the
DLGC (differential logistic model with growth rate and controlling factor) framework in
Fu et al. (2022), which models the full age cross-section of mortality (described in detail in
Section 2). This work showed that such a model can provide a very close fit to historical
data, and captures structural changes well enough that such data may become visible and
salient features of the parameter time series plots. However, such identification by visual
inspection is qualitative and subjective; one goal of using a regime-switching model in
the present work is to provide a more objective determination of the timing and nature of
mortality structural changes.

We can distinguish two types of changes: a once-and-for all permanent change to
mortality patterns, for instance an improvement created by a major new medical technology,
and transient changes that come and go. Only the latter may reasonably be described by a
Markov process, although as noted, for instance in Krolzig (2000), “as the MS model also
nests models with once-and-for-all structural breaks, it might be used to detect permanent
breaks”. In this paper, we use the term “structural break” to refer to one-time permanent
changes in mortality patterns, “regime switch” to refer to potentially random shifts that
could be described by an MS model, and “structural change” as a generic term to encompass
both types of change.

After fitting our age-specific model to French civilian male data from 1950–2020, we
examined correlations among ten time series of parameters (after transforming them to
be stationary). All except one of the ten transformed parameters naturally segregated
into two groups that exhibited strong cross-correlation within each group and weak or no
correlation between groups. These two groups of parameters conveniently corresponded
to those associated with childhood and young adult mortality and those associated with
middle-age and senescent mortality.
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In Section 3.1, we fit univariate regime-switching models to each parameter time series
in order to understand the nature of structural changes for individual parameters. We
observed four parameters associated with adulthood mortality that underwent changes
at around the same time in the early 1990s, while no such switching was present in the
young-age or remaining old-age parameters. We then forecast the two groups of parameters
separately with MSBVAR using a time interval for training that covered the early 1990s. The
model again identified a regime switch in the group of older-age parameters around the
1990s and no such switch in the younger-age parameters. The common timing of all of these
switches seemingly reflects changes in mortality in France amounting to an improvement
during the 1990s, as depicted visually in parameter plots. Our model suggests that these
changes in mortality only happened for adults, and did not impact childhood mortality.

The regime switching aspect of our model allows us to provide quantitative informa-
tion for greater insight into structural mortality dynamics. The fitted transition matrix of
the Markov process for adult and old-age mortality shows that there are 34.6 or 35.5 years
(in each of the two regimes) on average between structural changes in adulthood and
old-age mortality, while for infant and childhood mortality there are 65.8 or 68.5 years on
average between structural changes in infant and childhood mortality.

The methodology described above, which fits a cross-sectional parametric model to
mortality data and then forecasts parameter values, has long been used, for example, in
McNown and Rogers (1989), Thompson et al. (1989), Avraam et al. (2014), Njenga and
Sherris (2020), Fu et al. (2022), and Bardoutsos et al. (2018). The fitted parameters help
to visualize mortality trends and reveal structural changes. One approach to mortality
projection uses ARIMA models to forecast each parameter separately (see McNown and
Rogers (1989), Fu et al. (2022), and Bardoutsos et al. (2018)). The forecast accuracy can
depend on the age-specific parametric model used. A disadvantage of this approach is
that it ignores correlations among the cross-sectional parameters of mortality, and may
underestimate mortality risk.

Vector autoregression is commonly used as a multivariate forecasting model incorpo-
rating cross-correlation and cointegration. Njenga and Sherris (2020) applied both VAR
and BVAR to mortality forecasting. Lu and Zhu (2023) recently applied a Bayesian version
of VAR called FAVAR based on the Lee–Carter model, achieving somewhat better accu-
racy than Lee–Carter; however, this model uses over 6000 parameters, does not explicitly
account for structural change, and has other drawbacks of Lee–Carter, such as a lack of
natural interpretations for most parameters.

Njenga and Sherris (2020) suggested that their forecasts with VAR and BVAR (+Heligman–
Pollard) were less accurate than Lee–Carter forecasts (see their Table 8) because their models
employed far fewer parameters. An additional possibility is that structural changes in mortal-
ity patterns must be considered when projecting time series. Accounting for such changes
could improve mortality forecasts, as demonstrated in Milidonis et al. (2011) and Fu et al.
(2022). A number of works have dealt with observed structural changes by training the model
only on data collected after the observed structural changes, i.e., structural changes are dealt
with by limiting the training set. Lin and Liu (2007) created a different approach to describing
age-specific mortality, using a Markov process to model “physiological age”, with the aim of
tying the model more directly to biological mechanisms. As the authors noted, forecasting
with such models may allow for the incorporation of expert opinions on medical or social
impacts upon mortality, thereby integrating structural changes into forecasting.

By contrast, a regime-switching approach such as MSBVAR provides an automatic
method to model the different mortality regimes. Regime-switching models have been
applied to mortality modeling before, as in Gylys and Šiaulys (2020), Zhou (2019), Gao et al
(2015), Shen and Siu (2013), Ignatieva et al. (2016), Hainaut (2012) and Milidonis et al. (2011);
the MSBVAR model has been used in econometric applications as well, as in Sims et al. (2008).

The remainder of this paper is organized as follows. Section 2 provides the model
formulation, while Section 3 shows the main results. We begin in Section 3.1 with analysis
that reveals and quantifies structural changes in individual parameters. After a brief



Risks 2023, 11, 152 4 of 23

description of our MSBVAR forecasting strategy in Section 3.2, we present the results
of accuracy testing of our model using rolling-window cross-validation and provide an
example future mortality forecast in Section 3.3. Finally, Section 4 concludes the paper.

2. Model Formulation

In this paper, we apply an exemplar of the DLGC framework Fu et al. (2022) as the age-
specific mortality model to estimate the yearly parameters and then forecast the estimated
yearly parameters as time series by applying the MSBVAR model to the majority of the
parameters and using means for the remaining.

2.1. Choosing a(x) and b(x) for the Age-Specific DLGC Model

The DLGC framework from Fu et al. (2022) that we use to model age-specific mortal-
ity provides strong fitting accuracy, out-performing the Heligman–Pollard model; it can
reveal structural changes, and has good parameter interpretation. The strong fit promotes
forecasting accuracy, the revelation of structural changes, some of which appear transitory,
suggests the use of regime switching models, and the natural parameter interpretations
provide insight into the structural changes.

The DLGC framework decomposes mortality into the three parts: infancy and child-
hood, adolescence and early adulthood (younger than age 30), and later adulthood to old
age. Let q(x) be the one-year mortality probability for a life aged x. The general model
formula of DLGC for q(x) is

q(x) = [1 + A−(B+x)C
]−1 +

Tm

1 + exp(−k(x− z))
+

g · exp(b̄(x)(x−M1))∫ x
M1

exp(b̄(u)(u−M1)) · b(u)a(u)du + 2
, (1)

where the three terms on the right side of the equation are the respective contributions
to mortality of factors arising during the youngest ages, adolescence to early adulthood,
and later adulthood to old age, denoted as qI(x), qT(x), and qAO(x), respectively. The
model has eight constant parameters and two functions a(x) and b(x) (for later adulthood,
including old age), chosen for convenience and need. In the third term, b̄(x) denotes the

average value of b(x) on [M1, x], i.e., b̄(x) =
∫ x

M1

b(u)du/(x−M1). The DLGC framework

captures several human mortality features through its parameters, e.g., infant mortality
(parameter A), the “accident hump” age in teenage years (parameter z), human asymptotic
mortality (Tm + g), etc. Table 1 provides more details and meanings for the parameters.

We carefully chose the functions a(x) and b(x) from the later adulthood part of our
model. The function a(x) has a range [1, ∞) and represents the effects of beneficial factors,
e.g., medical and scientific improvement, that tend to decelerate mortality probabilities.
The function b(x) increases with range (0, 1) and represents the effect of natural factors,
e.g., aging, that cumulatively accelerate mortality probability during later adulthood.

We define a(x) as

a(x) =
a1 − 1

1 + exp(a2(x−M3))
+ 1 (2)

In this formula, a(x) decreases from the maximum value a1 to 1, reflecting our as-
sumption that the decelerating effects of beneficial factors fade with age. The parameter
M3 is the age when a(x) decreases the fastest, while a2 models how fast a(x) drops near
age M3. The definition of a(x) in Fu et al. (2022) partitions later adulthood ages into those
less than 65, those between 65 and 85, and those greater than 85, and provides only the
average effects of decelerating factors for the three subgroups. The above definition of a(x)
allows the model to capture the moving age and moving speed of the fastest decrease in
decelerating effects.
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Table 1. Parameters and functions assigned in the general model of q(x).

Pars Meaning Range Other Constraints

Youngest
age

A the level of child mortality,
approximate to q(1) (0, 1)

B the mortality probabilities’ difference
between age 0 and 1, i.e., q(0)− q(1) (0, 1)

C the decline in mortality during childhood (0, 1)

Teenage
years

k the growth rate of death probability
only caused by teenage years factors >0

z the “accident hump” age >0 qT(z) = 1
2 Tm

Tm
the maximum death probability
only caused by teenage years factors (0, 1)

Later
adulthood

M1
the main increasing process of
qAO(x) happens near M1

>0 qAO(M1) =
1
2 g

g the maximum death probability only
caused by later adulthood factors (0, 1)

b(x) growth rate of qAO(x) considering
only natural and basic factors (0, 1) continuously increasing

a(x) a controlling factor on the
increasing of death probability [1, ∞)

continuous;
satisfying a(x) = 1,
for x after a certain old age

For the mortality accelerating factor b(x), we keep the increasing logistic function
used in the exemplar in Fu et al. (2022):

b(x) = β1 + (β3 − β1) · [1 + exp(−β2(x−M2))]
−1. (3)

The function b(x) increases from its minimum value β1 for young adulthood to its
maximum value β3 for very old age. It increases the fastest near age M2; β2 controls the
increasing speed.

Our fitting results for male and female French civilians show that our age-specific
model can capture both permanent and transitory structural changes in historical mortality
and that the chosen forms of a(x) and b(x) successfully capture mortality structural changes
in later adulthood (see details in Section 3.1).

2.2. MSBVAR

In this section, we apply the MSBVAR model described in Sims et al. (2008) to multiple
time-series, i.e., mortality parameters, subject to regime switching.

We apply a Markov-switching framework in our model to capture those changes in
mortality patterns that could reasonably be assumed to follow a Markov process. Assume
that the system has h regimes, and let H = {1, 2. . ., h} denote them; then, st ∈ H denotes
the regime’s state at time t. Let qij = P(st = i|st−1 = j) be the probability of st being i given

that st−1 is j. Then, Q = (qij)h × h ∈ [0, 1]h
2

is the Markov transition matrix and satisfies
∑i∈H qij = 1.

Continuing with definitions, let yt ∈ Rn denote the endogenous variables at time t ≥ 0
and let zt ∈ Rm be the predetermined exogenous variables (including an intercept) at time
t, where we assume that yt conditional on the past only depends on the current state, not on
its lagged states. The MSBVAR model in Sims et al. (2008) considers a class of models for yt
and zt (structural VAR with lag p) described below: given the initial conditions y0, . . ., y1−p,

y′t A(st) =
p

∑
i=1

y′t−i Ai(st) + z′tC(st) + ε′tΣ
−1(st), 1 ≤ t ≤ T, (4)
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where:

• the prime notation represents the matrix transpose
• p is the lag length
• yt is an n-dimensional column vector of endogenous variables at time t
• zt is an m-dimensional column vactor of exogenous and deterministic variables at

time t
• εt is an n-dimensional column vector of unobserved random shocks at time t
• A(k) is an invertible n × n matrix and Aj(k) is an n × n matrix for 1 ≤ k ≤ h
• C(k) is an m × n matrix for 1 ≤ k ≤ h
• Σ(k) is an n × n diagonal matrix for 1 ≤ k ≤ h, and εt, conditional on information

until time t− 1, is assumed to follow the multivariate normal distribution with mean
0 and variance In, where In is the n × n identity matrix.

A VAR model requires estimates for all coefficients, while a BVAR model assumes that
the coefficient matrices are random, assigning prior distributions and generating posterior
distributions for coefficients. The well-known Litterman’s Prior in Litterman (1986) and
Robertson and Tallman (1999) specifies the prior distribution by first assigning them certain
mean values and then measuring their variation (the distribution “tightness”) around the
given prior mean values based on a predetermined set of hyperparameters. Sims and Zha
(1998) extended the Litterman prior as the Sims–Zha prior, and Sims et al. (2008) further
combined the extended BVAR setting and the Markov-switching framework to introduce
the MSBVAR model following Equation (4), which is the model implied in our mortality
parameters projection. The set of hyperparameters used in MSBVAR contains the elements
below (see Sims and Zha (1998) and Njenga and Sherris (2020)):

• λ0 ∈ [0, 1] is the overall tightness of the prior on the error covariance matrix. As it
increases, the model moves away from a random walk.

• λ1 ∈ [0, 1] is the standard deviation or tightness of the prior around the AR(1) parameters.
• λ3 > 0 is the lag decay; as it increases, it shrinks the higher-order lag coefficients to 0.
• λ4 > 0 is the standard deviation or tightness around the intercept.
• λ5 > 0 is a single value for the standard deviation or tightness around the exogenous

variable coefficients.
• µ5 ≥ 0 is the sum of the prior weights of the coefficients; larger values imply differ-

ences in stationarity.
• µ6 ≥ 0 are dummy initial observations or prior drift; larger values allow for com-

mon trends.

In our mortality forecasting model in this paper, we apply and analyze the simplified
MSBVAR case: an intercept is considered, with no other exogenous factors, in a one-lag
(p = 1) and two-regime system (h = 2). Thus, the multiple time series yt is only cross-
correlated with its immediately previous value, and the model formulation in Equation (4)
is simplified to

y′t A(st) = δ′ + y′t−1 A1(st) + ε′tΣ
−1(st), 1 ≤ t ≤ T. (5)

where δ is an n-dimensional column vector of n constants.
In our approach, a Gibbs sampler is implemented to draw Bayesian posterior samples

for the MSBVAR model, and we generate drawings from the posterior forecast density to
provide the forecast and parameter uncertainty.

3. Main Results

In this section, we apply our model to the French civilian male population by age and
year (1 × 1) using mortality data from the Human Mortality Database Human Mortality
Database (n.d.) for the period of 1950–2020. We fit an age-specific model using the DLGC
framework, with a(x) and b(x) chosen as described in Section 2.1 (denoted as DLGCab);
Section 3.1 shows how the estimated parameters capture structural changes in mortality.
In Section 3.2, we describe the MSBVAR forecasting strategy that we use to project the
parameter time series in our paper. In Section 3.3, we perform an out-of-sample forecasting
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test on our model using a form of rolling-window cross-validation, then we forecast the
following three-year mortality of French male civilians after 2020.

3.1. Structural Breaks and Regime-Switching in the Fitted Parameters

In this section, we reveal mortality structural changes using plots of a selection of
yearly DLGCab fitted parameters and supporting regime-switching models. While regime-
switching models do not describe permanent one-time structural breaks, they can be used
to detect both structural breaks and regime-switches, as observed by Krolzig (2000).

3.1.1. Mortality Structural Change during 1990s

For French male civilians (see Figure 1), log Tm shows a slope decrease during the
1990s, a1 has an obvious increase starting in the late 1990s, M2 shows a sudden boost in
1990, and M3 shows an oscillating up-and-down trend including a “turning point” during
the 1990s; the other parameters retain their existing trends or patterns through the 1990s.
The trend changes in the four parameter plots imply that a structural change in mortality
occurred at some point during the 1990s. Figure 2 shows that the corresponding plots for
French female civilians have patterns similar to those for males for the period during and
around the 1990s.

Figure 1. Fitted log Tm, a1, M2, and M3 for French male civilians during 1950–2020.

Figure 2. Fitted log Tm, a1, M2, and M3 for French female civilians during 1950–2020.

Three of the above four parameters are from the later adulthood portion of our model,
and the other parameter is the asymptotic mortality from ages 14–30, which contributes to
mortality in later adulthood. Thus, our model attributes the structural changes revealed in
1990s to changes in later adulthood mortality.

To quantify the notion that the trend changes shown by the parameter plots reflect
structural changes in mortality, we modeled each parameter with a simple two-regime
system by choosing a low lag AR model with small AIC in each regime. We did not try
to find the best fit or to chose the best model; rather, the goal was to show that the trend
changes described in the parameter plots can be identified mathematically and interpreted
as structure changes mortality. The results reveal clear regime changes and two structural
breaks, providing insightful quantified information about mortality structural changes
based on the interpretation of the parameters.
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A. M2 Structural Change
We fit M2 as a constant in each regime. Table 2 below shows the fitting results for

regime-switching and the transition probability matrix for M2.

Table 2. Regime-switching model and transition matrix fitted for M2.

Coefficients Transition Probabilities

Intercept(s) Std(s)
Model 1 82.5964 3.6150
Model 2 52.0209 2.0645

Q =

[
0.9375 0.0256
0.0625 0.9744

]

Figure 3 shows that a clear structural break happened in M2 between 1990 and 1991.
To interpret this change, recall that in our model b(x) is the mortality accelerating factor,
mainly expressing the aging effect, and M2 is the age at which b(x) increases the fastest.

0 10 20 30 40 50 60 70

Regime 1

y vs. Smooth Probabilities

0 10 20 30 40 50 60 70

y

50
60

70
80

90

0.
0

0 10 20 30 40 50 60 70

Regime 2

y vs. Smooth Probabilities

0 10 20 30 40 50 60 70

y

50
60

70
80

90

0.
0

Figure 3. Regimes of fitted M2 for French male civilians during 1950–2020. The horizontal scale is
the number of years since 1950. The gray shading in each figure shows the regime indicated above
the figure. The color switch at 40 represents the structural break between 1990 and 1991.

From the above fitted coefficients, it can be noticed that during 1950–1990, with the
exception of 1967, the aging accelerative effect on mortality for French civilian males
increases the fastest at about age 52.0209, with a volatility of 2.0645, while after 1991 the
fastest increase is at about age 82.5964, with volatility 3.6150. This structural break shows a
large improvement in in later adulthood mortality for French males during the 1990s.

From the plots and the transition matrix, we surmise that M2 may have undergone
one structural break around 1990 as well as transitory regime switches at other times.

B. log(Tm) Structural Change
We fit log(Tm) using an AR(1) model with an intercept in each regime. Table 3 below

shows the fitting results for regime-switching and the transition probability matrix for
log(Tm).

Table 3. Regime-switching model and transition matrix fitted for log(Tm).

Coefficients Transition Probabilities

Intercept(s) y1(s) Std(s)
Model 1 −2.0808 0.6963 0.0669
Model 2 −0.7109 0.9106 0.0454

Q =

[
1.0000 0.0406

5.3854 × 10−9 0.9594

]
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Figure 4 shows a clear structural break in log(Tm) just before the 1990s. To interpret this
fact, recall that Tm is the highest mortality accumulated by factors that occurred during the
teenage years or young adulthood, i.e., asymptotic teenage and young adulthood mortality.

0 10 20 30 40 50 60 70

Regime 1

y vs. Smooth Probabilities

0 10 20 30 40 50 60 70

y

−7
.8

−7
.6

−7
.4

−7
.2

−7
.0

−6
.8

−6
.6

0.0
0.8

0 10 20 30 40 50 60 70

Regime 2

y vs. Smooth Probabilities

0 10 20 30 40 50 60 70

y

−7
.8

−7
.6

−7
.4

−7
.2

−7
.0

−6
.8

−6
.6

0.0
0.8

Figure 4. Regimes of fitted log(Tm) for French male civilians during 1950–2020. The horizontal scale
is the number of years since 1950.

From the above fitted coefficients, it can be noticed that during 1950–1985 French
male civilian asymptotic teenage and young adulthood mortality has a nearly flat pat-
tern that is partially influenced by the previous year’s value, i.e., log Tm(t) = −2.0808 +
0.6963 log Tm(t− 1). After 1986, log(Tm) has a declining pattern and follows log Tm(t) =
−0.7109 + 0.9106 log Tm(t− 1). This structural break shows a large improvement in mortal-
ity during adolescence and young adulthood for French males that occurred just before the
1990s. The transition matrix indicates that there is essentially zero probability of switching
out of the current regime. This is consistent with log Tm having undergone no structural
changes outside of the permanent break, as opposed to M2, which seems to have undergone
both a permanent break and transitory changes.

C. a1 Structural Change
We fit a1 using an AR(1) model without an intercept in each regime. Table 4 below

shows the fitting results for regime-switching and the transition probability matrix for a1.

Table 4. Regime-switching model and transition matrix fitted for a1.

Coefficients Transition Probabilities

y1(s) Std(s)
Model 1 1.0698 1.9740
Model 2 0.9872 0.7871

Q =

[
0.8766 0.0215
0.1234 0.9785

]

Figure 5 shows what can reasonably be interpreted as a regime switch in a1 just before
the 1990s (specifically, in 1986), followed by a switch back in the early 1990s. To interpret
this fact, recall that a(x) is the decelerative factor for later adulthood mortality and that a1 is
its highest value. In addition to the regime switch, the time plot itself shows a significantly
different range of a1 values before 1990 and after 1990.

In regime 1, a1(t) = 1.0698a1(t− 1) shows a rapid increase, while in regime 2 a1(t) =
0.9872a1(t − 1). From the transition matrix, regime 1 has a persistence of 0.8766 and
jumping probability of 0.1234 in each year, which implies one jump every 8.1 years from
regime 1 into regime 2. Regime 2 has a persistence of 0.9785 and jumping probability of
0.0215 in each year, which implies one jump every 46.5 years from regime 2 into regime 1.
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Figure 5. Regimes of fitted a1 for French male civilians during 1950–2020. The horizontal scale is the
number of years since 1950.

D. M3 Oscillatory Pattern
We fit M3 using an AR(2) model without an intercept in each regime. Table 5 shows

the fitting results for regime-switching and the transition probability matrix for M3.

Table 5. Regime-switching model and transition matrix fitted for M3.

Coefficients Transition Probabilities

y1(s) y2(s) Std(s)
Model 1 0.5580 0.4495 0.4620
Model 2 0.9407 0.0505 1.7721

Q =

[
0.9574 0.1257
0.0426 0.8743

]

Figure 6 shows clear oscillatory structural changes in M3. To interpret this fact, recall
that a(x) is the decelerative factor for later adulthood mortality, and that it has its fastest
period of declining at or near age M3.

The value of M3 oscillates between the two regimes. From above fitted coefficients and
transition matrix, in Regime 1, M3 has an increasing pattern following the AR(2) process
M3(t) = 0.5580M3(t− 1) + 0.4495M3(t− 2); M3 has a persistence of 0.9574 in Regime 1
and a jumping probability of 0.0426 in each year, which implies one jump every 23.5 years
from Regime 1 into Regime 2. In Regime 2, M3 has a decreasing pattern following the
AR(2) process M3(t) = 0.9407M3(t− 1) + 0.0505M3(t− 2); M3 has a persistence of 0.8743
in Regime 2 and a jumping probability of 0.1257 in each year, which implies one jump every
8 years from Regime 2 into Regime 1.
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Figure 6. Regimes of fitted M3 for French male civilians during 1950–2020. The horizontal scale is
the number of years since 1950.
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3.1.2. Structural Change in Mortality around the 1950s

Looking farther back in time, the age-specific model described in Section 2.1 addition-
ally reveals structural changes in mortality in France during the 1950s. Figure 7 shows
a sudden drop in log Tm near 1950 and a more negative slope for log A after 1950. No
other parameters show structural changes at that time; thus, because Tm is the asymptotic
mortality from the teenage years and A measures infant mortality, we can conclude that
the structural change near 1950 resulted mainly from infant and teenage mortality. As
analyzed in Fu et al. (2022), reasons for structural changes in mortality around the 1950s
may include the wide production of penicillin in the mid-1940s and the use of antibiotics
after abortion procedures, which improved survival for young females and infants.
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Figure 7. Fitted log Tm and log A for total French civilian population during the period of 1816–2020.

3.2. Forecasting Strategy Used in This Paper

In Section 3.1, we revealed structural change in mortality in the population of French
male civilians during 1950–2020; in this section, we apply an MSBVAR model to forecast
French civilian data and test its forecasting accuracy for the period of 1953–2020. Using
the yearly fitted parameters of the age-specific DLGCab model described in Section 2.1,
we design our forecasting strategy as follows: constant mean for parameters k, z, a2, β1, β2,
MSBVAR on the group of parameters A, B, C, and MSBVAR on the group of parameters
Tm, M1, a1, β3, M2, M3, g. Before applying MSBVAR, we transform the parameters to ensure
that they are stationary; this process is described in Section 3.2.2.

3.2.1. Constant Mean

We set each of the five parameters k, z, a2, β2, β1 equal to the average of their respective
fitted yearly values because of the lack of any trend in their values, as well as to decrease
the number of parameters in the forecast that need to be fit. More specifically:

• The values of a2 and β2 show high volatility and a noisy pattern; thus, a constant
mean is a reasonable choice for forecasting them.

• The values of β1, k and z are stable near a constant for a number of years; for example,
β1 very stably remains near 0.1 over several years, which matches the findings in de
Beer and Janssen (2016) and Thatcher (1999) that from soon after 30 years of age the
probability of dying increases by about 10% with each successive year of age.

3.2.2. Two Groups of Transformed Parameters to Apply MSBVAR

We apply log and order-1 or order-2 difference on each of the remaining ten parameters
(not including the five parameters fitted by the constant mean) to make each time series
closer to stationary. After these transformations, all ten transformed parameters pass the
ADF and KPSS tests for stationarity.

The correlation matrix of the transformed parameters is shown in Table 6. The trans-
formations applied to each parameter are shown by the row/column names of the matrix,
where “log” means that we take the log of the parameter first, “diff” means that we take the
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order-1 difference after the log, and “diff2” means that we take the order-2 difference after
the log. For example, “log M3_di f f 2” indicates the values of twice-differenced log(M3).

The values in the correlation matrix suggest dividing the parameters into two groups
and applying MSBVAR to each group.

• Group 1 (A, B, C):
All pairwise correlations are larger than 0.831, with the highest value being 0.959;
furthermore, there is no correlation larger than 0.235 in absolute value between the
parameters in group 1 and the parameters outside this group, and only those with the
single parameter M2 are above 0.1.

• Group 2 (Tm, M1, a1, β3, M2, M3, g):
Several of the correlations in this group have a magnitude of at least 0.349, with
three being greater than 0.87, and most of the seven parameters are included in
these correlations.

The above grouping of the parameters is supported by their interpretations and usage
in our model. The parameters in Group 1 are all young-age mortality parameters (i.e., in
the youngest-age mortality qI), while the parameters in Group 2 are all adult and old-age
mortality parameters (i.e., in qT and qAO).

Table 6. Correlation matrix for the ten transformed parameters.

logA_diff logB_diff logC_diff logTm_diff2 logM1_diff loga1_diff2 logβ3_diff logM2_diff logM3_diff2 logg_diff

logA_diff 1.000 0.846 0.831 0.016 0.040 −0.047 0.014 0.111 0.019 0.003
logB_diff 0.846 1.000 0.959 -0.002 0.065 0.018 −0.007 0.216 −0.004 0.003
logC_diff 0.831 0.959 1.000 0.038 0.089 0.058 −0.025 0.235 −0.006 0.017

logTm_diff2 0.016 −0.002 0.038 1.000 0.222 −0.172 −0.123 0.289 0.020 −0.022
logM1_diff 0.040 0.065 0.089 0.222 1.000 0.283 −0.934 0.225 0.099 0.872
loga1_diff2 −0.047 0.018 0.058 −0.172 0.283 1.000 −0.349 0.274 −0.547 0.405
logβ3_diff 0.014 −0.007 −0.025 −0.123 −0.934 −0.349 1.000 −0.230 −0.104 −0.927
logM2_diff 0.111 0.216 0.235 0.289 0.225 0.274 −0.230 1.000 −0.174 0.118
logM3_diff2 0.019 −0.004 −0.006 0.020 0.099 −0.547 −0.104 −0.174 1.000 0.083

logg_diff 0.003 0.003 0.017 −0.022 0.872 0.405 −0.927 0.118 0.083 1.000

Next, we describe the translation of our model into the abstract description of the
MSBVAR model described above. From Equation (5), after post-multiplying through
the invertible A(st)−1, taking the Group 1 parameters as an example, in our approach
the transformed young-age mortality parameters yt = (log(At) − log(At−1), log(Bt) −
log(Bt−1), log(Ct)− log(Ct−1))

′ in the certain regime st ( equaleither to 1 or 2) at time t
satisfy the following equation:

yt = c(st) + B′(st)yt−1 + et, (6)

where c(st) = (c1(st), c2(st), c3(st))′ = (A(st)−1)′δ is the unknown intercept vector, B(st) =
A1(st)A(st)−1 is an unknown 3 × 3 matrix of coefficients at lag 1, and et represents inde-
pendent identically-distributed errors distributed as N3(0, S) with the unknown error co-
variance matrix S = (A(st)A(st)′)−1. Equation (6) can be written in matrix form as follows:y1t

y2t
y3t

 =

c1t(st)
c2t(st)
c3t(st)

+

B11(st) B12(st) B13(st)
B21(st) B22(st) B23(st)
B31(st) B32(st) B33(st)

′y1t−1
y2t−1
y3t−1

+

e1t
e2t
e3t

 (7)

We then treat the unknown VAR parameters above in a Bayesian context as jointly
distributed random variables by using the Sims–Zha normal–flat prior to fit and forecast
the mortality parameters yt with MSBVAR. We follow a similar process to forecast the
mortality parameters in Group 2.
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3.3. Forecasting Results
3.3.1. Out-of-Sample Forecasting Comparison Using Rolling-Window Cross-Validation

We applied rolling-window cross-validation to compare the out-of-sample forecasting
accuracy of four models: (1) our model from Section 2.1 (DLGCab) combined with MSBVAR
as described in Section 3.2; (2) the log-Poisson Lee–Carter model Brouhns et al. (2002);
(3) VAR with lag-1 combined with our age-specific DLGCab model; and (4) BVAR with lag-1
combined with our age-specific DLGCab model. The VAR and BVAR models were both
applied to twelve DLGCab parameters, while the remaining three, β1, β2, and a2, were set
to be constant using their means. Therefore, there were comparable numbers of parameters
when using the MSBVAR and BVAR models for multivariate time series forecasting (234
for BVAR and 208 for two-group MSBVAR). Moveover, we used the Sims–Zha normal–flat
prior for both MSBVAR and BVAR, and used similar strategies to chose the hyperparameter
values (see footnotes below for details). Training and testing were based on mortality data
from French male civilians from 1953–2020 for ages 0 to 105; the testing results are shown
in Table 7.

Table 7. One-year to three-year forecasting accuracy comparison of four models’ MSE of qx for French
male civilian population.

Trainning Period Forecast Period LC_logPoi VAR(1) BVAR(1) Two-Group MSBVAR(1)

1953–1998 1999–2001 4.058080 × 10−5 1.846671 × 10−5 8.634617 × 10−5 1.652785 × 10−5

1954–1999 2000–2002 3.096344 × 10−5 3.636803 × 10−6 5.286439 × 10−5 1.619272 × 10−5

1955–2000 2001–2003 3.998948 × 10−5 2.027850 × 10−5 2.199262 × 10−5 1.654713 × 10−5

1956–2001 2002–2004 3.965374 × 10−5 1.105280 × 10−4 1.361299 × 10−4 1.981227 × 10−5

1957–2002 2003–2005 4.237491 × 10−5 4.750569 × 10−5 6.453116 × 10−5 4.875723 × 10−5

1958–2003 2004–2006 5.315747 × 10−5 1.373889 × 10−3 1.389112 × 10−4 5.079026 × 10−5

1959–2004 2005–2007 3.805303 × 10−5 2.024754 × 10−2 4.464989 × 10−5 4.506862 × 10−5

1960–2005 2006–2008 3.819256 × 10−5 6.901466 × 10−6 3.070929 × 10−5 2.972596 × 10−5

1961–2006 2007–2009 2.166763 × 10−5 2.789243 × 10−5 3.493766 × 10−5 2.536762 × 10−5

1962–2007 2008–2010 2.578418 × 10−5 1.371940 × 10−5 3.575074 × 10−5 1.345337 × 10−5

1963–2008 2009–2011 3.077442 × 10−5 8.987640 × 10−6 1.806542 × 10−4 3.855534 × 10−6

1964–2009 2010–2012 3.788919 × 10−5 1.593804 × 10−5 2.633839 × 10−5 8.409379 × 10−6

1965–2010 2011–2013 3.361986 × 10−5 4.207817 × 10−5 1.243555 × 10−5 1.548707 × 10−5

1966–2011 2012–2014 2.619416 × 10−5 2.614010 × 10−5 4.466430 × 10−5 1.595633 × 10−5

1967–2012 2013–2015 2.357353 × 10−5 3.341852 × 10−5 4.016176 × 10−5 1.841944 × 10−5

1968–2013 2014–2016 2.106681 × 10−5 1.134660 × 10−5 3.815115 × 10−5 1.343410 × 10−5

1969–2014 2015–2017 1.018989 × 10−5 7.637350 × 10−6 5.350254 × 10−5 9.641061 × 10−5

1970–2015 2016–2018 9.301274 × 10−6 5.500549 × 10−6 3.125023 × 10−5 4.138879 × 10−5

1971–2016 2017–2019 2.765426 × 10−5 7.897331 × 10−6 1.665924 × 10−5 2.939270 × 10−6

1972–2017 2018–2020 4.591307 × 10−5 2.929639 × 10−5 2.578495 × 10−5 1.817020 × 10−5

Each cell of Table 7 reports the average MSE of qx for a one-, two-, and three-year
forecast based on training on the previous 46 years’ data.1,2 For example, the second row of
the table indicates that we trained the models on data from 1953–1998 and forecast values
of qx for 1999–2001. The subsequent four cells report the average MSE of the qx estimates
for the four models.

The sum of the MSEs of qx for all sixty forecasts are shown below for each model; each
sum equals the respective column sum multiplied by 3:

Model LC_logPoi VAR(1) BVAR(1) Two-group MSBVAR(1)
Total MSE of qx 0.001909781 0.066175792 0.003349276 0.001550141

The two-group MSBVAR(1) has the lowest total MSE among the four models. Three of
the models, Var(1), BVAR(1) and MSBVAR(1), consider the correlations among parameters
when forecasting. By applying Markov switching, the two-group MSBVAR reduces the
total MSE to about half that of the BVAR(1) forecast and about 1/40 of that of VAR(1), while
also fitting the fewest parameters. This supports our conjecture in the introduction that
mortality structural changes should be considered in mortality forecasting and that doing
so can improve forecast accuracy over a BVAR model. The two-group MSBVAR(1) has a
total MSE that is 18.83% less than that of the log-Poisson Lee–Carter model. Furthermore,
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Section 3.3.2 shows that the two-group MSBVAR(1) provides more reasonable parameter
confidence intervals than BVAR(1), and can provide insightful information about the
structural changes and dynamics of intrinsic factors involved in mortality.

To broaden the scope of the forecasting accuracy, we carried out a one-year to five-year
comparison of forecasting accuracy between our model and the log-Poisson Lee–Carter
model. The result are recorded in Table 8, which reports the average testing MSE of the one-
year to five-year qx forecasts for the two models. The training and testing were based on
French male civilian mortality data from 1962 to 2015 for ages 0 to 105, and rolling-window
cross-validation was applied.

From the Table 8, it can be seen our model outperforms the log-Poisson Lee–Carter
model in the five-year forecasting horizon. Based on the sum of the testing MSEs of qx
for all 45 forecasts, our model has a total MSE 32.14% less than that of the log-Poisson
Lee–Carter model, and has eight lower average MSEs out of the nine one-year to five-year
forecasting tests.

Table 8. One-year to five-year forecasting accuracy comparing four models’ MSE of qx for the French
male civilian population.

Training Period Forecast Period LC_logPoi Two-Group MSBVAR(1)

1962–2007 2008–2012 1.122421 × 10−4 2.328074 × 10−5

1963–2008 2009–2013 1.263967 × 10−4 1.305586 × 10−5

1964–2009 2010–2014 1.207380 × 10−4 8.582214 × 10−6

1965–2010 2011–2015 1.001330 × 10−4 2.192817 × 10−5

1966–2011 2012–2016 1.409463 × 10−4 8.506634 × 10−5

1967–2012 2013–2017 1.129325 × 10−4 2.735066 × 10−5

1968–2013 2014–2018 5.705891 × 10−5 1.345621 × 10−5

1969–2014 2015–2019 1.030199 × 10−4 1.351506 × 10−4

1970–2015 2016–2020 1.015846 × 10−4 6.914451 × 10−5

Sum of the MSEs of qx for all 45 forecasts 2.925156 × 10−3 1.985076 × 10−3

Njenga and Sherris (2020) used the Heligman–Pollard (HP) age-specific parametric
mortality model to introduce BVAR forecasting. In this paper, we applied MSBVAR to a
different age-specific mortality model, DLGC, and obtained better forecasting accuracy.
To understand how much of this improvement is based on the age-specific model (HP
versus DLGC) and how much is due to the forecasting method (BVAR versus MSBVAR),
we conducted further experiments; specifically, we compared HP with BVAR, DLGC with
BVAR, and DLGC with MSBVAR (i.e., HP+BVAR with models (1) and (4) mentioned at
the beginning of this subsection) using the same methods and data as above. Through
application of logarithm or first- or second-order differencing, six of the eight HP parame-
ters were successfully transformed into stationary series, although two of them could not
be transformed (as opposed to DLGC, for which all parameters successfully transformed
to stationary). After examining the correlations among the transformed HP parameters,
we observed no separation into groups, as was seen with DLGC; thus, we forecast all
transformed HP parameters together as a group. We used rolling-window cross-validation,
as in Table 7, except that we shifted the window four years each time, with just five training
and forecast periods, and computed the sum of the MSEs for out-of-sample forecasts one,
two, and three years ahead. In switching from HP+BVAR to DLGC+BVAR, the sum of the
MSEs dropped by a factor of approximately 12, while when comparing DLGC+BVAR with
DLGC+MSBVAR they dropped by a factor of about 3.5. Thus, the choice of DLGC as the
base model seems to have had a significant impact on the improved forecasting accuracy
achieved in the present study.

One potential reason for this is that HP has grown worse at fitting age-specific mortality
data in recent decades. The blue curve in Figure 8 plots the MSE when fitting HP to one-
year mortality data for French male civilians ages 0–105 against time. The red curve shows
the MSE during the same years when using DLGC instead. The decrease in accuracy of
HP over time is striking; a closer look at the data indicates that the decrease is largely due
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to HP having a poor fit to old-age mortality. DLGC’s continued accuracy is presumably
because it has more parameters for modeling old-age mortality.
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Figure 8. Comparing the fit of HP and DLGC to yearly mortality data from French male civilians.

3.3.2. Future Mortality Forecasting Example

We forecast the 2023 mortality qx for age 0–105 for the French male civilian population
by training on the period 1953–2020 using the same two-group MSBVAR(1) model as in
Sections 3.2 and 3.3.1. The hyperparameter values were chosen as follows: for Group 1
transformed parameters fitted by MSBVAR with lag 1 and two regimes, λ0 = 1, λ1 = 1,
λ3 = 1, λ4 = 0.1, λ5 = 0, µ5 = 0, µ6 = 0; for Group 2 transformed parameters fitted by
MSBVAR with lag 1 and two regimes, λ0 = 1, λ1 = 0.4, λ3 = 1, λ4 = 0.15, λ5 = 0, µ5 = 0,
µ6 = 0. The prior for both was the Sims–Zha normal–flat prior.

Figure 9 shows the mortality forecasting results and the 68% and 90% confidence
intervals.
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Figure 9. Fitted 2023 log qx for French male civilian population with a training period of 1953–2020
for the DLGCab+two-group MSBVAR model for ages 0–105. The 68% confidence intervals of the
forecasts are shown in pink, while the 90% confidence intervals are marked as grey dashed lines.

Our use of MSBVAR enables us to estimate the uncertainty in the parameters. Figure 10
provides the 68% confidence intervals for the one-year through ten-year forecasts of the ten
time series parameters estimated by our model. Here, we include the Sims–Zha normal–flat
BVAR(1), i.e., model (4) described in Section 3.3.1, as the comparison model. The estimates
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come from 20,000 drawings from the associated posterior forecast density for both models.
The comparison shows several advantages of MSBVAR over BVAR(1):

1. For parameters showing a stable historical trend, such as log A, B, C, and β3 (i.e., an
almost linear trend), the MSBVAR model consistently provides much narrower 68%
confidence intervals than the BVAR(1) model. Conversely, for parameters showing
higher volatility in their historical values, such as M1, a1, M2, and M3, the MSBVAR
model provides much wider 68% confidence interval than that BVAR(1). Thus, MSB-
VAR forecasts are more reasonable continuations of historically observed trends and
volatility as compared with BVAR(1). A possible explanation for this advantage is that
MSBVAR can recognize a period of time as being in a high-volatility or low-volatility
regime, then use less/more volatile distribution estimates for the VAR coefficients
when forecasting in the respective regimes. This explanation is further analyzed and
supported later in this section.

2. As shown by the red/blue curve, i.e., the forecast value for each parameter, BVAR(1)
tends to provide a forecast curve with a linear shape to describe only a coarse general
tendency, while our model can provide a more flexibly shaped forecast curve when
necessary by considering the historical regime switches in the parameter. For example,
our model predicts a1 will first drop and then increase in the following ten years, with
a “hook” shaped curve, which reflects the historical ups and downs of a1. However,
BVAR(1) only predicts the coarse increasing tendency with a line segment. Another
example is M3; BVAR(1) forecasts that it will continue the upward trend of the most
recent historical data, while MSBVAR forecasts that it will decrease, beginning another
one of the regularly occurring downward trends visible in the historical plot of M3.
The pink confidence intervals are more flexible in their shapes, often with asymmetric
behavior between the upper and lower bounds. Both a1 and M3 experience structural
changes in the period 1953–2020 (see Section 3.1 for details).

3. Based on the parameter interpretation in Table 1, BVAR(1)’s one-year through ten-year
confidence intervals include several unreasonable prediction values for a number
of parameters, while those of our model provide predictions that are within range.
Examples include: for BVAR(1), the confidence intervals for A (infant mortality) and
B (decline in mortality at age 1) cover values very close to 1; C (childhood mortality
decline) and g (the old-age component of asymptotic mortality) have confidence
intervals that include values of 1 and even greater; and the confidence interval for
β3 (the cap on mortality growth rate for old age) includes negative values. The
MSBVAR model provides more acceptable forecast confidence intervals for all of
these parameters.

Below, we describe the two-regime MSBVAR(1) fitting results with respect to regime
change and provide the transition matrix for the two groups of parameters, where Group
1 (i.e., A, B, C) includes the majority of parameters in childhood and teenage mortality
of DLGCab and Group 2 (i.e., Tm, M1, a1, β3, M2, M3, g) includes most of parameters in
adulthood and old-age mortality of DLGCab.

For the Group 1 parameters, Figure 11 shows that infant and childhood mortality
experience structural changes near 1967 and 2002. The Group 1 MSBVAR fitted full mean
transition matrix in Table 9 shows an estimate for the infant and childhood mortality
regime-switching transition matrix. From the transition matrix, regime 1 has persistence of
0.98540995. When in regime 1, the probability of a jump event into regime 2 in each year is
0.01459005; thus, we can expect about one jump per 68.5 years. Regime 2 has a persistence
of 0.98479471; thus, when in regime 2, the probability of a jump event into regime 1 is
0.01520529 in each year, and we can expect about one jump per 65.8 years.
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Figure 10. Time series of parameter values fit to historical data and 68% confidence intervals for
one-year through ten-year forecasts with both two-group MSBVAR(1) and BVAR(1) after training
on 1953–2020 French male civilian population data. In each plot, the solid black curve shows the
estimated historical values for the parameter from fitting with DLGCab over 1953–2020, the red curve
and solid blue curve represent ten years of point-forecast values from the two-group MSBVAR(1) and
BVAR(1) models, respectively, and the pink shaded part and grey shaded part represent the forecast
68% confidence intervals from the two-group MSBVAR(1) and BVAR(1) models, respectively.

Table 9. Full mean transition matrix for the two groups of transformed parameters fitted by two-group
MSBVAR(1).

Full Mean Transition Matrix for Group 1
Parameters

Full Mean Transition Matrix for Group 2
Parameters

Q =

[
0.98540995 0.01520529
0.01459005 0.98479471

]
Q =

[
0.97106085 0.02810913
0.02893915 0.97189087

]
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Figure 11. Fitted state probabilities from two-regime MSBVAR(1) for the Group 1 transformed
parameters during 1953–2020. The black curve expresses the state probability of regime 1 while the
red curve expresses the state probability of regime 2.

For the Group 2 parameters, Figure 12 shows that later adulthood mortality experi-
ences oscillatory structural changes and alternates between the two regimes. This result
matches our finding about later adulthood mortality structural changes during the 1990s
and the individual parameter regime switching analysis (e.g., an oscillatory pattern in M3)
in Section 3.1.

The Group 2 MSBVAR fitted full mean transition matrix in Table 9 shows an estimate for
the later adulthood regime-switching transition matrix. From the transition matrix, regime
1 has a persistence of 0.97106085. When in regime 1, the probability of a jump event into
regime 2 each year is 0.02893915; thus, we can expect about one jump per 34.6 years. Regime
2 has a persistence of 0.97189087; thus, when in regime 2 the probability of a jump event
into regime 1 is 0.02810913 each year, and we can expect about one jump per 35.6 years.

Figure 13 shows the intercepts and AR(1) coefficient posterior densities by regime for
the Group 1 parameters (transformed and scaled by 100), which come from 20,000 drawings
from the posterior forecast density in our forecasts. As can be seen, the distributions of most
parameters show a clear separation between the two regimes. Many of the transformed
Group 2 parameters show clear separation as well, although we have omitted the plots here.
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Figure 12. Fitted state probabilities from two regime MSBVAR(1) for the Group 2 transformed
parameters during 1953–2020. The black curve expresses the state probability of regime 1, while the
red curve expresses the state probability of regime 2.
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Figure 13. Intercepts and AR(1) densities by regime for Group 1 parameters (transformed) forecasted
in the three-year mortality forecast from two-group MSBVAR(1) trained on 1953–2020 French male
civilian population data. The pink in the intercept graphs correspond to one regime, and the blue
corresponds to the other, and similarly for the AR(1) graphs.

To further compare MSBVAR(1) and BVAR(1), we fit the Group 1 transformed parame-
ters (scaled by 100) with BVAR(1) using the same prior and the same strategy for choosing
hyperparameter values described earlier in this section for MSBVAR(1).

Table 10 provides the fitted VAR coefficients and posterior residual covariance matrix
from BVAR(1) and MSBVAR(1). The MSBVAR(1) results show that the intercepts and AR
coefficients in different regimes are significantly different, which matches the apparent
separation between the distribution modes for different regimes in most of the panels in
Figure 13.



Risks 2023, 11, 152 20 of 23

Table 10. Intercepts, AR coefficients, and error covariance fitted by BVAR(1) and MSBVAR(1) for
Group 1 parameters (transformed) in the one-year through three-year mortality forecast by obtained
by training on 1953–2020 French male civilian population data.

BVAR(1)
MSBVAR(1)

(The Mean of the 20,000 Draws from Posterior Forecast Density)

The 1st Regime The 2nd Regime

Intercepts −2.05862 −4.28405 −0.85628 −0.46341 −0.58897 −0.05221 −1.52664 −4.69968 −0.77721

AR
coefficients

−0.31006 −2.00789 −0.25976 0.29793 −1.17564 −0.03485 −0.48458 −2.86573 −0.37377
−0.10818 −0.05727 −0.04763 −0.14130 0.13122 −0.06355 −0.15121 0.18683 −0.10257
0.62313 0.08462 0.14539 0.56322 −2.27056 0.14019 0.87628 0.04168 0.48325

Posterior
residual

covariance

120.56879 448.4988 76.79942 51.88254 282.05098 35.82726 180.67741 594.69937 113.10181
448.49879 2552.0473 417.17693 282.05098 2453.57520 318.34130 594.69937 2558.24889 491.59018
76.79942 417.1769 77.05636 35.82726 318.34130 49.05973 113.10181 491.59018 105.75571

By comparing the posterior residual covariance matrices in Table 10 with the uniform
residual covariance from by BVAR(1) for the entire period, MSBVAR(1) can partition the
period and granularly assign each part to either a high-volatility regime (the second regime
with greater posterior residual covariance) or a low-volatility regime (the first regime with
smaller posterior residual covariance). Due to its inability to recognize these regimes,
BVAR(1) may overestimate the volatility during a low-volatility regime and underestimate
the volatility during a high-volatility regime. Furthermore, MSBVAR(1) can forecast these
regimes for future periods; incorporating both regimes in its forecasts can allow for more
proper estimation of VAR coefficients and error covariance matrices based on the inclusion
of regimes in the mortality forecasts.

Table 11 shows the forecast mean and quantiles for the Group 1 parameters (trans-
formed) from BVAR(1) and MSBVAR(1). By considering two regimes that separate the
periods of low and high volatility, MSBVAR(1) can provide quite different mean forecasts
and width of the 68% forecast confidence intervals, with a majority of confidence intervals
being significantly narrower than those of BVAR(1).

Table 11. Forecast quantiles and means for Group 1 parameters (transformed) from BVAR(1) and
MSBVAR(1) in one-year through three-year mortality forecasting after training on 1953–2020 French
male civilian population data. For each forecast year, the model that provides a clearly narrower
68% confidence interval is marked in green. As there is no clear difference between the confidence
intervals for the two-year forecasting of logC_diff, there is no green mark for this case.

Time Series

(Scaled by 100)
logA_diff logB_diff logC_diff

Model
No. Years Ahead

Forecasted
1-Year 2-Year 3-Year 1-Year 2-Year 3-Year 1-Year 2-Year 3-Year

16% quantile −24.40069 −50.68266 −43.10678 72.96510 −128.42168 −82.78513 13.93015 −19.57496 −11.80056

mean 15.31044 −7.63767 0.23389 107.23746 −39.49984 12.75223 16.97254 −7.49284 1.91958BVAR(1)

84% quantile 54.81178 35.26181 42.70323 140.9184 49.12812 107.46391 19.97902 4.69020 15.67848

16% quantile 3.761618 −23.17480 −11.93503 45.70565 −114.48584 −48.72999 8.20572 −20.95895 −8.49605

mean 20.57650 −8.34501 2.44477 111.76375 −47.43908 16.82710 20.92243 −8.66176 3.25535MSBVAR(1)

84% quantile 37.15495 6.60100 16.32605 176.92057 20.27684 80.27992 33.62026 3.69373 14.73931

4. Conclusions

The approach to mortality modeling in this paper was chosen with two main goals:
objectively and automatically capturing and quantifying structural changes in mortality
using regime-switching models while retaining the advantages afforded by BVAR. Both of
these goals were accomplished with MSBVAR as the forecasting model.

We chose DLGC for the underlying parametric model, rather than, for instance, the
Heligman–Pollard (HP) model, because DLGC has better accuracy, especially in recent
decades (see Figure 8) and clearer parameter interpretations, and because its parameter
time plots can reveal structural changes (Fu et al. 2022). It is worth considering that there
are several qualities of the DLGC that make it superior to HP for this application. In future
work, we plan to try to develop a more granular understanding of the relative contributions
of regime-switching versus the choice of age-specific model on the improvement in fit with
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MSBVAR+DLGCab over BVAR+HP. Furthermore, we want to try to understand better
which of the good properties of DLGC contributed most to its effectiveness in the present
study. More generally, we may try to understand the effects of tuning the age-specific
model (for instance, by selecting other variants of DLGC) on forecast quality and the ability
to describe structural changes.

The MSBVAR forecasts were better than Lee–Carter, as well as forecasts made with
BVAR using the DLGCab model. Our MSBVAR model had an MSE less than half that
of the comparable BVAR while having fewer parameters. This is evidence that MSBVAR
forecasts can better account for structural changes in historical mortality. This claim is
further supported by the structural change identified by MSBVAR around 1990 for later
adult ages only.

MSBVAR retains the advantages of BVAR in that it can produce confidence intervals
for forecast cross-sectional mortality curves and can provide more realistic and flexible
confidence intervals for the forecast parameter values (see Section 3.3.2). However, the
addition of regime-switching provides even greater ability. There is a clear separation into
different regimes for most parameters when comparing the distribution within each regime,
and we found that for most parameters one regime had substantially lower volatility than
the other. In addition, we saw unreasonable confidence intervals (i.e., outside the range
of possible parameter values) for certain parameters when using BVAR, which was not
seen with MSBVAR. Considering the presence of regime-switching, this provides further
motivation for choosing MSBVAR over BVAR as the forecasting method.

One concern is that two of the fifteen DLGC parameters, M2 and log Tm, appeared to
undergo permanent structural breaks around 1990 (see Section 3.1). The log Tm parameter
exhibited a stable trend on either side of the break, while M2 appeared to undergo regime-
switching in addition to the break. The parameter M2 was another exceptional parameter,
being weakly correlated with all other parameters, both those that describe old age and
those that describe the youngest ages. These factors, while potentially able to reduce
the utility of the model, seem to not have had any very detrimental effects. Forecasting
accuracy was excellent, and confidence intervals behaved reasonably. We speculate that
the apparently successful use of MSBVAR in the presence of structural breaks is because
these breaks occurred in only two out of the fifteen parameters, and even M2 seemed to
undergo additional regime switches outside of the break. The remaining parameters all
showed excellent behavior.

In future work, we would like to refine our process by using a model that distinguishes
regime-switching and structural breaks. In addition, we would like to use break-point
testing analysis to automatically determine exactly which coefficients are undergoing
regime-switching at a particular moment and to distinguish these from ones that can be
modeled by a single regime.
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Notes
1 Strategy for predetermining hyperparameters in our use of MSBVAR: for Group 1 parameters, we used the hyperparameters

values: λ0 = 1, λ1 = 1, λ3 = 1, λ4 = 0.1, λ5 = 0, µ5 = 0, µ6 = 0 with Sims-Zha normal–flat prior. For Group 2 parameters,
among the 46-year training data we fit BVAR on the first 41 years’ data and forecast the mortality for the last 5 years with
different hyperparameter values. We estimated the posterior and in-sample fit RMSE for the results and picked the one set of
hyperparamenter values with the lowest RMSE, which was used to set the hyperparameter values in the associated out-of-sample
forecast (training on the 46-year data and predicting 1, 2, and 3 years ahead). Here, we set λ3 = 1, λ5 = 0, µ5 = 0, and µ6 = 0,
used the Sims–Zha normal–flat prior, and tried several possible values of λ0, λ1, and λ4.

2 Strategy for predetermining hyperparameters in the BVAR(1) model: we applied the same strategy described in the above
footnote for the Group 2 parameters in our model. However, following Njenga and Sherris (2020), we set µ5 = 5 and µ6 = 5,
which was because the parameter time series were not transformed to be stationary and may have had differences in terms of
their trends or stationarity.
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