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Abstract: In non-life insurance practice, actuaries are often faced with the challenge of predicting the
number of claims and claim amounts to be incurred at any given time, which serve to implement fair
pricing and reserves given the nature of the risk. This paper extends Jewell’s credible distribution in
terms of forecasting the distribution of individual risk in cases where the observations are weighted
or are grouped in intervals. More specifically, we show how empirical distribution functions can be
embedded within Bühlmann’s and Straub’s credibility model. The optimal projection theorem is
applied for credibility estimation and more insight into the derivation of the credibility distribution
estimators is also provided. In addition, distribution credibility estimators are established and
numerical illustrations are presented herein. Two examples of distribution credibility estimation are
given, one with insurance loss data and the other with industry financial data.

Keywords: credibility distribution estimation; empirical Bayes

1. Introduction

In actuarial science, one of the fundamental problems is that of predicting future
claims of individual risk given one’s past experience of a collective of heterogeneous risks.
Credibility is a ratemaking technique that serves to forecast future premiums for a group of
insurance contracts for which we have experience, whilst we have a lot more experience
for a collection of contracts that are similar but not exactly the same.

In the insurance industry, some legislated rules indicate that some changes over time
occurred across the claim distribution. Therefore, it is essential to examine these changes at
different points of the distribution. An empirical distribution function provides a way to
model and sample cumulative probabilities for a data sample that does not fit a standard
probability distribution. Its value at a given point is equal to the proportion of observations
from the sample that are less than or equal to that point.

In non-life insurance practice, actuaries are often faced with the challenge of predicting
the number of claims and the claim amounts to be incurred at any given time, which serve
to implement fair pricing and reserves given the nature of the risk. Actuaries usually deal
with events that are uncertain and their economic consequences. The aim of this paper is to
carry out the credibility estimation of empirical distribution functions in measuring and
managing these uncertainties.

In the first part of this paper, we extend the work of Jewell (1974b) in terms of forecast-
ing the distribution of individual risk in cases where the observations are weighted for the
non-homogeneous and homogeneous models. Here, the weights (sizes) wij, i = 1, . . . , nj,
j = 1, . . . , K are now changing in time. The contract j might result from a grouping and aver-
aging of wij observations in a contract with several independent and identically distributed

observations Slij, l = 1, · · ·wij, during the year i, i.e., Xij =
1

wij
∑

wij
l=1 Slij, and then taking

the conditional mean of the identity function E[I(Xij ≤ x)|Θj]. Alternatively, in the case of
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raw data, the contract j might result from the grouping and averaging of identity functions
within the year i, Ī(Sij ≤ x) = 1

wij
∑

wij
l=1 I(Slij ≤ x) and then taking the E[ Ī(Sij ≤ x)|Θj].

Here, we proceed with the former considering the credibility distribution estimation
as a point estimate approach of FXij |Θj

(x|Θj) = E[I(Xij ≤ x)|Θj]. Optimal linearized
estimators of FXijΘj(x|Θj) are obtained by the classical least squares approach as well as by
the optimal projection theorem of random variables on planes as presented by De Vylder
(1976, 1996).

In the second part of this paper, we consider credibility distribution estimation based on
grouped data formed by aggregating the individual observations of a variable into groups.
The construction of the empirical distribution based on grouped data can be performed
by obtaining the point values of the empirical distribution function whenever is possible.
Then, we approximate the distribution functions by connecting those points with straight
lines and applying premium estimation in a credibility framework. An alternative model of
credibility estimation is also obtained similarly as in Bühlmann and Straub (1970) model.

Related Works

Bühlmann (1967) and Bühlmann and Straub (1970) established the theoretical foun-
dation of modern credibility theory, presented as a distribution-free credibility estimation.
The method was extended in the regression model by Hachemeister (1975), where the
credibility premium depends linearly on a number of risk characteristics.

Jewell (1974a) has shown that credibility is exactly Bayesian for a certain exponential
family of distributions with natural conjugate priors. Furthermore, Landsman and Makov
(1998, 1999) extended the results on the exponential family to the exponential dispersion
family. The following key references are related to new developments in credibility es-
timation: Makov et al. (1996), Christiansen and Schinzinger (2016), Tsai and Lin (2017),
Gong et al. (2018), Xacur and Garrido (2018), Tsai and Wu (2020), Tsai and Zhang (2019),
Bozikas and Pitselis (2020, 2021), Youn et al. (2021), Wang et al. (2021), Yan and Song (2022),
and Kim et al. (2022).

Credibility distribution estimation is closely connected to the area of quantile credibil-
ity estimation. The quantile function is the inverse of the distribution function. It specifies
the value of the random variable such that the probability of the variable that is less than
or equal to that value is equal to the given probability. Kim and Jeon (2013) proposed a
credibility theory by truncating the loss data based on quantiles. Some other references
related to quantile estimation are: Pitt (2006), Pitselis (2009, 2013, 2017), Kudryavtsev (2009),
Gebizlioglu and Yagci (2008), Denuit (2008) and Landsman (1996).

Jewell (1974b) extended the classical Bühlmann (1967) model to the problem of fore-
casting the distribution of individual risk based upon collective statistics and individual
experience data and solved the problem by finding a Bayesian conditional distribution.
Jewell (1974b) also obtain an additional insight into the nature of credibility estimation as-
suming that the true value of Θj is known and obtained credible distributions and credible
densities by carrying out simulations for some conjugate prior families of distributions
(e.g., Poisson–gamma, etc.). He also considered the problem of founding a credibility
approximation to the true distribution of the next observation.

Korwar and Hollander (1973) defined a sequence of empirical Bayes estimators for es-
timating a distribution function. Zehnwirth (1981) established the asymptotic optimality of
the empirical Bayes distribution function created from the Bayes rule relative to the Dirichlet
process prior with unknown parameter. Cai et al. (2015) combined Bühlmann’s credibil-
ity theory and Ferguson’s (1973) nonparametric Bayes analysis to develop a completely
nonparametric estimation for loss distributions and established a unified distribution-free
approach to experience rating for arbitrary premium principles.

This paper is organized as follows. In Section 2, both the linearized non-homogeneous
and homogeneous estimators in the weighted credibility distribution model are obtained,
and the credibility parameters are estimated. Optimal credibility distribution estimators are
also obtained using the optimal projection theorem. In Section 3, the credibility distribution
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estimation for grouped data is presented. In Section 4, an alternative model of credibility
distribution estimation is obtained when the observations are grouped in intervals. Appli-
cations to real data are presented in Section 5, one with insurance loss data and the other
with industry financial data. Some concluding remarks are presented in Section 6.

2. Weighted Credibility Distribution Estimation

In the following, we consider the credibility model with several contracts and weighted
observations. For an insurance portfolio, Xij are the average losses of wij observations
for contract j = 1, · · · , K and period i = 1, · · · nj. For industry portfolios, Xij denotes the
average returns (losses/gains) of wij firms in j = 1, · · ·K portfolios for period i = 1, · · · , nj.

2.1. Assumptions

We have the following assumptions:

(i) The contracts are independent and the variables Θ1, · · · , ΘK are identically distributed.

(ii) FXij |Θj
(x|Θj) = P(Xij ≤ x|Θj) = E[I(Xij ≤ x)|Θj], where I(Xij ≤ x) is an indicator

function that is equal to 1 if Xij ≤ x and 0 otherwise.

(iii) Cov[I(Xij ≤ x), I(Xrj ≤ x)|Θj] = δir
1

wij
σ2

Fx
(Θj), where δir = 1 if i = r and 0 otherwise.

2.2. Structural Parameters

The structural parameters FXij(x), s2
Fx

, and aFx are as follows:

(SP1) FXij(x) = E[FXij |Θj
(x|Θj)] = E[P(Xij ≤ x|Θj)];

(SP2) s2
Fx

= E[σ2
Fx
(Θj)];

(SP3) aFx = Var{E[I(Xij ≤ x)|Θj]} = Var[FXij |Θj
(x|Θj)].

2.3. Notation

Here, we present the weighted empirical distribution function as well as some nota-
tions that are useful for the derivation of the credibility distribution estimation.

Fnwj(x) =
nj

∑
i=1

wij

w.j
I(Xij ≤ x), Fnww(x) =

K

∑
j=1

w.j

w..
Fnwj(x), w.j =

nj

∑
i=1

wij,

w.. =
K

∑
i=1

w.j, Fnwz(x) =
K

∑
j=1

ZFx
j

zFx.
Fnwj(x), zFx

. =
K

∑
j=1

ZFx
j ,

ZFx
j =

aFx w.j

aFx w.j + s2
Fx

. (1)

Lemma 1 (Expectation and Covariance Relations). Based on the above assumptions, we can
obtain expressions for the conditional expectations and covariances as follows,

E[I(Xij ≤ x)] = E[Fnwj(x)] = E[Fnww(x)] = E[Fnwz(x)] = FXij(x), (2)

Cov[I(Xij ≤ x), I(Xrj ≤ x)] = δir
1

wij
s2

Fx
+ aFx , (3)

Cov[I(Xij ≤ x), Fnwj(x)] = Cov[Fnwj(x), Fnwj(x)] =
1

w.j
s2

Fx
+ aFx =

aFx

ZFx
j

, (4)
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Cov[I(Xij ≤ x), Fnwz(x)] = Cov[Fnwj(x), Fnwz(x)] = Cov[Fnwz(x), Fnwz(x)] =
aFx

zFx.
, (5)

Cov[FXij |Θj
(x|Θj), I(Xij′ ≤ x)] = δjj′ aFx . (6)

Proof. Relation (2) is straightforward. Relation (3) results from

Cov[I(Xij ≤ x), I(Xrj ≤ x)]

= E
(

Cov[I(Xij ≤ x), I(Xrj ≤ x)|Θj]

)
+ Cov

(
E[I(Xij ≤ x)|Θj], E[I(Xrj ≤ x)|Θj]

)

= δir
1

wij
s2

Fx
+ aFx .

The first part of (4) results from

Cov[I(Xij ≤ x), Fnwj
(x)] = Cov

(
I(Xij ≤ x),

nj

∑
r=1

wrj

w.j
I(Xrj ≤ x)

)

=

nj

∑
r=1

wrj

wij
Cov[I(Xij ≤ x), I(Xrj ≤ x)] =

nj

∑
r=1

wrj

w.j

(
δir

1
wij

s2
Fx
+ aFx

)

=
1

w.j
s2

Fx
+

nj

∑
r ̸=i

δir
1

wij
s2

Fx
+ aFx

=
1

w.j
s2

Fx
+ aFx .

Similarly, we can prove the second and third parts of (4). For the proof of the first part of
relation (5), we have

Cov[I(Xij ≤ x), Fnwz(x)] = Cov
(

I(Xij ≤ x),
K

∑
j′=1

ZFx
j′

zFx.
Fnwj′ (x)

)

=
K

∑
j′=1

nj′

∑
r=1

ZFx
j′

zFx.
Cov[I(Xij ≤ x), I(Xrj′ ≤ x)]

=

nj

∑
r=1

ZFx
j

zFx.
Cov[I(Xij ≤ x), I(Xrj ≤ x)] +

K

∑
j′ ̸=j

nj′

∑
r=1

ZFx
j′

zFx.
Cov[I(Xij ≤ x), I(Xrj′ ≤ x)]

=
ZFx

j

zFx.
Cov[I(Xij ≤ x), I(Xij ≤ x)] +

nj

∑
r ̸=i

ZFx
j

zFx.
Cov[(I(Xij ≤ x), I(Xrj ≤ x)]

=
aFx

zFx.
.
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In the same way, we can prove the second and third parts of (5). Finally, (6) can be proved as

Cov[FXij |Θj
(x|Θj), I(Xij′ ≤ x)]

= E{Cov[FXij(x|Θj), I(Xij′ ≤ x)|Θj]}

+Cov{E[FXij |Θj
(x|Θj)|Θj], E[I(Xij′ ≤ x)|Θj]}

= δjj′ aFx .

Similarly, as in Bühlmann and Straub (1970), by the following theorems, we will
provide the optimal linearized non-homogeneous (as well as the homogeneous) credibility
estimators and provide some useful estimators for the structure parameters.

Theorem 1 (Linearized non-homogeneous credibility distribution estimator). Under
the assumptions (i)–(iii), the optimal linearized non-homogeneous estimator of FXij(x|Θj) is
obtained by

FCred
Xij

(x|Θj) = ZFx
j Fnwj(x) + (1 − ZFx

j )FXij(x), (7)

with Fnwj(x) and ZFx
j as in (1).

Proof. We have to find cj
0, cj

11, ..., cj
njK

in

gj[I(X11 ≤ x), · · · , I(XnjK ≤ x)] = cj
0 +

K

∑
l=1

nj

∑
i=1

cj
il I(Xij ≤ x), (8)

such that

Q = E
(

P(Xij ≤ x|Θj)− cj
0 −

K

∑
l=1

nj

∑
i=1

cj
il I(Xij ≤ x)

)2

(9)

is minimum. Differentiating (9) with respect to cj
0, we have

∂Q

∂cj
0

= E
(

FXij |Θj
(x|Θj)− cj

0 −
K

∑
l=1

nj

∑
i=1

cj
il I(Xij ≤ x)

)
= 0

⇒ cj
0 = E[FXij |Θj

(x|Θj)]−
K

∑
l=1

nj

∑
i=1

cj
ilE[I(Xij ≤ x)]

= FXij(x)−
K

∑
l=1

nj

∑
i=1

cj
il FXij(x). (10)

Substituting the value of cj
0 in (9) and differentiating with respect to crl′ , we obtain
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∂Q
∂crl′

=
∂

∂crl′
E
[

FXijΘj(x|Θj)− FXij(x) +
K

∑
l=1

nj

∑
i=1

cj
il FXij(x)−

K

∑
l=1

nj

∑
i=1

cj
il I(Xij ≤ x)

]2

= E
(

FXij |Θj
(x|Θj)− FXij(x)−

K

∑
l=1

nj

∑
i=1

cj
il [I(Xil ≤ x)− FXij(x)][I(Xrl′ ≤ x)− FXij(x)]

)
= 0

⇒ Cov[FXij |Θj
(x|Θj), I(Xrl′ ≤ x)] =

K

∑
l=1

nj

∑
i=1

cj
ilCov[I(Xil ≤ x), I(Xrl′ ≤ x)]. (11)

The right-hand side of (11) becomes

K

∑
l=1

nj

∑
i=1

cj
ilCov[I(Xil ≤ x), I(Xrl′ ≤ x)]

=

nj

∑
i=1

cj
ijCov[I(Xij ≤ x), I(Xrj ≤ x)] +

K

∑
l ̸=j

nj

∑
i=1

Cov[I(Xil ≤ x), I(Xrj ≤ x)]

=

nj

∑
i=1

cj
ij

(
δir

1
wrj

s2
Fx
+ aFx

)
.

Then, (11) implies that

aFx =

nj

∑
i=1

cj
ijaFx + cj

ij
1

wij
s2

Fx
. (12)

Multiplying (12) by wij and summing with respect to i = 1, . . . , nj, (i.e., ∑
nj
i=1 cj

ij = cj
.j),

we obtain

cj
.j =

aFx w.j

aFx w.j + s2
Fx

= ZFx
j ⇒ cj

ij =
wij

w,j
ZFx

j .

Since the probability distribution of I(X11 ≤ x), · · · , I(XnjK ≤ x) is invariant un-
der permutations of I(Xij ≤ x) and FXij |Θj

(x|Θj) is uniquely defined, it must hold that

cj
1j = cj

2j = · · · = cj
nj j

. Then, (8) becomes

FCred
Xij

(x|Θj) = FXij(x)−
K

∑
l=1

nj

∑
i=1

cj
il FXij(x) +

K

∑
l=1

nj

∑
i=1

cj
il I(Xil ≤ x)

= FXij(x)−
nj

∑
i=1

cj
ijFXij(x)−

K

∑
l ̸=j

nj

∑
i=1

cj
il FXij(x)

+

nj

∑
i=1

cj
il I(Xij ≤ x) +

K

∑
l ̸=l

nj

∑
i=1

cj
il I(Xil ≤ x)

= ZFx
j

nj

∑
i=1

wij

w.j
I(Xij ≤ x) + (1 − ZFx

j )FXij(x),

which provides (7).
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Theorem 2 (Linearized homogeneous credibility distribution estimator). Under the as-
sumptions (i)–(iii), the optimal linearized homogeneous estimator of FXij(x|Θj) is obtained by

FCred
Xij |Θj

(x|Θj) = ZFx
j Fnwj(x) + (1 − ZFx

j )Fnwz(x), (13)

with Fnwj(x), Fnwz(x) and ZFx
j as defined in (1).

Proof. Letting

gj[I(X11 ≤ x), · · · , I(Xnl K ≤ x)] =
K

∑
l=1

nl

∑
i=1

cj
il I(Xil ≤ x), (14)

we have to minimize

Q = E
(

FXij |Θj
(x|Θj)−

K

∑
l=1

nl

∑
i=1

cj
il I(Xil ≤ x)

)2

, (15)

such that

E[FXil (x|Θj)] =
K

∑
l=1

nl

∑
i=1

cj
ilE[I(Xil ≤ x)] (16)

holds under the restrictions ∑K
l=1 ∑nl

i=1 cj
il = 1, with the Lagrange multiplier 2λ. The

following quantity leads to

Q = E
(

FXij |Θj
(x|Θj)− FXij(x)−

K

∑
l=1

nl

∑
i=1

cj
il [I(Xij ≤ x)− FXij(x)]

)2

−2λ

( K

∑
l=1

nl

∑
i=1

cj
il FXij(x)− FXij(x)

)
. (17)

From (16), we obtain

FXij(x) = E[FXij |Θj
(x|Θj)] =

K

∑
l=1

nl

∑
i=1

cj
ilE[I(Xil ≤ x)] = FXij(x)

K

∑
l=1

nl

∑
i=1

cj
il

⇒
K

∑
l=1

nl

∑
i=1

cj
il = 1. (18)

Differentiating (17) with respect to ci′ l′ , we obtain

Cov[FXij |Θj
(x|Θj), I(Xi′ l′ ≤ x)]−

K

∑
l=1

nl

∑
i=1

cj
ilCov[I(Xil′ ≤ x), I(Xi′ l′ ≤ x)]− λFXij(x) = 0

⇒ δjl′ aFx + λFXij(x) =
nl

∑
i=1

cj
il′Cov[I(Xil′ ≤ x), I(Xi′ l′ ≤ x)]

=
nl

∑
i=1

cj
il′

(
aFx + δii′

1
wi′ l′

s2
Fx

)

= cj
.l′ aFx + cj

i′ l′
1

wi′ l′
s2

Fx
. (19)
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Multiplying both sides by wi′ l′ and taking the sum over i′, we obtain for each l′:

cj
.l′ =

[δjl′ aFx + λFXij(x)]w.l′(
aFx w.l′ + s2

Fx
]

) = [δjl′ +
λ

aFx

FXij(x)]ZFx
l′ . (20)

Substituting (20) into (19), we obtain

cj
i′ l′ =

[δjl′ aFx + λFXij(x)](1 − ZFx
l′ )

s2
Fx

wi′ l′ (21)

⇒ 1 =
K

∑
l=1

nj

∑
i=1

cj
il =

K

∑
l=1

cj
.l =

K

∑
l=1

(
δjl +

λ

aFx

FXij(x)
)

ZFx
l

=
λ

aFx

FXij(x)
K

∑
l=1

ZFx
l +

K

∑
l ̸=j

ZFx
l δjl + δjjZ

Fx
j

⇒ λFXij(x) = aFx

(1 − ZFx
j )

zFx.
. (22)

Then, the optimal linearized homogeneous estimator of FXij(x|Θj) becomes

FCred
Xij

(x|Θj) =
K

∑
l=1

nj

∑
i=1

cj
il I(Xil ≤ x)

=
K

∑
l=1

nj

∑
i=1

[δjl′ aFx + λFXij(x)](1 − ZFx
l )

s2
Fx

wil I(Xil ≤ x)

=
K

∑
l=1

ZFx
j

zFx.

nj

∑
i=1

wil
w.l

(1 − ZFx
j )I(Xil ≤ x) +

K

∑
l=1

n

∑
i=1

ZFx
l

wil
w.l

δjl I(Xil ≤ x)

= (1 − ZFx
j )

K

∑
l=1

ZFx
j

zFx.
Fnwj(x) +

K

∑
l ̸=j

nj

∑
i=1

ZFx
l

wil
w.l

δjl I(Xil ≤ x)

+ZFx
j

nj

∑
i=1

wij

w.j
I(Xij ≤ x)

resulting in (13).

The following theorem will prove that Fnwz(x) has a smaller variance than Fnwj(x), i.e.,
based on the heterogeneity and the fluctuation of the risk, Fnwz(x) has a minimal mean
square error.

Theorem 3. The Var
(

∑K
j=1 ∑

nj
i=1 cij I(Xij ≤ x)

)
is the minimum for all cij, such that ∑K

j=1 ∑
nj
i=1

cij = 1, for cij =
wij
w.j

ZFx
j

zFx.
.
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Proof. We have to minimize the following quantity

Q = E
( K

∑
j=1

nj

∑
i=1

cij I(Xij ≤ x)− E[
K

∑
j=1

nj

∑
i=1

cj
ij I(Xij ≤ x)]

)2

−2λFXij(x)(
K

∑
j=1

nj

∑
i=1

cj
ij − 1). (23)

Taking the derivative of (23) with respect ci′ l′ for i′ = 1, · · · , n and j′ = 1, · · · , K, we obtain

∂Q
∂ci′ j′

= 2E
( K

∑
j=1

nj

∑
i=1

cij I(Xij ≤ x)− E[
K

∑
j=1

nj

∑
i=1

cij I(Xij ≤ x)]
)(

I(Xi′ j′ ≤ x)− FXij(x)
)

−2λFXij(x) = 0

⇒ E
( K

∑
j=1

nj

∑
i=1

cij[I(Xij ≤ x)− FXij(x)][I(Xi′ j′ ≤ x)− FXij(x)]
)
= λFXij(x)

⇒
nj

∑
i=1

cijCov[I(Xij ≤ x), I(Xi′ j′ ≤ x)] = λFXij(x). (24)

This is the same as

K

∑
j ̸=j′

nj

∑
i=1

cijCov[I(Xij ≤ x), I(Xi′ j′ ≤ x)] +

+

nj

∑
i=1

cijCov[I(Xij ≤ x), I(Xi′ j′ ≤ x)] = λFXij(x)

⇒
nj

∑
i=1

cij(aFx + δii′
s2

Fx

wij
) = λFXij(x). (25)

This gives

⇒ aFx

nj

∑
i=1

cij +
n

∑
i ̸=i′

cijδii′
s2

Fx

wij
+ cijδii

s2
Fx

wij
= λFXij(x)

⇒ aFx

nj

∑
i=1

cij + cij
s2

Fx

wij
= λFXij(x)

⇒ aFx wijc.j + cijs2
Fx

= λFXij(x) wij

⇒ cij =
wij[λFXij(x)− aFx c.j]

s2
Fx

(26)
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⇒
nj

∑
i=1

aFx wijc.j +

nj

∑
i=1

cijs2
Fx

=

nj

∑
i=1

λFXij(x)wij

⇒ aFx w.jc.j + c.js2
Fx
] = λFXij(x)w.j

⇒ c.j =
w.jλFXij(x)

aFx w.j + s2
Fx

= λFXij(x)
ZFx

j

aFx

. (27)

We know that

K

∑
j=1

nj

∑
i=1

cij = 1 ⇒
K

∑
j=1

c.j = 1

⇒
K

∑
j=1

λFXij(x)
ZFx

j

aFx

= λFXij(x)
zFx

.
aFx

= 1 ⇒ λ =
aFx

FXij(x) zFx.
.

We therefore obtain

c.j =
aFx FXij(x) ZFx

j

FXij(x) zFx.
=

ZFx
j

zFx.
(28)

and from (26), we have

cij =
wij(λFXij(x)− aFx c.j)

s2
Fx

=
wij(

aFx
zFx.

−
aFx ZFx

j
zFx.

)

s2
Fx

=
wij

w.j

ZFx
j

zFx.
.

Theorem 4. Under assumptions (i)–(iii), the quadratic loss for the credibility distribution estima-
tor is given by

E[FCred
Xij

(x|Θj)− FXij(x|Θj)]
2 = aFx (1 − ZFx

j ). (29)

Proof. We have

E[FCred
Xij

(x|Θj)− FXij(x|Θj)]
2

= E
(

ZFx
j [Fwj(x)− FXij(x)]− [FXij(x|Θj)− FXij(x)]

)2

= (ZFx
j )2

(
Var[Fwj(x)] + Var[FXij(x|Θj)]− 2ZFx

j Cov[Fwj(x), FXij(x|Θj)]

)

= ZFx
j

( aFx w.j

aFx w.j + s2
Fx

)( s2
Fx

w.j
+ aFx

)
+ aFx − 2ZFx

j aFx

that provides (29).

2.4. Optimal Projection Theorem

In the following, De Vylder’s (1976, 1996) optimal projection theorem of random
variables in the plane is applied in order to derive the optimal estimator of FXij(x) and
FXij(x|Θj). Practically, FXij(x) is replaced by Fnwz(x) in (7).
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Theorem 5. The optimal estimator of FXij(x) in the plane H(I(Xij ≤ x), i = 1, · · · , nj,
j = 1, · · · , K) is

FXij(x)Proj = Proj[FXij(x)|HF(I(Xij ≤ x), i = 1, · · · , nj, j = 1, · · · , K)]

= Fnwz(x).

Proof. Directly from (2) and (5).

Theorem 6. The optimal credibility estimator of FXij(x|Θj) based on I(X11 ≤ x), · · · , I(XnjK ≤ x) is

FCred
Xij |Θj

(x|Θj) = Proj[FXij |Θj
(x|Θj)|HF(I(Xij ≤ x), i = 1, · · · , nj, j = 1, · · · , K)]

= ZFx
j Fnwj(x) + (1 − ZFx

j )Fnwz(x). (30)

Proof. In order to prove (30), it is sufficient to prove the unbiasedness and covariance
conditions of the optimal projection theorem of random variables on planes not through
the origin (see De Vylder (1976, 1996)), that is

E[FCred
Xij |Θj

(x|Θj)] = E[FXij |Θj
(x|Θj)] = FXij(x)

and

Cov[FCred
Xij |Θj

(x|Θj)− FXij |Θj
(x|Θj), I(Xij′ ≤ x)] = const.

The unbiasedness condition results from (2) and

E[FCred
Xij |Θj

(x|Θj)] = E
(

ZFx
j Fnwj(x) + (1 − ZFx

j )Fnwz(x)
)
= FXij(x).

The covariance condition results from the independence of the contracts and the covariance
relations of Lemma 1, which gives

Cov[FCred
Xij |Θj

(x|Θj)− FXij |Θj
(x|Θj), I(Xij′ ≤ x)]

= Cov
(

ZFx
j Fnwj(x) + (1 − ZFx

j )Fnwz(x)− FXij |Θj
(x|Θj), I(Xij′ ≤ x)

)
= ZFx

j δjj′Cov[Fnwj(x), I(Xij′ ≤ x)] + (1 − ZFx
j )Cov[Fnwz(x), I(Xrj′ ≤ x)]

−δjj′Cov[FXij |Θj
(x|Θj), I(Xij′ ≤ x)]

= ZFx
j δjj′

aFx

ZFx
j

+ (1 − ZFx
j )

aFx

zFx.
− δjj′ aFx = (1 − ZFx

j )
aFx

zFx.
. (31)

2.5. Unbiased Estimators

Below, we provide unbiased estimators analogous to the Bühlmann and Straub (1970)
model.
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Lemma 2. The following estimators of the structural parameters FXij(x), s2
Fx

and aFx , presented in
Section 2.2, are unbiased.

F̂Xij(x) = Fnww(x) or F̂Xij(x) = Fnwz(x), (32)

ŝ2
Fx

=
∑K

j=1 ∑
nj
i=1 wij [I(Xij≤x)−Fnwj (x)]2

∑K
j=1(nj−1)

, (33)

âFx = w..
w2

..−∑K
j=1 w2

.j

[
∑K

j=1 w.j[Fnwj(x)− Fnww(x)]2 − (K − 1)ŝ2
Fx

]
. (34)

Based on De Vylder (1978), an unbiased estimator of aFx can take the form

âFx =
∑K

j=1 ZFx
j [Fnwj(x)− Fnwz(x)]2

(K − 1)
, (pseudo-estimator). (35)

Proof. The unbiasedness of F̂Xij(x) is straightforward and is omitted. The unbiasedness of
ŝ2

F follows from

K

∑
j=1

(nj − 1)E(ŝ2
Fx
) = E

[ K

∑
j=1

nj

∑
i=1

wij[I(Xij ≤ x)− Fnwj(x)]2
]

=
K

∑
j=1

nj

∑
i=1

[
wijVar[I(Xij ≤ x)] + Var[Fnwj(x)]− 2Cov[I(Xij ≤ x), Fnwj(x)]

]

=
K

∑
j=1

nj

∑
i=1

wij

( s2
Fx

wij
+ aFx +

aFx

ZFx
j

− 2
aFx

ZFx
j

)
=

K

∑
j=1

(nj − 1)s2
Fx

, (36)

resulting in (33). For the proof of the unbiasedness of (34), we refer to Bühlmann and Straub
(1970). Finally, the unbiasedness of âF in (35) results from

(K − 1)E(âFx ) = E
[ K

∑
j=1

ZFx
j [Fnwj(x)− Fnwz(x)]2

]

=
K

∑
j=1

ZFx
j

(
Var[Fnwj(x)] + Var[Fnwz(x)]− 2Cov[Fnwj(x), Fnwz(x)]

)

=
K

∑
j=1

ZFx
j

[(
aFx

ZFx
j

)
+

(
aFx

zFx.

)
− 2

(
aFx

zFx.

)]
= (K − 1)aFx

which implies (35).

3. Credible Distribution for Grouped Data

Grouped data are formed by aggregating the individual observations of a variable
into groups. For example, a histogram is a density approximation for grouped data.
The construction of the empirical distribution based on grouped data can be achieved
by obtaining the point values of the empirical distribution function whenever possible.
Then, we can approximate the distribution function by connecting those point values with
straight lines.

Empirical distribution for grouped data is evaluated at a point estimate x. We consider
the case where the point estimate x is at a boundary and the case where the value of x is
between the boundaries.
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3.1. Empirical Distribution for Grouped Data at Boundary

For contract j, let the group boundaries be c0j < c1j < · · · < cnj, where c0j = 0 and
cn+1,j = ∞. Let mij be the number of observations in the interval (ci−1,j, cij), i = 1, 2, . . . , nj,

j = 1, 2, . . . , K and m.j = ∑
nj
i=1 mij be the total number of observations for the j contract. For

grouped data, the empirical distribution function at each group boundary cij is defined as

Fmj(crj) =
1

m.j

r

∑
i=1

mij. (37)

For grouped data, there is no problem if the distribution function has to be estimated at a
boundary. When all of the information is available, working with the empirical estimate
of the distribution function is straightforward (see Klugman et al. (2012)). We have the
following assumptions:

3.1.1. Assumptions

(i*) The contracts are independent and the variables Θ1, · · · , ΘK are identically distributed.
The observations Xij have finite variance,

(ii*) E[I(Xij ≤ x)|Θj)] = E[Fmj(x|Θj)] = FXij |Θj
(x|Θj),

(iii*) Var[I(Xij ≤ x)|Θj] =
1

mij
σ2

x(Θj) and Var[Fmj(x|Θj)] =
1

m.j
σ2

x(Θj).

3.1.2. Structural Parameters

µx = E[Fmj(x)] = FXij(x), s2
x = E[σ2

x(Θj)], ax = Var{E[I(Xij ≤ x)|Θj]}. (38)

3.1.3. Notation

Here, we adopt the following notation:

Fmj(x) =
nj

∑
j=1

mij

m.j
I(Xij ≤ x), Fmm(x) =

K

∑
j=1

m.j

m..
Fmj(x), Fmz(x) =

K

∑
j=1

Zx
j

zx
.

Fmj(x),

m.j =

nj

∑
i=1

mij, m.. =
K

∑
i=1

m.j, zx
. =

K

∑
j=1

Zx
j , Zx

j =
m.jax

m.jax + s2
x

. (39)

Based on the above assumptions, a credibility distribution estimator for FXij(x|Θj) is
obtained as

FCred
Xij

(x|Θj) = Zx
j Fmj(x) + (1 − Zx

j )FXij(x). (40)

With the following theorem, we can obtain the credibility distribution estimator of
FXij(x|Θj).

Theorem 7. Under the assumptions (i∗)–(iii∗), the credibility factor in (40) is given by

Zx
j =

m.jax

m.jax + s2
x

,

with ax as in (38) and m.j as in (39).

Proof. The proof of the theorem can be obtained by minimizing the expression

Q = E
(

FCred
Xij

(x|Θj)− Zx
j Fmj(x)− (1 − Zx

j )FXij(x)
)2

,
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with respect to Zx
j .

3.1.4. Credibility Estimators

Lemma 3. The credibility point estimators of FXij(x), s2
x and ax are given as follows:

F̂Xij(x) = Fmm(x), or F̂Xij(x) = Fmz(x)

ŝ2
x =

∑K
j=1 ∑

nj
i=1 mij[I(Xij ≤ x)− Fmj(x)]2

∑K
j=1(nj − 1)

âx =

(
m..

m2
.. − ∑K

j=1 m2
.j

)[ K

∑
j=1

m.j[Fmj(x)− Fmm(x)]2 − (K − 1)ŝ2
x

]

or

âx =
∑K

j=1 Zx
j [Fmj(x)− Fmz(x)]2

(K − 1)
.

Proof. Similarly to the proof of Lemma 2.

3.2. Empirical Distribution for Grouped Data at Value x between Boundaries

Now, suppose that the value of x is between the boundaries ci−1,j and cij. Then, for
contract j, the empirical distribution function is given by

Fmj(x) =


0, x ≤ c0,
(cij−x)Fmj(ci−1,j)+(x−ci−1,j)Fmj(cij)

cij−ci−1,j
, ci−1,j ≤ x ≤ cij,

1, x > cn.

(41)

This function is differentiable at all values except for the group boundaries. Based on (41),
we can obtain the following

E[Fmj(x|Θj)] =
(cij − x)FXij(ci−1,j|Θj) + (x − ci−1,j)FXij(cij|Θj)

cij − ci−1,j

and

FXij(x) = E[Fmj(x)] =
(cij − x)FXij(ci−1,j) + (x − ci−1,j)FXij(cij)

cij − ci−1,j
.

Note that the above estimator is biased although it is an unbiased estimator of the true
interpolated value (see Klugman et al. (2012)).

The conditional variance of the empirical distribution is

Var[Fmj(x|Θj)] =
(cij − x)2 Var[Fmj (ci−1,j|Θj)] + (x − ci−1,j)

2 Var[Fmj(cij|Θj)]

(cij − ci−1,j)2

+
2Cov[Fmj(ci−1,j|Θj), Fmj(cij|Θj)]

(cij − ci−1,j)2 ,

where

Var[Fmj(ci−1,j|Θj)] =
1

m.j
FXij(ci−1,j|Θj)[1 − FXij(ci−1,j|Θj)],
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Var[Fmj(cij|Θj)] =
1

m.j
FXij(cij|Θj)[1 − FXij(cij|Θj)]

and

Cov[Fmj(ci−1,j|Θj), Fmj(cij|Θj)] =
1

m.j

(
FXij(min{ci−1,j, cij}|Θj)

−FXij(ci−1,j|Θj)FXij(cij|Θj)

)
.

Then, we can proceed as in Section 3.1 for obtaining the credibility distribution estima-
tor of FXij(x|Θj), when the value of x is between boundaries.

4. Alternative Credibility Distribution Approach for Grouped Data

For grouped data, the previous approaches yield credibility point estimates. If we
want to find the credibility estimation in the framework of Bühlmann and Straub (1970),
we may apply the concept of uniform distribution within each interval (ci−1,j, cij) and the
first two moments can be estimated from

µ̂
(k)
j =

r

∑
i=1

(mij

m.j

)( ck+1
ij − ck+1

i−1,j

(k + 1)(cij − ci−1,j)

)
,

for k = 1, 2. Thus, for contract j, the empirical estimate of the mean (k = 1) is the weighted
average of the interval midpoints where the weight mij for an interval is the proportion of
the observations that are in the interval (histogram), i.e.,

µ̂j =
r

∑
i=1

mij

m.j

( cij + ci−1,j

2

)
.

Letting Cij =
cij+ci−1,j

2 and assuming that E(Cij|Θj) = µ(Θj) and Cov(Crj, Cij|Θj) = δri
1

mij
σ2(Θj),

the credibility estimation based on grouped data can be obtained similarly as in the
Bühlmann and Straub (1970) model

µCred(Θj) = Zjµj + (1 − Zj)µ, (42)

with parameters

µ = E[µ(Θj)], s2 = E[σ2(Θj)], a = Var[µ(Θj)], Zj =
am.j

am.j + s2 . (43)

Theorem 8. The following are unbiased estimators for µ, s2, and a:

µ̂ = C̄.. =
K

∑
j=1

m.j

m..
C̄.j, with µ̂j = C̄.j =

K

∑
j=1

mij

m.j
Cij,

ŝ2 =
1
K

K

∑
j=1

ŝ2
j , with ŝ2

j = µ̂
(2)
j − (µ̂j)

2

and

â =

(
m..

m2
.. − ∑K

j=1 m2
.j

)[ K

∑
j=1

m.j(µ̂j − µ̂)2 − (K − 1)ŝ2
]

,
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or

â =
1

K − 1

K

∑
j=1

Zj(C̄.j − C̄z)
2, where C̄z =

K

∑
j=1

Zj

z.
C̄.j.

Proof. See Bühlmann and Straub (1970) and De Vylder (1978).

5. Numerical Illustrations

In this section, we use two datasets, one with insurance motor claims data and a
second with monthly returns financial data.

5.1. Numerical Example with Insurance Data

The dataset is provided by Insurance Europe (2022) and includes a database with
figures on the European insurance industry during the period 2004–2020 for 32 EU countries.
Our numerical illustration is based on a complete dataset of 10 selected countries for the
years 2004–2018. Our dataset also contains the motor claims paid and the number of motor
claims for each country and each year. The selected countries are the following: Austria
(AT); Germany (DE); Finland (FI); Greece (GR); Hungary (HR); Italy (IT); Norway (NO);
Poland (PL); Portugal (PT); and Sweden (SE). Table 1 shows the summary statistics of
the motor claim amounts and the claim numbers for countries j = 1, · · · , 10 and years
i = 1, · · · , 15.

Table 1. Summary statistics for 10 selected European countries.

Motor Claims and Number of Motor Claims for the Years 2004–2018

Xij: Motor claims amount in millions for the years i = 1, · · · , 15 and countries j = 1, · · · , 10

Country AT DE FI GR HR IT NO PL PT SE

Min. 1923 18,789 692 438 207 12,791 1062 1582 987 311
1st Qu. 1989 19,322 803 530 226 12,968 1205 1935 1187 912
Median 2032 20,222 914 978 248 15,239 1396 2219 1261 987
Mean 2104 20,692 909 840 256 15,112 1359 2322 1218 1098

3rd Qu. 2201 21,828 1024 1083 288 16,492 1514 2620 1282 1504
Max. 2430 23,897 1141 1224 330 18,210 1637 3235 1362 1670

wij: Weights–number of motor claims

Min. 1,177,269 8,673,000 368,898 403,604 170,205 3,389,677 562,981 1,307,003 643,713 890,304
1st Qu. 1,238,392 9,002,000 420,122 427,265 199,179 3,467,180 659,063 1,465,112 712,819 1,043,110
Median 1,279,586 9,247,000 497,201 474,875 204,421 4,541,671 758,814 1,749,483 837,694 1,098,411
Mean 1,282,093 9,220,067 493,392 475,977 208,084 4,317,710 728,372 2,177,715 800,425 1,111,064

3rd Qu. 1,323,949 9,425,500 573,942 515,984 218,964 5,026,480 783,394 1,891,870 876,323 1,168,650
Max. 1,396,250 9,750,000 641,513 580,985 238,904 5,249,558 908,663 4,515,087 959,781 1,328,331

Note: Xij are the average claims per year and wij represents the number of motor claims that correspond to
each Xij.

Table 2 illustrates the results of a credibility distribution function for motor claims
amount data during the years 2004–2018. More analytically, the upper part of the table
shows the individual empirical distribution F̂nwj(x) of claim amounts Xij ≤ x, Xij ≤ x,
(x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897) and the corresponding credibility
distribution estimators F̂Cred

Xij
(x|Θj) are shown in the middle part of the table. The estimated

credibility factors ẐFx
j , as well the estimated parameters F̂nww(x), ŝ2

F, âF, are presented in

the lower part of Table 2. Note that F̂nwj(x) = 0 means that the value of all claims Xij > x
and F̂nwj(x) = 1 if claims Xij ≤x.

In Table 2, we observe a lack of monotonicity of the estimated credibility distributions
for all contracts. In order to obtain monotonicity, we similarly proceed as in Cai et al. (2015)
by restricting the credibility factor ZF

j to be a constant free of x. The results are shown in
Table 3. Although monotonicity has been restored from a risk management perspective
(which serves to fair pricing and reserves given the nature of the risk), more investigation
is required, especially in the points where monotonicity breaks down.
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Remark 1. Another way of obtaining monotonicity of the credibility estimated by distribution
functions is by sorting the resulting credibility by estimated distribution functions. In the relevant
literature, there are methods for extracting a monotone function from non-monotonic data. Such a
method is the monotonic regression that achieves the monotonicity and smoothness of the regression
by introducing a regularization term, and solving an optimization problem with constraints. Some
key references are: Friedman and Tibshirani (1984), Mukerjee (1988), Shively et al. (2009) and
Zhang (2004). Similarly, the above approaches could be applied to our model.

By letting the values of motor claims be larger than x = 23,800 and less than or equal to
x = 23,897 x = 23,897 is the maximum threshold of contract DE, which is the contract with
the largest values of motor claims, as shown in Table 1), whilst the values of the estimated
credibility distribution F̂Cred

Xij
(x|Θj) remain the same up to the fifth decimal place. By letting

x > 23,897, the estimated credibility distribution goes to 1 (see Table 2).

Remark 2. Similarly to in Bühlmann and Straub (1970) model, âFx can possibly be negative. This
means that there is no detectable difference between the risks. In this case we put âFx = 0, as in our
cases for x = 23,800, 23,896, 23,897.

Figure 1 displays the individual empirical distribution in each contract. Note that the
red bullets indicate the corresponding credibility estimate at specific points presented in
Table 2.

Credibility Coefficients for Motor Claims Data

In the following, we provide an intuitive interpretation for the form of the credibility
distribution estimator given in Theorem 1 for motor claims by presenting the following
coefficients in Table 4, which were derived based on the lower part of Table 2. These are:

the coefficient of variation BRV =

√
âFx

F̂nww (x)
, which is a good measure for the heterogeneity of

the portfolio, (i.e., a good measure for the between-risk variability) and the average within
the risk coefficient of variation WRV =

ŝFx
F̂nww (x)

, which is a good measure of the within risk

variability. The smaller the credibility coefficient CC =
ŝ2

Fx
âFx

, the greater the ẐFx
j .
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Figure 1. Individual empirical distribution and credibility distribution point estimates (in red) for
motor claims per contract.
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Table 2. Credibility distribution estimation for motor claims.

Motor Claim Amounts and Number of Motor Claims from 10 Selected European Countries
during the Period 2004–2018

Individual empirical distribution with claim amount Xij ≤ x, (x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897)

Country AT DE FI GR HR IT NO PL PT SE

F̂nwj(320) 0.0000 0.0000 0.0000 0.0000 0.9235 0.0000 0.0000 0.0000 0.0000 0.0624

F̂nwj(800) 0.0000 0.0000 0.1584 0.4206 1.0000 0.0000 0.0000 0.0000 0.0000 0.1940

F̂nwj(1000) 0.0000 0.0000 0.5286 0.5501 1.0000 0.0000 0.0000 0.0000 0.1428 0.5359

F̂nwj(2000) 0.2518 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.2128 1.0000 1.0000

F̂nwj(3000) 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.7278 1.0000 1.0000

F̂nwj (23,800) 1.0000 0.9339 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F̂nwj (23,896) 1.0000 0.9339 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F̂nwj (23,897) 1 1 1 1 1 1 1 1 1 1

Credibility distribution estimation with claim amount Xij ≤ x, (x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897)

Country AT DE FI GR HR IT NO PL PT SE

F̂Cred
Xij

(320Θj) 0.01256 0.01256 0.01256 0.01256 0.01256 0.01256 0.01256 0.01256 0.01256 0.01256

F̂Cred
Xij

(800Θj) 0.02790 0.01348 0.04299 0.06155 0.06539 0.01980 0.03015 0.02490 0.02983 0.05827

F̂Cred
Xij

(1000Θj) 0.02754 0.00583 0.23820 0.24210 0.25270 0.01136 0.03722 0.01939 0.10500 0.33390

F̂Cred
Xij

(2000Θj) 0.25080 0.00105 0.93630 0.93420 0.86420 0.00223 0.95570 0.21300 0.95950 0.97040

F̂Cred
Xij

(3000Θj) 0.95520 0.00313 0.89460 0.89140 0.79400 0.00660 0.92490 0.71150 0.93090 0.94880

F̂Cred
Xij

(23,800Θj) 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707

F̂Cred
Xij

(23,896Θj) 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707

F̂Cred
Xij

(23,897Θj) 1 1 1 1 1 1 1 1 1 1

Credibility factor Xij ≤ x, (x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897)

Parameter ẐFx
1 ẐFx

2 ẐFx
3 ẐFx

4 ẐFx
5 ẐFx

6 ẐFx
7 ẐFx

8 ẐFx
9 ẐFx

10

x = 320 0 0 0 0 0 0 0 0 0 0

x = 800 0.1727 0.6002 0.0744 0.0719 0.0328 0.4128 0.1060 0.2618 0.1153 0.1532

x = 1000 0.6020 0.9158 0.3679 0.3596 0.1971 0.8359 0.4622 0.7198 0.4857 0.5672

x = 2000 0.9669 0.9953 0.9182 0.9155 0.8256 0.9899 0.9431 0.9802 0.9479 0.9619

x = 3000 0.9340 0.9903 0.8448 0.8400 0.6965 0.9794 0.8893 0.9600 0.8983 0.9246

x = 23,800 0 0 0 0 0 0 0 0 0 0

x = 23,896 0 0 0 0 0 0 0 0 0 0

x = 23,897 0 0 0 0 0 0 0 0 0 0

Parameter estimation Xij ≤ x, (x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897)

x = 320 F̂nww(x) = 0.01256 âFx = 0.00000 ŝ2
Fx

= 456,695

x = 800 F̂nww(x) = 0.03372 âFx = 0.00412 ŝ2
Fx

= 379,951

x = 1000 F̂nww(x) = 0.06920 âFx = 0.02147 ŝ2
Fx

= 273,007

x = 2000 F̂nww(x) = 0.22117 âFx = 0.09854 ŝ2
Fx

= 64,969

x = 3000 F̂nww(x) = 0.32113 âFx = 0.14983 ŝ2
Fx

= 203,743

x = 23,800 F̂nww(x) = 0.97070 âFx = 0.00000 ŝ2
Fx

= 1,610,559

x = 23,896 F̂nww(x) = 0.97070 âFx = 0.00000 ŝ2
Fx

= 1,610,559

x = 23,897 F̂nww(x) = 1.00000 âFx = 0.00000 ŝ2
Fx

= 1,736,923
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Table 3. Credibility distribution estimation for motor claims.

Motor Claim Amounts and Number of Motor Claims from 10 Selected European Countries
during the Period 2004–2018, ZF Free of x

Individual empirical distribution with claim amount Xij ≤ x, (x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897)

Country AT DE FI GR HR IT NO PL PT SE

F̂nwj(320) 0.0000 0.0000 0.0000 0.0000 0.9235 0.0000 0.0000 0.0000 0.0000 0.0624

F̂nwj(800) 0.0000 0.0000 0.1584 0.4206 1.0000 0.0000 0.0000 0.0000 0.0000 0.1940

F̂nwj(1000) 0.0000 0.0000 0.5286 0.5501 1.0000 0.0000 0.0000 0.0000 0.1428 0.5359

F̂nwj(2000) 0.2518 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.2128 1.0000 1.0000

F̂nwj(3000) 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.7278 1.0000 1.0000

F̂nwj (23,800) 1.0000 0.9339 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F̂nwj (23,896) 1.0000 0.9339 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F̂nwj (23,897) 1 1 1 1 1 1 1 1 1 1

Credibility distribution estimation with claim amount Xij ≤ x, (x = 320, 800, 1000, 2000, 3000, 23,800, 23,896, 23,897)

Country AT DE FI GR HR IT NO PL PT SE

F̂Cred
Xij

(320Θj) 0.00706 0.00190 0.00966 0.00974 0.11476 0.00347 0.00871 0.00541 0.00845 0.03262

F̂Cred
Xij

(800Θj) 0.01896 0.00511 0.06246 0.12047 0.14212 0.00931 0.02338 0.01452 0.02269 0.09829

F̂Cred
Xij

(1000Θj) 0.03891 0.01049 0.17511 0.17703 0.17362 0.01911 0.04798 0.02979 0.09327 0.25723

F̂Cred
Xij

(2000Θj) 0.23458 0.03352 0.40072 0.39581 0.30854 0.06106 0.46002 0.21640 0.47592 0.53495

F̂Cred
Xij

(3000Θj) 0.61831 0.04866 0.477641 0.47336 0.39729 0.08866 0.52932 0.55269 0.54317 0.59463

F̂Cred
Xij

(23,800Θj) 0.98352 0.93947 0.97745 0.97727 0.97398 0.99191 0.97968 0.98738 0.98028 0.98250

F̂Cred
Xij

(23,896Θj) 0.98352 0.93947 0.97745 0.97727 0.97398 0.99191 0.97968 0.98738 0.98028 0.98250

F̂Cred
Xij

(23,897Θj) 1 1 1 1 1 1 1 1 1 1

F̂nww(320) = 0.01256, F̂nww(800) = 0.03372, F̂nww(1000) = 0.06920, F̂nww(2000) = 0.22117,
F̂nww(3000) = 0.32113, F̂nww (23,800) = 0.97070, F̂nww (23,896) = 0.97070, F̂nww (23,897) = 1.000

Parameter estimation free of x

âF = 0.008457228 ŝ2
F = 208898.6

Credibility factor ẐF
1 ẐF

2 ẐF
3 ẐF

4 ẐF
5 ẐF

6 ẐF
7 ẐF

8 ẐF
9 ẐF

10
ZF

j free of x 0.43775 0.84846 0.23054 0.22423 0.11218 0.72391 0.30667 0.56942 0.32708 0.40288

Table 4. Credibility coefficients.

Credibility Coefficients

x 320 800 1000 2000 23,800 23,900

WRV 23,262.8543 5787.8587 3718.7216 1152.5669 254.4523 1317.9237

BRV 8.448499 4.140172 3.170754 1.976505 0 0

CC 7,581,705 1,954,336 1,375,506 340,045 ∞ ∞

Remark 3. The results of Table 2 and Remark 2, for x = 23,800, âFx = 0 and ŝ2
Fx

= 61,020, imply
that BRV = 0 and CC = ∞. Similarly, setting x = 23,900, âFx = 0 and ŝ2

Fx
= 1,736,923 implies

that BRV = 0 and CC = ∞.

5.2. Example of Credibility Distribution Estimation with Financial Data

The dataset was created (see Fama and French (2022)) as follows: each NYSE, AMEX,
and NASDAQ stock was assigned to an industry portfolio at the end of June of year t based
on its four-digit SIC code at that time. Compustat SIC codes have been used for the fiscal
year ending in the calendar year t − 1. Whenever Compustat SIC codes are not available,
CRSP SIC codes for June of year t were used. Then, returns from July of year t to June of
year t + 1 are computed. The weights are the number of firms in portfolios.
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In particular, the portfolios are constructed with monthly returns from July 1926 to July
2022 and it contains value returns for 10 industry portfolios. The credibility distribution
for each of these portfolios needs to be estimated. As a profit (P), we consider a random
variable X, with positive returns values and as a loss (L) with negative return values. The
10 industry portfolios are as follows:

(1) NoDur: consumer non-durables—food, tobacco, textiles, apparel, leather, and toys.

(2) Durbl: Consumer durables—cars, TVs, furniture, household appliances.

(3) Manuf: Manufacturing—machinery, trucks, planes, chemicals, off-furn, and paper.

(4) Enrgy: Oil, gas, and coal extraction and products.

(5) HiTec: Business equipment—computers, software, and electronic equipment.

(6) Telcm: Telephone and television transmission.

(7) Shops: Wholesale, retail, and some services (laundries, repair shops).

(8) Hlth: healthcare, medical equipment, and drugs.

(9) Utils: Utilities.

(10) Other: Other—mines, construction, building material, transportation, hotels, bus
service, entertainment, and finance.

Table 5 provides some descriptive statistics of the (P/L) monthly returns of the
10 industry portfolios. The number of observations in each portfolio is n = 1155.

Table 5. Summary statistics for 10 industry portfolios.

Monthly Returns and Number of Firms in Portfolios from July 1926–July 2022

Xij: Value returns for i = 1, · · · , 1155, j = 1, · · · , 10

Portfolio NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

Min. −24.6900 −34.800 −29.820 −34.490 −33.870 −21.5600 −30.240 −34.080 −33.0500 −30.0200
1st Qu. −1.3900 −2.855 −2.000 −2.470 −2.600 −1.5200 −2.030 −1.920 −1.6850 −2.0750
Median 1.0800 0.980 1.350 0.890 1.320 0.9000 1.090 1.100 1.0500 1.2800
Mean 0.9524 1.158 1.002 1.027 1.116 0.8198 1.014 1.072 0.8738 0.9013

3rd Qu. 3.6450 4.845 4.235 4.590 5.030 3.2400 4.090 4.060 3.6200 4.1850
Max. 34.1700 79.790 57.200 38.990 53.490 28.1700 42.450 37.130 43.4600 58.6700

wij: Weight–number of firms in portfolios for i = 1, · · · , 1155, j = 1, · · · , 10

Min. 87.0 37.0 125.0 45.0 18.0 4.00 41.0 4.0 21.0 110.0
1st Qu. 136.0 56.0 313.0 55.0 44.0 8.00 84.0 18.0 72.0 156.0
Median 173.0 92.0 449.0 116.0 358.0 41.00 276.0 122.0 102.0 1002.0
Mean 230.2 101.2 507.7 131.1 428.1 53.76 298.4 237.2 106.9 887.5

3rd Qu. 334.0 148.0 772.5 173.0 797.5 99.00 472.5 509.0 179.5 1619.0
Max. 547.0 213.0 967.0 404.0 1465.0 189.00 823.0 868.0 204.0 2249.0

Note: Xij denotes the values of monthly returns per year and wij represents the number of firms in portfolios that
correspond to each Xij.

Table 6 illustrates the results of credibility distribution function for monthly returns
for 10 industry portfolios from July 1926 to July 2022. More analytically, the upper part
of the table shows the individual empirical distribution F̂nwj(x) of the returns Xijh ≤ x,
(x = −15,−10,−5, 0, 10, 15, 34.17, 59, 60, 79.79) and the corresponding credibility distribu-
tion estimators F̂Cred

Xij |Θj
(x|Θj) are shown in the middle part of the table. The estimated

credibility factors ẐFx
j , as well the estimated parameters F̂nww(x), ŝ2

Fx
, âFx , are presented

in the lower part of Table 6. The monotonicity of the estimated distribution function is
shown in Table 6. By letting the values of returns be larger than x = 59 and less than or
equal to x = 79.79 (x = 79.79 is the maximum threshold of portfolio Durbl, which is the
portfolio with the largest return values, as shown in Table 5), the values of the estimated
credibility distribution F̂Cred

Xij
(x = 0|Θj) remain the same up to the fifth decimal place. By

letting x > 79.79, F̂Cred
Xij

(x > 70.79|Θj) goes to 1 (see Table 6).
Figure 2 displays the individual empirical distribution in each contract. Again, note

that the red bullets indicate the corresponding credibility estimate at specific points pre-
sented in Table 6.



Risks 2024, 12, 10 21 of 27

Table 6. Credibility distribution estimation for industry portfolios.

Monthly returns for 10 industry portfolios from July 1926–July 2022

Individual empirical distribution with returns Xij ≤ x, (x = −15, −10, 5, 0, 10, 15, 34.17, 59, 60, >79.79)

Portfolios NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

F̂nwj(−15) 0.00309 0.01670 0.00745 0.01000 0.01840 0.00498 0.00630 0.00213 0.00177 0.00952

F̂nwj(−10) 0.02113 0.04486 0.02680 0.04053 0.05738 0.02831 0.02171 0.01005 0.01472 0.03030

F̂nwj(−5) 0.07267 0.13872 0.10760 0.12174 0.16253 0.10611 0.10199 0.10553 0.07147 0.11525

F̂nwj(0) 0.38587 0.42946 0.40825 0.41781 0.43866 0.39040 0.39827 0.37940 0.39013 0.40579

F̂nwj(10) 0.97618 0.93303 0.96468 0.95040 0.90779 0.97479 0.95921 0.97628 0.98455 0.96935

F̂nwj(15) 0.99500 0.97700 0.99300 0.98200 0.96200 0.99800 0.99500 0.99700 0.99600 0.99200

F̂nwj(34.17) 0.99959 0.99676 0.99896 0.99929 0.99985 1.00000 0.99980 0.99996 0.99982 0.99974

F̂nwj(59) 1.000000 0.9996 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

F̂nwj(60) 1.000000 0.9996 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

F̂nwj(x > 79.79) 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Credibility distribution estimation with returns Xij ≤ x, (x = −15, −10, 5, 0, 10, 15, 34.17, 59, 60, >79.79)

Portfolios NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

F̂Cred
Xij

(−15Θj) 0.00496 0.01270 0.00771 0.00952 0.01650 0.00762 0.00700 0.00426 0.00537 0.00946

F̂Cred
Xij

(−10Θj) 0.02260 0.04073 0.02711 0.03813 0.05501 0.02939 0.02283 0.01323 0.01926 0.03032

F̂Cred
Xij

(−5Θj) 0.07919 0.13160 0.10810 0.12000 0.15820 0.10980 0.10360 0.10480 0.08371 0.11520

F̂Cred
Xij

(0Θj) 0.40100 0.40800 0.40500 0.40700 0.41400 0.40400 0.40300 0.40000 0.40400 0.40600

F̂Cred
Xij

(10Θj) 0.97500 0.93600 0.96500 0.94900 0.91000 0.97100 0.95900 0.97500 0.98100 0.96900

F̂Cred
Xij

(15Θj) 0.99440 0.97890 0.99280 0.98280 0.96320 0.99530 0.99460 0.99630 0.99470 0.99190

F̂Cred
Xij

(34.17Θj) 0.99952 0.99951 0.99951 0.99952 0.99953 0.99952 0.99952 0.99952 0.99952 0.99953

F̂Cred
Xij

(59Θj) 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999

F̂Cred
Xij

(60Θj) 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999

F̂Cred
Xij

(x > 79.79Θj) 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

Credibility factor with returns Xij ≤ x, (x = −15, −10, 5, 0, 10, 15, 34.17, 59, 60, >79.79)

Parameter ẐFx
1 ẐFx

2 ẐFx
3 ẐFx

4 ẐFx
5 ẐFx

6 ẐFx
7 ẐFx

8 ẐF
9 ẐF

10

x = −15 0.68105 0.48412 0.82488 0.54873 0.79887 0.33276 0.73462 0.68754 0.49796 0.89169

x = −10 0.84475 0.70514 0.92310 0.75602 0.91008 0.55964 0.87584 0.84866 0.71652 0.95451

x = −5 0.84567 0.70659 0.92359 0.75731 0.91066 0.56137 0.87660 0.84955 0.71794 0.95481

x = 0 0.20416 0.10132 0.36138 0.12747 0.32303 0.05653 0.24956 0.20908 0.10648 0.49727

x = 10 0.92860 0.85111 0.96632 0.88105 0.96031 0.75234 0.94401 0.93057 0.85799 0.98045

x = 15 0.91814 0.83134 0.96115 0.86463 0.95426 0.72373 0.93565 0.92037 0.83897 0.97740

x = 34.17 0.09671 0.04494 0.19106 0.05747 0.16608 0.02440 0.12188 0.09937 0.04738 0.29220

x = 59 0 0 0 0 0 0 0 0 0 0

x = 60 0 0 0 0 0 0 0 0 0 0

x > 79.79 0 0 0 0 0 0 0 0 0 0

Parameter estimation Xij ≤ x, (x = −15, −10, 5, 0, 10, 15, 34.17, 59, 60, >79.79)

x = −15 F̂nww(x) = 0.00894 âFx = 2.118 ×10−5 ŝ2
Fx

= 2.637

x = −10 F̂nww(x) = 0.03077 âFx = 0.00018110 ŝ2
Fx

= 8.848

x = −5 F̂nww(x) = 0.11460 âFx = 0.00062020 ŝ2
Fx

= 30.09

x = 0 F̂nww(x) = 0.40530 âFx = 6.935 ×10−5 ŝ2
Fx

= 71.87

x = 10 F̂nww(x) = 0.95820 âFx = 0.00057730 ŝ2
Fx

= 11.80

x = 15 F̂nww(x) = 0.98810 âFx = 0.00014610 ŝ2
Fx

= 3.463

x = 34.17 F̂nww(x) = 0.99952 âFx = 5.731 ×10−8 ŝ2
Fx

= 0.1423

x = 59 F̂nww(x) = 0.99999 âFx = 0.00000000 ŝ2
Fx

= 0.00424

x = 60 F̂nww(x) = 0.99999 âFx = 0.00000000 ŝ2
Fx

= 0.00424

x > 79.79 F̂nww(x) = 1.00000 âFx = 0.00000000 ŝ2
Fx

= 0.00000
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Figure 2. Individual empirical distribution and credibility distribution point estimates (in red) for
industry portfolios per contract.

Credibility Coefficients for Industry Portfolios Data

Here, we provide an intuitive interpretation for the form of the credibility distribution
estimator for the monthly returns for the 10 industry portfolios, by presenting the following

credibility coefficients. Table 7 illustrates the coefficient of variation BRV =

√
âFx

F̂nww (x)
, the

average within-risk coefficient of variation WRV =
ŝFx

F̂nww (x)
, and the credibility coefficient

CC =
ŝ2

Fx
âFx

for the industry portfolio data.

Table 7. Credibility coefficients.

Credibility Coefficients for Industry Portfolios

x −15 −10 −5 0 10 15 50

WRV 181.642532 96.670744 47.865927 20.916895 3.584964 1.883325 21.656408

BRV 0.51478450 0.43735262 0.21731078 0.02054692 0.02507521 0.01223275 0

CC 124504.25 48856.99 48516.61 1036337.42 20439.98 23702.94 ∞

Remark 4. The results of Table 6 and Remark 2, for x = 50, âFx = 0 and ŝ2
Fx

= 0.0469, imply that
BRV = 0 and CC = ∞.

5.3. Example of Credibility Distribution Estimation with Financial Grouped Data

The empirical distribution function for the grouped data was depicted by the step
function of Fama and French (2022) data. The grouping (see Table 8) is a subjective element
in this fit and other persons would have different ones. The total number of observations
in each portfolio is the same (m.j = 1155).

Table 9 illustrates the results of the credibility distribution function for monthly
returns for 10 industry portfolios from July 1926 to July 2022. Analytically, the upper
part of the table shows the individual empirical distribution F̂mj(x) of returns Xij ≤ x,
(x = −15,−10,−5, 0, 10, 15) and the corresponding credibility distribution estimators
F̂Cred

Xij |Θj
(x|Θj) are shown in the middle part of the table. The estimated credibility fac-
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tors Zx
j , as well the estimated parameters F̂mm(x), ŝ2

x, âx, are presented in the lower part of
Table 9. The monotonicity of the estimated distribution function is shown in Table 9, but
the convergence to one of the estimated credibility distribution for grouped data should be
further investigated.

Table 8. Credibility distribution estimation for grouped data.

10 Industry Portfolios

Grouped Monthly Returns in 10 Intervals from July 1926 to July 2022

mij: Number of data points in the interval for each portfolio

Interval of return NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

−35 ≤ Xij ≤ −20 4 12 6 4 10 1 6 4 3 8
−20 ≤ Xij ≤ −13 2 20 19 16 21 9 13 8 13 18
−13 ≤ Xij ≤ −6 60 105 84 92 108 61 73 70 64 94
−6 ≤ Xij ≤ −4 58 86 67 80 77 64 78 77 68 65
−4 ≤ Xij ≤ −1 199 188 195 210 181 205 197 204 200 195
−1 ≤ Xij ≤ 2 383 245 273 274 234 394 300 304 351 272
2 ≤ Xij ≤ 8 406 357 434 364 380 362 388 408 391 415
8 ≤ Xij ≤ 10 20 55 30 52 58 29 52 42 28 48
10 ≤ Xij ≤ 22 20 72 41 56 81 29 43 33 33 34
22 ≤ Xij ≤ 80 3 15 6 7 5 1 5 5 4 6

Total # of observations 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155

Table 9. Grouped credibility distribution estimation.

Grouped monthly returns in 10 intervals for 10 industry portfolios

from July 1926–July 2022

Individual empirical distribution with returns Xij ≤ x, (x = −15,−10,−5, 0, 10, 15)

Portfolios NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

F̂mj(−15) 0.00470 0.02276 0.01694 0.01336 0.02165 0.00643 0.01323 0.00841 0.01064 0.01800

F̂mj(−10) 0.02746 0.06667 0.05281 0.05145 0.06691 0.03129 0.04354 0.03636 0.03760 0.05739

F̂mj(−5) 0.08225 0.15580 0.12340 0.13160 0.15370 0.08918 0.11340 0.10430 0.09870 0.13200

F̂mj(0) 0.39020 0.42660 0.40000 0.42710 0.41130 0.40810 0.40430 0.40200 0.40260 0.40750

F̂mj(10) 0.98009 0.92468 0.95931 0.94545 0.92554 0.97403 0.95844 0.96710 0.96797 0.96537

F̂mj(15) 0.98730 0.95065 0.97410 0.96566 0.95476 0.98449 0.97395 0.97900 0.97987 0.97763

Credibility distribution estimation with returns Xij ≤ x, (x = −15 − 10,−5, 0, 10, 15)

Portfolios NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

F̂Cred
Xij

(−15Θj) 0.00472 0.02270 0.01690 0.01340 0.02160 0.00645 0.01320 0.00842 0.01060 0.01810

F̂Cred
Xij

(−10Θj) 0.02764 0.06649 0.05276 0.05141 0.06673 0.03143 0.04357 0.03646 0.03769 0.0573

F̂Cred
Xij

(−5Θj) 0.08268 0.15540 0.12330 0.13140 0.15330 0.08953 0.11350 0.10450 0.09893 0.13180

F̂Cred
Xij

(0Θj) 0.39200 0.42470 0.40080 0.42520 0.41100 0.40810 0.40470 0.40260 0.40310 0.40705

F̂Cred
Xij

(10Θj) 0.97986 0.92499 0.95929 0.94556 0.92584 0.97386 0.95842 0.96700 0.96786 0.96529

F̂Cred
Xij

(15Θj) 0.98717 0.95084 0.97409 0.96572 0.95492 0.98439 0.97394 0.97895 0.97981 0.97759

Parameter estimation Xij ≤ x, (x = −15,−10,−5, 0, 10, 15)

x = −15 F̂mm(x) = 0.013617 âx = 3.8391 ×10−5 ŝ2
x = 7.9089 ×10−7 Ẑx

j = 0.997944

x = −10 F̂mm(x) = 0.047149 âx = 0.000196743 ŝ2
x = 1.7862 ×10−5 Ẑx

j = 0.991002

x = −5 F̂mm(x) =0.011843 âx = 0.0006369784 ŝ2
x = 7.6405 ×10−5 Ẑx

j = 0.950530

x = 0 F̂mm(x) = 0.407970 âx = 0.000118016 ŝ2
x = 0.1327 ×10−3 Ẑx

j = 0.9881473

x = 10 F̂mm(x) = 0.956798 âx = 0.000362038 ŝ2
x = 3.5504 ×10−5 Ẑx

j = 0.990288

x = 15 F̂mm(x) = 0.972741 âx = 0.000146344 ŝ2
x = 1.2874 ×10−5 Ẑx

j = 0.9912793
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Figure 3 displays the smoothed individual empirical distribution for grouped data
in each contract. Again, the red bullets indicate the corresponding credibility estimate at
specific points presented in Table 9.
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Figure 3. Individual empirical distribution and credibility distribution point estimates (in red) for
grouped data per contract.

Credibility Coefficients for Financial Grouped Data

Table 10 illustrates the coefficient of variation BRV, the average within-risk coeffi-
cient of variation WRV, and the credibility coefficient CC for the industry portfolios of
grouped data.

Table 10. Credibility coefficients.

Credibility Coefficients for Industry Portfolios for Grouped Data

x −15 −10 −5 0 10 15

WRV 0.06530954 0.08963808 0.11209926 0.05720951 0.00622752 0.00368866

BRV 0.45502292 0.29749328 0.15540177 0.09426977 0.01988643 0.01243626

CC 0.02060092 0.09078849 0.52034766 0.36829137 0.09806570 0.08797441

5.4. Example of the Classical Credibility Estimation with Financial Grouped Data

For grouped data, the previous approach gives a credibility point estimate. If we
want to derive the classical credibility estimation, we can apply the concept of uniform
distribution within each interval of returns and take the interval midpoints as the value
of return. The weights are the number of observations in each interval. Table 11 shows
the individual average return for the 10 industry portfolios µ̂j, the credibility estimation of
returns for these portfolios µ(Θj)

Cred, along with the credibility factor Zj and the estimated
parameters µ̂, â and ŝ2.
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Table 11. Classical credibility model for grouped data.

Individual Average Return for the 10 Industry Portfolios

Portfolios NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

µ̂j 1.15022 1.52554 1.20217 1.18052 1.34199 1.01862 1.27099 1.25368 1.12597 1.06277

Credibility estimation of returns for the 10 industry portfolios

µ(Θj)
Cred 1.18166 1.36974 1.20769 1.19685 1.27776 1.11571 1.24219 1.23351 1.16951 1.13784

Credibility parameter estimation

µ̂ = 1.213247 â = 4.807552 ŝ2 = 5528.034 Zj = 0.501114

6. Concluding Remarks

The objective of this paper was to present the appropriate credibility distribution
model that adequately describes the insurance losses, a model that can be used for risk
management purposes.

The main contribution of the paper is that it embedded the empirical distribution into
credibility modeling in the form of the Bühlmann and Straub (1970) model. In the first
part of the paper, we present the model of the weighted credibility distribution, and in the
second part, a model that applies to a grouped data in intervals.

With our models, we examine two datasets, one with motor claim amounts and the
number of motor claims from 10 selected European countries during the period 2004–2020,
and a second with monthly returns from July 1926 to July 2022 for 10 industry portfolios.
For applying our credibility distribution model with grouped data, we grouped the second
dataset (Fama/French financial data) into intervals of claim amounts. Under this setting,
the grouping is subjective and the weights are the number of points within each interval
and the total weights in each interval are the same.

The monotonicity (or non-monotonicity) and the convergence to one of the estimated
distribution functions are shown numerically in Tables 2, 3, 6 and 9. From a theoretical point
of view, the monotonicity, as well as the convergence of the estimated distribution functions
need further investigation. Furthermore, the sufficient conditions for the asymptotic
optimality of the empirical credibility distribution estimators can be also investigated,
providing some good ideas for a new project.
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