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Abstract: Modelling claim frequency and claim severity are topics of great interest in property-
casualty insurance for supporting underwriting, ratemaking, and reserving actuarial decisions.
Standard Generalized Linear Models (GLM) frequency–severity models assume a linear relationship
between a function of the response variable and the predictors, independence between the claim
frequency and severity, and assign full credibility to the data. To overcome some of these restrictions,
this paper investigates the predictive performance of Gradient Boosting with decision trees as base
learners to model the claim frequency and the claim severity distributions of an auto insurance
big dataset and compare it with that obtained using a standard GLM model. The out-of-sample
performance measure results show that the predictive performance of the Gradient Boosting Model
(GBM) is superior to the standard GLM model in the Poisson claim frequency model. Differently,
in the claim severity model, the classical GLM outperformed the Gradient Boosting Model. The
findings suggest that gradient boost models can capture the non-linear relation between the response
variable and feature variables and their complex interactions and thus are a valuable tool for the
insurer in feature engineering and the development of a data-driven approach to risk management
and insurance.

Keywords: gradient boosting; non-life insurance pricing; expert systems; predictive modelling; risk
management; actuarial science

1. Introduction

Modelling claim frequency and claim severity are topics of great interest in property-
casualty insurance (e.g., Third Party Liability (TPL) Motor Insurance) and a crucial step
for making appropriate underwriting, ratemaking, and reserving actuarial decisions. To
this end, insurers tend to model separately the claim frequency and average claim severity
using GLMs, in which the response variable—claim counts and claim amounts—is expressed
through specific link transforms as linear combinations of feature (rating) variables such as the
driver’s age, car brand, education, or distance driven (Garrido et al. 2016; Renshaw 1994).

The standard frequency–severity model has, however, some limitations. First, the
model assumes a linear relationship between the response variable and the predictors,
with empirical studies documenting nonlinear effects between, e.g., claim severity and
the insured’s age (Cunha and Bravo 2022; Frees and Valdez 2009). Alternative approaches
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using Generalized Additive Models (GAM) can overcome the linear predictor constraint
of GLMs but have difficulty capturing the complex interactions among feature variables
(Verbelen et al. 2018).

Second, the standard model assumes claim frequency and claim severity are inde-
pendent. In practice, empirical studies show that claim counts and amounts are often
dependent and negatively correlated in auto and health insurance (see, e.g., Frees et al.
2011; Garrido et al. 2016; Gschlößl and Czado 2007; Shi et al. 2015). Several authors have
proposed mixed copula-based models linking the discrete distribution of claim counts and
the continuous distribution of average claim size to deal with the dependencies (see, e.g.,
Czado et al. 2012; Frees and Wang 2006; Gao and Li 2023; Krämer et al. 2013; Shi 2016;
Shi and Zhao 2020; Shi et al. 2015). An alternative modelling strategy is a conditional
approach in which the number of claims is used as a feature variable in the GLM for
the average claim size (see, e.g., Frees et al. 2011; Garrido et al. 2016; Jeong and Valdez
2020). Another approach is the multivariate conditional auto-regressive model and the
multivariate Tobit model, which incorporates the correlation between the claim frequency
and severity by modelling claim frequencies or accident rates at different severity levels
(see, e.g., Aguero-Valverde 2013; Zeng et al. 2017).

Third, GLMs assign full credibility to the data, i.e., they assume the dataset contains
enough observations for the parameter estimates to be considered fully credible. In practice,
in segmented property-casualty insurance portfolios such as vehicle insurance, the issue
of credibility must be addressed by considering, e.g., Generalized Linear Mixed Models
(GLMMs) or Elastic Net GLMs (Katrien and Valdez 2011; Qian et al. 2016). Fourth, GLMs
belittle conceptual uncertainty in empirical modelling, with recent literature highlighting
the advantages of model ensembles in risk management (see, e.g., Bravo 2021).

The failure to flexibly capture the nonlinear relation between the claim frequency
(severity) and often overlapping risk factors in GLMs and GAMs and the availability of
larger datasets, including non-conventional data, shifted the attention towards the use
of machine learning and deep learning methods in motor insurance modelling. Paefgen
et al. (2013) and Baecke and Bocca (2017) used, respectively, Decision Trees (DT), Artificial
Neural Networks (ANN), and Random Forests (RF) to predict claim counts in Usage-based
Insurance (UBI) products such as pay-as-you-drive and pay-how-you-drive. Quan and
Valdez (2018) compared the usage of univariate and multivariate response variables when
predicting frequency in several non-auto coverages using the Classification and Regression
Trees (CART), RF and Gradient Boosting (GB) models.

Pesantez-Narvaez et al. (2019) and Meng et al. (2022) examined the use of boosting
machines in UBI claim probability prediction. The former concluded that the performance
of boosting is less robust than classical logistic regression but attributed this to the small
number of covariates considered in the study and the absence of hyperparameter tuning.
Fauzan and Murfi (2018) analyse the accuracy of XGBoost in auto-insurance claim predic-
tion and conclude that XGBoost shows increased accuracy in terms of normalised Gini
when compared to the alternative methods AdaBoost, Stochastic GB, RF, and ANN. Su and
Bai (2020) investigated the use of a stochastic gradient boosting algorithm and a profile
likelihood approach to estimate parameters for both the claim frequency and average claim
severity distributions in a French auto insurance dataset and concluded that the approach
outperforms standard models.

To develop a full tariff plan for a Belgian TPL motor cover, Henckaerts et al. (2021)
investigated the performance of simple regression trees, random forest, and boosted trees
using the GLM as a benchmark and concluded that boosted trees outperformed GLMs.
Similarly, Noll et al. (2020) predicted the claim frequency in a French motor TPL dataset
using regression trees, GB, ANN and GLMs and concluded that GB and ANN outperformed
the GLM, but also stated that the development of the benchmark model could have been
improved. Su and Bai (2020) predicted the frequency and severity of the TPL motor cover,
combining the stochastic gradient boost and a profile likelihood approach to estimate the
parameters of the distributions. This work adds to previous literature by introducing the
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dependence between claim frequency and claim average cost using the claim frequency as
a predictor in the regression model for the severity. The authors concluded that abandoning
the independence assumption contributes to increasing the model performance when
compared to state-of-the-art models.

Some studies focus on other covers with great exposure, such as Collision. Staudt
and Wagner (2021) developed frequency prediction on a Swiss motor portfolio, using GLM
and GAM as reference models and two random forest models, one for claim severity and
the other for log-transformed claim severity. The usage of the log-normal transformation
of severity did not lead to any performance gains when the random forest was applied;
however, it was still the favourite choice for explaining the right-skewed claims. Globally,
GAM has a better performance.

Against this background, following and summarising the obtained results in Clemente
(2023), this paper investigates the performance of Gradient Boosting with Decision Trees as
base learners to separately model the claim frequency and the claim severity distributions of
an international insurer auto insurance big dataset and compare it with that obtained using
a standard GLM model. Boosting is one of the most popular ensemble learning methods,
in some cases complemented with a model selection from a larger model space before
aggregation. The method consecutively combines a large number of base weak learners
in an additive form to tackle conceptual uncertainty in empirical research, capturing the
nonlinear relation between the claim counts and amounts and feature variables and their
complex interactions. First, our work contributes to the recent literature (see, e.g., Noll
et al. 2020; Su and Bai 2020) by empirically investigating the performance of GBM and
other machine learning methods to model claim frequency and severity of the TPL motor
cover. In the risk management and insurance literature, Yang et al. (2018) developed a
gradient-boosting Tweedie compound Poisson model and concluded that the model makes
a more accurate premium prediction than GLM and GAM Tweedie compound Poisson
models. Zhou et al. (2022) propose a boosting-assisted zero-inflated Tweedie model, called
EMTboost, to cope with extremely unbalanced zero-inflated data.

Contrary to other machine learning methods with similar predictive accuracy, GB
provides interpretable results, which makes it particularly attractive for modelling motor
insurance losses. In GB models, complex interactions are simply modelled and may be
included in the pricing structure. The feature selection is performed as an integral part
of the application of the model, and this allows for a flexible approach when using GB
models for insurance pricing. Actuaries may choose between different ways of using the
potential of GB models: (a) adopt the GB model as the modelling tool to produce a new
pricing structure or (b) identify statistically significant variables and interactions from the
GB approach and include them on a GLM model, to improve the accuracy and prediction
power of the model.

Second, our work uses a proprietary large, rich auto insurance database consisting of
0.8 million TPL vehicle insurance policies in force between 1 January 2016 and 31 December
2019, covering individuals against property damage, corresponding to 2.46 million obser-
vation duration (exposure to risk). Besides the response variables, the dataset includes
36 feature variables characterising the policyholder, the insurance policy, and the insured
vehicle. This differentiates from most previous research, often using small (and selected)
publicly available datasets made available for illustration purposes and research (e.g., the
French Motor TPL Insurance Claims Data available in the Kaggle data repository). Third,
we have implemented an extensive data pre-processing framework, including data clean-
ing, feature selection and engineering, outlier treatment and dimensionality reduction, as
well as a detailed hyperparameter tuning approach using a nested k-fold cross-validation
resampling procedure. In TPL motor insurance, the raw data often contain missing values
or inconsistent data values resulting from human or computer error or the combination of
multiple databases, outliers, irrelevant or redundant information, or inconsistent formats
that can negatively impact the precision and reliability of data-driven models. Previous
research in multiple scientific domains concluded that data pre-processing and hyperpa-
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rameter tuning positively contribute to improving the performance of machine learning
and deep learning models (see, e.g., Chollet 2021).

A key requirement in the insurance (and financial) industry is the need for trans-
parent and interpretable pricing models which are easily explainable to all stakeholders
(e.g., managers, customers, shareholders, regulators, auditors), see, e.g., Kuo and Lupton
(2023). Insurance ratemaking models are highly regulated, and they must meet specific
requirements (see, e.g., the regime “algorithmic accountability” of decision-making ma-
chine algorithms imposed by the European Union’s General Data Protection Regulation
(European Parliament 2016, effective 25 May 2018, in which insurers are held accountable
for their pricing models in terms of transparency, fairness, and solidarity) before being
deployed in practice. To respond to that requirement, in this paper, we estimate two im-
portant tools to interpret the GB model, namely, variable importance measures and partial
dependence plots.

The remainder of the paper is structured as follows. Section 2 summarises the GBM
model used in the paper. Section 3 details the empirical strategy adopted, including the
dataset information, the data pre-processing framework, and the hyperparameter tuning
approach. Section 4 presents and discusses the main results. Section 5 concludes and sets
out the agenda for further research.

2. Gradient Boosting Machines

A common task in the application of statistical learning, machine learning and deep
learning methods in finance, insurance, and risk management is to develop a parametric
or non-parametric classification, regression, or ranking model from the data. Empirical
work in these domain-specific areas is subject to significant uncertainty about model
specification. This may be the consequence of the lack of a universally accepted theory that
has been empirically verified as a (near) perfect explanation of reality (theory uncertainty),
the multiple ways in which theories can be empirically tested (specification uncertainty),
heterogeneity uncertainty and variable independence (Steel 2020).

One way to circumvent model uncertainty is to pursue a data-driven approach, learn-
ing the model directly from the data. The customary approach to data-driven modelling
is to neglect model risk and pursue a “winner-takes-all” perspective by which, for each
dataset, a unique believed to be the “best” model is selected from a set of candidate
(weak) learners using some method or statistical criteria (goodness-of-fit, predictive), see
Bravo and Ayuso (2021). The statistical inference then proceeds conditionally upon the
assumption that the selected model happens to be a good approximation to the true data
generating process.

To tackle conceptual uncertainty and overcome the shortcomings of individual learn-
ers, an alternative approach is model combination, i.e., building an ensemble of (homo-
geneous or diverse) classifiers (e.g., artificial neural networks, support vector regressions,
GLMs, recurrent neural networks), often complemented with a model selection from a
larger model space before aggregation Jose and Winkler (2008). Ensemble methods aim at
finding a static or dynamic composite model that better approximates the actual data gener-
ation process and its multiple sources of uncertainty. Empirical studies show that they can
provide superior predictive accuracy relative to single learners in several domain-specific
areas (Ashofteh et al. 2022; Ayuso et al. 2021; Bravo 2021; Kim and Baek 2022). Examples
of successful applications of machine-learning ensemble techniques in different domains
include random forests (Breiman 2001), artificial neural network ensembles (Hansen and
Salamon 1990; Shu and Burn 2004), Bayesian model ensembles (Bravo and Ayuso 2021;
Raftery et al. 1997), bootstrap aggregating (bagging), boosting and meta-learning strategies
for expert combination such as stacking (Ashofteh and Bravo 2021; Wolpert 1992), arbitrat-
ing (Ortega et al. 2001), dynamic combiners (Sergio et al. 2016) or mixture of experts (Jacobs
et al. 1991).

In gradient boosting machines, the learning process proceeds by consecutively build-
ing an ensemble of shallow and weak base-learners (e.g., linear models, smooth models,
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or decision trees), with each step learning and improving on the previous one to form a
committee that is capable of accurate estimating the response variable. The algorithm is
constructed such that the new base learners are maximally correlated with the negative
gradient of the loss function (e.g., squared-error loss, Adaboost) of the whole ensemble
(Friedman 2001). The approach is quite flexible and can be customised to any data-driven
task and has proven considerable achievement in real-world applications (Hanafy and
Ming 2021; Henckaerts et al. 2021).

Formally, let y denote a random response variable and x a set of input or predictor
variables x = (x1, x2, . . . , xn). Using a training sample (y, x)N

i=1 of known (y, x)-values, the
goal is to obtain an estimate of the approximation F̂(x) of the function F∗(x) mapping

the unknown functional dependence x F→ y, that minimises the expected value of some
specified loss function L(y, F(x), w) over the joint distribution of all (y, x)-values,

F∗ = arg min
F

Ex
[
Ey(L(y, F(x), w)

]
, (1)

possibly complemented by a weights function w = (w1, w2, . . . , wn). For instance, for claim
frequency modelling, the weight is the exposure to risk, typically the number of policy
years, and the response variable is the number of claims divided by w. In claim severity
modelling exercises, the weight is the number of claims, with the average claim size (claims
cost divided by the number of claims) as the response variable.

To make the estimation problem tractable, a common procedure is to restrict the
function search space to a member of a parametric family of functions F(x, θ), where
θ = (θ1, θ2, . . .) is a finite set of parameters whose joint values identify the individual learn-
ers. Following Friedman (2001), in this paper, we focus on a class of additive expansions of
the form

F
(

x, {βm, am}M
i=1

)
=

M

∑
m=1

βm h(x, am), (2)

where h(x; a) is a base or weak learner function of the input variables with parameters
a = {a1, a2, . . .}. Choosing a parametric model transforms the function optimisation
problem into a parameter optimisation problem:

{βm, am}M
i=1 = arg min

{βm ,am}

N

∑
i=1
L
(

yi,
M

∑
m=1

βm h(x, am), wi

)
. (3)

Given M iteration steps, the parameter estimates can be written in the incremental
form. For m = 1, 2, . . . , M, we can write

(βm, am) = arg min
β,a

N

∑
i=1
L(yi, Fm−1(xi) + β h(xi, a), wi), (4)

with incremental steps or “boosts” defined by the optimisation method

Fm(xi) = Fm−1(xi) + βm h(xi, am). (5)

The numerical optimisation is resolved by GBM through a two-step process using
the steepest-descent algorithm, which is based on consecutive improvements along the
direction of the gradient of the loss function in which, for each interaction, the pseudo-
residuals are used to assess the regions of the predictor space for which the model does not
have a good performance, and therefore improve the fit in the direction of better overall
performance. In this paper, we consider decision trees as base learners h(·, ·). This means
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parameters am are the splitting variables and splitting points that define the tree, and the
base learner is of the following form:

h(xi, {Rlm}L
1 ) =

L

∑
l=1

ȳlm I(x ∈ Rlm), (6)

where ȳlm is the mean of the pseudo-residuals ỹim for observation i in iteration m over
the region Rlm, forming a subdivision of the space R where the vector x takes its values.
Decision trees are commonly selected as base learners in gradient boosting because: (i) of
their ability to capture complex interactions and nonlinear relationships in the data, cre-
ating splits and branches to signify intricate decision boundaries, which are crucial when
dealing with datasets containing nontrivial patterns, (ii) they inherently provide feature
importances, helping the algorithm to identify and focus on the features which contribute
the most to reducing the prediction error, (iii) of their flexibility and adaptability, since they
can fit both micro and macro trends in the data and error correction mechanisms, (iv) of
their interpretability, since single decision trees are relatively easy to read and visualize,
helping in understanding the model’s decision-making process, a crucial element in in-
surance pricing and risk management, (v) of their robustness to outliers and capacity to
handle missing data, (vi) of is capacity to generate ensemble diversity through feature
selection, alternative splitting criteria and different depth levels, (vii) of their computational
tractability when compared to some other machine learning algorithms, making it feasible
to work with large datasets such as in this study. Since the value of the base learners h(·, ·)
is constant for each region of the tree, βh(xi, am) can be simplified to γ and Equation (4)
re-written as:

γlm = arg min
γ

N

∑
i=1
L(yi, Fm−1(xi) + γ), (7)

with incremental boosts for each region Rlm updated using γlm

F̂m(xi) = F̂m−1(xi) + λ γlm I(x ∈ Rlm), (8)

with λ(0 < λ ≤ 1) the learning rate (also known as the shrinking parameter) determining
the learning pace of the algorithm by shrinking updates for x ∈ Rlm. A lower value of
λ outputs a better performance, reducing overfitting but also increasing the computa-
tional power required because more trees are necessary for the algorithm to minimise
the pseudo-residuals and to converge. Usually, λ is fixed at the lowest value possible
within the computational restraints (Henckaerts et al. 2021). The performance of the GBM
model investigated in this paper is tested against the results provided by the benchmark
GLM approach. The model fitting, forecasting, simulation procedures, and additional
computations have been implemented using an R (version 4.2.0) software routine.

3. Empirical Strategy
3.1. Dataset Information and Treatment

The automobile insurance database used in this study was supplied, for the work of
Clemente (2023), by a European insurer operating in European and non-European insurance
markets. The proprietary dataset used in this study is private and is not available for public
use. The dataset consists of 799,587 Third Party Liability motor insurance policies covering
individuals against property damage, in force between 1 January 2016 and 31 December
2019, corresponding to 2,464,181 observation duration or exposure-to-risk (fraction of the
year when the policy was in force). Of these, a total of 78,264 insurance claims were recorded
during the four-year period with a total incurred cost of 97.9 million euros. In addition
to response variables, the dataset includes 36 characteristic variables that characterise the
policyholder (e.g., age, education, job, marital status, seniority of driver’s license), the
insurance policy (e.g., coverage, payment method), and the insured vehicle (e.g., age of
vehicle, car brand, driving km per year, fuel type, number of vehicle seats).
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We have implemented an extensive data pre-processing framework including data
cleaning, data pre-processing, feature selection and engineering, outlier treatment, and
dimensionality reduction that allows for variable evaluation, model implementation and
accuracy improvement. For instance, the correlation analysis identified a strong correlation
between the location-related variables, such as Municipality, District, Delegation, and
Driving Zone, as well as between Driving Zone and distribution method or between NBexe
(new business or renewed policies) and the driver’s age. As a result of this pre-processing
stage, the final dataset used for model calibration consists of 2,464,181 observation durations
and 21 feature variables, summarised in Table 1.

Table 1. Final feature variables.

Variable Levels Description

UEN RIF, ZRT Type of client (RIF—Individual,
ZRT—direct channel)

Client Time on Book (years) 1 to 21 (individually), 21+, 999 The seniority of the policyholder in the
company

Payment Instalments 1/year, 2/year, 4/year, 12/year N. payments per year

Agent Delegation 22 different levels, from PD1 to PD22 Policy distribution channel

Direct Debit Payment Non-DB, DB If the policy payments come from
direct-charge or not

Policy Time on Book (years) 1 to 21 (individually), 21+ The policy’s seniority, time since contract
initiation

Vehicle Brand 708 different levels from OM1 to OM708,
unknown Vehicle Brand

Vehicle Seats 2, 3, 4, 5, 6, 7, 8, 9, 11+, 999 N. of seats in the vehicle

Engine Capacity 32 levels (1–50, . . . , 1000–1100, . . . , 5000+) Engine capacity of the vehicle

Horse Power 0–50, 50–100, 100–150, 150–200, 200+ Vehicle power, measured in horsepower

Vehicle Weight (kg) 32 levels (<50, . . . , 1700–1800, . . . , 3500+) Vehicle Weight

Vehicle Value as New (Euro) 14 levels (<7000, . . . , 25,000–30,000, . . .
500,000+) Initial price of the vehicle, as if it was new

Fuel 8 distinct levels, from OF1 to OF8,
without fuel, other, unknown Type of fuel

District 22 different levels, from ODC1 to ODC22,
unknown

The policyholder’s (usual driver) District
of residence

Bonus–Malus 20 levels (−5, −4, . . . , 0, 1,. . . , 13, 14) Bonus–Malus System (BMS)

Years of Driving 1 to 21 (individually), 21+, 999 Seniority of the driver’s license

Vehicle Age (years) 1 to 30 (individually), 30+, 999 Age of the vehicle

Driver Age 0–17, 18 to 85 (individually), 85+,
unknown Age of the usual driver

Cover Capital (Euro) CapMin, CapMax CapMax if the policy has the optional
59M TPL capital, or CapMin otherwise

NBexe (New Business) RN, NB, FNB RN (renewal), NB (New
Business), FNB (fake new business)

Own Damage Cover Yes, No Yes (the policy includes own damage
coverage) No (otherwise)

The dataset also includes a discrete quantitative variable representing the number of
claims reported per policy, per year, and the corresponding claim amount. The average
annual claim rate was 4.834%, with a variance of 0.09289, with only 3.07% of the policies
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reporting claims during the four-year study period. The corresponding average cost
per claim was EUR 1251, with a standard deviation of EUR 1972.37. The average cost
per insurance policy during this period was EUR 122.45, with a standard deviation of
EUR 749.75.

In the pre-processing stage, performed in Clemente (2023), we have analysed the
relationship between the response variables and the feature variables. For instance, Figure 1
represents the relationship between the driver’s age and the claim frequency (on top)
and the claim severity (on bottom). The average driver’s age in the insurance portfolio
is 51 years old, with ages ranging between 18 and 93 years old. Figure 1 shows that the
frequency and the severity are significantly different between age groups, with the peak
at 21 years of age, then declining with age up to 70 years old. After this age, an increase
in both claim frequency and severity may be explained by a natural reduction of driving
skills and less exposure to risk.

Figure 1. Claim frequency (top row) and claim severity (bottom row) vs. age of the driver-individual
(left panel) and by group ages (right panel).

3.2. Tuning Approach

Machine learning methods usually rely on training data to construct a model, valida-
tion data to tune the parameters to be applied, and test data to evaluate the out-of-sample
model performance. A fundamental part of successfully training a tree-based model is
to control model complexity, taking into account the bias-variance trade-off. A large tree
has low bias and high variance, whereas a small tree has a high bias but low variance.
For validating machine learning and deep learning models, it is customary to apply the
so-called nested cross-validation since it can handle both the selection of the best set of
hyperparameters and error estimation (Henckaerts et al. 2021). The method starts by
partitioning a dataset D into K disjoint, equally sized and stratified sets D = ∪K

k=1Dk
ordered on claim frequency or claim severity. By imposing stratification based on claim fre-
quency/severity, the goal is to obtain a similar distribution of the claim frequency/severity
in each of the K subsets. In this paper, we use a nested K-fold cross-validation resampling
procedure (with K ∈ [1, 2, . . . , 6]) for evaluating and comparing the learning algorithms
and tuning machine learning hyperparameters. Next, the iterative procedure consists of
a double loop of cross-validation, with the inner loop serving for hyperparameter tuning
and the independent outer loop serving for assessing model performance. Specifically, in
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the inner loop, cross-validation is performed for every hyperparameter combination, and
the cross-validation error is computed by applying the loss function and averaging on the
validation data sets. For each model, the optimal hyperparameters are those that minimise
the cross-validation error. The inner loop comprises K1 folds and the outer loop of K2 folds,
with the total number of trained models equal to K1K2. The training data is divided into a
learning set (80%) and a validation set (20%) considering random folds of nearly the same
size, mutually exclusive, and stratified (Hastie et al. 2009). The fold partition used in this
paper represents a compromise between the objective of reducing the generalisation error
and the computational burden (Boehmke and Greenwel 2020).

For both the claim frequency and claim severity models, a grid search procedure
was used to calibrate the boosting and the decision tree-specific hyperparameters (Su
and Bai 2020). The procedure systematically works through a range of hyperparameter
combinations in order to find the ones that result in the best predictive performance for the
model. Specifically, we calibrate the GBM algorithm for the number of decision trees (N)
accounting for (i) overfitting with N ∈ {100, 250, 400, 500, 750, 1000} in the claim frequency
model and N ∈ {100, 150, 200, 250, 300, 400, 500} in the claim severity model; (ii) controlling
for different values of the learning rate (shrinkage factor) assuming λ ∈ {0.1, 0.05, 0.01} in
both the claim frequency and claim severity models. For both GLM and GBM, the weights
were defined as unitary for the claim severity model (each claim is an observation), whereas
for the claim frequency model, the response variable was redefined as the number of claims
divided by exposure to risk, see, e.g., Ohlsson and Johansson (2010) and Wüthrich and Merz
(2023) for details on standard non-life insurance modelling. Regarding the decision tree-
specific hyperparameters, for both models, we have systematically investigated multiple
combinations controlling for the tree depth (with integer values ranging between 1 and
5) for the minimum number of observations in the terminal nodes, which determine the
complexity of each tree (we assumed a 1% rate) and for the bag (subsampling) fraction,
i.e., the proportion of the training set observations randomly selected to propose the next
tree in the expansion (bag fraction ∈ {0.7, 0.8, 0.9, 0.95}). Overall, to find the GBM optimal
parameters, the grid search procedure investigated 360 combinations in the claim frequency
model and 420 parameter specifications in the claim severity model.

For applying machine learning algorithms such as decision trees or GBMs, we need
to specify which loss function to minimise when training the model. For example, the
typical loss function for regression problems is the squared error loss, which is only
appropriate when the data are normally distributed. However, in practice, claim frequency
and claim severity are not normally distributed. Claim frequency typically is assumed to be
Poisson distributed, whereas claim severity usually is assumed to be Gamma distributed.
Because of this, authors such as Wüthrich and Buser (2023) and Wüthrich and Merz (2023)
suggest using Poisson deviance and Gamma deviance as an appropriate loss function in
GBM models, a methodological option we pursued in this paper. Furthermore, in GLMs,
estimating the model parameters by finding the values that maximise the log-likelihood
function is equivalent to minimising the unscaled deviance loss.

Table 2 summarises the optimal set of parameters for each of the six folds tested in the
claim frequency (Part A) and claim severity (Part B) models, respectively. They represent
the hyperparameter combination that generated the smallest cross-validation iteration
error (the out-of-sample Poisson (Gamma) deviance in the claim frequency (severity)
model) in that fold. In the claim frequency model, we can observe that the maximum
number of optimal trees is achieved for smaller values of shrinkage factor, a well-known
behaviour identified in similar studies using GBMs. The average optimal number of trees
is significantly smaller in the claim severity model compared to the claim frequency model.
In a significant number of cases, the claim severity model uses trees with only one split as
weak learners, making the models additive and without interactions.



Risks 2023, 11, 163 10 of 20

Table 2. Optimal tuning parameters per fold.

A. Claim frequency model

# Fold (K) # Trees Shrinkage
Factor

Interaction
Depth Bag Fraction Poisson

Deviance 1

1 37 0.10 2 0.95 0.2802844
2 64 0.10 2 0.95 0.2802088
3 642 0.01 2 0.80 0.2802078
4 116 0.10 1 0.95 0.2793700
5 239 0.05 2 0.95 0.2791459
6 47 0.10 4 0.95 0.2796919

Average 190 0.077 2 0.925 –

B. Claim severity model

# Fold (K) # Trees Shrinkage
Factor

Interaction
Depth Bag Fraction

OOS
Gamma

Deviance 2

1 133 0.05 1 0.95 15.76648
2 125 0.05 1 0.95 15.76562
3 56 0.05 2 0.70 15.76658
4 33 0.1 1 0.80 15.76578
5 59 0.05 2 0.70 15.76709
6 75 0.1 1 0.95 15.76697

Average 80 0.067 1 0.925 –
1 Optimal tuning parameters and out-of-sample Poisson deviance (models with smaller deviance are better)
estimated considering random samples of 50,000 observations extracted from a 1.97 million observations training
set used for calibrating the frequency model. 2 Optimal tuning parameters and out-of-sample Gamma deviance
estimated considering the whole set of 18,801 observations.

4. Results
4.1. Model Performance

To estimate both the optimal GBM model and the benchmark standard GLM model,
we use 80% of the observations as training data and the remaining 20% as testing data.
Table 3 reports the in-sample and out-of-sample loss for the claim frequency and claim
severity. In the claim frequency model, the empirical results show, for both the training and
test samples, that the gradient boosting model exhibits lower deviance compared to the
classical GLM model. Differently, in the claim severity model, the standard GLM model
significantly outperformed the optimal GBM model, exhibiting lower gamma deviance.
The poorer performance of the GBM model in the claim severity model may be explained,
first, by the significantly smaller sample size (circa 18,000 observations) compared to the
1.97 million available in the claim frequency model. It is well known that machine learning
models tend to perform better the larger the available dataset. Second, the higher volatility
of the claim amount distribution compared to the claim count distribution makes it harder
to model using the GBM model.

Table 3. Total Poisson and Gamma deviance for frequency and severity models, for both sub-samples
and all data.

Sample Total Poisson Deviance Total Gamma Deviance
GLM GBM GLM GBM

Training (80%) 432,456 428,621 8,787 10,545
Testing (20%) 107,914 106,773 2,162 2,624

All (100%) 540,406 535,685 10,954 13,209
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4.2. Model Interpretation

Contrary to single decision trees, GBM combining multiple decision trees is hard to
interpret since the model cannot be represented and visualised with a two-dimensional
graphic. To overcome the black-box nature of GBM, (Breiman 2001; Friedman and Popescu
2008; Hastie et al. 2009) introduced two important tools to interpret the GBM model:
(i) variable importance measures and (ii) partial dependence plots. Variable importance is
a measure of how important the feature variables are in predicting the response. Formally,
for a specific explanatory variable xl , l ∈ {1, 2, . . . , n}, in the m-th decision tree, the variable
importance is measured by summing the improvements in the loss function over all the
internal nodes J − 1 for which the variable xl was used as the splitting variable:

Jl(m) =
J−1

∑
j=1

I(v(j) = l)(∆L)j (9)

In ensemble techniques such as GBMs, feature importance is measured by averaging
the importance of variable xl over the different trees included in the ensemble, i.e.,

Jl =
1
M

M

∑
m=1
Jl(m) (10)

with influences averaged over all trees and normalised so that they add up to 100%.

4.2.1. Variable Importance Measure

Figure 2 shows the variable importance scores for the optimal GBM claim frequency
and claim severity models taking, for each fold, the average over all trees and discarding
features with Jl < 0.1%. The results show, for each cross-validation number of folds,
that the policyholder’s (usual driver’s) district of residence, the Bonus–Malus level, the
vehicle brand, the frequency of premium payments, and the policy’s seniority are the five
most important variables in predicting the claim frequency. Other important variables
for predicting auto insurance claim frequency are the driver’s age, the vehicle’s age, the
client’s seniority, and the vehicle’s horsepower. The finding also shows that the variable
importance scores can fluctuate according to the cross-validation number of folds used in
tuning the GBM model.

Figure 2. Variable importance in the optimal GBM per data fold, claim frequency (left) and claim
severity (right) models.

Similarly, the right plot of Figure 2 represents the variable importance scores for the
optimal GBM claim severity model, discarding again features with Jl < 0.1%. The findings
show, for each cross-validation number of folds, that the usual driver district of residence,
the vehicle brand, the driver’s age, the years of driving experience, and policy seniority
are the five most important variables in predicting the auto insurance claim severity. The
finding suggests that the variable importance is not homogeneous over the number of
K-folds used in tuning the GBM claim severity model.
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4.2.2. Partial Dependence Plots

In GLM models, the additive monotonic form of the linear predictor and the low degree
of interacting variables augment model interpretability. Differently, in gradient boosting,
the influences measured by variable importance scores do not provide any explanations
about how a given feature actually affects the response. However, in decision-tree GBMs,
visualisation tools such as Partial Dependence Plots (PDP) and Individual Conditional
Expectation (ICE) plots can be used to visualise the effect of the predictor on the modelled
response (claim frequency) after marginalising the remaining explanatory variables. Partial
dependence plots exhibit the average effect of a feature on the predictions obtained from a
model, see Hastie et al. (2009), whereas ICE plots disaggregate the averaged data, providing
a method of inspecting how the instance’s prediction changes when a feature varies. In
PDPs, we calculate the predictions for a specific variable xl while averaging over the values
of the remaining features xG, i.e.,

fl(xl) =
1
N

N

∑
h=1

fmodel(xl , xh,G), (11)

where xh,G denotes the values of the remainder feature variables for observation h, n is the
number of observations in the training subset and G is the complement set to variable l.

Figure 3 depicts the graphical representation of the PDP effect of the policyholder’s
(usual driver’s) district of residence on the claim frequency per data fold, considering a
sample of 1,000 observations. The results suggest that Districts 4, 8, 14, 17, and 19 exhibit a
higher similar risk of reporting a claim across all folds.

Figure 3. PDP of the policyholder’s district of residence on claim frequency, per data fold, using a
sample of 1000 observations.

Similarly, Figure 4 depicts the graphical representation of the PDP effect of the driver’s
age on claim severity, per data fold, considering again a sample of 1,000 observations.
The findings clearly show the inverse relationship between the driver’s age (and driving
experience) and claim severity, with younger, inexperienced drivers more likely to report
higher average claim amounts per claim count.

In Figure 5, we randomly select 1,000 policies from fold 5 to produce the ICE plot
for the feature vehicle vehicle brand. Each line of the plot represents how the response
changes when the vehicle brand changes, keeping all other variables constant. The blue
line represents the average of these lines, i.e., the partial dependence. ICE plots allow us to
capture heterogeneity in the relationship between the feature variable and the response
created by variable interaction, see Goldstein et al. (2015).

The patterns in Figures 5 and 6 suggest that the ICE lines tend to follow the same
trend as the average. However, in Figure 5, the overlapping crossing lines observed for
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vehicle brands number 15, 46, 47, 75, and 102, deviating from the average, indicate a
possible interaction between the vehicle brand and another feature. On the other hand, in
Figure 6, the concentration around the average, especially for districts 4, 5, 7, 8, 11, 15 and
16, shows that keeping all the other risks constant, the severity of a claim is less sensitive in
these districts.

Figure 4. PDP representing the effect of the Driver Age on severity, per data fold, using a sample of
1,000 observations on the training dataset.

Figure 5. Effect of the Vehicle Brand on the frequency model as Partial Dependence (in dark blue)
and Individual Conditional Expectation (in grey), considering 5-fold cross-validation.

Figure 6. Effect of the District on the severity model as Partial Dependence (in dark blue) and
Individual Conditional Expectation (in grey), considering data fold 2.
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4.2.3. GLM Model Results

Table 4 shows the regression output of the GLM models trained for the claim fre-
quency (left panel) and the claim severity (right panel) models. We used a forward stepwise
procedure to select the variables to include in the regression model, testing for the indi-
vidual significance of each feature variable complemented by the Likelihood Ratio test to
assess whether a given block of variables significantly contributes to improving the overall
model performance.

The findings show that the type of fuel, the vehicle’s brand, age, and horsepower, the
number of premium payments per year, the driver’s district of residence, age and years
of driving, and the policy seniority significantly contribute to predicting claim frequency.
Going deeper, the results show, first, that the probability of reporting a claim in an auto
accident is lower for automobiles using fuel type G2 (gasoline) compared to vehicles using
diesel. Second, the results also show that the higher the frequency of premium payments
per year (G2 ≡ monthly and semi-annual payments; G3 ≡ quarterly payments), the higher
the likelihood of a reported auto insurance claim against benchmark policies with a single
payment per year. Third, drivers living in the countryside (level G2) and small cities (level
G3) tend to have a lower probability of reporting an auto accident. Regarding the driver’s
age, the findings show that, compared to the benchmark age group comprising individuals
aged between 36 and 44 years old (level G2), younger drivers (G1: age ∈ [18, 35]) exhibit a
lower probability of a claim, whereas older drivers (G3: age∈ [45, 65], G4: age ∈ [66, 70]; G5:
age ∈ [71, 76]; G6: age ≥ 77) exhibit higher claim risk. Older and more powerful vehicles
evidence a lower likelihood of reporting a claim. Regarding the driver’s experience, the
findings show that compared to the benchmark age group comprising individuals between
18 and 32 years of driving (Level G6), less experienced drivers with from one to 17 years of
driving experience (Levels G1 to G5) exhibit a significantly higher probability of reporting
a claim, whereas more experienced drivers tend to have low claim risk (levels G7 and G8).
Finally, the more senior the insurance policy, the lower tends to be the claim risk (levels G2
to G6) compared to one-year policies (level G1).

Moving now to the claim severity model (Table 4, right panel), the findings reveal
a much simpler model with the vehicle’s brand, the driver’s age, and the policyholder’s
(usual driver) district of residence as the only statistically significant variables. The claim
severity of auto accidents in small villages in the countryside is lower compared to large
urban areas (level G2) but higher in smaller cities across the country (level G3). The claim
severity of accidents involving younger drivers is significantly higher compared to adult
drivers and lower for older (and more experienced) drivers.

Table 5 summarises the list of features selected by both the GBM model and the
benchmark GLM claim frequency and claim severity model. The results show that, out of
the nine main variables identified as important by the GBM claim frequency model (with
a minimum of 0.1% of variable importance score per fold), only the Bonus–Malus level
and Client Seniority (client time on book) were not selected in the GLM model. Bonus–
Malus Systems (BMS), rewarding claim-free years by discounts and penalising at-fault
accidents with premium surcharges are a powerful incentive for safe driving. However, it
is also well-known that BMS can encourage the non-reporting of claims to avoid premium
penalties. Because of this, some forms of BMS introduce varying (escalating) deductibles
that prevent malus evasion. The results also show that, out of the six key variables identified
as important by the GBM claim severity model, only the years of driving experience and the
vehicle weight were not selected in the corresponding GLM model. Although the findings
show that most data features are present in both prediction models considered in this study,
the results suggest that the GBM approach has a slightly higher capability of selecting the
feature variables that best differentiate claim frequency and claim severity risks in TPL
auto insurance.
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Table 4. GLM outputs for Claim Frequency and Claim Severity.

Variable Level Claim Frequency Claim Severity
β Std. Error p-Value β Std. Error p-Value

Intercept – −2.8334 0.0176 ≈0 6.8804 0.01083 ≈0

Fuel G2 −0.1034 0.00958 ≈0 – – –

Vehicle Brand G2 0.0421 0.01034 4.7 × 10−5 −0.0327 0.01268 9.9 × 10−3

Payment Instalments G2 0.2138 0.00989 ≈0 – – –
G3 0.4288 0.01447 ≈0 – – –

District G2 −0.3905 0.01142 ≈0 −0.0863 0.02079 3.3 × 10−5

G3 −0.2743 0.01039 ≈0 0.0909 0.02463 2.2 × 10−4

Driver Age

G1 −0.1597 0.02357 ≈0 0.0736 0.03396 3 × 10−2

G3 0.02032 0.02122 ≈0 – – –
G4 0.5415 0.03041 ≈0 −0.0938 0.01644 1.14 × 10−8

G5 0.1544 0.01219 ≈0 −0.0938 0.01644 1.14 × 10−8

G6 0.2874 0.02380 ≈0 −0.0938 0.01644 1.14 × 10−8

Years Driving

G1 0.9770 0.06352 ≈0 – – –
G2 0.6739 0.05099 ≈0 – – –
G3 0.4385 0.03676 ≈0 – – –
G4 0.2549 0.02842 ≈0 – – –
G5 0.1419 0.01926 ≈0 – – –
G7 −0.0608 0.01373 9.5 × 10−6 – – –
G8 −0.1289 0.01644 ≈0 – – –

Vehicle Age G2 −0.1607 0.01454 ≈0 – – –

Horse Power G2 −0.1625 0.04331 ≈0 – – –

Time on Book

G2 −0.1032 0.01533 ≈0 – – –
G3 −0.1806 0.01498 ≈0 – – –
G4 −0.2969 0.01517 ≈0 – – –
G5 −0.3910 0.01671 ≈0 – – –
G6 −0.5036 0.03379 ≈0 – – –

Table 5. Variables included in the frequency and severity models, according to both approaches:
GLM and GBM (only those with over 0.1% variable importance).

Frequency Severity
GLM GBM GLM GBM

Age of the Driver Age of the Driver Age of the Driver Age of the Driver
Years of Driving – – Years of Driving

District District District District
– Client Time on Book – –

Policy Time on Book Policy Time on Book – –
Payment Instalments Payment Instalments Payment Instalments Payment Instalments

– Bonus–Malus – –
Brand Brand Brand Brand

Vehicle Age Vehicle Age – –
Horse Power Horse Power – –

Fuel – – –
– – – Vehicle Weight

4.2.4. Searching for Interactions

Friedman’s H-statistic (Friedman and Popescu 2008), evaluates the strength of interac-
tions between feature variables by measuring how much of the prediction variance stems
from the interaction effect. In this paper, we focus on two-way interactions, but the statistic
can be applied to any number of variables.
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Let fl(xl) and fu(xu) be the one-way partial dependence of the feature variables xl
and xu, and flu(xl , xu) the two-way partial dependence defined by Equation (11). The
H-statistic is defined as

H2
lu =

∑N
h=1

[
flu

(
x(h)l , x(h)u

)
− fl

(
x(h)l

)
− fu

(
x(h)u

)]2

∑N
h=1

[
f 2
lu

(
x(h)l , x(h)u

)] , (12)

where x(h)l denotes observed value xl for observation h. By definition, by squaring and
scaling, we obtain H-statistc values in the range between 0 and 1, with 0 representing the
absence of interaction between two variables and 1 signalling that the effect of a feature on
the response variable is attributable to the interaction only.

To further check for interactions between feature variables, Friedman’s H-statistic
was estimated for all possible combinations. Table 6 reports the obtained results for the
10 strongest two-way interactions between all feature variables in the GBM frequency
model, considering data fold 5. The H-statistic results suggest that the features of vehicle
brand and frequency of premium payment may interact in explaining claim frequency
(H-statistic = 0.2255). Important but weaker interaction effects are also suggested between
the policyholder’s district of residence and policy seniority (H-statistic = 0.2004) and
between client seniority and the vehicle’s age (H-statistic = 0.1560). As a result of this
analysis, the interaction between the policyholder’s district of residence and policy seniority
was included in the GLM model. However, as the model performance has not improved
significantly, the interaction was removed from the final GLM model.

Table 6. Friedman’s H-statistic for the 10 strongest two-way interactions between all feature variables
in the GBM claim frequency model, considering 5-fold cross-validation.

Variables H-Statistic

(Payment Instalments, Vehicle Brand) 0.2255
(District, Policy seniority) 0.2004

(Client seniority, Vehicle Age) 0.1560
(Bonus–Malus, Payment Instalments) 0.1424

(Payment Instalments, Policy seniority) 0.1355
(District, Vehicle Brand) 0.1147
(Bonus–Malus, District) 0.1038

(District, Payment Instalments) 0.0868
(Bonus–Malus, Vehicle Brand) 0.0867

(District, Vehicle Age) 0.0695

Considering data fold 5, Figure 7 shows the effect of the feature vehicle brand on claim
frequency as partial dependence, grouped by Payment Instalments. The plot suggests
that for brands 24, 49, 64, 92, and 448, the claim frequency risk associated with insurance
policies with quarterly premium payment is superior to that of other payment frequencies.
For other car brands, such as brands 3, 53, 57, and 97, the different premium payment
frequencies do not seem to affect the claim frequency predictions.
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Figure 7. Grouped partial dependence plot for the frequency GBM model, considering data fold 5.

5. Conclusions

Modelling claim frequency and claim severity is a critical task in ratemaking in
property-casualty insurance. The type of data available for this exercise typically includes
risk factors (policy details, policyholder information, insured vehicle characteristics, driv-
ing records) and numerical response variables, making statistical learning and supervised
machine learning methods particularly suitable for this task. Generalised Linear Models are
the industry benchmark for developing analytic insurance pricing models. The standard
GLM and GAM frequency–severity models assume a linear or additive relationship be-
tween the response variable and the feature variables, that the claim risk and claim severity
are independent, and tend to assign full credibility to the data.

To overcome these restrictions, this paper investigates the predictive performance
of Gradient Boosting with decision trees as base learners to model the claim frequency
and the claim severity distributions of an auto insurance big dataset and compare it
with that obtained using a standard GLM model. The gradient boosting algorithm is a
machine learning method for optimising prediction accuracy carrying out variable selection,
particularly useful in the context of high-dimensional data. The model results in prediction
rules which share some interpretability characteristics as the standard statistical model
fits. The gradient boosting algorithm combines learners with “poor” performance (high
prediction error) as regression or classification trees to produce a highly accurate prediction
rule with easily interpretable results.

The use of gradient boosting models with decision trees as base learners in auto
insurance ratemaking permits the segmentation of a portfolio of policyholders into groups
of homogeneous risk profiles based on some feature variables, inducing transparency and
intra-group risk pooling under common asymptotic (group size) conditions. The use of
ensemble (model combination) techniques combining multiple decision trees instead of
selecting single learners addresses conceptual uncertainty concerns in responsible insurance
pricing and provides a sounder basis for statistical inference. Ensemble models aim to
find a composite model that better approximates the actual data generation process and its
multiple sources of uncertainty. They have a long tradition in the statistical and forecasting
literature, yet they are relatively underexplored in insurance pricing (Bravo 2021). A
fundamental part of successfully training machine learning models is to control model
complexity and overfitting, considering the bias-variance trade-off. Instead of relying
on built-in tuning strategies, we performed an extensive grid search procedure using
nested cross-validation among a predefined tuning grid for evaluating and comparing the
performance of the learning algorithms and tuning machine learning hyperparameters and
for analysing the stability of the results across multiple data folds.

The results of the out-of-sample performance measure show that the predictive perfor-
mance of the Gradient Boosting model is superior to that of the standard GLM model in the
Poisson claim frequency model. On the contrary, in the claim severity model, the classical
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GLM significantly outperformed the GBM. The findings for the claim frequency model
suggest gradient boosting models can capture the nonlinear relation between the response
variable and risk variables and their complex interactions and are thus a valuable tool
for feature engineering and the development of a data-driven approach to auto insurance
ratemaking and risk management. The poorer performance of the GBM model in the claim
severity model may be explained by the small sample size available for training the model
and the significant volatility of the claim amount distribution.

Regarding model interpretation, the variable importance measures allowed us to
identify the most relevant variables in the frequency and severity models. The finding also
shows that the variable importance scores can fluctuate according to the cross-validation
number of folds used in tuning the GBM model. An interesting result for both the claim
frequency and the claim severity model is that the most important risk factors in the gradient
boosting machines are those selected in the corresponding GLMs. A similar conclusion was
obtained by Henckaerts et al. (2021) using a portfolio of motor Third Party Liability from a
Belgian insurer in 1997. The results suggest, however, that the GBM approach has a slightly
higher capability of selecting the feature variables that best differentiate claim frequency
and claim severity risks in TPL auto insurance. The fact that both models include a similar
selection of risk factors means gradient boosting models can assist in the selection of the
candidate feature variables (and their complex interactions) to consider in the tuning of the
GLM to be used in pricing and risk management.

The partial dependence plots and individual conditional expectation plots provide
additional insight into a selection of noteworthy effects for the claim risk model. An
important and well-known effect in auto insurance pricing detected by PDP and ICE plots
is the interaction between driver age and driving experience and claim frequency and
severity. The results highlight a clear inverse relationship between driver age and claim
severity, with younger drivers more likely to have a serious accident. Further research
should investigate the performance of GBM against other supervised machine learning
methods (e.g., Random Forest, Classification and Regression Tree, K-Nearest Neighbours,
and Artificial Neural Networks-based models).
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