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Abstract: This paper studies properties and applications related to the mixture of the class of
distributions built by the Lehmann’s alternative (also referred to in the statistical literature as max-
stable or exponentiated distribution) of the form [G(·)]λ, where λ > 0 and G(·) is a continuous
cumulative distribution function. This mixture can be useful in economics, financial, and actuarial
fields, where extreme and long tails appear in the empirical data. The special case in which G(·) is
the Stoppa cumulative distribution function, which is a good description of the random behaviour
of large losses, is studied in detail. We provide properties of this mixture, mainly related to the
analysis of the tail of the distribution that makes it a candidate for fitting actuarial data with extreme
observations. Inference procedures are discussed and applications to three well-known datasets
are shown.
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1. Introduction

As (Boland 2007, p. IX) has pointed out, when a practitioner wants to model losses,
there is usually considerable concern about the chances and sizes of large claims. More
precisely, the study of the right tail of the distribution results is very important in order to
not underestimate the size of large losses. The term long tail is useful here and is applied to
rank-size distributions or rank-frequency distributions, which often form power laws. In
this sense, the Pareto distribution and generalisations of this simple distribution, such as
the Stoppa distribution (see Stoppa 1990; Kleiber and Kotz 2003), have been considered
in this case. Other alternatives to the Pareto distribution have been proposed recently
in the statistical and applied statistical literature. Some of them are provided by Sarabia
and Prieto (2009), Gómez-Déniz and Calderín-Ojeda (2014, 2015) and Ghitany et al. (2018),
among others.

One of the main advantages obtained when the Stoppa distribution is considered is
the fact that this is a max-stable (maximum of a number of random variables) distribution,
which is also related to extreme value theory. This extreme property can, in turn, be
highlighted by making a mixture (compound) of it, gaining an even heavier tail.

In this paper, we study properties and applications related to the mixture of the class
of probability distributions built by Lehmann’s alternative (also known as max-stable or
exponentiated distributions). The reader is recommended to see Lehmann (1953) and
Sarabia and Castillo (2005), among other references. A positive random variable X is said
to be built by the Lehmann’s alternative method if its cumulative distribution function (cdf)
can be represented as:

[G(x)]λ, λ > 0, (1)
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where G(·) is a continuous cdf. This class of distributions is also known in the statistical
literature as Lehmann’s alternative and exponentiated distribution. In practise, if X repre-
sents, for instance, the loss of a given risk in a portfolio of insurances, a population of such
policy-holders may be a ubiquitous variation in λ-values because of small fluctuations in
the mean of losses, so that a policy-holder selected at random can be regarded as having a
random value of λ, call it Λ. Here, Λ takes values in (0, ∞). The distribution of Λ across
the positive real numbers is referred to in the statistical literature as the mixing distribution
(or density). These mixtures are useful in economics, financial, and actuarial fields, where
extreme and long tails appear in the empirical data.

Although in the statistical literature, mixtures of discrete distributions for providing
thick tails (for example, the well-known Poisson–Gamma distribution) are much more
frequent, mixtures of continuous distributions have also been the subject of research in
the field of applied statistics and, in particular, in actuarial statistics. One example of this
is the exponential-inverse Gaussian model provided by Frangos and Karlis (2004). Other
examples of continuous mixture distributions were studied by Fung and Seneta (2007) and
Gómez-Déniz et al. (2013). Also, some mixtures of continuous distributions have recently
been considered in the actuarial literature in Tzougas and Karlis (2020) and Tzougas and
Jeong (2021).

The special case in which (1) corresponds to the Stoppa cdf (see for example, Stoppa
1990; Kleiber and Kotz 2003)—which is a good description of the random behaviour of large
losses—is studied in some detail. The Stoppa distribution is a generalisation of the classical
Pareto distribution and is a max-stable distribution with a nice and simple cdf. We provide
properties of this mixture, mainly related to the analysis of the tail of the distribution that
makes it a candidate for fitting actuarial data with extreme observations. Inference proce-
dures are discussed and applications to two well-known datasets are shown. Furthermore,
two regression models for this mixture are derived to fit bodily injury claims data.

The remainder of the paper is organised as follows. The mixture representation of a
max-stable distribution is provided in Section 2. Here, the representation of the Stoppa
distribution is also considered and some basic properties are derived. Section 3 discusses
properties related to the right tail of this mixture distribution. Some special cases of the
mixing distribution are considered in Section 4. In particular, special attention is paid to
the generalised inverse Gaussian distribution, which includes as special cases the inverse
Gaussian, Gamma, and exponential distributions, among other models. Next, the stochastic
ordering of the resulting mixture models is examined. Finally, two regression models for
this mixture of distributions are given. Then, three numerical applications are shown in
Section 5 and conclusions are provided in the last section.

2. Lehmann’s Alternative

The distribution function built by Lehmann’s alternative method, G(z)n, assumed
that Z ∼ G(z), can be interpreted in different ways (see for instance Sarabia and Castillo
2005); for example, it is the distribution of the last (maximum) order statistics in a ran-
dom sample of size n. That is, consider the sample Z1, . . . , Zn of n independent and
identically distributed random variables with common cdf G(z) and define the ordered
sample Z1,n, . . . , Zn,n. If the interest of the practitioner is the asymptotic distribution of
the maxima Mn as n → ∞, the distribution of Mn results in Gn(z) = Pr(Mn ≤ z) =
Pr(Z1 ≤ z, . . . , Zn ≤ z). On the other hand, exponentiated distributions of the form G(z)n

also appear by applying the probability integral transformation or the quantile function of
G to a Beta distribution with parameters α and 1.

We now consider extensions of the distributions built by the Lehmann’s alternative
method of the form

F(x|λ) = [G(x)]λ, λ > 0,
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assuming that the parameter λ > 0 is not constant and varies according to some known
probability distribution, say m(λ; ωωω), depending on a vector of parameters ωωω. This has the
following stochastic representation,

X ∼ [G(x)]λ = exp[λ log G(x)],

λ ∼ m(λ; ωωω).

Thus, we study the mixture of the form,

F(x; ωωω) = Em(λ;ωωω){exp[λ log G(x)]}, (2)

where m(λ; ωωω) is a genuine mixing probability density function of Λ, the parametric space in
which the parameter λ moves, depending on a vector of parameters ωωω. Another possibility,
which will not be studied here, is to consider that the parameter λ takes integer values
{1, 2, . . . } and allows λ to follow a discrete distribution such as the geometric discrete
distribution. This is the family of geometric max-stable distribution considered by Marshall
and Olkin (1997).

Observe that (2) can be written as

F(x; ωωω) = MΛ(log G(x)), (3)

in which M(·) denotes the moment-generating function. Thus, attending to (3), any proba-
bility density function (pdf) with a closed-form for its moment generating function, such
as the Gamma, the inverse Gaussian, and the generalised inverse Gaussian distributions,
should be good candidates to introduce here.

The pdf, obtained from (2), is given by

f (x; ωωω) =
g(x)
G(x)

Em(λ;ωωω){λ exp[λ log G(x)]},

where g(x) = dG(x)/dx, and the hazard rate function results in

r(x; ωωω) =
g(x)
G(x)

Em(λ;ωωω){λ exp[λ log G(x)]}
1 − Em(λ;ωωω){exp[λ log G(x)]} .

The Lehmann’s Alternative Stoppa Distribution

The natural generalisation of the Pareto distribution proposed by Stoppa (1990) (see
also Kleiber and Kotz 2003) has a nice and simple cumulative distribution function (here-
after cdf) representation given by

F(x; σ, θ, λ) = [ψσ,θ(x)]λ = exp[λ log ψσ,θ(x)], x > σ, (4)

where σ > 0, θ > 0, and λ > 0 is a shape parameter that allows for unimodality when
λ > 1; furthermore, the mode is located at zero when λ ≤ 1. Observe that

ψσ,θ(x) = 1 −
(σ

x

)θ
(5)

is the cdf of the classical Pareto distribution with scale parameter σ > 0 and shape parameter
θ > 0 (see for instance Arnold 1983) with pdf

g(x) =
θσθ

xθ+1 , x > σ > 0, θ > 0

and survival function

Ḡ(x) =
(σ

x

)θ
, x > σ > 0, θ > 0.
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Note that (4) obeys the cdf of a Lehmann’s alternative (max-stable) distribution, such
as the one given in (1). Thus, this cdf is simply a power transformation of the classical
Pareto cdf obtained as a special case of (4) for λ = 1. Some additional properties, such
as moments, Lorenz curves, the Gini index, and estimation of this distribution can be
found in (Kleiber and Kotz 2003, chp. 3), where other generalisations of the classical Pareto
distribution can also be viewed.

Henceforward, we will write X ∼ S(σ, θ, λ) to denote that a continuous random
variable with support in (σ, ∞) follows the distribution given in (4).

To see how the Stoppa model works as compared to the classical Pareto distribution,
we will consider data taken from (Hogg and Klugman 1984, p. 64) (see also Boyd 1988),
which concern 40 losses recorded in 1977 related to wind catastrophes. This set of empirical
data was recorded to the nearest USD 1,000,000, although the data include only losses of
USD 2,000,000. Maximum likelihood estimates were computed for the classical Pareto
distribution and the Stoppa distribution, assuming σ = 1, and the results appear in Table 1.
As we can see, the Stoppa distribution provides a better fit than the one obtained with the
classical Pareto distribution.

Table 1. Parameter estimators and log-likelihood for the different models considered.

Model θ̂ λ̂ NLL

Pareto 0.582 – 130.331
Stoppa 1.198 3.861 119.372

3. Extremal Properties

As was mentioned before, a random variable with non-negative support, such as the
classical Pareto distribution, is commonly used in insurance and other financial scenarios
to model the amount of claims (losses). In this sense, the size of the distribution tail is
fundamental if it is desired that the chosen model allows us to capture amounts sufficiently
far from the start of the distribution support, that is, extreme values. Due to this, the use
of heavy right-tailed distributions such as the Pareto, lognormal, and Weibull (with shape
parameter smaller than 1) distributions, among others, have been employed to model losses
in motor third-party liability insurance, fire insurance, or catastrophe insurance, among
others. In order to make the paper self-contained, in the following, we provide the formal
definition of a heavy-tailed (heavy right-tailed) distribution (see Rolski et al. 1999).

Definition 1. Any probability distribution that is specified through its cdf F(x) on the real line, is
heavy right-tailed if lim supx→∞(− log F̄(x)/x) = 0.

Observe that − d
dx

log F̄(x) is the hazard function of a random variable with cdf F(x).
An important issue in extreme value theory is the regular variation (see Bingham

et al. 1989; Konstantinides 2017); that is, a flexible description of the variation of some
function according to the polynomial form of the type x−δ + o(x−δ), δ > 0. This concept is
formalised in the following definition.

Definition 2. A distribution function (measurable function) is called regular varying at infinity
with index −δ if it holds that

lim
x→∞

F̄(τx)
F̄(x)

= τ−δ,

where τ > 0 and the parameter δ ≥ 0 is called the tail index.

The next proposition establishes that the survival function of the distribution given
in (2) is a regular variation Lebesgue measure.
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Proposition 1. The survival function of any mixture with cdf as the one given in (2) when G(x) is
given in (5) is a survival function with regularly varying tails.

Proof. This is straightforwardly verified by taking into account that

lim sup
x→∞

F̄(τx)
F̄(x)

= lim sup
x→∞

1 − Em(λ;ωωω){exp[λ log ψσ,θ(τx)]}
1 − Em(λ;ωωω){exp[λ log ψσ,θ(x)]}

= lim sup
x→∞

τψ′
σ,θ(τx)ψσ,θ(x)

ψ′
σ,θ(x)ψσ,θ(τx)

Em(λ;ωωω){λ exp[λ log ψσ,θ(τx)]}
Em(λ;ωωω){λ exp[λ log ψσ,θ(x)]}

= τ−θ .

Now, taking into account that θ > 0, the statement of the result follows immedi-
ately.

Therefore, as a regular varying at infinity class is a long-tailed distribution, and the
latter distribution is also heavy right-tailed, then any mixture of the Stoppa distribution is
heavy right-tailed.

An immediate consequence of the previous result is the following (see Jessen and
Mikoshch 2006):

Corollary 1. If X, X1, . . . , Xn is a sequence of iid random variables with a survival function
provided by F̄(x) = 1 − F(x) and Sn = ∑n

i=1 Xi, n ≥ 1, then

Pr(Sn > x) ∼ Pr(X > x) as x → ∞,

where the symbol ∼ means it is asymptotically equivalent in probability. As a consequence of this
result, if Pn = max

i=1,...,n
Xi, n ≥ 1, then

Pr(Sn > x) ∼ n Pr(X > x) ∼ Pr(Pn > x).

This result is important because, for large x, the event {Sn > x} is due to the event
{Pn > x}. Thus, exceedances of high thresholds by the sum Sn are explained by the
exceedance of this cut-off by the largest value in the sample.

4. Some Candidates of Mixing Distributions

Consider the pdf of the generalised inverse Gaussian distribution given by

m(λ; ωωω) =
(β/Γ)α/2

2Kα(
√

βΓ)
λα−1 exp

[
−1

2

(
βλ +

Γ
λ

)]
, λ > 0, (6)

where ωωω = (α, β, Γ) and Kν(z) gives the modified Bessel function of the third kind and
with index ν given by

Kν(z) =
√

π (2z)νe−z U
(

ν +
1
2

, 2ν + 1, 2z
)

,

U (·, ·, ·) being the confluent hypergeometric function (Johnson et al. 2005) in which inte-
gral representation,

U (a, b, z) =
1

Γ(a)

∫ ∞

0
ta−1 (1 + t)−a+b−1 exp(−zt) dt.

A distribution with a pdf as the one given in (6) will be denoted as GIG(α, β, Γ).
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The domain of the parameters ωωω = (α, β, Γ) (see Barndorff-Nielsen and Halgreen 1977;
Seshadri 1994; Lemonte and Cordeiro 2011) are given by α ∈ R and (β, Γ) ∈ Υα, where

Υα =





Γ ≥ 0, β > 0. if α > 0,
Γ > 0, β > 0, if α = 0,
Γ > 0, β ≥ 0, if α < 0.

Its moment-generating function is given by

M(t) =
(

β

β − 2t

)α/2 Kα(
√
(β − 2t)Γ)

Kα(
√

βΓ)
. (7)

This distribution includes a lot of basic distributions such as the Gamma distribution
(α > 0 and Γ → 0); the reciprocal Gamma distribution (α < 0 and Γ → 0); the inverse
Gaussian distribution (α = −1/2); the hyperbolic distribution (α = 0); and others such as
the exponential, chi-squared, half-normal, etc.

Now, by using (3) together with (7), we get the mixture of the Stoppa distributions
with the generalised inverse Gaussian distribution (SGIG). In order to simplify the notation,
we introduce the expression φσ,β,θ(x) = β − 2 log ψσ,θ(x). Then, its cdf results in

F(x) =

(
β

φσ,β,θ(x)

)α/2 Kα

(√
Γφσ,β,θ(x)

)

Kα(
√

Γβ)
, x > 0. (8)

One special case obtained from the last is the mixture of the Stoppa distribution with
the Gamma distribution (SG) with cdf,

F(x) =

(
β

φσ,β,θ(x)

)α/2

, x > 0. (9)

Observe that, in this case, the mixture distribution is again a max-stable distribution.
Another interesting sub-model obtained from the generalised inverse Gaussian distribution
is the inverse Gaussian distribution, which is reached when α = −1/2. In this case, (3) can
be written as

F(x) = exp
{√

Γβ −
√

Γφσ,β,θ(x)
}

, x > 0,

which corresponds to the mixture of the Stoppa model with the inverse Gaussian distribu-
tion (SIG).

Now, the pdf obtained from (8) can be written as

f (x) =

√
Γβα

φσ,β,θ(x)α+1
θσθ

xθ+1ψσ,θ(x)

Kα+1(
√

Γφσ,β,θ(x))

Kα(
√

Γβ)
, x > 0. (10)

From (9), the pdf results in

f (x) =
αθσθ

xθ+1βψσ,θ(x)

(
β

φσ,β,θ(x)

)α/2+1

, x > 0.

It is known that K−1/2(z) = K1/2(z) =
√

π/(2z) exp(−z). Then, the pdf of the SIG
distribution can be written as

f (x) =

√
Γ

φσ,β,θ(x)
θσθ

xθ+1ψσ,θ(x)
exp

[√
Γβ −

√
Γφσ,β,θ(x)

]
, x > 0.
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In Figure 1, some graphs of the pdf (10) are shown for special cases of the parameters.
As can be noted, all the cases shown in the graph include a large tail.

α = 5, β = 3, θ = 3, γ = 2

α = -0.5, β = 2, θ = 2, γ = 2

α = 5, β = 2, θ = 2, γ = 2

α = 2, β = 3, θ = 2, γ = 3

α = 0.25, β = 0.25, θ = 5, γ = 2

1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

x

f(
x)

Figure 1. Different shapes of the pdf (10) for special values of the parameters.

In financial economics and risk theory, the accurate calculation of risk capital is an
issue of crucial interest to researchers, regulators of financial institutions, and commercial
vendors of financial products and services. In this sense, the Value-at-Risk (VaR), which
is defined as the amount of capital required to ensure that the insurer does not become
insolvent with a high degree of certainty, is an important risk measure. For a random
variable X that follows the Stoppa and the different mixtures proposed here, i.e., the
q-quantile, 0 < q < 1 are given by

S : VaR[X; q] = σ(1 − q1/λ)−1/θ ,

SG : VaR[X; q] = σ

{
1 − exp

[
β

2

(
1 − q−2/α

)]}−1/θ

,

SIG : VaR[X; q] = σ

{
1 − exp

[
β

2
− 1

2Γ

(√
Γβ − log q

)2
]}−1/θ

.

4.1. Stochastic Ordering

It is our goal now to investigate the stochastic order of the distribution in (4) and its
mixture. The analysis of stochastic ordering has been widely studied in many different areas
such as economics, operations research, reliability, and statistics (e.g., survival analysis)
among other fields. Also, comparing random variables is vital in risk theory. Numerous
ordering concepts have been used in the statistical literature, e.g., the usual stochastic order,
hazard rate order, reversed hazard rate order, and the likelihood ratio order among others.
For a comprehensive understanding of stochastic ordering, the reader is encouraged to
read Shaned and Shanthikumar (2007) and Yu (2009), among others. In this work, we
use the stochastic dominance concept provided in Dhaene et al. (2006). We recall here the
definition given in that book.

Definition 3. Let X1 and X2 be continuous random variables with cdf FX1(x) and FX2(x), re-
spectively. Then, X1 is said to be smaller than X2 in the stochastic dominance sense (written as
X1 ≤st X2) if FX1(x) ≥ FX2(x) for all x ∈ R.

In the following result, it is shown that the stochastic dominance can be expressed in
terms of the Value-at-Risk.
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Proposition 2. Let X1 and X2 be continuous random variables with cdf FX1(x) and FX2(x),
respectively. We have that X1 is smaller than X2 in the stochastic dominance sense if and only if
their respective quantiles are ordered:

X1 ≤st X2 ⇐⇒ VaR[X1; q] ≤ VaR[X2; q], for all q ∈ (0, 1).

Proof. See Dhaene et al. (2006).

Proposition 3. Let X1 ∼ S(σ1, θ1, λ1) and X2 ∼ S(σ2, θ2, λ2). Then, if λ1 < λ2, θ1 > θ2 and
σ1 < σ2, then X1 ≤st X2.

Proof. If λ1 < λ2, θ1 > θ2 and σ1 < σ2, we have that

VaR[X1; q] = σ1(1 − q1/λ1)−1/θ1 ≤ VaR[X2; q] = σ2(1 − q1/λ2)−1/θ2 ,

and therefore by using the previous theorem we have that X1 ≤st X2.

Proposition 4. Let X1 ∼ SG(σ1, θ1, α1, β1) and X2 ∼ SG(σ2, θ2, α2, β2). Then, if σ1 < σ2,
θ1 > θ2, α1 < α2, and β1 > β2, then X1 ≤st X2.

Proof. If σ1 < σ2, θ1 > θ2, α1 < α2, and β1 > β2 , we have that

VaR[X1; q] = σ1

{
1 − exp

[
β1

2

(
1 − q−2/α1

)]}−1/θ1

≤

VaR[X2; q] = σ2

{
1 − exp

[
β2

2

(
1 − q−2/α2

)]}−1/θ2

,

and therefore by using the previous theorem, we have that X1 ≤st X2.

It is easy to see that, if X1 ∼ S(σ, θ1, λ) and X2 ∼ S(σ, θ2, λ) with θ1 < θ2, then
F̄(x1) ≤st F̄(x2). Furthermore, if X1 ∼ S(σ, θ, λ1) and X2 ∼ S(σ, θ, λ2) with λ1 < λ2, then
F̄(x2) ≤st F̄(x1). Now, we have the following result.

Theorem 1. Let X1 and X2 be two mixture random variables with cdfs F1(x; σ, θ1, ωωω) and
F2(x; σ, θ2, ωωω) obtained from (3). If θ1 ≤ θ2, then X1 ≤st X2.

Proof. The result follows by applying Theorem 1.C.17 in Shaned and Shanthikumar
(2007)

More effort will be necessary to get this quantity for the SGIG distribution.

4.2. Estimation

In this section, we show how to estimate the parameters of the mixture distributions
via maximum likelihood estimation. For that reason, let us assume that {x1, x2, . . . , xn}
is a random sample selected from the distribution of interest (10) and also assume that
σ = min{xi}, i = 1, . . . , n. The log-likelihood function, obtained from (10), is propor-
tional to

ℓ(ΩΩΩ; x̃) ∝ n
[

θ log σ + log θ +
α

2
log β +

1
2

log Γ − Kα(
√

Γβ)

]

−α + 1
2

n

∑
i=1

log φσ,β,θ(xi)−
n

∑
i=1

ψσ,θ(xi)

+
n

∑
i=1

Kα+1

√
Γφσ,β,θ(xi),
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where ΩΩΩ = (α, β, θ, Γ) is the vector of parameters to be estimated.
Although in practice, the modified Bessel function of the third kind is implemented in

most statistical packages (note that this is not the case of the econometric software WinRats),
it is convenient to express this function in terms of the modified Bessel function of the first
kind, Iν(z). The relationship between both functions (see Johnson et al. 2005, p. 19) is given
by

Kν(z) =
π csc(πν)

2
[I−ν(z)− Iν(z)],

where

Iν(z) =
∞

∑
j=0

1
j! Γ(j + ν + 1)

( z
2

)2j+ν
,

is the modified Bessel function of the first kind. The advantage of this function is that it is
written as a series representation that facilitates (by truncation) the estimation procedure of
the parameters of the model. More details about the maximum likelihood estimation are
given in the Appendix A.

Conjugate Distribution

In this subsection, we will see that the GIG distribution is a conjugate distribution
with respect to the Stoppa distribution.

Theorem 2. Let X ∼ S(σ, θ, λ) and suppose that, given Λ = λ, Λ ∼ GIG(α, β, Γ). Then
we have that the posterior distribution of λ, given n years of individual independent experience,
x̃ = (x1, . . . , xn) is again a GIG(α∗, β∗, Γ∗), where the updated parameters are given by,

α∗ = α + n, (11)

β∗ = β − 2
n

∑
i=1

log ψσ,θ(xi)

Γ∗ = Γ. (12)

Proof. The pdf of the Stoppa distribution, obtained from (4), is given by

f (x) =
λψ′

σ,θ(x)
ψσ,θ(x)

exp[λ log ψσ,θ(x)]. (13)

Thus, given the sample information x̃, the likelihood, taken from (13), is proportional to

λn exp

{
λ

n

∑
i=1

log ψσ,θ(xi)

}
.

Therefore, by applying Bayes’ theorem, we have that the posterior is proportional to

λα+n−1 exp

{
−1

2

[(
β − 2

n

∑
i=1

log ψσ,θ(xi)

)
λ +

Γ
λ

]}
,

which is a GIG distribution with parameters (11) and (12).

Observe that, if X ∼ S(σ, θ, λ) and Λ follow a Gamma distribution with parameters
α > 0 and β > 0, then using the previous result, we have that the posterior mean of the
parameter λ given the sample information x̃ results in

E(Λ|x̃) = α + n
β − ∑n

i=1 log ψσ,θ(xi)
.
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Consequently, this Bayesian expression takes the form

E(Λ|x̃) = (1 − zn)r(x̃) + znEg(Λ), (14)

where r(x̃) = −n/ ∑n
i=1 log ψσ,θ(xi) and

zn =
β

β − ∑n
i=1 log ψσ,θ(xi)

.

Since it is not verified that E(X|λ) = λ, then it is not guaranteed that the mean of
the predictive distribution coincides with the posterior mean, i.e., E(Xn+1|x̃) ̸= E(Λ|x̃).
Therefore, although the expression (14) resembles the credibility formula widely introduced
in actuarial statistics with credibility factor zn, this is not a credibility premium since the
purpose of that expression is to predict the expected aggregate claims size in the next period
of time.

4.3. Novel Heavy-Tail Regression Models

The mean of the Stoppa distribution is given by the expression:

E(X) = λσB
(

1 − 1
θ

, λ

)
,

where B(a, b) is the complete beta function defined as
∫ 1

0 za−1(1 − z)b−1dz with a > 0
and b > 0. Therefore, the mean of the mixture Stoppa distribution can be obtained by
compounding using the expression,

E(X) = EΛ(E(X|Λ)) = σEΛ

(
ΛB
(

1 − 1
θ

, Λ
))

.

Then, given a sample x̃ = (x1, . . . , xn), the new heavy-tailed regression models can be
derived by writing the scale parameter of each model as

σi =
κ exp[βββ⊤ zi]

1 + exp[βββ⊤ zi]
, i = 1, . . . , n.

Here, zi = (zi1, . . . , zip) is a vector of explanatory variables and βββ⊤ = (β1, . . . , βp)
is a vector of regressors to be estimated. Note that, in the latter expression, κ does not
depend on the subscript i. In the practical implementation, this parameter was chosen
by using a grid search for manually specified values of this parameter in the interval
(0, min{x1, . . . , xn}).

4.3.1. SG Case

In this model, the log-likelihood function is given by

ℓ(ΩΩΩ; x̃) ∝ n
[
θ log σi + log θ + log α +

α

2
log β

]
−

n

∑
i=1

log φσi ,β,θ(xi)

−(θ + 1)
n

∑
i=1

log xi −
(α

2
+ 1
) n

∑
i=1

log ψσi ,θ(xi), (15)

where ΩΩΩ = (α, β, θ, βββ⊤).
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The maximum likelihood estimates of the SG distribution are obtained by solving the
system of equations given by

nα

2β
−
(α

2
+ 1
) n

∑
i=1

1
φσi ,β,θ(xi)

= 0,

n
(

1
θ
+ log σi

)
+

n

∑
i=1

(σi/xi)
θ

ψσi ,θ(xi)
log
(

σi
xi

)[
1 +

α

2
− 2

φσi ,β,θ(xi)

]
−

n

∑
i=1

log xi = 0,

n
α
+

log β

2
− 1

2

n

∑
i=1

log ψσi ,θ(xi) = 0,

β j

1 + exp[βββ⊤ zi]

(
nθ +

n

∑
i=1

θ

ψσi ,θ(xi)

(
σi
xi

)θ
[

1 +
α

2
− 2

φσi ,β,θ(xi)

])
= 0,

where j = 1, . . . , p and i = 1, . . . , n.
From these equations, the entries of the observed information matrix can be derived

after tedious algebra (not reproduced here) by differentiating these equations with respect
to the p + 3 parameters. The function (15) can be simply maximised by considering several
values as seed points. Of course, the global maximum is not guaranteed by the difficulty to
show that the log-likelihood function is concave. We have used different maximum search
methods that are available in the MAXIMIZE in-built function in the WinRATS software
package by using the BFGS algorithms.

4.3.2. SIG Case

When the mixing distribution is the inverse Gaussian, the log-likelihood function is
given by

ℓ(ΩΩΩ; x̃) ∝ n
[

θ log σi + log θ +
1
2

log Γ +
√

Γβ

]

−(θ + 1)
n

∑
i=1

log xi −
1
2

n

∑
i=1

log φσi ,β,θ(xi)

−
n

∑
i=1

log ψσi ,θ(xi)−
√

Γ
n

∑
i=1

√
φσi ,β,θ(xi),

where ΩΩΩ = (β, θ, Γ, βββ⊤).
The normal equations are given, in this case, by

n

√
Γ
β
−

n

∑
i=1

1
φσi ,β,θ(xi)

−
√

Γ
n

∑
i=1

(
φσi ,β,θ(xi)

)−1/2
= 0,

n
(

1
θ
+ log σi

)
+

n

∑
i=1

(σi/xi)
θ log(σi/xi)

{
1

ψσi ,θ(xi)

[
1 − 1

φσi ,β,θ(xi)

−
√

Γ
φσi ,β,θ(xi)

]}
−

n

∑
i=1

log xi = 0,

1
Γ
+

√
β

Γ
−

n

∑
i=1

√
φσi ,β,θ(xi)

Γ
= 0,

β j

1 + exp[βββ⊤ zi]

(
nθ +

n

∑
i=1

θ

ψσi ,θ(xi)

(
σi
xi

)θ
[

1 − 1
φσi ,β,θ(xi)

−
√

Γ
φσi ,β,θ(xi)

])
= 0,

where j = 1, . . . , p and i = 1, . . . , n.
The standard errors of the estimates can be computed by following the same approach

as above.
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5. Numerical Experiments

In this section, the performance of the distributions introduced in this work is verified
by employing three different sets of data. The first one is the danishuni, which can be
downloaded from the R package CASdatasets and also from Extreme Value Statistics in
S-plus libraries, collected at Copenhagen Reinsurance, comprising 2157 fire losses, adjusted
for inflation to reflect 1985 values, over DKK 1,000,000 during the period 1980 to 1990,
adjusted for inflation to reflect 1985. A detailed statistical analysis of this dataset can be
found in McNeil (1988), in Albrecher et al. (2017), and also in Embrechts et al. (1997). The
second dataset is norfire, which is also available in the R package CASdatasets, and
includes 9181 fire losses over the period 1972 to 1992 from an unknown Norwegian insurer.
A priority of NKR 500,000 (if this amount is exceeded, the reinsurer becomes liable to pay)
was applied to derive this set of data.

The estimates of the parameters and their corresponding p-values (given in brackets),
the negative of the maximum of the log likelihood function, and the AIC for the two
aforementioned sets of data are shown in Table 2 for the Stoppa distribution and for the
three mixture models previously considered, i.e., SG, SIG, and SGIG. For all the models
and the two datasets, the parameter σ was chosen by using a grid search for manually
specified values of this parameter in the interval (0, min{x1, . . . , xn}). The validation of the
models is carried out using the following information criteria: the negative log likelihood
(NLL), computed by taking the negative of the value of the log-likelihood evaluated at the
maximum likelihood estimates, and the Akaike’s information criterion (AIC), computed
as twice the NLL, evaluated at the ML estimates plus twice the number of estimated
parameters. Moreover, we also incorporate the Kolmogorov–Smirnov test (KS) and the
Anderson–Darling test (AD) to show the fit of the model to the empirical data in terms of
the cdf. For these test statistics, smaller values of these tests indicate a better fit of the model
to the empirical data. Note that they do not only provide a way to measure the fit in terms
of the cdfs, but also allow us to perform hypothesis testing for model validation purposes.
An extremely small p-value might lead to a confident rejection of the null hypothesis that
the data come from the given model. It can be seen that the SG distribution provides the
best fit for the Danish dataset, whereas the SGIG returns the lowest values for NLL and
AIC for the Norwegian set of data. For the former dataset, and using KS and AD tests, none
of the models are rejected; however, it is noted that, for both tests, the Stoppa distribution
is rejected for the Norwegian dataset.

For comparison reasons, we have also fitted shifted versions of lognormal, Weibull,
and Burr distributions for the Danish and Norwegian datasets with the following densities:

f (x) =
1

λ(x − σ)
√

2π
exp

[
− 1

2λ2 (log(x − σ)− θ)2
]

, x > σ, θ ∈ R, λ > 0,

f (x) =
θ

λ

(
x − σ

λ

)θ−1
exp

[
−
(

x − σ

λ

)θ
]

, x > σ, λ > 0, θ > 0,

f (x) =
λθ(x − σ)θ−1

(1 + (x − σ)θ)λ+1 , x > σ, λ > 0, θ > 0,

respectively. For all these distributions, the parameter σ was estimated by using the method
explained above. A comparison of these models with the other heavy-tailed distributions
used to model the Danish and the Norwegian datasets can be found in Gómez-Déniz
et al. (2022) and Gómez-Déniz and Calderín-Ojeda (2015), respectively. This catalogue of
heavy-tailed distributions includes shifted versions of the lognormal, inverse Gaussian,
and generalised Gamma, and also inverse Gamma, log Gamma, and Fréchet and Pareto
ArcTan, among other models.

The estimation of the parameters for all the distributions used in this work has been
completed using the method of maximum likelihood by using Mathematica® v.12.0 and
has also been verified via WinRATS v.7.0. The codes are available from the authors upon
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request. Standard errors of the estimates were obtained by finite differentiation. The
WinRATS v.7.0 software package also gives the option to directly calculate the maximum
of the log-likelihood returning the entries of the Fisher information matrix. The parameters
can also be estimated via an EM algorithm as shown in the Appendix A.

Table 2. Parameter estimates and their corresponding p-values (in brackets), negative of the maximum
of the log likelihood function (NLL), AIC, Kolmogorov–Smirnov and Anderson–Darling tests for the
Weibull, Lognormal, Burr, and Stoppa distributions and mixture models: SG, SIG, and SGIG.

Danish Data

α̂ λ̂ β̂ θ̂ Γ̂ NLL AIC KS AD
lognormal 1.557 −0.290 3404.340 6812.68 0.2549 365.672

(<0.001) (<0.001) (<0.001) (<0.001)

Weibull 1.584 0.660 3510.610 7025.22 0.0724 31.752
(<0.001) (<0.001) (<0.001) (<0.001)

Burr 1.223 1.115 3339.440 6682.89 >1 >100
(<0.001) (<0.001) (<0.001) (<0.001)

Stoppa 1.163 1.395 3342.420 6688.84 0.0277 0.00055
(<0.001) (<0.001) (0.3772) (0.4930)

SG 19.550 14.241 1.512 ≈0 3334.788 6675.580 0.022 0.00031
(0.002) (0.008) (<0.001) (0.6368) (0.7955)

SIG −0.5 5.883 1.517 11.323 3335.000 6676.000 0.022 0.000328
(0.012) (<0.001) (<0.001) (0.6368) (0.7705)

SGIG −4.546 2.989 1.517 16.370 3335.150 6678.300 0.022 0.00034
(<0.001) (<0.001) (<0.001) (<0.001) (0.6368) (0.767)

Norwegian Data

α̂ λ̂ β̂ θ̂ Γ̂ NLL AIC KS AD
lognormal 6.313 1.537 21,097.400 42,198.80 0.0682 23.082

(<0.001) (<0.001) (<0.001) (<0.001)

Weibull 0.689 1134.39 21,150.500 42,305.00 0.0765 37.756
(<0.001) (<0.001) (<0.001) (<0.001)

Burr 0.0078 20.295 23,685.620 47,375.20 0.419 704.395
(<0.001) (<0.001) (<0.001) (<0.001)

Stoppa 1.143 1.124 21,045.290 42,094.600 0.0854 0.00627
(<0.001) (<0.001) (<0.001) (<0.001)

SG 6.404 2.686 1.593 ≈0 20,931.033 41,868.100 0.0158 0.00016
(<0.001) (<0.001) (<0.001) (0.9011) (0.8685)

SIG −0.5 0.559 1.673 4.472 20,931.400 41,868.700 0.0162 0.00021
(<0.001) (<0.001) (<0.001) (0.8846) (0.7905)

SGIG 1.559 1.588 1.632 1.626 20,929.900 41,867.900 0.0154 0.00016
(<0.001) (<0.001) (<0.001) (<0.001) (0.9163) (0.8685)
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These results are confirmed by Figure 2. In this figure, the graphs of the histogram of
both datasets (Danish left, Norwegian right) are shown. We have also superimposed the
fitted densities. Also in Figure 3, we have plotted the smooth cdf of the empirical data, and
the fitted cdf of all the distributions previously considered have been superimposed. It is
observable that the SG (dashed line) and SGIG (dotted-dashed line) distributions adhere
closely to Danish and Norwegian datasets, respectively.

Now, we select a distribution that yields a feasible characterisation of the loss process
for both sets of data, we should check that the theoretical limited expected values, calculated
numerically by

L(x) = E[min(X, x)] =
∫ x

0
y dF(y) + xF̄(x), (16)

adhere closely to the empirical ones. As is already known, (16) is the expected quantity
per claim retained by the insured on a policy with a fixed amount deductible of x. Here,
the empirical limited expected value function was computed based on the expression
En(x) = 1

n ∑n
i=1 min(xi, x). Obviously, when x tends to infinity, L(x) and En(x) converge

to E(X) and the sample mean, respectively.
Tables 3 and 4 display the limited expected value for several values of the policy limit

x considered for the Danish and Norwegian datasets, respectively. It is observed that that
the values obtained from the mixing distributions adhere closely to the observed empirical
limited expected values obtained, as compared to the Stoppa distribution for both datasets.

The absolute errors between the empirical values and the fitted values shown in
Tables 3 and 4 are shown in the graphs that appear in Figure 4. As can be seen, at least for
the Danish data, the fit is improved to the extent that the value of the deductible increases.
The pattern for the Norwegian data is challenging to observe.
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Figure 2. Empirical (smoothed) distribution (histogram) and theoretical distribution model of the
different distributions considered for the Danish (left panel) and Norwegian (right panel) datasets.
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Figure 3. Smooth cdf of the empirical Danish (left panel) and Norwegian (right panel) claims data as
compared to the theoretical models.
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Table 3. Limited expected value for the different distributions considered, and different values of the
fixed amount deductible x for the Danish dataset.

Deductible
Limited Expected Value

Empirical Stoppa SG SIG SGIG

6.00 2.42371 2.42879 2.44939 2.43608 2.43616
6.15 2.43641 2.44278 2.46265 2.44931 2.44940
6.30 2.44871 2.45630 2.47544 2.46206 2.46217
6.45 2.46052 2.46938 2.48778 2.47437 2.47450
6.60 2.47209 2.48205 2.49971 2.48627 2.48640
6.75 2.48345 2.49433 2.51123 2.49776 2.49791
6.90 2.49459 2.50623 2.52238 2.50888 2.50904
7.05 2.50547 2.51778 2.53317 2.51964 2.51982
7.20 2.51607 2.52899 2.54363 2.53007 2.53025
7.35 2.52637 2.53989 2.55376 2.54017 2.54037
7.50 2.53644 2.55047 2.56359 2.54997 2.55019
7.65 2.54620 2.56077 2.57313 2.55949 2.55971
7.80 2.55563 2.57080 2.58240 2.56872 2.56896
7.95 2.56491 2.58056 2.59140 2.57770 2.57795
8.10 2.57401 2.59006 2.60015 2.58642 2.58668
8.25 2.58294 2.59933 2.60866 2.59491 2.59518
8.40 2.59165 2.60836 2.61694 2.60317 2.60345
8.55 2.60026 2.61717 2.62501 2.61121 2.61150
8.70 2.60876 2.62577 2.63286 2.61904 2.61934
8.85 2.61703 2.63417 2.64052 2.62667 2.62698
9.00 2.62514 2.64237 2.64798 2.63410 2.63443
9.15 2.63324 2.65039 2.65526 2.64136 2.64169
9.30 2.64117 2.65822 2.66236 2.64844 2.64878
9.45 2.64891 2.66588 2.66929 2.65534 2.65570
9.60 2.65653 2.67337 2.67606 2.66209 2.66245
9.75 2.66414 2.68070 2.68267 2.66868 2.66905
9.90 2.67175 2.68788 2.68913 2.67512 2.67550

Table 4. Limited expected value for the different distributions considered, and different values of the
fixed amount deductible x for the Norwegian dataset.

Deductible
Limited Expected Value

Empirical Stoppa SG SIG SGIG

600 594.306 592.565 594.307 594.14 594.189
1100 936.322 900.662 935.339 934.021 935.392
1600 1139.38 1084.90 1136.21 1136.55 1137.46
2100 1269.48 1214.54 1267.37 1269.27 1269.35
2600 1357.43 1313.79 1360.36 1363.11 1362.55
3100 1421.89 1393.80 1430.21 1433.22 1432.30
3600 1473.58 1460.58 1484.96 1487.80 1486.72
4100 1516.11 1517.74 1529.23 1531.64 1530.56
4600 1551.11 1567.61 1565.91 1567.72 1566.75
5100 1580.55 1611.75 1596.91 1598.02 1597.23
5600 1606.31 1651.30 1623.52 1623.88 1623.31
6100 1629.25 1687.09 1646.68 1646.24 1645.93
6600 1650.39 1719.74 1667.04 1665.8 1665.77
7100 1669.51 1749.72 1685.13 1683.08 1683.33
7600 1686.98 1777.43 1701.32 1698.47 1699.02
8100 1703.07 1803.17 1715.92 1712.29 1713.13
8600 1717.58 1827.19 1729.17 1724.77 1725.91
9100 1730.79 1849.69 1741.26 1736.11 1737.54
9600 1743.01 1870.85 1752.34 1746.46 1748.19
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Figure 4. Absolute errors of the limited expected values for Danish dataset (left) and Norwegian
dataset (right).

The third dataset deals with automobile bodily injury claims using data from the
Insurance Research Council (IRC), a division of the American Institute for Chartered
Property Casualty Underwriters and the Insurance Institute of America. The data, collected
in 2002, include demographic information about the claimants, attorney involvement,
and economic losses (in thousands of USD), among other variables. As several of these
covariates include missing observations, we will only use a sample of 1091 losses. This
dataset can also be downloaded from the R package CASdatasets, see also Frees (2010).
We consider as a response variable the claimant’s total economic loss. The empirical
distribution of this variable combines losses of small, moderate, and large sizes, which
makes it suitable for fitting heavy-tailed distributions. Other remarkable features of this
set of data are unimodality, skewness, and a long right tail, showing a high likelihood
of extremely expensive losses. Below, in Figure 5, we have plotted the histogram of this
dataset. We have also superimposed the densities of the S, SG, and SIG distributions. The
SIG distribution adheres closely to empirical data.
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Figure 5. Histogram and densities for the S, SG, and SIG distributions for the automobile bodily
injury claims dataset.

This dataset also includes the following covariates:

• ATTORNEY takes the value 1 if the claimant is represented by an attorney and 0 otherwise;
• CLMSEX takes the value 1 if the claimant is male and 0 otherwise;
• MARRIED takes the value 1 if the claimant is married and 0 otherwise;
• SINGLE takes the value 1 if the claimant is single and 0 otherwise;
• WIDOWED takes the value 1 if the claimant is widowed and 0 otherwise;
• CLMINSUR, whether or not the claimant’s vehicle was uninsured (=1 if yes and 0

otherwise);
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• SEATBELT, whether or not the claimant was wearing the seatbelt/child restraint (=1 if
yes and 0 otherwise);

• CLMAGE, claimant’s age.

Now, by using these covariates, we will explain the total losses in terms of the set of
explanatory variables by using the Stoppa and SG and SIG regression models. From left
to right, in Table 5, the parameter estimates, standard errors (S.E.), and the corresponding
p-values calculated based on the t-Wald statistics for the three regression models are
illustrated. Furthermore, NLL and AIC values for each model are provided in the last
two rows of the table. For the ith policyholder, the total amount yi follows the specified
model whose scale parameter σi depends on the above set of covariates through the
aforementioned link function. In view of its relatively low p-value, the estimates associated
with the explanatory variables INTERCEPT, ATTORNEY, SEATBELT, and CLMAGE are
statistically significant at the 5% significance levels for the three models considered. In
addition, the shape parameter θ is also statistically significant at the same nominal level for
all the models discussed here. It is noted that the parameters of the mixing distribution are
also significant at this nominal level. Finally, the SIG provides the best fit to this dataset in
terms of the two measures of the model selection considered.

Table 5. Parameter estimates, standard errors (S.E.), and p-values for automobile bodily injury claims
dataset under S, SG, and SIG regression models. NLL and AIC are included in the last two rows. The
response variable is total losses.

Regression Model

Estimate (S.E.) S SG SIG

INTERCEPT −3.704 (1.041) 2.512 (0.019) 17.659 (2.713)
p-value 0.0004 <0.0001 <0.0001

ATTORNEY 1.651 (0.095) 2.374 (0.244) 20.014 (2.565)
p-value <0.0001 <0.0001 <0.0001

CLMSEX 0.023 (0.087) 2.544 (0.293) −0.092 (0.177)
p-value 0.7941 <0.0001 0.6022

MARRIED −0.352 (0.272) 7.009 (0.233) −0.054 (0.582)
p-value 0.1951 0.3210 0.9260

SINGLE −0.434 (0.281) 2.363 (0.183) −0.065 (0.615)
p-value 0.1222 <0.0001 0.9158

WIDOWED −1.596 (0.488) 10.005 (14.472) 14.631 (2.536)
p-value 0.0011 0.4802 <0.0001

CLMINSUR 0.079 (0.146) 3.086 (0.714) 0.271 (0.365)
p-value 0.5898 <0.0001 0.4575

SEATBELT −1.258 (0.361) 2.508 (0.043) −19.1757 (2.7936)
p-value 0.0005 <0.0001 <0.0001

CLMAGE 0.019 (0.003) 0.393 (0.003) 0.0144 (0.0066)
p-value <0.0001 <0.0001 0.0279

θ 0.736 (0.015) 1.647 (0.008) 1.061 (0.034)
p-value <0.0001 <0.0001 <0.0001

λ, α β 831.609 (528.599) 1.093 (0.039) 0.001 (0.000)
p-value 0.1160 <0.0001 0.0236

–, β, Γ – 0.000 (0.000) 741.355 (104.096)
p-value – <0.0001 <0.0001

NLL 2608.38 2566.17 2558.82

AIC 5238.76 5156.34 5141.65
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As the estimates of the parameter θ significantly differ in these models, we now
estimate the value of the tail index, i.e., 1/θ estimated by the commonly used Hill’s
estimator. For this, we consider the set of observations representing the n losses y1, . . . , yn
and let y(n), . . . , y(1) be reordered (reversed order statistics) in such a way that y(1) is the
highest value in the sample. Then, we construct the sets of numbers Hk and θk for k > 2.
The set Hk is defined by Hk = 1

k ∑k
i=1 log y(i) − log y(k) and θk = 1/Hk. Then, θk is an

estimate of θ when k is increased until it seems inappropriate to proceed. Below, Figure 6
presents the values of θk when the value of k takes values in {2, . . . , n}. Note that the values
of the estimator stabilise in the neighbourhood of 1.1. These values can be compared with
the estimate of the tail indexes 1/θ for each one of the thee models given in Table 5. It
would be interesting to study how the parameters’ estimates of these three models vary if
we fix the the estimate of the tail index based on the Hill’s estimator and then estimate the
other parameters via maximum likelihood estimation.
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6. Conclusions

Although mixtures of discrete distributions have been largely considered in the sta-
tistical literature, the mixture of continuous distributions have been explored to a lesser
extent in actuarial statistics. This paper considered properties and applications related
to the mixture of probability distributions built by Lehmann’s alternative method (the
class of max-stable continuous distributions). In particular, a mixture involving the shape
parameter of the Stoppa distribution was introduced in this article. The special case of the
generalised inverse Gaussian was chosen as the mixing distribution and was thoroughly
investigated in this work. Additionally, we provided properties related to the right-tail
of the distribution that is of vital interest in risk theory. In addition, we examined the
stochastic ordering of this new class of probability distributions. Also, a Bayesian analysis
of this family was carried out, in which it was shown that the generalised inverse Gaussian
distribution conjugates with the Stoppa distribution. Furthermore, for the case where the
mixing distribution is Gamma, the mean of the posterior distribution can be written as a
convex sum of a functional expression of the data and the mean of the prior distribution.

The parameters of these mixture models were estimated by the method of maximum
likelihood via maximisation of the log-likelihood surface, and the models were empirically
validated by using two well-known datasets in the actuarial literature. Moreover, two
regression models based on this mixture were implemented for two particular cases of the
mixing distribution: Gamma and inverse Gaussian distributions. These models were used
to fit bodily injury claims data. Some covariates associated with insurance claimants were
considered when building a modification of the logit link function for the scale parameter
σ. Because of the results obtained, we have found that the proposed models in this paper
are a valid alternative to other parametric fat-tailed models in the literature.
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Appendix A

Appendix A.1. Parameters Estimation for SG and SIG Distributions

We provide here the log-likelihood function and the normal equations from which the
parameters of the SG and SIG distributions can be estimated.

Appendix A.1.1. SG Case

In this case the log-likelihood function is proportional to

ℓ(ΩΩΩ; x̃) ∝ n
[
θ log σ + log θ + log α +

α

2
log β

]
−

n

∑
i=1

log φσ,β,θ(xi)

−(θ + 1)
n

∑
i=1

log xi −
(α

2
+ 1
) n

∑
i=1

log ψσ,θ(xi),

where ΩΩΩ = (α, β, θ). The mle of the SG distribution are obtained by solving the system of
equations given by

nα

2β
−
(α

2
+ 1
) n

∑
i=1

1
φσ,β,θ(xi)

= 0,

n
(

1
θ
+ log σ

)
−

n

∑
i=1

log xi +
n

∑
i=1

(σ/xi)
θ

ψσ,θ(xi)
log
(

σ

xi

)[
1 − α + 2

φσ,β,θ(xi)

]
= 0,

where

α =

{
1
2

[
1
n

n

∑
i=1

log φσ,β,θ(xi)− log β

]}−1

.

Appendix A.1.2. SIG Case

ℓ(ΩΩΩ; x̃) ∝ n
[

θ log σ + log θ +
1
2

log Γ +
√

Γβ

]

−(θ + 1)
n

∑
i=1

log xi −
1
2

n

∑
i=1

log φσ,β,θ(xi)

−
n

∑
i=1

log ψσ,θ(xi)−
√

Γ
n

∑
i=1

√
φσ,β,θ(xi),

where ΩΩΩ = (β, θ, Γ).
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The normal equations are given, in this case, by,

n

√
Γ
β
−

n

∑
i=1

1
φσ,β,θ(xi)

−
√

Γ
n

∑
i=1

(
φσ,β,θ(xi)

)−1/2
= 0,

n
(

1
θ
+ log σ

)
+

n

∑
i=1

(σ/xi)
θ log(σ/xi)

{
1

ψσ,θ(xi)

[
1 − 1

φσ,β,θ(xi)

−
√

Γ
φσ,β,θ(xi)

]}
−

n

∑
i=1

log xi = 0,

where

Γ =

{
1
n

n

∑
i=1

√
φσ,β,θ(xi)−

√
β

}−2

.

Appendix A.2. EM Algorithm for the SG and SIG Regression Models

The estimation of the parameters in the mixture of Stoppa regression models can be
carried out via an EM algorithm. When the model contains explanatory variables the E-step
computes the posterior expectations of the sufficient statistics, i.e., ∑ λi and ∑ log λi, while
at the M-step, firstly the posterior expectation is included in the first term of the right hand
side of (A1) to fit an Stoppa regression model to update the regression coefficients and later,
the parameter of the mixing distribution, i.e., Gamma or inverse gaussian, is updated.

Let us consider now the vector of complete data x̃ = (x1, . . . , xn) and the missing
data λ̃ = (λ1, . . . , λn) that contains the observed data and the missing data. By writing
θi = exp[βββ⊤ zi], i = 1, . . . , n, the complete data log-likelihood takes the form

ℓc(βββ
⊤, α; x̃, λ̃) =

n

∑
i=1

log f (xi|λi, βββ⊤) +
n

∑
i=1

log f (λi|ωωω), (A1)

where zi = (zi1, . . . , zip) is a vector of explanatory variables and βββ⊤ = (β1, . . . , βp) is a
vector of regressors.

Appendix A.2.1. SG Regression Model

Here we consider the Gamma as mixing distribution. We will assume that E(Λ) = 1,
i.e., α = β. In this case, the EM scheme is given as follows. From the current estimates after

the j-th iteration, (β̂ββ
⊤(j)

, α̂(j)), the new estimates are calculated as follows:

• at the E-step, calculate the pseudo-values

ti = E
(

Λi|xi, θ̂i, α̂(j)
)
=

α(j) + 1
α(j) − log ψ

σ,θ̂(j)
i
(xi)

si = E
(

log Λi|xi, θ̂i, α̂(j)
)
= Ψ(1 + α̂(j))− log α̂(j)

− log(1 − log ψ
σ,θ̂(j)

i
(xi)),

where Ψ(·) is the diGamma function.

• at the M-step, first update the regressors β̂ββ
⊤(j+1)

by fitting an Stoppa regression model
by including the covariates in the shape parameter as described above, by using the
pseudo-values ti and si. Then update the estimate of the parameter α by letting

α̂(j+1) = exp
[

∑n
i=1 ti − ∑n

i=1 si − n
n

+ Ψ(α̂(j))

]
.
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• If some convergence condition is satisfied then stop iterating, otherwise move back to
the E-step for another iteration.

Appendix A.2.2. SIG Regression Model

In this case, the EM scheme is given as follows. From the current estimates after the

j-th iteration, (β̂ββ
⊤(j)

, Γ̂(j)), the new estimates are calculated as follows:

• at the E-step, calculate numerically the pseudo-values

mi = E
(

1/Λi|xi, θ̂i, Γ̂(j)
)

; ti = E
(

Λi|xi, θ̂i, Γ̂(j)
)

and

si = E
(

log Λi|xi, θ̂i, Γ̂(j)
)

.

• at the M-step, first update the regressors β̂ββ
⊤(j+1)

by fitting an Stoppa regression model
by including the covariates in the shape parameter as described above, by using the
pseudo-values ti and si. Then update the estimate of the parameter Γ by letting

Γ̂(j+1) =

√
n

∑n
i=1 ti + ∑n

i=1 mi − 2n
.

• If some convergence condition is satisfied then stop iterating, otherwise move back to
the E-step for another iteration.

The standard errors of the estimates (β̂ββ
⊤(j)

, α̂(j)) can be computed in the last iteration
of the EM algorithm for these two models following the methodology in Louis (1982).
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