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Abstract: Constructing an accurate model for insurance losses is a challenging task. Researchers
have developed various methods to model insurance losses, such as composite models. Composite
models combine two distributions: one for part of the data with small and high frequencies and
the other for large values with low frequencies. The purpose of this article is to consider a mixture
of prior distributions for exponential–Pareto and inverse-gamma–Pareto composite models. The
general formulas for the posterior distribution and the Bayes estimator of the support parameter θ are
derived. It is shown that the posterior distribution is a mixture of individual posterior distributions.
Analytic results and Bayesian inference based on the proposed mixture prior distribution approach are
provided. Simulation studies reveal that the Bayes estimator with a mixture distribution outperforms
the Bayes estimator without a mixture distribution and the ML estimator regarding their accuracies.
Based on the proposed method, the insurance losses from natural events, such as floods from 2000 to
2019 in the USA, are considered. As a measure of goodness-of-fit, the Bayes factor is used to choose
the best-fitted model.

Keywords: Bayesian estimation; composite model; mixture prior distribution; mixture posterior
distribution; Bayes factor; marginal likelihood

1. Introduction

Constructing an accurate loss model for insurance loss is one of the essential topics
in actuarial science. Insurance industry data have unique properties. They have a high
frequency for small losses and very few significant losses. A traditional distribution, such
as normal and others, cannot describe insurance data skewness and fat-tailed properties.
Therefore, many researchers explored the other distributions to fit the insurance loss data
better. The class of composite distributions is one of them. A composite distribution
combines a typical distribution, such as exponential, inverse-gamma, Weibull, and log-
normal, for the data with slight losses and the Pareto distribution with extreme losses but
low frequencies.

Klugman et al. (2012) provided a detailed discussion on modeling datasets in actuarial
science. Teodorescu and Vernic (2006) considered the exponential–Pareto composite model
and derive the maximum likelihood estimator for the support parameter θ. Preda and
Ciumara (2006) employed the composite models Weibull–Pareto and log-normal–Pareto to
model insurance losses. These models have two parameters: one is the support parameter
θ and another is the shape parameter α. In the article, they developed algorithms to find
and compare the maximum likelihood estimates for two unknown parameters. Cooray and
Cheng (2013) estimated the parameters of the log-normal–Pareto composite distribution
by using Bayesian methods with both Jeffreys and conjugate priors. They used MCMC
methods rather than developing closed mathematical formulas. Scollnik and Sun (2012)
developed several composite Weibull–Pareto models and suggested using them in different
situations. Aminzadeh and Deng (2017) reconsidered the composite exponential–Pareto
distribution and provided the Bayesian estimate of the θ via inverse-gamma as the prior
distribution. Aminzadeh and Deng (2019) developed an inverse-gamma–Pareto composite
distribution to model insurance losses and provided Bayesian inference based on gamma
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prior distribution. Deng and Aminzadeh (2019) revisited the Weibull–Pareto composite
model and derived the Bayesian inference for the model. In Deng and Aminzadeh (2019),
both inverse-gamma (IG) and gamma priors were employed to find Bayes estimates of the
support parameter of θ and the shape parameter α. They also confirmed via simulation
studies that the Bayes estimates of the parameters consistently outperform MLEs in all
cases. Bakar et al. (2015) develop several new composite models on the Weibull distribution
for heavy-tailed insurance loss data. These models are fitted to two real insurance loss data
and their goodness-of-fit is tested.

Mixture distributions have applications in many fields, including insurance, actuarial
science, and risk management. Klugman et al. (2012) discussed why mixture distributions
have broad applications in the actuarial science field. Miljkovic and Grün (2016) used the
mixture distributions to model insurance losses. They compared the mixture model with
composite models for Danish Fire data and pointed out that it is better than composite
models. Bhati et al. (2019) used a mixture of the Pareto and log-gamma distributions to
model the heavy-tailed losses.

Abdul Majid and Ibrahim (2021a) analyzed composite Pareto models for Malaysian
household income data. The parameter estimation uses numerical methods based on
maximum pseudo-likelihood. The conclusion is that the log-normal–Pareto (II) model
provides the best fit compared to other models. Abdul Majid and Ibrahim (2021b) pro-
posed a Bayesian approach to composite Pareto models that involves prior distribution
on the proportion of data coming from the Pareto distribution instead of assuming the
prior distribution on the threshold θ. They concluded that a uniform prior on the propor-
tion approach is less biased than the point estimates determined when using a uniform
prior on the threshold. Deng et al. (2021) provided an analytical Bayesian approach to
derive estimators of the log-normal–Pareto composite distribution parameters based on
the selected priors. The article compared exponential–Pareto, inverse-gamma–Pareto, and
log-normal–Pareto as candidate models for data on natural hazards from 1900 to 2016 in
the USA. The conclusion is that the log-normal–Pareto distribution provides the best fit.

To model large losses, the Pareto distribution is the distribution favored by practi-
tioners and researchers for modeling heavy-tailed financial data. However, when losses
consist of smaller values with high frequencies and larger losses with low frequencies,
the log-normal or the Weibull distributions are preferred. Nevertheless, no ordinary dis-
tribution provides an acceptable fit for both small and large losses. On the one hand, as
mentioned by Dominicy and Sinner (2017), the Pareto fits the tail well, but on the other
hand, log-normal, Weibull, and inverse-gamma produce an overall good fit but fit the
tail badly. The purpose of using composite distributions is to overcome the dilemma.
Saleem (2010) considers type-I mixtures of the members of a subclass of the one-parameter
exponential family distributions, such as exponential, Rayleigh, Pareto, Burr type XII, and
power function distributions for censored data. The article provides Bayes estimators of
parameters using ML, as well as uniform and Jeffreys priors. To our knowledge, the mixture
of the priors’ approach has not been considered in the literature for composite distributions.
The proposed method in the current article considers two composite distributions. The
mixture prior method is based on gamma and inverse-gamma priors, which are good
candidates for the positive threshold parameter θ. Furthermore, we propose a data-driven
approach to compute optimal values for hyperparameters. For a real dataset where a
selected “true” value for θ (unlike in simulations) is not available, we propose using the
MLE of θ along with the characteristics of the prior distribution to assign optimal values
for the hyperparameter values.

In this article, we apply the Bayesian method to the composite models using a mixture
of prior distributions instead of a single prior distribution for θ. The motivation comes from
the natural loss of data over many years due to many factors, such as floods, fires, storms,
and earthquakes. Each of them should have a distribution with its parameters. Therefore,
the mixture distribution describes the overall distribution. The organization of the article is
as follows. Section 2 discusses the general mixture prior, the general mixture posterior, and
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the general predictive distributions with the risk measures. Section 3 provides the formulas
for Bayes estimators of θ via the mixture prior distribution approach for both exponential–
Pareto and gamma–Pareto composite models. Section 4 summarizes simulation studies
based on equality-weighted mixture distributions and compares the accuracy of different
methods. Section 5 analyzes the natural disaster loss data to illustrate the computations
involved and identifies the best model using the Bayes factor as a goodness-of-fit measure.

2. Mixture Distribution

Definition 1. A random variable Z is a K-point mixture of the random variables X1, X2, . . . , XK
if its cdf is given by

FZ(z) = k1FX1(z) + k2FX2(z) + . . . + kKFXK (z),

where k j > 0 and ∑K
j=1 k j = 1.

Therefore, a mixture distribution density is given by

fZ(z) =
K

∑
j=1

k j fXj(z).

The steps to derive the posterior distribution of the random variables with a mixture
prior distribution are as follows:

Let x1, x2, . . . xn be a random sample from the distribution with a parameter θ. The
likelihood function L(θ) can be written as follows:

L(θ) =
n

∏
i=1

f (xi|θ).

Let the prior distribution of the parameter θ be a K-point mixture distribution with the
density function given by

π(θ) =
K

∑
j=1

k jπj(θ)

where all k j > 0, and ∑K
j=1 k j = 1, and

∫ ∞
−∞ πj(θ)dθ = 1.

Therefore, the joint distribution of θ and X is

f (θ, x) = L(θ)
K

∑
j=1

k jπj(θ),

where πj(θ), j = 1, 2, 3 . . . , K belong to the same class of distributions. For example, all
could be Pareto, gamma, or normal. The marginal distribution of X is given by

fX(x) =
∫ ∞

−∞
f (θ, x)dθ.

The posterior distribution of θ is

π(θ|x) = f (θ, x)
fX(x)

=
L(θ)∑K

j=1 k jπj(θ)∫ ∞
−∞ f (θ, x)dθ

. (1)

For now, consider only the jth prior distribution πj(θ) and denote the corresponding
joint distribution as f j(θ, x), then

f j(θ, x) = πj(θ)L(θ), j = 1, 2, . . . , K.
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Let us denote the corresponding marginal distribution of X as f j
X(x), then

f j
X(x) =

∫ ∞

−∞
f j(θ, x)dθ =

∫ ∞

−∞
πj(θ)L(θ)dθ.

Therefore, the corresponding posterior distribution is

π
j
X(θ|x) =

πj(θ)L(θ)

f j
X(x)

,

which implies
πj(θ)L(θ) = π

j
X(θ|x) f j

X(x). (2)

Using (2) and (1), the posterior distribution, based on the K-point mixture prior πj(θ),
(j = 1, 2, . . . , K), is given by

π(θ|x) = f (θ, x)
fX(x)

=
∑K

j=1 k jπj(θ)L(θ)

fX(x)
=

∑K
j=1 k jπ

j
X(θ|x) f j

X(x)∫ ∞
−∞ f (θ, x)dθ

=
∑K

j=1 k jπ
j
X(θ|x) f j

X(x)

∑K
j=1
∫ ∞
−∞ k jπ

j
X(θ|x) f j

X(x)dθ
=

K

∑
j=1

β jπ
j(θ|x) (3)

where

β j =
k j f j

X(x)

∑K
j=1
∫ ∞
−∞ k jπ

j
X(θ|x) f j

X(x)dθ
=

k j f j
X(x)

∑K
j=1 k j f j

X(x)

because,
∫ ∞
−∞ π

j
X(θ|x)dθ = 1. Therefore, ∑K

j=1 β j = 1. Hence, the form of the posterior pdf
in (3) confirms that the posterior distribution based on a mixture prior distribution is also a
mixture distribution of the individual posterior distributions.

Now, we consider the predictive distribution of Y, given X. Let y denote a future
realization of the random variable Y. We assume that θ > 0, which is the case for the
composite models.

The predictive density of y, given x, is formulated as follows:

f (y|x) = f (y, x)
fX(x)

=

∫ ∞
0 f (y, x, θ)π(θ)dθ

fX(x)
=

∫ ∞
0 f (y|x, θ) f (x|θ)π(θ)dθ

fX(x)

=

∫ ∞
0 f (y|θ) f (x, θ)dθ

fX(x)
=
∫ ∞

0
f (y|θ)π(θ|x)dθ. (4)

Using (3) and (4), and noting that f j(y|x) =
∫ ∞

0 f (y|θ)π j(θ|x)dθ, we obtain

f (y|x) =
∫ ∞

0
f (y|θ)

K

∑
j=1

β jπ
j(θ|x)dθ

=
K

∑
j=1

β j f j(y|x).

Recall that we have already shown ∑K
j=1 β j = 1. Therefore, the predictive distribution of

the mixture prior distribution is also the mixture distribution of the individual predictive
distributions.
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2.1. Example: Exponential with a Mixture of Gamma Distributions

Let X1, X2, . . . , Xn be independent identically distributed (iid) random variables from
the exponential distribution with parameter θ. The density function is given by

fXi (x|θ) = θe−θx, x > 0, θ > 0, i = 1, 2, . . . . . . n,

and the likelihood function is

L(θ) =
n

∏
i=1

fXi (x|θ) = θne−θ ∑n
i=1 xi .

Let the prior distribution of θ be in the class of gamma distributions with parameters
αj > 0 and β j > 0, j = 1, 2, . . . , K. Then the mixture prior distribution is

π(θ) =
K

∑
j=1

k j
θαj−1e

− θ
βj

Γ(αj)β
αj
j

.

Therefore, the joint distribution is given by

f (x, θ) = L(θ)π(θ) =
K

∑
j=1

k j
θαj−1e

− θ
βj

Γ(αj)β
αj
j

θne−θ ∑n
i=1 xi

=
K

∑
j=1

k j
θn+αj−1e

−θ( 1
βj
+∑n

i=1 xi)

Γ(αj)β
αj
j

. (5)

Hence, the marginal distribution of X is given by

fX(x) =
∫ ∞

0

K

∑
j=1

k j
θn+αj−1e

−θ( 1
βj
+∑n

i=1 xi)

Γ(αj)β
αj
j

dθ

=
K

∑
j=1

k j

Γ(αj)β
αj
j

∫ ∞

0
θn+αj−1e

−θ( 1
βj
+∑n

i=1 xi)dθ (6)

=
K

∑
i=j

k jΓ(n + αj)(
1

1
βj
+∑n

i=1 xi
)n+αj

Γ(αj)β
αi
j

(7)

The integrand in RHS of (6) is the kernel of the gamma distribution with parameters
n + αj and 1

1
βj
+∑n

i=1 xi
.

Using (5) and (7), the posterior distribution π(θ|x) is given by

π(θ|x) = f (x, θ)

fX(x)
=

∑K
j=1 k j

θ
n+αj−1e

−θ( 1
βj

+∑n
i=1 xi)

Γ(αj)β
αj
j

∑K
j=1

kjΓ(n+αj)(
1

1
βj

+∑n
i=1 xi

)
n+αj

Γ(αj)β
αj
j

. (8)
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And after some algebraic manipulations, (8) reduces to

π(θ|x) =
K

∑
j=1

kjΓ(n+αj)(
1

1
βj

+∑n
i=1 xi

)
n+αj

Γ(αj)β
αi
j

∑K
j=1

kjΓ(n+αj)(
1

1
βj

+∑n
i=1 xi

)
n+αj

Γ(αj)β
αj
j

θn+αj−1e
−θ( 1

βj
+∑n

i=1 xi)

Γ(n + αj)(
1

1
βj
+∑n

i=1 xi
)n+αj

=
K

∑
j=1

k j f j
X(x)

∑K
j=1 k j f j

X(x)
π j(θ|x) =

K

∑
j=1

β jπ
j(θ|x). (9)

As expected, the RHS of (9) confirms that the posterior distribution is the mixture
distribution of the individual posterior distributions.

Figure 1a provides graphs for five individual gamma distributions with the shape
parameter α and the scale parameter β. Figure 1b provides graphs for equally weighted
mixtures for gamma distributions. Figure 1c provides graphs of mixture gamma distribu-
tions with equal weights for two gamma distributions with different shaped parameters
and equal scale parameters. Figure 1d provides graphs for the mixture of gamma distribu-
tions with unequal weights for gamma distributions with the same parameter shape but
different scale parameters. Figure 1b–d confirm that the general shape of the pdf for the
mixture distribution is significantly different from that of the pdf for individual gamma
distributions in Figure 1a.
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α is 3, β is 3

α is 5, β is 1

α is 5, β is 3

α is 9, β is 1
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5 10 15 20 25
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0.10

0.15

(b)
equal mixture of (1,3),(3,3)

mixture 4/10 of (1,3) and 6/10 of(3,3)

mixture 3/10 of (1,3) and 7/10 of(3,3)
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mixture 1/10 of (1,3) and 9/10 of(3,3)

5 10 15 20 25

0.05

0.10

0.15

(c)

equal mixture of (5,1),(5,3)

mixture 4/10 of (5,1) and 6/10 of(5,3)

mixture 3/10 of (5,1) and 7/10 of(5,3)

mixture 2/10 of (5,1) and 8/10 of(5,3)

mixture 1/10 of (5,1) and 9/10 of(5,3)
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0.06

0.08

0.10

(d)
Figure 1. Comparison of non-mixture gamma with mixture gamma distributions. (a) Gamma distri-
butions with different parameters. (b) Equally weighted mixture gamma distributions. (c) Unequally
weighted mixture of two gamma distributions with different shapes and the same scale. (d) Unequally
weighted mixture of two gamma distributions with the same shape and different scales.

3. Bayesian Approach to Composite Models based on the Mixture Prior Distribution
3.1. Bayesian Inference for Composite Exponential–Pareto Based on the Mixture Prior Distribution

Teodorescu and Vernic (2006) considered the exponential–Pareto composite model.
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Suppose a random variable X has the pdf defined as a piecewise function,

fX(x) =
{

c f1(x) 0 < x ≤ θ
c f2(x) θ ≤ x < ∞

where
f1(x) = λe−λx, x > 0, λ > 0,

and
f2(x) =

αθα

xα+1 , x ≥ θ,

The pdf of the exponential distribution with parameter λ is denoted by f1(x), and the
pdf of the Pareto distribution with parameters θ and α is denoted by f2(x).

Since the pdf of a composite distribution should be a smooth function, the continuity
and differentiability conditions on fX(x) at θ are necessary. Hence,

f1(θ) = f2(θ), f
′
1(θ) = f

′
2(θ).

As explained in Teodorescu and Vernic (2006), the above equations reduce to

λe−λθ =
α

θ
λ2e−λθ =

α(1 + α)

θ2 ,

which lead to
α = λθ − 1 λθ(e−λθ − 1) + 1 = 0.

Numerical methods via Mathematica for the second equation above, lead to

λθ = 1.35 α = 0.35.

Since
∫ ∞

0 f (x)dx = 1, the normalizing constant c is computed as c = 1
2−e−λθ = 0.574.

Therefore, the initial three parameters reduce to only one parameter θ, and the pdf of the
exponential–Pareto distribution is

fX(x|θ) =
{

0.775
θ e

−1.35x
θ 0 < x ≤ θ

0.2θ0.35

x1.35 θ ≤ x < ∞
(10)

For 0 < x ≤ θ, the cdf is

Fx(x|θ) = P(X ≤ x) =
∫ x

0

0.775
θ

e
−1.35x

θ dx =
0.775
1.35

(1− e
−1.35x

θ ).

When x > θ,

Fx(x|θ) = P(X ≤ x) =
∫ θ

0

0.775
θ

e
−1.35x

θ dx +
∫ x

θ

0.2θ0.35

x1.35 dx

=
0.775
1.35

(1− e
−1.35x

θ ) +
0.2

0.35
(1− (

θ

x
)0.35)

Therefore, we have the CDF as a piecewise function

FX(x|θ) =
{

0.775
1.35 (1− e

−1.35x
θ ) 0 < x ≤ θ

0.775
1.35 (1− e

−1.35x
θ ) + 0.2

0.35 (1− ( θ
x )

0.35) θ ≤ x < ∞

To find the quantile xp through Fx(x|θ) = P, for 0 < P < 1, we consider two cases.

Since Fx(θ|θ) = 0.775
1.35 (1e

−1.35θ
θ ) = 0.425251, first consider the case 0 < P < 0.425251. Solving
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0.775
1.35 (1− e

−1.35xp
θ ) = P for xp, gives xp = −θ

1.35 ln(1− 1.35P
0.775 ). Note that for P = 0.25, the first

quartile is x0.25 = 0.423545θ.
For the case 0.425251 < P < 1, solving

0.775
1.35

(1− e
−1.35xp

θ ) +
0.2

0.35
(1− (

θ

xp
)0.35) = P,

gives

xp =
θ

(1− 0.35
0.2 (P− 0.425251))

1
0.35

.

For the special case P = 0.99, we have xP =331,596 θ. In light of the above findings, the
quantile function for the exponential–Pareto is

xp =


−θ
1.35 ln(1− 1.35P

0.775 ) 0 < P < 0.425251
θ

(1− 0.35
0.2 (P−0.425251))

1
0.35

0.425251 < P < 1

For a random sample x1, . . . , xn from the composite pdf in (10), without loss of generality,
assume x1 < x2 < . . . < xn. The likelihood function can be formulated as

L(x|θ) = cθ0.35n−1.35me−1.35 ∑m
i=1 xi/θ , (11)

where c = 0.2n−m(0.775)m

∏n
i=m+1 x1.35

i
. To formulate the likelihood function, we assume that, without loss

of generality, there is an m(m = 1, 2, . . . , n− 1) so that in the ordered sample xm ≤ θ ≤
xm+1.

The solution to ∂ ln(L(x|θ))
∂θ = 0.35n−1.35m

θ +
1.35 ∑m

i=1 xi
θ2 = 0 is the MLE of θ,

θ̂MLE =
1.35 ∑m

i=1 xi

1.35m− 0.35n
.

Note that the Fisher information is

I(θ) = −E[
∂2 ln(L(x|θ))

∂2θ
] =

1.35m− 0.35n
θ2 +

2.7 ∑m
i=1 E[Xi]

θ3 ,

where,

E[X] =
∫ θ

0
x fX(x|θ)dx = 0.0064273θ

1/
√

I(θ) provides the standard deviation of the MLE.
We can see that the MLE requires the correct value of m for its computation. By the

assumption, xm ≤ θ ≤ xm+1, the algorithm below goes through the following steps to
compute θ̂MLE.

1. Get sorted sample observations x1 < x2 < . . . < xn.
2. Start with m = 1, compute θ̂MLE, if x1 ≤ θ̂MLE ≤ x2, then m = 1, otherwise go to

step 3.
3. Let m = 2, compute θ̂MLE, if x2 ≤ θ̂MLE ≤ x3, then m = 2, otherwise go to next step.

The above process continues until we identify the correct value for m. Using the
correct value of m, θ̂MLE can be computed.

Aminzadeh and Deng (2017) developed Bayesian inference for the exponential–Pareto
composite model by considering inverse-gamma as the prior distribution for θ,

π(θ) =
baθ−a−1e−b/θ

Γ(a)
, b > 0, a > 0. (12)
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Using (11) and (12), the posterior pdf π(θ|x) is

π(θ|x) = L(x|θ) ∗ π(θ) ∝ e−
b+1.35 ∑m

i=1 xi
θ θ−(a−0.35n+1.35m)−1. (13)

Using the squared-error loss function, the Bayes estimator for θ is

θ̂Bayes = E[θ|x] = B
A− 1

=
b + 1.35 ∑m

i=1 xi

a− 0.35n + 1.35m− 1
. (14)

where A = (a− 0.35n + 1.35m) and B = (b + 1.35 ∑m
i=1 xi).

It is shown in the article that the Bayes estimator (14) is consistently better than the
MLE in regards to accuracy.

Now, consider the mixture prior distribution of inverse-gamma distributions. Let

π(θ) =
K

∑
j=1

k j
b

aj
j θ−aj−1e−bj/θ

Γ(aj)
, bj > 0, aj > 0, j = 1, 2, . . . , K,

K

∑
j=1

k j = 1, (15)

where the jth prior distribution is given by

πj(θ) =
b

aj
j θ−aj−1e−bj/θ

Γ(aj)
.

The pdf of the composite model based on the jth prior is given by

f j
X(x) =

∫ ∞

0
L(x|θ)πj(θ)dθ

=
∫ ∞

0
cθ0.35n−1.35me−1.35 ∑m

i=1 xi/θ
b

aj
j θ−aj−1e−bj/θ

Γ(aj)
dθ

=
cb

aj
j

Γ(aj)

∫ ∞

0
θ−(aj−0.35n+1.35m)−1e−

bj+1.35 ∑m
i=1 xi

θ dθ. (16)

The integrand in the last line of (16) is the kernel of inverse-gamma with parameters
Aj and Bj, where Aj = (aj − 0.35n + 1.35m) and Bj = (bj + 1.35 ∑m

i=1 xi). Therefore,

f j
X(x) =

cb
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

.

Using the above result, the jth posterior distribution is

π j(θ|x) =
L(x|θ)πj(θ)

f j
X(x)

=
cθ0.35n−1.35me−1.35 ∑m

i=1 xi/θ
b

aj
j θ
−aj−1e−bj/θ

Γ(aj)

cb
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

=

cb
aj
j

Γ(aj)
θ−(aj−0.35n+1.35m)−1e−

bj+1.35 ∑m
i=1 xi

θ

cb
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

,
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which reduces to

π j(θ|x) =
B

Aj
j θ−Aj−1e−Bj/θ

Γ(Aj)
.

Furthermore, we have

fX(x) =
K

∑
j=1

k j f j
X(x) =

K

∑
j=1

k j
cb

aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

, (17)

hence,

f j
X(x)

fX(x)
=

cb
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

∑K
i=1 k j

cb
aj
j

Γ(ai)

Γ(Aj)

B
Aj
j

=

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

∑K
j=1 k j

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

.

Using the above results, the posterior distribution, based on the mixture prior distri-
bution, is

π(θ|x) =
K

∑
j=1

k j f j
X(x)

fX(x)
π j(θ|x)

K

∑
j=1

k j
b

aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

∑K
j=1 k j

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

B
Aj
j θ−Aj−1e−Bj/θ

Γ(Aj)
.

Hence, under the squared-error loss function, the Bayes estimator for θ is

θ̂Bayes = E[θ|x] =
K

∑
j=1

k j
b

aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

∑K
j=1 k j

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

Ej[θ|x] =
K

∑
j=1

k j
b

aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

∑K
j=1 k j

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

Bj

Aj − 1

=
K

∑
j=1

k j
b

aj
j

Γ(aj)

Γ(Aj−1)

B
Aj−1

j

∑K
j=1 k j

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

. (18)

3.2. Bayesian Inference for the Composite IG–Pareto Based on the Mixture Prior Distribution

Aminzadeh and Deng (2019) developed the composite inverse-gamma–Pareto model
as follows:

Suppose X is a random variable with the pdf f (x), where f1(x) and f2(x), respectively,
are the pdfs of inverse-gamma and Pareto distributions.

fX(x) =
{

c f1(x) 0 < x < θ
c f2(x) θ ≤ x < ∞

where

f1(x) =
βαx−α−1e−β/x

Γ(α)
, x > 0, α > 0, β > 0,

and
f2(x) =

aθa

xa+1 , x ≥ θ, a > 0, θ > 0,
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Recall that the composite pdf f (x) should be smooth at θ. Therefore,

f1(θ) = f2(θ), f
′
1(θ) = f

′
2(θ).

The simultaneous solutions of the above equations, after algebraic manipulations, lead to

kαe−k

Γ(α)
= α− k

where k = β
θ and a = α− k > 0, which implies α > k > 0. The functions on both sides of

the above equations are positive and integrable; therefore, the integrals of the functions on
a closed interval should be equal. Hence,

∫ α

0

kαe−k

Γ(α)
dk =

α2

2
.

Using the gamma function, we obtain

Γ(α + 1) =
∫ α

0
t(α+1)−1e−tdt + Γ(α + 1, α)

where Γ(α + 1, α) =
∫ ∞

α t(α+1)−1e−tdt denotes the incomplete upper gamma function. In
light of this result, the above equation reduces to

Γ(α + 1, α)

Γ(α)
+ 0.5α2 − α = 0.

Mathematica can solve the above equation numerically. We obtain α = 0.308289. As a
result, we have k = 0.144351, a = α− k = 0.163947. To find the value of c, we need (see the
definition of the composite pdf above)

c
[∫ θ

0 (kθ)αx−α−1e−kθ/xdx
Γ(α)

+
∫ ∞

θ

aθa

xa+1 dx
]
= 1

which leads to
c =

1
1 + GR(α, k)

= 0.711384.

Note that GR stands for GammaRegularized and GR(α, β
x ) is the cdf of inverse-gamma

with parameters α, β. Therefore, GR(α, kθ
θ ), which is the first integral above, reduces to

GR(α, k). Mathematica can compute the GR function. The above findings reveal that four
initial parameters reduce to only one parameter θ. As a result, the pdf of the IG–Pareto
distribution is

fX(x|θ) =

 c(kθ)αx−α−1e
−kθ

x

Γ(α) , 0 < x ≤ θ

c(α−k)θα−k

xα−k+1 , θ ≤ x < ∞
(19)

and its cdf is given by

FX(x|θ) =
{

c GR(α, kθ
x ), 0 < x ≤ θ

1− c( θ
x )

α−k, θ ≤ x < ∞
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The quantile function can be derived similarly to the exponential–Pareto composite
distribution. Using the cdf above, we have FX(θ|θ) = cGR(α, k) = 1− c.

Case 1: 0 < P ≤ 1− c =⇒ cGR(α, kθ
xP
) = P =⇒

xp =
kθ

InverseGammaRegularized(α, P
c )

,

where InverseGammaRegularized(α, P
c ) can be computed via Mathematica.

Case 2: 1− c < P < 1 =⇒ 1− c( θ
xP
)α−k = P =⇒

xp = θ(
1− P

c
)(

1
k−α ).

For the special cases P = 0.25 and P = 0.99, using the constant values k = 0.144351,
α = 0.308289, c = 0.711384, and Mathematica, we obtain

x0.25 = 0.723798θ and x0.99 = 1.98138× 1011θ.

Suppose x1, . . . , xn is a random sample from the IG–Pareto distribution, without loss
of generality, we assume x1 < x2 < . . . < xn. The likelihood function is

L(x|θ) = Qe−kθ ∑m
i=1

1
xi θa(n−m)+αm (20)

where Q =
cnkαm ∏m

i=1 x−α−1
i an−m

∏n
i=m+1 xa+1

i
. For the formulation of the likelihood function, we assume

an m(m = 1, 2, . . . , n − 1) exists, such that in the sorted sample xm ≤ θ ≤ xm+1. The
solution to ∂L(x|θ)

∂θ = 0 is the MLE for θ, which is

θ̂MLE =
mα + (α− k)m

kS
, S =

m

∑
i=1

x−1
i .

Using (20), the Fisher information is

I(θ) = −E[
∂2 ln(L(x|θ))

∂2θ
] =

nα

θ2 ,

As a result, the standard error of the MLE is 1√
I(θ)

= θ√
nα

.

Using the same algorithm in Section 3.1, we identify the correct value, m, and compute
θ̂MLE.

Aminzadeh and Deng (2019), as a prior distribution for θ, used gamma(γ, δ) with the
pdf

π(θ) =
θγ−1e−θ/δ

Γ(γ)δγ
, γ > 0, δ > 0,

then, the posterior pdf is

f (θ|x) = L(x|θ)× π(θ)∫
L(x|θ)× π(θ)dθ

∝ e−θ(k ∑m
i=1

1
xi
+ 1

δ )θna+m(α−a)+γ−1. (21)

The R.H.S. in (21) is the kernel of gamma(A, B), A = na + m(α − a) + γ and B =
δ

(δk ∑m
i=1

1
xi
+1)

. As a result, the pdf of the posterior is given by

π(θ|x) = θA−1e−θ/B

Γ(A)BA ,
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as a result, under the squared-error loss function, the Bayes estimator for θ is

θ̂Bayes = E[θ|x] = AB =
δ(na + mk + γ)

(δk ∑m
i=1

1
xi
+ 1)

.

Now, we derive the Bayes estimator using the mixture prior distribution based on
individual gamma priors,

πj(θ) =
θγj−1e−θ/δj

Γ(γj)δ
γj
i

,

as a result

π(θ) =
K

∑
j=1

k j
θγi−1e−θ/δj

Γ(γj)δ
γj
j

, γj > 0, δj > 0, j = 1, 2, . . . , K,
K

∑
j=1

k j = 1. (22)

The pdf of the composite model based on jth prior is given by

f j
X(x) =

∫ ∞

0
L(x|θ)πj(θ)dθ

=
∫ ∞

0
Qe−kθ ∑m

i=1
1
xi θa(n−m)+αm θγj−1e−θ/δj

Γ(γj)δ
γj
i

dθ

=
Q

Γ(γi)δ
γi
i

∫ ∞

0
θa(n−m)+αm+γj−1e

−θ(k ∑m
i=1

1
xi
+ 1

δj
)
dθ (23)

The RHS of the last line in (23) is the kernel of Gamma(Aj, Bj), where

Aj = a(n−m) + αm + γj, Bj =
1

k ∑m
i=1

1
xi
+ 1

δj

.

Therefore, f j
X(x) =

QΓ(Aj)B
Aj
i

Γ(γj)δ
γj
j

and

fX(x) =
K

∑
j=1

k j f j
X(x),

f j
X(x)

fX(x)
=

QΓ(Aj)B
Aj
j

Γ(γj)δ
γj
j

∑K
j=1 k j

QΓ(Aj)B
Aj
j

Γ(γi)δ
γj
j

=

Γ(Aj)B
Aj
j

Γ(γj)δ
γj
j

∑K
j=1 k j

Γ(Aj)B
Aj
j

Γ(γj)δ
γj
j

. (24)

Therefore, the pdf of jth posterior distribution is

π j(θ|x) =
L(x|θ)πj(θ)

f j
X(x)

=

Qe−kθ ∑m
i=1

1
xi θa(n−m)+αm θ

γj−1e−θ/δj

Γ(γj)δ
γj
j

QΓ(Aj)B
Aj
j

Γ(γj)δ
γj
j

π j(θ|x) = θa(n−m)+αm+γj−1e
−θ(k ∑m

i=1
1
xj
+ 1

δj
)

Γ(Aj)B
Aj
j

=
θAj−1e

−θ
Bj

Γ(Aj)B
Aj
j

(25)
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From (24) and (25), we conclude that the posterior distribution for IG–Pareto based on
the mixture of gamma priors is

π(θ|x) =
K

∑
j=1

k j f j
X(x)

fX(x)
π j(θ|x) =

K

∑
j=1

k j
Γ(Aj)B

Aj
j

Γ(γj)δ
γj
j

∑K
j=1 k j

Γ(Aj)B
Aj
i

Γ(γj)δ
γj
j

θAj−1e
−θ
Bj

Γ(Aj)B
Aj
i

.

Hence, under the squared-error loss function, the Bayes estimator for θ is

θ̂Bayes = E[θ|x] =
K

∑
j=1

k j f j
X(x)

fX(x)
Ej[θ|x] =

K

∑
j=1

k j

Γ(Aj)B
Aj
j

Γ(γj)δ
γj
j

∑K
j=1 k j

Γ(Aj)B
Aj
j

Γ(γi)δ
γj
j

AjBj

=
K

∑
j=1

k j
Γ(Aj+1)B

Aj+1

j

Γ(γj)δ
γj
j

∑K
j=1 k j

Γ(Aj)B
Aj
j

Γ(γj)δ
γj
j

. (26)

4. Simulation
4.1. Simulation for Composite Exponential–Pareto

To compare the accuracies of θ̂MLE and θ̂Bayes(with and without a mixture of prior distri-
butions), simulations are conducted using Mathematica. For the same generated sample, the
code computes estimators using (aj, bj, j = 1, 2, . . . K), weights k1, k2, . . . , kK, (∑K

j=1 k j = 1).
For each set of input parameters in the simulation, N = 1000 samples from the composite
density (10) are generated.

For a random sample x1, . . . , xn from the composite pdf (10) and without loss of
generality, consider the ordered sample x1 < x2 < . . . < xn. Recall (18),

θ̂Bayes =
K

∑
j=1

k j
b

aj
j

Γ(aj)

Γ(Aj−1)

B
Aj−1

j

∑K
j=1 k j

b
aj
j

Γ(aj)

Γ(Aj)

B
Aj
j

.

The following algorithm is used to determine m:

1. Start with m = 1, check to see if x1 ≤ θ̂Bayes ≤ x2, if yes, then m = 1. Otherwise, go to
step 2.

2. For m = 2, if x2 ≤ θ̂Bayes ≤ x3, then m = 2, otherwise we consider m = 3 and
continue until we find the correct value for m. The idea is to find the value for m so
that xm ≤ θ̂Bayes ≤ xm+1. The Mathematica code uses the algorithm to find m and
compute θ̂Bayes.

Selecting hyperparameter values could be challenging. Suppose two experts can
provide partial prior information about the hyperparameter values. See, Rufo et al. (2010).
The idea with the mixture prior distribution is to incorporate both experts’ opinions to find
the Bayes estimate of θ. In this article, we use the same weights (k1 = k2 = 0.5) for each
expert’s opinion and consider two cases when K = 2:

b1 6= b2, a1 6= a2 values of b1 and b2 are provided by the experts.

a1 6= a2, b1 6= b2 values of a1 and a2 are provided by the experts.
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It is noted that B1 = b1 + 1.35 ∑m
i=1 xi and B2 = b2 + 1.35 ∑m

i=1 xi, which implies that
B1 6= B2. It is also noted A1 = a1 − 0.35n + 1.35m and A2 = a2 − 0.35n + 1.35m, and
A1 6= A2. From (18), we have

θ̂Bayes =

b
a1
1 Γ(A1−1)

Γ(a1)B
A1−1
1

+
ba2

2 Γ(A2−1)

Γ(a2)BA2−1
2

b
a1
1 Γ(A1)

Γ(a1)B
A1
1

+
ba2

2 Γ(A2)

Γ(a2)BA2
2

.

Case 1: In this case, experts are quite sure about the values for b1 and b2; therefore,
there are only two hyperparameter values that should be selected. We would like the
optimal values for a1, a2. Given values of θ, b1, b2, Mathematica provides optimal values of
a1, a2 via a numerical optimization and the constraints E[θ] = 0.5

( b1
a1−1 + b2

a2−1
)
= θ and,

a1 > 2, a2 > 2.

NMinimize[{Var(θ)], E[θ] == θ, a2 > 2, a1 > 2}, {a1, a2}].

For example, for θ = 5, b1 = 25, b2 = 22, we obtain a1 = 5.90681, a2 = 5.48518. Note that
unlike in simulation studies, for a real dataset, a selected value for θ is not available. Hence,
we propose a data-driven approach be used to compute a1, a2. Meaning, the equation
0.5
( b1

a1−1 + b2
a2−1

)
= θ̂MLE along with the above optimization command provide values for

a1 and a2.
Table 1a reveals that by selecting the hyperparameters, as described above, the mixture

prior approach gives a more accurate Bayes estimate, as the average squared-error = ASE
(Bayes) = ξ(θ̂Bayes) is smaller than its counterpart that does not use a mixture prior. For
example, for b1 = 260, b2 = 235, we obtain a1 = 52.921, a2 = 48.0728. We can see
that the smallest ASE values = 0.45027 and 0.41351, corresponding to the optimal set of
hyperparameter values of n = 30,100, respectively. Also, comparing Table 1a with Table 1b,
it is clear that both Bayes estimators (with and without the mixture prior) outperform
MLE with regard to their accuracies, as ξ(θ̂Bayes) is much smaller than ξ(θ̂MLE). Boldface
numbers in tables indicate the optimal values.

Table 1. Improved Bayes estimation with hyperparameter selection for mixture priors.

(a): Comparison of the Bayes estimator without the mixture prior (K=1)
and with the mixture prior (K = 2) when b1, b2 are given

θ = 5

K n b1 b2 a1 a2 θ̂Bayes ξ(θ̂Bayes)

1 30 245 NA a1 = b1
θ + 1 NA 5.11732 0.42551

2 30 260 235 52.921 48.027 5.11662 0.42337
2 30 260 235 55 46.32143 5.12472 0.45379
1 100 245 NA a1 = b1

θ + 1 NA 5.06908 0.41555
2 100 260 235 52.921 48.027 5.06875 0.41351
2 100 260 235 55 46.32143 5.09362 0.54073

(b): Mean and
√

ASE of MLE of θ

θ = 5

n θ̂MLE ξ(θ̂MLE)

30 7.39707 4.88656
100 6.09238 1.74385

Case 2: In this case, experts are pretty sure about the values for a1 and a2, and
they would like the optimal values for b1, b2. Given values of θ, a1, a2, Mathematica pro-
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vides optimal values of b1, b2 via a numerical optimization and the constraint E[θ] = .5( b1
a1−1 + b2

a2−1
)
= θ.

NMinimize[{Var(θ)], E[θ] == θ}, {b1, b2}], b1 > 0, b2 > 0.

For example, for θ = 5, a1 = 4, a2 = 6, we obtain b1 = 13.63, b2 = 27.27. Similar to case 2, to
compute b1, b2, we use 0.5

( b1
a1−1 + b2

a2−1
)
= θ̂MLE in the above optimization command to

find b1, b2.
Like the previous case, Table 2a confirms that by selecting the hyperparameters, as

described above, the mixture prior approach provides a more accurate Bayes estimate, as
ASE (Bayes)=ξ(θ̂Bayes) is smaller than its counterpart that does not use a mixture prior. For
example, for a1 = 110, a2 = 98, we obtain b1 = 545.312, b2 = 484.727. Again, the smallest
ASE values = 0.26801 and 0.24191, corresponding to the optimal hyperparameter values
of n = 30 and 100, respectively. Also, comparing Table 2a with Table 2b, in this case, both
Bayes estimators (with and without the mixture prior) outperform MLE with regard to
their accuracies.

Table 2. Improved Bayes estimation with hyperparameter selection for mixture priors.

(a): Comparison of the Bayes estimator without the mixture prior (K = 1)
and with the mixture prior (K = 2) for given a1, a2

θ = 5

K n a1 a2 b1 b2 θ̂Bayes ξ(θ̂Bayes)

1 30 100 NA b1 = θ(a1 − 1) NA 5.07243 0.27438

2 30 110 98 545.312 484.727 5.07036 0.26801

2 30 110 98 560 471.651 5.07327 0.27393

1 100 100 NA b1 = θ(a1 − 1) NA 5.03404 0.24642

2 100 110 98 545.312 484.727 5.03312 0.23956

2 100 110 98 560 471.651 5.03479 0.25197

(b): Mean and
√

ASE of MLE of θ

θ = 5

n θ̂MLE ξ(θ̂MLE)

30 7.44702 5.34616

100 6.05374 1.70871

4.2. Simulation for Composite Inverse-Gamma–Pareto

Simulations compare similarly to the composite exponential–Pareto model to compare
the accuracy of θ̂Bayes based on with and without mixture prior distributions. For selected
values of n and θ, the hyperparameters (γj, δj, j = 1, 2, . . . K) for gamma prior distributions,
and weights k1, k2, . . . , kK, (∑K

j=1 k j = 1). The simulation study generates N = 1000 samples
from the composite density (19).

Given a random sample x1, . . . , xn from the composite pdf in (19), without loss of
generality, consider the ordered sample x1 < . . . < xn. Recall the Bayes estimator (26),
which uses the mixture gamma prior distributions,

θ̂Bayes =
K

∑
j=1

k j
Γ(Aj+1)B

Aj+1

j

Γ(γj)δ
γj
j

∑K
j=1 k j

Γ(Aj)B
Aj
j

Γ(γj)δ
γj
j

.
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The algorithm described in Section 4.1 determines the value of m. Like the exp–Pareto
composite distribution case, we must select the prior distributions’ hyperparameters. We
consider the mixture prior distribution with equal weights and K = 2. For the prior
distribution π1(θ) = gamma(γ1, δ1), and π2(θ) = gamma(γ2, δ2), consider two cases:

γ1 6= γ2, δ1 6= δ2 values of γ1 and γ2 are provided by the experts.

δ1 6= δ2, γ1 6= γ2 values of δ1 and δ2 are provided by the experts.

Here, γ1 6= γ2, δ1 6= δ2, under the assumption k1 = k2 = 0.5, it can be shown that

E(θ) = 0.5(γ1δ1 + γ2δ2)

Var(θ) = 0.25(γ1δ1 − γ2δ2)
2 + 0.5γ1δ2

1 + 0.5γ2δ2
2 .

Tables 3a and 4a provide simulation results for Cases 1 and 2. Since δ1 6= δ2, and
γ1 6= γ2, we have

A1 = a(n−m) + αm + γ1 6= A2 = a(n−m) + αm + γ2

B1 =
1

k ∑m
i=1

1
xi
+ 1

δ1

6= B2 =
1

k ∑m
i=1

1
xi
+ 1

δ2

.

From (26), we have

θ̂Bayes =

Γ(A1+1)B
A1+1
1

Γ(γ1)δ
γ1
1

+
Γ(A2+1)BA2+1

2
Γ(γ2)δ

γ2
2

Γ(A1)B
A1
1

Γ(γ1)δ
γ1
1

+
Γ(A2)BA2

2
Γ(γ2)δ

γ2
2

.

Case 1: γ1 6= γ2, δ1 6= δ2 where values of γ1 and γ2 are provided by the experts.

For given values of θ, γ1, and γ2, Mathematica provides optimal values of δ1, δ2 via a
numerical minimization for Var(θ), and the constraint E(θ) = 0.5(γ1δ1 + γ2δ2) = θ. Again,
when we have a real dataset, 0.5(γ1δ1 + γ2δ2) = θ̂MLE is used in the optimization command
below in Mathematica to compute hyperparameters δ1, δ2.

NMinimize[{Var(θ), E[θ] == θ, δ1 > 0, δ2 > 0}, {δ1, δ2}].

For example, when θ = 5,γ1 = 2, and γ2 = 2.5, the optimal solutions are δ1 = 2.41379,
δ2 = 2.06897. When θ = 5, γ1 = 5, and γ2 = 5.5, the optimal solutions δ1 = 0.99236,
δ2 = 0.91603.

Table 3a reveals that by selecting the hyperparameters, as described above, the mixture
prior approach gives a more accurate Bayes estimate, as ASE (Bayes)=ξ(θ̂Bayes) is smaller than
its counterpart that does not use a mixture prior. For example, for a sample size of n = 30,
the smallest ASE values = 1.72061 and 1.16326, corresponding to the optimal two sets of
hyperparameter values. Also, for a sample size of n = 100, the smallest ASE values 1.06654
and 0.91892, corresponding to the optimal two sets of hyperparameter values. In this case,
Table 3a,b suggest that both Bayes estimators (with and without mixture prior distributions)
outperform MLE.

Case 2: δ1 6= δ2, γ1 6= γ2 where values of δ1 and δ2 are provided by the experts.

Given the values of θ, δ1, and δ2, Mathematica provides optimal values of γ1, γ2 via a
numerical minimization for Var(θ) and the constraint E(θ) = 0.5(γ1δ1 + γ2δ2) = θ.

NMinimize[{Var(θ), E[θ] == θ, γ1 > 0, γ2 > 0}, {γ1, γ2}].

For example, for θ = 5, δ1 = 2.4, and δ2 = 2.6, the optimal solutions are γ1 = 2.10417,
γ2 = 1.90384. For θ = 5, δ1 = 1, and δ2 = 1.1, the optimal solutions are γ1 = 5.025,
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γ2 = 4.52273. Similar to other cases, for real data, 0.5(γ1δ1 + γ2δ2) = θ̂MLE along with the
above command is used to find hyperparameters γ1, γ2.

Table 4a reveals that the mixture prior approach gives a more accurate Bayes estimate,
as ASE (Bayes) = ξ(θ̂Bayes) is smaller than its counterpart that does not use a mixture prior.
For example, for a sample size of n = 30, the smallest ASE values = 1.85072 and 1.20807,
corresponding to the optimal two sets of hyperparameter values. Also, for a sample size
of n = 100, the smallest ASE values = 1.08946 and 0.96434, corresponding to the optimal
two sets of hyperparameter values. Table 4a,b reveal that both Bayes estimators (with and
without mixture prior distributions) outperform MLE.

Table 3. Bayes estimators (with and without mixture prior distributions) outperform MLE.

(a): Comparison of the Bayes estimator without the mixture prior (K = 1)
and with the mixture prior (K = 2) when γ1, γ2 are given

θ = 5

K n γ1 γ2 δ1 δ2 θ̂Bayes ξ(θ̂Bayes)

1 30 2 NA δ1 = θ
γ1

NA 5.44943 1.70629
2 30 2 2.5 2.41379 2.06897 5.42456 1.63481
2 30 2 2.5 3 1.6 5.39921 1.70996
1 30 5 NA δ1 = θ

γ1
NA 5.30638 1.19520

2 30 5 5.5 0.99237 0.91603 5.2944 1.16326
2 30 5 5.5 1.1 0.81818 5.30043 1.21116
1 100 2 NA δ1 = θ

γ1
NA 5.16417 1.08021

2 100 2 2.5 2.41379 2.06897 5.16189 1.06654
2 100 2 2.5 3 1.6 5.13296 1.06718
1 100 5 NA δ1 = θ

γ1
NA 5.15904 0.92941

2 100 5 5.5 0.99237 0.91603 5.15621 0.91892
2 100 5 5.5 1.1 0.81818 5.14846 0.92938

(b): Mean and
√

ASE of MLE of θ

θ = 5

n θ̂MLE ξ(θ̂MLE)

30 5.90731 2.8898
100 5.16417 1.08021

Table 4. Improved Bayes estimation with hyperparameter selection for mixture priors.

(a): Comparison of the Bayes estimator without the mixture prior (K = 1)
and with the mixture prior (K = 2) when δ1, δ2 are given

θ = 5

K n δ1 δ2 γ1 γ2 θ̂Bayes ξ(θ̂Bayes)

1 30 2.5 NA γ1 = θ
δ1

NA 5.58552 1.85126
2 30 2.4 2.6 2.10417 1.90384 5.58569 1.85072
2 30 2.4 2.6 3 1.07692 5.79744 2.10257
1 30 1 NA γ1 = θ

δ1
NA 5.75102 2.27942

2 30 1 1.1 5.025 4.52273 5.30832 1.20807
2 30 1 1.1 5.5 4.09091 5.32796 1.23492
1 100 2.5 NA γ1 = θ

δ1
NA 5.21317 1.08963

2 100 2.4 2.6 2.10417 1.90384 5.21335 1.08946
2 100 2.4 2.6 3 1.07692 5.28317 1.14863
1 100 1 NA γ1 = θ

δ1
NA 5.22784 1.18276

2 100 1 1.1 5.025 4.52273 5.16032 0.96434
2 100 1 1.1 5.5 4.09091 5.17063 0.97477
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Table 4. Cont.

(b): Mean and
√

ASE of MLE of θ

θ = 5

n θ̂MLE ξ(θ̂MLE)

30 6.183 3.69041
100 5.21317 1.08963

5. Numerical Example
5.1. Data and Basic Descriptive Statistics

This section considers possible models via methods presented in the article for the
dataset. The objectives are to find out if using the mixture prior approach in the Bayesian
framework provides better results concerning the Bayes estimate of the parameter θ and to
select the best model that fits the data. The insurance losses from natural events, such as
floods, are obtained from EM-DAT, the International Disaster Database. EM-DAT contains
all natural events worldwide in raw data on the occurrences and effects from 1900 to the
present day. “The database is compiled from various sources, including the United Nations
agencies, non-governmental organizations, insurance companies, research institutes, and
press agencies”. This paper considers flood insurance damage in the USA from 2000 to
2019. EM-DAT also provides the annual average CPI using the base year 2019. To eliminate
the effect of inflation, all insurance damage amounts are converted to 2019 dollars.

Figure 2 shows the CPI-adjusted (in 2019 dollars) histogram of insurance damage
amounts from 2000 to 2019 in the USA. There were 23 recorded insurance losses due to
natural event floods in the USA.

Figure 2 provides the frequentist statistics. The average insurance loss due to a natural
event storm is x = USD 62.6694 million, the minimum loss is USD 5.3996 million, and the
maximum loss is USD 266.302 million. The standard deviation is s = USD 71.0041 million,
which indicates that the data are widespread. The skewness is 1.96116, which indicates that
the data are right-skewed. The kurtosis is 5.79031, which tells us the data have a heavy tail.
The histogram also shows the high frequency for small amounts of damage and the low
frequency for large amounts of insurance losses. The data represent typical insurance data
for which composite models are applicable; see Aminzadeh and Deng (2019). The regular
distributions, such as normal and exponential, cannot effectively model the losses.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

N = 23
Mean = 62.6694
Standard Deviation = 71.0041
Max = 266.302
Min = 5.39963
Kurtosis = 5.79031
Skewness = 1.96116

Figure 2. Histogram of insurance damage from 2000 to 2019 in 2019 USD dollars.

5.2. Model Selection

Miljkovic and Grün (2016) provide goodness-of-fit measures to determine the appro-
priateness of the fitted models.

NLL: the negative log-likelihood
NLL is used to compare models with the same number of parameters. NLL corre-

sponds to the model with the minimum value of − ln
(

L(x1, x2, . . . , xn|θ
)
, among models
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considered, where L(x1, x2, . . . , xn|θ) is the likelihood function of data, and θ is the parame-
ter that can be multi-dimensional. The model with a smaller NLL value indicates that the
model has a better fit for the data than other models under consideration.

AIC: Akaike’s information criterion
To compare models with different parameter numbers, we consider AIC (Akaike’s

information criterion) and BIC (Bayesian information criterion). Both measures penalize
the increase in the number of parameters.

Akaike developed AIC,

AIC = − ln
(

L(x1, x2, . . . , xn|θ
)
+ 2q

where q is the number of parameters. As q increases,− ln(
(

L(x1, x2, . . . xn|θ)
)

decreases and
2q becomes larger. It provides the trade-off between the models with different parameters.
The model with a smaller AIC value indicates that the model has a better fit for the data
than other models under consideration.

BIC: Bayesian information criterion
BIC was proposed by Schwarz and is given by

BIC = − ln
(

L(x1, x2, . . . , xn|θ
)
+ q ln(n)

which also depends on the sample size n. BIC not only penalizes the increase in the number
of parameters but also the increase in the sample size. The smallest BIC indicates the
best-fitted model among the models under consideration.

5.2.1. Goodness-of-Fit Measures for Maximum Likelihood Method

Table 5 provides the MLE, NLL, AIC, and BIC values for different models. Standard
errors of MLEs (see Sections 4.1 and 4.2) also are listed in the table. For example, when
we use the exponential model to fit the insurance flood loss data, there is one unknown
parameter λ. The MLE of λ based on the exponential model is λ̂ = 0.0159. Using λ̂, the
goodness-of-fit measures—NLL, AIC, and BIC—are computed as 118.171, 238.342, and
239.478. Table 5 reveals that based on NLL, AIC, and BIC, among non-composite models
(exponential, inverse-gamma) and composite models (exp–Pareto, IG–Pareto), IG–Pareto
has the smallest NLL, which is 105.701. Therefore, IG–Pareto is the best-fitted model among
all four models for insurance losses due to natural event floods from 2000 to 2019.

Table 5. Goodness-of-fit measures and MLEs for non-composite models and composite models.

Model MLE and SE(MLE) NLL AIC BIC

Exponential
X ∼ Exp(λ)

λ̂ = 0.0159, SE(λ̂) = λ̂√
n =

0.00332
118.171 238.342 239.478

Exp–Pareto θ̂ = 61.521, SE(θ̂) = 12.4734 126.291 254.582 255.717
m = 18

Inverse-gamma α̂ = 1.2633, SE(α̂) =
1√

nPolygamma(1,α̂)
= 0.19196 117.129 238.258 248.529

X ∼ IG( α, β)
β̂ = 31.5436, SE(β̂) =

β̂√
nα̂

= 5.85195

IG–Pareto θ̂ = 49.3097, SE(θ̂) = θ̂√
nα

=

18.5178
105.701 213.402 214.538

m = 13
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Note that for the IG(α, β) distribution in Table 5, using the second derivatives of the
log-likelihood function, we obtain

∂2 ln(L(x|α, β))

∂2α
= −npolygamma(1, α)

∂2 ln(L(x|α, β))

∂2β
= −nα

β2

where polygamma(1, α) is the first derivative of the digamma function, which Mathematica
can compute. These derivatives are used in Table 5 to compute the standard error of the
MLEs.

5.2.2. Bayesian Inference of IG–Pareto

NLL, AIC, and BIC are criteria for evaluating models estimated by maximum likeli-
hood methods. They may not be suitable for Bayesian model selections. Many researchers
proposed the Bayesian approach. Ando (2010) introduced the Bayes factor, originally pro-
posed by Kass and Raftery (1995), among other authors. The logic behind using Bayesian
inference for the real data is based on the idea that it provides a more accurate estimator
than the ML method, as verified by the simulation studies in Tables 1a–4a. The Bayesian es-
timator based on the mixture prior approach is more accurate than a non-Bayesian method,
such as MLE, provided that a data-driven approach is instigated for the hyperparameters.

Bayes factor

The odds of the marginal likelihood of the data, x, is given by

B1,2(x) = Bayes factor(M1, M2) =
P(x|M1)

P(x|M2)

where P(x|M1), P(x|M2) are marginal likelihoods of the dataset corresponding to two
models: M1 and M2. If B1,2(x) > 1, it is concluded that M1 is a better-fitted model than M2.
Ando (2010) states, “The Bayes Factor chooses the model with the largest value of marginal
likelihood among a set of candidate models”. The following is Jeffreys’ scale of evidence
for interpreting the Bayes factor:

1. If B1,2(x) < 1, negative support for M1
2. If 1 < B1,2(x) < 3, barely worth mentioning M1
3. If 3 < B1,2(x) < 10, substantial evidence for M1
4. If 10 < B1,2(x) < 30, strong evidence for M1
5. If 30 < B1,2(x) < 100, very strong evidence for M1
6. If B1,2(x) > 100, decisive evidence for M1.

The Marginal Likelihood

Let x1, x2, . . . , xn be a random sample with the distribution f (x|θ). Then, the likelihood
function is given by

n

∏
i=1

f (xi|θ).

Let π(θ) be the prior distribution for the parameter θ, then the marginal likelihood function
(PML) is defined by

PML(x|model) =
∫ ∞

0

n

∏
i=1

f (xi|θ)π(θ)dθ,

where θ > 0, which is the case for composite models, such as exp–Pareto and IG–Pareto
considered in this article.
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According to Table 5, as IG–Pareto is the best-fitted composite model, going forward,
we will consider the mixture prior approach as discussed in the previous sections and
apply it to the IG–Pareto composite model. From (20)

L(x|θ) = Qe−kθ ∑m
i=1

1
xi θa(n−m)+αm

where Q =
cnkαm ∏m

i=1 x−α−1
i an−m

∏n
i=m+1 xa+1

i
and m is a positive integer, such as xm ≤ θ ≤ xm+1. Let

gamma(γ, δ) be the prior distribution with the pdf

π(θ) =
θγ−1e−θ/δ

Γ(γ)δγ
, γ > 0, δ > 0, θ > 0,

and A = na + m(α− a) + γ, B = δi
δk ∑m

i=1(
1
xi
+1)

. The marginal likelihood function (PML) is

PML(x|δ, γ) =
∫ ∞

0
Qe−kθ ∑m

i=1
1
xi θa(n−m)+αm θγ−1e−θ/δ

Γ(γ)δγ
dθ

=
Q

Γ(γ)δγ

∫ ∞

0
e−θ(k ∑m

i=1
1
xi
+ 1

δ )θa(n−m)+αm+γ−1dθ =
QΓ(A)BA

Γ(γ)δγ
,

where Γ(A) denotes the gamma function evaluated at A. Now, consider the mixture distri-
bution π(θ) of gamma priors π(γ1, δ1) and π(γ2, δ2), with equal weights k1 = k2 = 0.5.

π(θ) =
1
2
( θγ1−1e−θ/δ1

Γ(γ1)δ
γ1
1

+
θγ2−1e−θ/δ2

Γ(γ2)δ
γ2
2

)
, γ1, γ2 > 0, δ1, δ2 > 0, θ > 0,

and let Ah = na + m(α− a) + γh, Bh = δh
δhk ∑m

I=1(
1
xi
+1)

, h = 1, 2. We can see that, given the

mixture prior, the PML is represented as:

PML(x|δ1, γ1, δ2, γ2) =
1
2

Q(
Γ(A1)BA1

1

Γ(γ1)δ
γ1
1

+
Γ(A2)BA2

2

Γ(γ2)δ
γ2
2

).

As mentioned, selecting the hyperparameters γ, δ is challenging. The expected value
and variance for π(γ, δ) are given as follows:

E(θ) = γδ Var(θ) = γδ2.

To find the optimal values of the hyperparameters γ and δ, we propose minimizing the
variance γδ2 under the constraint E(θ) = θ. Substituting E(θ) = γδ into the variance
formula, we have Var(θ) = θδ. Therefore, the smaller the δ, the smaller the variance. The
variance is an increasing function concerning the parameter δ. Note that the coefficient of
variation is 1√

γ . Since we do not know the "real" value of θ, as in the simulation section, we

replace θ with its MLE θ̂ = 49.3097. Table 6 provides PML values for the selected models
(M1 −M4) with γ = 10, 20, 30, and 50, and the corresponding δ = 4.93097, 2.46549, 1.64366,
and 0.98619. It is clear that the smaller the variance, the better the model. For example, the
Bayes factor of M4 vs. M1 is 3.90122×10−56

3.28084×10−56 = 1.1891. M4 is about 118.91% times as likely as
M1.

Table 6 also provides PML values based on the mixture prior distribution when K = 2
and weights k1 = k2 = 0.5. The same Mathematica code as in the simulation section
computes the hyperparameter values, assuming the “true” parameter value of theta is
θ̂ = 49.3097.
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Table 6. Bayesian estimates and marginal likelihood (PML) of IG–Pareto models with (K = 2) or
without (K = 1) mixture priors to the insurance losses due to floods in the USA.

K Model Prior Distributions Bayesian
Estimates

PML VaR0.95

1 M1 θ ∼ gamma(10, 4.93097) θ̂ = 49.3097
m = 13

3.28084× 10−56 5.18593× 108

1 M2 θ ∼ gamma(20, 2.46549) θ̂ = 49.3097
m = 13

3.63167× 10−56 5.24085× 108

1 M3 θ ∼ gamma(30, 1.64366) θ̂ = 49.3097
m = 13

3.77457× 10−56 5.26504× 108

1 M4 θ ∼ gamma(50, 0.98619) θ̂ = 49.3097
m = 13

3.90122× 10−56 5.28750× 108

2 M5
π1(θ) ∼ gamma(25, 2.11327)
π2(θ) ∼ gamma(5, 9.15752)

θ̂ = 50.1982
m = 14

1.64218× 10−55 5.28485× 108

2 M6
π1(θ) ∼ gamma(27.5299, 2)
π2(θ) ∼ gamma(1.74239, 25)

θ̂ = 51.8988
m = 15

7.19874× 10−55 5.4426× 108

Recall the expected value and variance for θ under the assumptions γ1 6= γ2, δ1 6= δ2,
and k1 = k2 = 0.5, are

E(θ) = 0.5(γ1δ1 + γ2δ2) Var(θ) = 0.25(γ1δ1 − γ2δ2)
2 + 0.5γ1δ2

1 + 0.5γ2δ2
2 .

Using the Mathematica code below, we find optimal δ1, δ2 for given γ1, γ2 (see Case 1 in
Section 4.2).

NMinimize[{Var(θ), E[θ] == 49.3097, δ1 > 0, δ2 > 0}, {δ1, δ2}].

Using the Mathematica code below, we find optimal γ1, γ2 for given δ1, δ2 (see Case 2 in
Section 4.2).

NMinimize[{Var(θ), E[θ] == 49.3097, γ1 > 0, γ2 > 0}, {γ1, γ2}].

Table 6 provides the PML values and the Bayesian estimates of the support parameter
θ. We note that the model based on the mixture prior outperforms the models without
the mixture prior distribution. The model M6-based equal-weight mixture of π(27.5299, 2)
and π(1.74239, 25) provides the maximum PML value, which is 1.61188× 10−53. Model
M5, with an equal-weight mixture of π(25, 2.11327) and π(5, 9.15752), provides the second
largest PML value, which is 7.19919× 10−55. For example, the Bayes factor of M6 vs. M4 is
7.19874×10−55

3.90122×10−56 = 18.4525. Therefore M6 is about 1845.25% times as likely as M4. Based on
Jeffreys’ scale evidence, we have strong evidence for M6 (that it fits the data).

Table 7 summarizes the Bayes factors for Models M1 to M6, which we discussed in
Table 6. It can clearly be seen that M6 outperforms all other models due to Bayes factor
(M6, Mh) > 1 for h = 1, . . . , 5, and M5 is the second best since Bayes factor (M5, Mh) > 1 for
h = 1, . . . , 4. Hence, the model with the mixture prior outperforms the model without the
mixture prior. The Bayes factor (Mk, Mj) is denoted as Bkj in Table 7.

Figure 3 presents the virtual presentation of the gamma priors and the gamma mixture
priors to the IG–Pareto composite model in Table 6. Figure 3a shows gamma priors
corresponding to M1 to M4. When the shape parameter γ increases, the shapes of the
curves become more symmetric and bell-shaped; Figure 3b corresponds to M5; the equal
weight mixture of two gamma priors shows a bimodal shape; even one mode around 28 is
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not significantly recognized. Figure 3c corresponds to M6. The equal-weight mixture of
two gamma priors clearly shows a bimodal shape.

Table 7. Bayes factors for paired models.

Paired
Models Bkj

Paired
Models Bkj

Paired
Models Bkj

M2, M1 1.1069 M3, M2 1.0393 M5, M3 4.3506
M3, M1 1.1505 M4, M2 1.0742 M6, M3 19.0717
M4, M1 1.1891 M5, M2 4.5218 M5, M4 4.2094
M5, M1 5.0054 M6, M2 19.8221 M6, M4 18.4525
M6, M1 21.9418 M4, M3 1.0336 M6, M5 4.3837

Model1 G(10,4.93097)

Model2 G(20,2.46549)

Model3 G(30,1.46366)

Model4 G(50,0.98619)

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

(a)

Model1 G(25, 2.113274)

Model2 G(5, 9.15752)

Model3 0.5G(25, 2.113274)+0.5G(5, 9.15752)

20 40 60 80 100

0.01

0.02

0.03

0.04

(b)
IG1 with α is 101, β is 5000

IG2 with α is 115, β is 5000

Mixture of IG1(0.1) and IG2

Mixture of IG1(0.9) and IG2
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0.02

0.04

0.06
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(c)
Figure 3. The gamma distribution and the mixture gamma distribution of the prior distribution
for the IG–Pareto composite models corresponding to Table 6. (a) Gamma distribution of the prior
distribution for the IG–Pareto with different shapes and sizes. (b) The mixture gamma distribution
of the prior distribution for the IG–Pareto with different shapes and sizes. (c) The mixture gamma
distribution of the prior distribution for the IG–Pareto with different shapes and sizes.

Table 8 compares the models with the optimal mixture prior (M5, M6) and without the
optimal mixture prior (M′5, M′6). Note that in the selection of hyperparameters for M′5, M′6,
we do not minimize the variance. We only ensure the mean equation

E(θ) =
1
2
(γ1δ1 + γ2δ2)

is satisfied.
Since the “true” value of θ is unknown, as mentioned before, we use its MLE

θ̂ = 49.3097. Therefore, for given γ1, γ2,and δ1, we have

δ2 =
2E(θ)− γ1δ1

γ2
=

2× 49.3097− γ1δ1

γ2



Risks 2023, 11, 156 25 of 27

which leads to M′5. Also, for the given δ1, δ2, and γ1, we have

γ2 =
2E(θ)− γ1δ1

δ2
=

2× 49.3097− γ1δ1

δ2

which leads to M′6.

Table 8. Comparison between the optimal mixture prior and the non-optimal mixture prior for the
insurance losses due to floods in the USA.

Model Prior Distributions Bayesian
Estimates

PML BMk M′
k

M′5
π1(θ) ∼ gamma(25, 2)
π2(θ) ∼ gamma(5, 9.27388)

θ̂ = 49.4899
m = 13

3.25458× 10−56 5.0458

M′6
π1(θ) ∼ gamma(26, 2)
π2(θ) ∼gamma(1.86478, 25)

θ̂ = 50.5036
m = 14

1.44635× 10−55 4.9772

Table 8 reveals that the models with the optimal mixture prior are better than those
without the optimal mixture prior. For example, the Bayes factor (M5, M′5) = 5.0458. The
model with the optimal mixture prior, M5, is about 504.58% as likely as the model without
the optimal mixture prior, M′5.

The value at risk, Klugman et al. (2012), is an important and standard risk measure in
the insurance industry. VaRp is the capital required at a higher probability p to ensure the
company will not go bankrupt.

P(X ≤ Varp) = p

The VaRp, or an upper limit prediction for a future value y, can be obtained via the
predictive density f (y|x). Aminzadeh and Deng (2019) provide the predictive density for
the IG–Pareto composite model based on only one gamma prior distribution, as

f (y|x) =
∫ ∞

0
f (θ|x) fY(y|θ)dθ

= K1(y)(1− H1(y|α + A,
yB

kB + y
)) + K2(y)H2(y|α− k + A, B) (27)

where

K1(y) =
kαΓ(α + A)yA−1Bα

(1 + GR(α, k))Γ(α))Γ(A)(kB + y)α+A

and

K2(y) =
(α− k)Bα−kΓ(α− k + A)

(1 + GR(α, k))Γ(A)yα−k+1 ,

H1 denotes the cdf of gamma(α + A, yB
kB+y ) and H2 denotes the cdf of gamma(α− k + A, B),

where
A = na + m(α− a) + γ, B =

δ

(δk ∑m
i=1

1
xi
+ 1)

.

The above results can be extended to the mixture of two gamma prior distributions.
Recall from Section 2.1,

f (y|x) =
K

∑
j=1

β j f j(y|x), (28)

β j =
k j f j

X(x)

∑K
j=1
∫ ∞
−∞ k jπ

j
X(θ|x) f j

X(x)dθ
=

k j f j
X(x)

∑K
j=1 k j f j

X(x)
.
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Therefore, for the K = 2 case, based on (27), we have

f j(y|x) = K j
1(y)(1− H1(y|α + Aj,

yBj

kBj + y
)) + K j

2(y)H2(y|α− k + Aj, Bj), j = 1, 2

and K j
1(y), K j

2(y) can be defined via (27) using the corresponding Aj, Bj.
The last column of Table 6 for models M1 to M6 provides VaR0.95 values, which are

found using the predictive density (28),

P(Y ≤ VaR0.95|x) = 0.95,

and Mathematica. The values tell us how much the company should reserve under each
model to avoid bankruptcy at the 95% confidence level. For example, if we use model M6,
we should reserve USD 5.4426× 108 million to avoid bankruptcy at the 95% confidence
level.

6. Conclusions

This article considers the class of composite models. We are interested in exploring the
Bayesian estimates of the threshold parameter θ, which separates the small losses with high
frequencies and significant losses with low frequencies. Two composite models, exp–Pareto
and IG–Pareto, are considered as examples. The prior distribution for parameter θ uses
a mixture of prior distributions. We verify that, in general, the posterior distribution is
a mixture of individual posterior distributions. For each composite model considered in
the article, the general formula of the Bayes estimator of θ is derived based on the mean
squared error loss function.

Simulation results compare the accuracies of θ̂Bayes using with and without mixture
prior distributions. Also, the accuracy of θ̂MLE is compared to the Bayes estimates. For
both exp–Pareto and IG–Pareto models, respectively, methods for choosing the optimal
hyperparameter (ai, bi), (γi, δi, i = 1, 2, . . . K) values, are proposed. The proposed method
is data-driven, as it uses the MLE of θ based on real data to compute optimal values
for hyperparameters. Simulations reveal that the Bayesian estimator with the mixture
prior distribution is more accurate than the Bayesian estimator without the mixture prior
distribution. Also, both Bayes estimators are more accurate than MLE.

For an illustration of computations involved in the proposed methods, the insurance
losses in the USA from 2000 to 2019 due to natural event floods are considered and down-
loaded from EM-DAT, the International Disaster Database. In order to eliminate the effect
of inflation, all insurance damage amounts are converted to 2019 dollars. Based on NLL,
AIC, and BIC measures, the conclusion is that IG–Pareto provides the best fit, which leads
us to apply the Bayesian method to the IG–Pareto composite model. We have shown that
the IG–Pareto model with the mixture gamma prior distribution most optimally fits the
data based on the optimal hyperparameter value. For the comparison of Bayesian models,
the Bayes factor is used.

Potential future research would involve extending the mixture prior approach to other
composite distributions, such as log-normal–Pareto and Rayleigh-Pareto. Furthermore, the
mixture prior approach can be investigated for composite models that involve more than
two distributions. For example, consider Pareto for the right tail of data with very large
losses, a non-heavy tail distribution for small losses in the data, and another distribution
that models moderate losses in the center of data.
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