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Abstract: This study addresses the crucial but under-explored topic of ambiguity aversion, i.e.,
model misspecification, in the area of environmental, social, and corporate governance (ESG) within
portfolio decisions. It considers a risk- and ambiguity-averse investor allocating resources to a
risk-free asset, a market index, a green stock, and a brown stock. The study employs a robust control
approach rooted in relative entropy to account for model misspecification and derive closed-form
optimal investment strategies. The key contribution of this study includes demonstrating, using
two sets of empirical data on asset returns and ESG ratings, the substantial influence of ambiguity
on optimal trading strategies, particularly highlighting the differential effects of market, green, and
brown ambiguities. As a by-product of our analytical solutions, the study contrasts ambiguity-averse
investors with their non-ambiguity counterparts, revealing more cautious risk exposures with a
reduction in short-selling positions for the former. Furthermore, three types of investors who employ
popular suboptimal strategies are identified, together with two loss measures used to quantify their
performance. The findings reveal that popular strategies, not accounting for ESG and misspecification
in the model, could lead to significant financial costs, with the extent of loss varying depending on
those two factors: investors’ ambiguity aversion profiles and ESG preferences.

Keywords: model uncertainty; multi-attribute utility; ESG modeling

JEL Classification: C61; C20

1. Introduction

Since Merton’s seminal work (Merton 1975), numerous studies have explored optimal
portfolio choices for investors with ambiguity aversion (also known as robust portfolio anal-
ysis or model specification) under various assumptions. Most of the literature underscores
the importance of accounting for ambiguity when making investment decisions. However,
only a limited number of studies have incorporated the concept of environmental, social,
and corporate governance (ESG). In this study, we extend the portfolio choice problem
to include ESG ambiguity aversion within a multivariate (also known as multi-attribute)
utility framework.

Environmental, social, and corporate governance (ESG) encompasses a broad spectrum
of financial activities, including sustainable investing, socially responsible investing (SRI),
impact investing, green investing, value-based investing, ESG investing, and triple-bottom-
line investing. These various approaches converge on a shared objective: the promotion
of “green investing”. While each investment style possesses distinct characteristics, they
collectively address different facets of ESG with the aim of enhancing companies and
portfolios for the benefit of stakeholders. Recent years have witnessed a notable trend
among institutional investors with long-term perspectives: the integration of ESG criteria
into investment decision-making and portfolio selection. According to a 2022 report
by the Sustainable Investment Forum (SIF) (US SIF 2022), a staggering USD 7.6 trillion
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in U.S.-domiciled assets have incorporated ESG criteria into their investment processes.
This underscores the mounting significance of ESG considerations for enterprises, asset
managers, and global shareholders (Edmans 2011; Jacobsen et al. 2019; Orsato et al. 2015).
Meanwhile, there is a growing demand from both researchers and market participants
to quantify ESG performance, driven by substantial needs in data analysis and financial
modeling. Numerous studies have delved into ESG ratings, a key metric for quantifying
the ESG performance of companies (e.g., Bermejo Climent et al. 2021; Clément et al. 2022;
Drempetic et al. 2020; Polbennikov et al. 2016; Tarmuji et al. 2016). These investigations
scrutinize the credibility of ESG ratings and explore their impact on financial assets and
investors, establishing a foundation for further quantitative research in the realm of ESG
that leverages these ratings. In this paper, we also utilize ESG ratings to discern green and
brown stocks.

Moreover, numerous studies have incorporated investors’ preferences for green in-
vesting into optimal portfolio strategies (e.g., some recent examples are Chen et al. (2021);
Dorfleitner et al. (2012); Gasser et al. (2017)). Some of these studies utilize the framework
of expected utility theory (EUT), which forms the foundation of our work. For instance,
Ahmed et al. (2021) incorporate ESG as a non-pecuniary attribute of the portfolio, leading
to bivariate constant absolute risk aversion (CARA) utility. Similarly, Dorfleitner and
Nguyen (2017) employ bivariate CARA utility, where the ESG component appears as a
non-pecuniary additive term, and compare it with the mean-variance (MVT) framework.
Notably, Pástor et al. (2021) develop a single-period equilibrium model for green investing
using exponential utility. Their study analyzes the impact of ESG preferences on asset
prices, leading to the suggestion of an optimal three-fund separation for portfolio hold-
ings, including a risk-free asset, a market portfolio, and an ESG portfolio. Furthermore,
Escobar-Anel (2022) incorporates the ESG dimension by allowing for different levels of
risk aversion for green and brown assets. This pecuniary approach accounts for the ethical
dimensions of ESG and presents the first continuous-time ESG analysis with closed-form
solutions within the EUT. In our work, we build upon this analytical framework by adding
a market-risk dimension with a specific focus on ESG ambiguity aversions.

The literature on ambiguity aversion within portfolio choice is quite extensive; there-
fore, we provide a brief review with a focus on papers close to our approach. Maenhout
(2004) adapted the general robust control framework developed by Anderson et al. (2003) to
address the dynamic portfolio choice problem under power utility. His analysis focuses on
the fundamental Merton model, featuring a single stock and a riskless asset with constant
investment opportunities. He introduced the concept of ambiguity by considering uncer-
tainty regarding the expected rate of return on stocks. Building on this work, Maenhout
(2006) extended the examination to encompass the role of ambiguity aversion in scenarios
involving time-varying expected stock returns. Liu (2010) expanded this analysis by incor-
porating Epstein–Zin preferences to explore the interplay of ambiguity aversion in portfolio
choice. Meanwhile, empirical studies have indicated variations in ambiguity aversion levels
for a given investor in regards to the underlying sources of risk. For instance, Dimmock et al.
(2016) discovered a negative association between ambiguity aversion and stock market par-
ticipation, the proportion of financial assets invested in stocks, and foreign stock ownership,
as well as a positive correlation with ownership of company stocks. Similarly, Kocher et al.
(2018) demonstrated that ambiguity attitudes are contingent on the outcome domain and
likelihood range. More recent work by Klingebiel and Zhu (2023) utilized ambiguity aver-
sion thresholds to elucidate why the same individual may seek some sources of ambiguity
while avoiding others. Wang and Uppal (2002) were the first to consider varying levels of
ambiguity aversion concerning the joint and marginal distributions of state variables. In the
spirit of various ambiguity aversion levels, Branger and Larsen (2013) modeled stock prices
using a jump-diffusion process, permitting separate ambiguity aversions to the diffusion
and jump components. This framework enables a comparative analysis of the impact of
ambiguity about the jump component versus ambiguity about the diffusive component on
optimal portfolio choices. Similarly, Flor and Larsen (2014) explored scenarios in which
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an investor grappled with ambiguity concerning models for both interest rates and stock
returns, while Escobar et al. (2015) targeted ambiguity aversions about volatility and stock
returns. When applying robust portfolio optimization in the realm of ESG considerations,
Rubtsov et al. (2021) introduced the concept of climate uncertainty. This approach tackled
the robust optimization problem within the context of an investor engaged in trading a
stock index while also holding an illiquid claim designed to provide insurance against
climate change risk. The findings of this study shed light on the significant influence of
climate uncertainty on investment portfolios. Notably, heightened climate uncertainty
tends to reduce investments in stocks. Subsequently, Rubtsov and Shen (2022) extended the
scope by deriving an optimal stock–bond–cash portfolio. This expanded analysis delved
into the repercussions of uncertainties surrounding climate change, taking into account
portfolios with varying investment horizons. It is pertinent to note that both studies in this
series operate on the premise of a univariate utility function and focus on a single source of
uncertainty.

Our work, in its distinctive contribution to the field, diverges from previous litera-
ture by introducing an innovative ESG portfolio setting with multi-attribute utility while
allowing for special considerations on green, brown, and market ambiguity aversions.
Specifically, we consider a risk- and ambiguity-averse investor with the option to invest
in a bank account (cash), a market index, a green stock, and a brown stock. Extending
the work of Escobar-Anel (2022), this investor possesses a multivariate utility function
with different risk aversions not only to green and brown stocks but also to the market
index. This addition is critical, as the market index is neither green nor brown but rather
an average, and it can be understood as the classical level of investor risk aversion. See
Escobar-Anel and Jiao (2023) for further arguments.

Additionally, our investor contends with ambiguity regarding the dynamics of these
assets. Depending on the available information, the agent may exhibit varying degrees
of uncertainty regarding the models for the market index, the green stock, and the brown
stock. Leveraging the robust control approach established by Anderson et al. (2003), we
derive the optimal investment strategy and investigate the implications of ambiguity within
this ESG context.

Our model assumes that the investor has a reference model for the market, the green
stock, and the brown stock, but acknowledges that these models may be misspecified. It
also recognizes the existence of alternative models that may better represent reality. Conse-
quently, our investor seeks investment rules that are robust to model misspecification and
capable of performing reasonably well across a range of plausible models. The degree of
dissimilarity between the reference model and alternative models is quantified through rel-
ative entropy, which serves as a penalty in the optimization process. This penalty quantifies
the investor’s aversion to uncertainty concerning the reference model. The optimal portfo-
lio is obtained in closed form after solving the relevant robust Hamilton–Jacobi–Bellman
(HJB) equation (also known as the HJBI equation for HJB–Isaacs).

Several motivations underlie our assumptions regarding ambiguity concerning the
market, the green stock, and the brown stock. First, the assumption of model ambiguity
aligns with empirical studies, such as Ellsberg (1961), which reveal that individuals are
averse not only to risk (where the probability distribution is known) but also to ambiguity
(where the probability distribution is unknown). Second, as per the work of Wang and
Uppal (2002), there is compelling evidence to suggest that investors exhibit different levels
of ambiguity aversion toward different assets, that is, green, brown, and market. Hence,
our model introduces flexibility to account for the varying levels of ambiguity aversion
among investors. Third, as demonstrated by Merton (1980), accurately estimating expected
returns remains a formidable challenge. In this context, it is important to emphasize that,
within the framework of Anderson et al. (2003), model uncertainty primarily pertains
to uncertainty about the drift of the state variables. Consequently, our study derives an
optimal portfolio strategy that remains robust to model uncertainty, particularly regarding
the equity risk premium of various assets.
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In summary, this study makes several important contributions. Firstly, it introduces
a distinctive analytical framework by segregating green, brown, and market investments
within the investors’ wealth process. This allows for an explicit study of the impact of each
one of these asset categories on portfolio decisions, pushing the boundaries of existing
methodologies.

Secondly, our work employs multi-attribute utility for risk aversions and delves into
its interaction with various levels of ambiguity aversion. This interaction has not been
explored in the literature, offering a novel perspective that can advance the application of
multi-attribute utility.

Thirdly, our research not only provides analytical solutions but also underscores the
significance of precise ESG modeling. This contribution lays the groundwork for further
studies in this direction, with implications extending beyond robust portfolio optimization
to contribute to the evolving landscape of ESG modeling.

Fourthly, this study underscores the substantial impact of ambiguity on optimal
trading strategies while accounting for ESG preferences. In comparing the short-term effects
of market, green, and brown ambiguities, we find that market ambiguity predominantly
affects market weight, whereas both green and brown ambiguities influence not only the
respective weights of these assets but also the market weight. Our numerical examples
are based on empirical data on asset returns and ESG ratings obtained from the RepRisk
database. The analysis further illustrates that this behavior extends to long-term investment
strategies. Specifically, plausible levels of ambiguity can result in changes of over 50% in
the optimal strategies.

Fifthly, we explore the effects of ambiguity by contrasting outcomes with those of
non-ambiguity-averse investors. We provide compelling evidence that ambiguity-averse
investors exhibit less aggressive exposure to risks. As demonstrated in our numerical
example, ambiguity also leads to a reduction in short-selling positions.

Lastly, we categorize three types of investors who employ suboptimal strategies and
two measures of welfare loss. We assess the welfare loss incurred by investors using
suboptimal strategies. Our analysis reveals that investors who adopt suboptimal strategies
experience non-negligible losses. For empirically relevant parameter values, the losses due
to ignoring model uncertainty increase with greater ambiguity, amounting to close to 100%
of the initial wealth.

The remainder of this paper is organized as follows. Section 2 outlines the portfolio
choice problem. Section 3 provides a solution and outlines its general properties. In
Section 4, we categorize three types of suboptimal investors and two measures of welfare
loss incurred by an investor who follows a suboptimal investment strategy. Section 5
presents an analysis of the optimal portfolio through a numerical example, with Section 6
concluding, while the appendices contain proofs of important propositions and another
numerical example.

2. Mathematical Setting

Let us assume that a financial market consists of one risk-free asset and three risky
assets. These assets are invested over the period from time 0 to time T. Let all stochastic
processes introduced in this paper be defined on a complete probability space (Ω,F ,P,
{Ft}t∈[0,T]), where {Ft}t∈[0,T] is a right-continuous filtration generated by standard Brow-
nian motions (BMs).

This section is divided into three parts. First, we present a model for the underlying
assets under the reference model. Section 2 constructs a family of alternative models, while
Section 3 describes the self-financing wealth process and the underlying green, brown, and
market synthetic portfolios.

2.1. ESG Market Model with a One-Factor Structure

We first introduce our model, which is characterized by three main assets. One asset
is identified as the market portfolio (S1). This could be a common index that merges all
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assets of a given market or sectors of interest to the investor. The other two assets can
be interpreted as two types of stock in the market: the so-called green stock (S2) and the
non-green alternative named, for the purpose of our study, brown stock (S3). Both stocks
are correlated with each other and with the index, resembling a one-factor CAPM model
with the index playing the role of a single factor. Our model has the following structure:

dS1,t

S1,t
= (r + λ1σ2

1 )dt + σ1dzm,

dS2,t

S2,t
= (r + λ1σ1σ2ρ12 + λgσ2

2

√
1− ρ2

12)dt + σ2(ρ12dzm +
√

1− ρ2
12dzg),

dS3,t

S3,t
= (r + λ1σ1σ3ρ13 + λbσ2

3

√
1− ρ2

13)dt + σ3(ρ13dzm +
√

1− ρ2
13dzb).

(1)

where zm, zg, and zb are independent standard Brownian motions, representing three
sources of risk: market, green, and brown, respectively. The volatilities of the three assets,
namely S1, S2, and S3, are represented by σ1, σ2, and σ3, respectively. Additionally, our
framework incorporates a risk-free asset, such as a cash account or government bond, with
its return denoted as r. The dynamic of the risk-free asset is governed by dBt = rBtdt
and is not influenced by any source of risk. We capture correlations via corr(S1, S2) = ρ12,
corr(S1, S3) = ρ13, and corr(S2, S3) = ρ12ρ13. The market risk premium (from zm) is
represented by λ1σ1, the green risk premium is expressed by λgσ2, and the brown risk
premium is λbσ3.

2.2. Alternative Model

We refer to the market model presented in the previous section as the reference model.
Our investor is uncertain about the probability distribution of the reference model and
considers a set of plausible alternative models when making investment decisions. We
assume that our investor is uncertain about the distributions of zm, zg, and zb. Specifically,
our investor is uncertain about the drifts of the stock prices. We cannot consider modeling
the uncertainty of volatility because the limit of infinitely fine sampling would remove
all estimation risks of the second moments. However, the first moments are notoriously
difficult to estimate (Blanchard et al. 1993; Cochrane 1998; Merton 1980).

Let et := (em
t , eg

t , eb
t ) be an R3-valued Ft-progressively measurable process and define

the Radon–Nikodym derivative process by

Λe
t = E

[
dPe

dP |Ft

]
= exp

{
−
∫ t

0

(
〈eτ , dzτ〉+

1
2
||eτ ||2dτ

)}
(2)

where dzt := (dzm,t, dzg,t, dzb,t). According to Girsanov’s theorem, the process

z̃t = zt +
∫ t

0
eτdτ (3)

is a multidimensional Brownian motion under probability measure Pe.
The investor’s subjective measure Pe is assumed to be σ−finite on (Ω,Ft), and abso-

lutely continuous with respect to measure P. et represents perturbations that enable the
investor to deviate from the reference model. Although the reference model best charac-
terizes the data available to the investor, they may also consider alternative models that
are difficult to distinguish statistically from the reference model. Under the probability
measure Pe, the alternative model is
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dS1,t

S1,t
=(r + λ1σ2

1 − σ1em
t )dt + σ1dz̃m,

dS2,t

S2,t
=(r + λ1σ1σ2ρ12 + λgσ2

2

√
1− ρ2

12 − σ2ρ12em
t − σ2

√
1− ρ2

12eg
t )dt

+ σ2(ρ12dz̃m +
√

1− ρ2
12dz̃g),

dS3,t

S3,t
=(r + λ1σ1σ3ρ13 + λbσ2

3

√
1− ρ2

13 − σ3ρ13em
t − σ3

√
1− ρ2

13eb
t )dt

+ σ3(ρ13dz̃m +
√

1− ρ2
13dz̃b).

(4)

2.3. Wealth Process and Portfolio Setting

Let Wt denote the investor’s wealth process created by allocating in S1,t, S2,t, S3,t, and
Bt. Let πi (a simplified notation for (πi,t)t∈[0,T]) denote the proportion of wealth invested

in Si,t
1, according to the self-financing condition, the wealth process is

dWt

Wt
= π1

dS1,t

S1,t
+ π2

dS2,t

S2,t
+ π3

dS3,t

S3,t
+ (1− π1 − π2 − π3)

dBt

Bt

= (r + π1λ1σ2
1 + π2λ1σ1σ2ρ12 + π2λgσ2

2

√
1− ρ2

12 + π3λ1σ1σ3ρ13

+ π3λbσ2
3

√
1− ρ2

13)dt + (π1σ1 + π2σ2ρ12 + π3σ3ρ13)dzm + π2σ2

√
1− ρ2

12dzg

+ π3σ3

√
1− ρ2

13dzb

(5)

The term rdt represents the return on the cash account. Let us distribute this return
among the three synthetic assets by weighing the parameters θm, θg, and θb, satisfying
θm + θg + θb = 12. Now, we are ready to write wealth in terms of three synthetic indices
capturing the three independent sources of risk by equation

d log Wt = d log Xm,t + d log Xg,t + d log Xb,t (6)

where we can see explicitly how each of these synthetic indices is impacted by its corre-
sponding independent source of risk:

d log Xm,t = [θmr + π1λ1σ2
1 + π2λ1σ1σ2ρ12 + π3λ1σ1σ3ρ13

− 1
2
(π1σ1 + π2σ2π12 + π3σ3ρ13)

2]dt + (π1σ1 + π2σ2ρ12 + π3σ3ρ13)dzm

d log Xg,t = [θgr + π2λgσ2
2

√
1− ρ2

12 −
1
2

π2
2σ2

2 (1− ρ2
12)]dt + π2σ2

√
1− ρ2

12dzg

d log Xb,t = [θbr + π3λbσ2
3

√
1− ρ2

13 −
1
2

π2
3σ2

3 (1− ρ2
13)]dt + π3σ3

√
1− ρ2

13dzb

(7)

Solving Equation (6), we obtain the terminal wealth at the end of time period [0, T]:

WT = W0
Xm,T

Xm,0

Xg,T

Xg,0

Xb,T

Xb,0
(8)

The processes Xm,t, Xg,t, and Xb,t can be interpreted as indices denominated in generic
units, with their values from the beginning of period 0 to the conclusion of period T
dictating the ultimate wealth WT . We refer to Xg,t as the Green Index and Xb,t as the Brown
Index to differentiate them from the green stock (S2) and brown stock (S3) in the market
model. Since Xm,t is driven by market risk, Xg,t by green risk, and Xb,t by brown risk, these
terms represent their respective contributions to wealth growth.
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Similarly, the investor considers the following alternative model for the indices under
the probability measure Pe.

d log Xm,t =[θmr + π1λ1σ2
1 + π2λ1σ1σ2ρ12 + π3λ1σ1σ3ρ13

− 1
2
(π1σ1 + π2σ2π12 + π3σ3ρ13)

2 − (π1σ1 + π2σ2ρ12 + π3σ3ρ13)em
t ]dt

+ (π1σ1 + π2σ2ρ12 + π3σ3ρ13)dz̃m

d log Xg,t =[θgr + π2λgσ2
2

√
1− ρ2

12 −
1
2

π2
2σ2

2 (1− ρ2
12)− π2σ2

√
1− ρ2

12eg
t ]dt

+ π2σ2

√
1− ρ2

12dz̃g

d log Xb,t =[θbr + π3λbσ2
3

√
1− ρ2

13 −
1
2

π2
3σ2

3 (1− ρ2
13)− π3σ3

√
1− ρ2

13eb
t ]dt

+ π3σ3

√
1− ρ2

13dz̃b

(9)

3. Optimal Investment Strategies

As discussed in the literature (e.g., Escobar-Anel 2022), an investor may prefer to
allocate their portfolio according to different degrees of risk aversion for market risk, green
risk, and brown risk, respectively. Consequently, we specify our investor’s utility as a
function of Xm,t, Xg,t, and Xb,t. An investor can maximize their utility by assigning π1, π2,
and π3 to obtain the best combination of Xm,t, Xg,t, and Xb,t. Next, we explain the choice
of utility.

We consider the multivariate utility function

u(Xm, Xg, Xb) =
(Xm)αm

αm

(Xg)
αg

αg

(Xb)
αb

αb
(10)

where we choose risk aversion parameters αb ≤ αm ≤ αg < 0, and the reward function
realized by choosing the alternative model under Pe

we(X, t; π) = EPe
X,t
[
u(Xm,T , Xg,T , Xb,T)

]
. (11)

Let U [0, T] represent the space of all admissible strategies πi that are Ft-progressively
measurable, ensuring the wealth remains non-negative for t ∈ [0, T] and satisfies integrabil-
ity conditions necessary for Equation (11). We denote ε[0, T] as the set of allFt-progressively
measurable processes, ensuring that the process (2) is a well-defined Radon–Nikodym
derivative process. The indirect utility function is defined as

J(X, t) = sup
π∈U [t,T]

inf
e∈ε[t,T]

{
EPe

t

[∫ T

t

(
(em

τ )
2

2Ψm(τ, Xτ)
+

(eg
τ)

2

2Ψg(τ, Xτ)
+

(eb
τ)

2

2Ψb(τ, Xτ)

)
dτ

]

+we(X, t; π)

}
,

(12)

where the expectation term in the equation functions as a penalty for the deviation from
the reference model. The penalty depicts the relative entropy between the alternative and
reference models, which is expressed as

DKL(Pe||P) = EPe

t

[∫ T

t

1
2
||eτ ||2dτ

]
(13)

and perturbations em
t , eg

t , and eb
t are scaled by Ψm, Ψg, and Ψb, respectively.
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Ψm, Ψg, and Ψb capture ambiguity aversions toward market, green, and brown dy-
namics, respectively. For analytical tractability, we assume the following

Ψi =
φi
αi J

, i = m, g, b, (14)

where φi > 0 are recognized as ambiguity aversion parameters. Building upon the concept
of ‘homothetic robustness’ proposed by Maenhout (2004), we depart from the conven-
tional approach of Anderson et al. (2003), where a constant ambiguity aversion parameter
(Ψi(Xm, Xg, Xb, t) = φ̂i) is employed. Instead, we introduce a scaling factor, denoted as αi J,
which divides φi. This modification ensures that the optimal weights remain unaffected by
variations in the state variables Xm, Xg, and Xb, thereby preserving the homothetic nature
of preferences amid the changing state variables.

As explained by Maenhout (2004), the consideration of homotheticity is not merely a
modeling convenience; it carries significant implications for several reasons. First, despite
the economic growth, rates of return remain stationary. Second, when the magnitude of
the state variable becomes pertinent, the natural unit invariance of optimal decisions is
disrupted, requiring adjustments in calibrations. Finally, homotheticity plays a pivotal role
in facilitating aggregation and the construction of a representative agent, thereby enhancing
the comprehensibility and applicability of the model.

Our construction also accommodates distinct values of φm, φg, and φb. Recognizing
that investors may know more about the distribution of some assets than others, we
employ φi to govern the degree of ambiguity aversion. This approach enables a systematic
examination of how these φi values influence both the optimal weightings and resultant
utility levels.

Therefore, the HJB equation for Equation (12) is

sup
π1,π2,π3

inf
em ,eg ,eb

{
Jt + (θmr + π1λ1σ2

1 + π2λ1σ1σ2ρ12 + π3λ1σ1σ3ρ13

− (π1σ1 + π2σ2ρ12 + π3σ3ρ13)em)xJx +
1
2
(π1σ1 + π2σ2ρ12 + π3σ3ρ13)

2x2 Jxx

+ (θgr + π2λgσ2
2

√
1− ρ2

12 − π2σ2

√
1− ρ2

12eg)yJy +
1
2

π2
2σ2

2 (1− ρ2
12)y

2 Jyy

+ (θbr + π3λbσ2
3

√
1− ρ2

13 − π3σ3

√
1− ρ2

13eb)zJz +
1
2

π2
3σ2

3 (1− ρ2
13)z

2 Jzz

+
(em)2

2Ψm
+

(eg)2

2Ψg
+

(eb)2

2Ψb

}
= 0,

(15)

where Xm, Xg, Xb are denoted as x, y, z. A subsequent proposition is obtained by solving
the HJB equation presented above (see Appendix A.1).

Proposition 1. The optimal weights for solving the HJB Equation (15) are given by

π∗1 =
λ1

1− αm + φm
− σ2

σ1
ρ12π∗2 −

σ3

σ1
ρ13π∗3 ,

π∗2 =
λg√

1− ρ2
12(1− αg + φg)

,

π∗3 =
λb√

1− ρ2
13(1− αb + φb)

.

(16)

The value function can be expressed as

J(X, t) =
Xαm

m
αm

X
αg
g

αg

Xαb
b

αb
exp(b(T − t)), (17)
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where

b =
1
2

λ2
1σ2

1
αm

1− αm + φm
+

1
2

λ2
gσ2

2
αg

1− αg + φg
+

1
2

λ2
bσ2

3
αb

1− αb + φb

+ (θmαm + θgαg + θbαb)r.
(18)

The optimal wealth process is therefore

dWt

Wt
=(r +

λ2
1σ2

1
1− αm + φm

+
λ2

gσ2
2

1− αg + φg
+

λ2
bσ2

3
1− αb + φb

)dt +
λ1σ1

1− αm + φm
dzm

+
λgσ2

1− αg + φg
dzg +

λbσ3

1− αb + φb
dzb.

(19)

Remark 1.

1. As shown in Appendix A.1, if we do not specify Ψi =
φi
αi J , the optimal weights are

π∗1 =
λ1 Jx

Ψmx(Jx)2 − xJxx
− σ2

σ1
ρ12π∗2 −

σ3

σ1
ρ13π∗3 ,

π∗2 =
λg√

1− ρ2
12

Jy

Ψgy(Jy)2 − yJyy
,

π∗3 =
λb√

1− ρ2
13

Jz

Ψbz(Jz)2 − zJzz
.

(20)

To elaborate, if we were to assume constant values for Ψi, then the optimal weights would
be contingent on the state variables Xm, Xg, and Xb. However, to maintain homotheticity,
we introduce a modification by setting Ψi =

φi
αi J . This adjustment ensures that the optimal

weights are independent of variations in the state variables Xm, Xg, and Xb.
2. It is interesting to see that ambiguity aversion parameters act similarly to risk aversion

parameters in the representation of the optimal weights. This is not new, as highlighted by
Maenhout (2006) for the CRRA utility. This observation is important for our multi-attribute
utility, as it conveys the notion that investors might, consciously or not, exchange risk aversion
for ambiguity aversion and vice versa. This provides yet another motivation for the validity of
a multi-attribute utility, that is, a utility that allows for different risk aversions for different
sources of risk.

3. While an investor characterized by the utility function

u(Xm, Xg, Xb) =
(Xm)αm−φm

αm−φm

(Xg)
αg−φg

αg−φg

(Xb)
αb−φb

αb−φb
and lacking ambiguity aversions would yield

the same optimal weights as an ambiguity-averse investor, it is essential to highlight that the
indirect utility functions do not align. Consequently, these two scenarios do not constitute the
same utility problem. In this instance, we have a b of

b =
1
2

λ2
1σ2

1
αm − φm

1− αm + φm
+

1
2

λ2
gσ2

2
αg − φg

1− αg + φg
+

1
2

λ2
bσ2

3
αb − φb

1− αb + φb

+ (θm(αm − φm) + θg(αg − φg) + θb(αb − φb))r
(21)

different to that of Equation (17).

4. Analysis of Suboptimal Strategies

Investors may at times adopt suboptimal strategies for various reasons. A frequent
rationale for such decisions is the absence of sufficient knowledge to construct an optimal
strategy. In our context, for instance, an investor might have varying degrees of ambiguity
aversion toward their green and brown stocks. However, owing to the lack of requisite
knowledge to formulate an optimal solution, they opt for a strategy that does not account
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for robustness. Consequently, the resulting asset allocations for the investor are suboptimal,
leading to a reduction in overall utility.

More formally, given portfolio weights πs = (πs
1, πs

2, πs
3) representing a suboptimal

strategy, let us represent the value function obtained from such a suboptimal strategy as Js.
This is

Js(X, t) = inf
e∈ε[t,T]

{
EPe

t

[∫ T

t

(
(em

τ )
2

2Ψm(τ, Xτ)
+

(eg
τ)

2

2Ψg(τ, Xτ)
+

(eb
τ)

2

2Ψb(τ, Xτ)

)
dτ

]

+we(X, t; πs)

}
.

(22)

It is evident that Js ≤ J, indicating a suboptimal level of satisfaction for the investor
stemming from the application of a suboptimal strategy, as demonstrated in the following
proposition (see Appendix A.2).

Proposition 2. The value function for the investor employing a suboptimal strategy πs =
(πs

1, πs
2, πs

3) is given by

Js(X, t) =
Xαm

m
αm

X
αg
g

αg

Xαb
b

αb
exp(bs(T − t)), (23)

where

bs = (θmr + πs
1λ1σ2

1 + πs
2λ1σ1σ2ρ12 + πs

3λ1σ1σ3ρ13)αm

+
1
2
(πs

1σ1 + πs
2σ2ρ12 + πs

3σ3ρ13)
2αm(αm − 1) + (θgr + πs

2λgσ2
2

√
1− ρ2

12)αg

+
1
2
(πs

2)
2σ2

2 (1− ρ2
12)αg(αg − 1) + (θbr + πs

3λbσ2
3

√
1− ρ2

13)αb

+
1
2
(πs

3)
2σ2

3 (1− ρ2
13)αb(αb − 1)− φm

2
(πs

1σ1 + πs
2σ2ρ12 + πs

3σ3ρ13)
2αm

−
φg

2
(πs

2)
2σ2

2 (1− ρ2
12)αg −

φb
2
(πs

3)
2σ2

3 (1− ρ2
13)αb.

(24)

The suboptimal wealth process Ws
t follows

dWs
t

Ws
t

=(r + πs
1λ1σ2

1 + πs
2λ1σ1σ2ρ12 + πs

2λgσ2
2

√
1− ρ2

12 + πs
3λ1σ1σ3ρ13

+ πs
3λbσ2

3

√
1− ρ2

13)dt + (πs
1σ1 + πs

2σ2ρ12 + πs
3σ3ρ13)dzm + πs

2σ2

√
1− ρ2

12dzg

+ πs
3σ3

√
1− ρ2

13dzb

(25)

There are three choices of suboptimal strategies that are meaningful to an investor.

1. First, we introduce the unintentionally unambiguous investor (UUI). This investor
employs suboptimal strategies arising from a lack of model uncertainty. The investor
chooses such a strategy not because of its lack of uncertainty but rather because of a
lack of knowledge of a better/optimal solution. That is, if investors care about model
uncertainty, yet they do now know how to generate and handle alternative models,
they will suffer from utility loss by employing suboptimal strategies. They mistakenly
choose the model with φm = φg = φb = 0, and employ the suboptimal strategy:
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πs
1 =

λ1

1− αm
− σ2

σ1
ρ12πs

2 −
σ3

σ1
ρ13πs

3,

πs
2 =

λg√
1− ρ2

12(1− αg)
,

πs
3 =

λb√
1− ρ2

13(1− αb)
.

(26)

Let us denote the corresponding value function as J(s,UUI).
2. The second case of interest is a sophisticated investor who is ambiguity-averse and ca-

pable of accommodating different levels of ambiguity aversion per source of risk (e.g.,
Branger and Larsen 2013; Wang and Uppal 2002). We denoted it as ‘SAI’. Nonetheless,
the investor does not know about multi-attribute utilities or the possibility of further
accommodating preferences for green and brown sources of risk. Therefore, this
investor considers αg = αb = αm = α, with the corresponding suboptimal strategy:

πs
1 =

λ1

1− α + φm
− σ2

σ1
ρ12πs

2 −
σ3

σ1
ρ13πs

3,

πs
2 =

λg√
1− ρ2

12(1− α + φg)
,

πs
3 =

λb√
1− ρ2

13(1− α + φb)
.

(27)

The corresponding value function is denoted J(s,SAI). Needless to say, the suboptimal
strategy described above is optimal for non-multi-attribute CRRA utility.

3. Thirdly, we explore a scenario in which an investor excludes the brown asset from
its portfolio. This type of investor actively avoids exposure to the brown risk and
focuses solely on investing in the market index and the green asset. However, they
rigorously address the robust portfolio optimization problem in line with their specific
risk preferences and ambiguity aversions. Given π3 = 0, the suboptimal strategy is

πs
1 =

λ1

1− αm + φm
− σ2

σ1
ρ12π∗2 ,

πs
2 =

λg√
1− ρ2

12(1− αg + φg)
,

πs
3 = 0.

(28)

We categorize this type of investor as a ‘selectively brown-avoidant investor’ and
denote the associated value function as J(s,SBI).

Next, we will introduce two measures to assess the losses that a suboptimal investor
could suffer, either in satisfaction or money, due to acting suboptimally.

4.1. Percentage Loss in Satisfaction

We first create a measure to compute the loss to the investor by working directly with
the reduction in the level of satisfaction, as measured by the value function.

This is, assuming a value function Js from using a suboptimal strategy and the value
function from the optimal strategy as J, we define the percentage loss in satisfaction (PLS)
as follows:

R =
Js − J

Js . (29)
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Note that R reaches its minimum value, R = 0, only when the suboptimal strategy is
optimal. As the suboptimal strategy underperforms, resulting in a decrease in Js, the value
of R approaches 100% (indicating a complete loss). Therefore, we can define R within the
range of [0, 1), where smaller values of R signify poorer performance of the suboptimal
strategy when compared to the optimal strategy.

The fact that J and Js are all closed-form for the cases described in the previous section
indicates that this percentage can be easily computed in the closed form:

R = 1− exp{(b− bs)T}. (30)

4.2. Green Wealth Equivalent Loss

We introduce the concept of Green-Index Wealth Equivalent Loss (GWEL) and explore
the impact of suboptimal strategies. We define GWEL as a scalar q that satisfies the
following equation:

J(Xm, Xg(1− q), Xb, 0) = Js(Xm, Xg, Xb, 0). (31)

Notably, GWEL closely resembles the conventional definition of WEL. Specifically,
WEL can be defined as the value of q for which J(W(1− q), 0) = Js(W, 0). In our context,
parameter q signifies the percentage-wise reduction in the Green Index’s value that the opti-
mal investor can tolerate while maintaining the same level of satisfaction as the suboptimal
investor. This interpretation directly quantifies the degree to which the optimal portfolio
deviates from a ‘green’ allocation to emulate the suboptimal choices made by investors.

As before, given that J and Js are closed-form for the cases described in the previous
section, the GWEL is given in closed form as follows:

q = 1− exp
{
(bs − b)T

αg

}
. (32)

5. Empirical Analyses

For empirical analysis, we used ESG ratings from the RepRisk database. This involved
converting RepRisk Rating (RRR) scores into integers ranging from 1 (D) to 10 (AAA). We
calculated the average RRR score to evaluate a company’s ESG performance from 2010 to
2020. Without loss of generality, we classified the top 10 U.S. companies with the highest
average RRR scores as ‘green companies’ and identified the bottom 10 companies with the
lowest scores as ‘brown companies’.

For benchmark purposes, we also determined the average RRR score for the entire
U.S. market portfolio. This was achieved by computing the mean of the average RRR
scores across all U.S. companies, resulting in an average RRR score of 7.3 for the entire U.S.
market portfolio.

In our study, we present two illustrative examples, both employing the S&P 500 as our
chosen index. The first example serves as the basis for the empirical analysis in this section,
while the second is included in Appendix B as supplementary material. Considering data
availability and consistency, we select two pairs of stocks for our analysis. The first pair
consists of IDT Corp. (IDT), Newark, U.S., representing the green company, and Walmart
Inc. (WMT), Bentonville, United States, representing the brown company. The second pair
comprises Shenandoah Telecommunications Company (Shenandoah), Edinburg, United
States as the green company and DuPont de Nemours, Inc. (DuPont), Wilmington, USA as
the brown company.

We utilized Python for data retrieval, data processing, parameter estimations, and
graph plotting. Table 1 provides a comprehensive overview of the parameters employed in
our model for the two cases. These parameters were estimated on a monthly basis, using
data from 2010 to 2020. To calculate the risk-free rate, we took the average of the monthly
yields of the 3-month Treasury bills issued by the U.S. government during this time frame,
resulting in a rate of 0.045%.
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Table 1. Parameter estimations for empirical analysis.3

Name σ ρ λ
Average RRR

Score
S&P 500 0.0405 1 6.0464 7.3

IDT 0.1628 0.2937 0.7 9.4
Walmart 0.0486 0.3354 2.8672 3.4

Shenandoah
Telecom 0.1064 0.291 1.0179 9.4

DuPont de
Nemours 0.0866 0.767 −1.244 4.2

For consistency, our empirical analysis adopts a uniform time horizon of 10 years.
Furthermore, we have set the risk aversion parameters at the following values: αm = −4,
αg = −2, and αb = −6.

5.1. Optimal Weights

We examined the impact of ambiguity aversion parameters on the optimal weights
and compared these robust optimal weights with the optimal weights without uncertainty
consideration. Figure 1 depicts the drastic changes in portfolio allocation when we account
for ambiguity aversion. In all three sub-figures, the weights of all stocks are significantly
reduced, indicating increased investments in the risk-free asset. This result is not surprising,
as investors would turn to safer assets when they begin considering the worst case of their
investments. We can also observe that as one of the three ambiguity aversion parameters
increases (green, for example), the weight of green stock also decreases. It is natural
for investors to invest less in an asset if they do not trust the probabilistic model of that
asset. However, market weight increased as green or brown ambiguity aversion increased.
This is because the total weight of the three stocks is less sensitive to green and brown
ambiguity aversion than the weight of green and brown stocks. As a result, the market
weight increases to compensate for the decrease in green or brown investments. In other
words, the total weight is mostly influenced by market ambiguity aversion, and the green
or brown weight is influenced by green or brown ambiguity aversion.
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Figure 1. Impact of ambiguity aversion parameters on optimal weights in the IDT and WMT case.4

5.2. Detection Error Probabilities

When investors discriminate between the reference and alternative models, two types
of errors are possible for a sample of length N: choosing the alternative model when the



Risks 2024, 12, 33 14 of 29

reference model is correct, with probability pN
1 , and choosing the reference model when the

alternative model is correct, with probability pN
2 . We weight these errors by assigning prior

probabilities of one-half to each model and denote the detection error probability as εN :

εN(φm, φg, φb) = 0.5pN
1 + 0.5pN

2 . (33)

Following the notation in Equation (2), the log-likelihood ratio is formed as `N =
log Λe

N with e replaced by e∗, that is,

`N = −
∫ N

0

(
〈eτ , dzτ〉+

1
2
||eτ ||2dτ

)
, (34)

where e∗ are obtained by combining Equations (A1), (16), and (17):

(em)∗ =
λ1σ1φm

1− αm + φm

(eg)∗ =
λgσ2φg

1− αg + φg

(eb)∗ =
λbσ3φb

1− αb + φb
.

(35)

Then, we have pN
1 = Pr(`N > 0 | P,F0) and pN

2 = Pr(`N < 0 | Pe,F0). We observe
that `N follows a normal distribution with a mean of − 1

2 ||e∗||2N and a variance of ||e∗||2N.
Thus, we have

εN(φm, φg, φb) = Pr(Φ >
1
2
||e∗||

√
N) (36)

where Φ follows a standard normal distribution. In the IDT and Walmart case, for the
parameters in Table 1, N = 120, and specifying αm = −4, αg = −2, αb = −6, we have
Figures 2–4. These three figures depict the relationship between the detection error proba-
bility and one of the ambiguity aversion parameters, while the other two parameters are set
to be 0, 5, 10. In alignment with our speculation, as ambiguity aversion parameters increase,
investors can better discern between reference and alternative models. Consequently, the
probability of making a mistake decreases.
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Figure 2. Detection error probability when φm, φg, φb changes in the IDT and WMT case. The dashed
line is for φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.
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Figure 3. Detection error probability when φm, φg, φb changes in the IDT and WMT case. The dashed
line is for φm = 0, the dotted line is for φm = 5, the solid line is for φm = 10.
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Figure 4. Detection error probability when φm, φg, φb changes in the IDT and WMT case. The dashed
line is for φm = 0, the dotted line is for φm = 5, the solid line is for φm = 10.

We can readily observe that φm exerts the most substantial influence on the detection
error probability. A comparative analysis of Figures 2–4 reveals that an increase in φm has
the greatest impact on the detection error probability. This is evident as Figure 2 exhibits a
more pronounced curvature than Figures 3 and 4. Moreover, the detection error probability
reaches its peak when φm = 0 in all three figures.

Taking a closer look at the green curves in Figure 2c (φg = 10, φb = 10), Figure 3c
(φm = 10, φb = 10), and Figure 4c (φm = 10, φg = 10), we can discern noteworthy distinc-
tions. Specifically, the green curve in Figure 2c significantly deviates from its counterparts,
resulting in a notably higher detection error probability when φm = 0, φg = 10, φb = 10,
approaching approximately 0.25. This is in stark contrast to the other two figures, where
the detection error probability is approximately 0.15. Consequently, we conclude that
green and brown stocks introduce more significant uncertainty. This is substantiated by the
observation that when the investor possesses certainty about the market index (φm = 0),
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the detection error probability is higher than in scenarios where the investor has certainty
about the green stock (φg = 0) or the brown stock (φb = 0).

In general, an increase in ambiguity aversion levels leads to a reduction in the detection
error probability, enabling investors to better differentiate between reference and alternative
models. This heightened discernment translates into a lower likelihood of making errors in
model selection, thereby minimizing potential losses. The ensuing Section 5.3 delves into a
detailed analysis of these diminished losses. Nonetheless, our investigation underscores
that the uncertainty introduced by green and brown stocks remains resilient, even with
heightened ambiguity aversion. Illustrated in Figure 2, when fixing φm = 0, investors face
approximately a 30% probability of making errors in discerning between reference and
alternative models, irrespective of their ambiguity aversions towards green and brown
stocks. Notably, the ambiguity aversion towards the market plays the most pivotal role in
this discrimination between reference and alternative models.

Following the convention in Anderson et al. (2003), we are concerned with detection
error probabilities larger than 0.1, in which case the investor has difficulty discerning the
alternative model and the reference model. This explains why we chose ambiguity aversion
parameters less than 10 in the previous section. In a later analysis, we will also confine
the ambiguity aversion parameters to be less than 14 to ensure that the error detection
probability is larger than 0.1 in all cases.

5.3. Suboptimal Loss Analysis

In this section, we present a comprehensive analysis of the percentage loss or reduction
in satisfaction (PLS) and GWEL across the UUI, SAI, and SBI scenarios, maintaining a
consistent temporal horizon of T = 120 months.

First, let us focus on the UUI case illustrated in Figure 5, which shows the percentage
reduction in satisfaction. As expected, UUI investors witness a pronounced decline in
satisfaction as ambiguity aversion parameters escalate, aligning with the relation

b− bs =
1
2

λ2
1σ2

1
αm

(1− αm)2
φ2

m
1− αm + φm

+
1
2

λ2
gσ2

2
αg

(1− αg)2

φ2
g

1− αg + φg

+
1
2

λ2
bσ2

3
αb

(1− αb)2
φ2

b
1− αb + φb

.

(37)
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Figure 5. PLS for UUI when φm, φg, φb changes in the IDT and WMT case. The dashed line is for
φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.
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The heightened PLS can be attributed to any of the three ambiguity aversion parame-
ters. Notably, φm exerts the most significant influence. As clearly depicted in the figures,
when φm = 10, there is a nearly 100% higher loss in satisfaction compared to φm = 0, while
maintaining φg and φb at 0. However, the influence of φm diminishes as the other two
parameters increase. For instance, when φg = 10 and φb = 10, a change in φm only results
in a 10% variation in the PLS. The loss in satisfaction reaches its zenith, nearly touching
the 100% mark, when all three parameters are set to 10. It is also evident that PLS is more
significantly impacted when any parameter increases from 0 to 5 compared to when it
increases from 5 to 10. Beyond a value of 10, the effect becomes negligible.

Turning our attention to Figure 6, we investigate the variations in GWEL as ambiguity
aversion parameters fluctuate over a ten-year duration in the UUI context. Notably, when
all three ambiguity aversion parameters are set to 10, a staggering 95% loss is observed
in the green index. This significant loss emerges because of the simultaneous increments
in all three ambiguity aversion parameters. However, it is crucial to highlight that the
escalation of GWEL is also more pronounced as ambiguity aversion parameters rise from
5 to 10 compared to the increase from 0 to 5. This underscores the heightened sensitivity
of GWEL to investors with higher ambiguity aversion parameters. These findings are
consistent with our model, emphasizing the need to incorporate uncertainty into portfolio
optimization.
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Figure 6. GWEL when φm, φg, φb changes for UUI in the IDT and WMT case. The dashed line is for
φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.

Now, transitioning to the SAI case, we can discern from Figures 7 and 8 that both
the percentage reduction in satisfaction and GWEL remain impervious to changes in the
market ambiguity aversion parameter φm. However, an increase in either φg or φb leads
to a decrease in both the percentage reduction in satisfaction and GWEL. This outcome is
markedly different from the results of the UUI scenario. Notably, the solid green lines in
Figures 7 and 8 occupy lower positions, in contrast to the dashed blue lines in Figures 5
and 6. This result is not surprising, as in the case of SAI,

b− bs =
1
2

λ2
gσ2

2
αg(αm − αg)

(1− αm + φg)2 +
1
2

λ2
bσ2

3
αb(αm − αb)

(1− αm + φb)2 , (38)

independent of φm. Moreover, it is worth emphasizing that the overall reduction in satis-
faction is substantially smaller than that in the UUI case. The maximum loss is 22% when
φg = φb = 0.
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Figure 7. PLS when φm, φg, φb changes for SAI in the IDT and WMT case. The dashed line is for
φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.
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Figure 8. GWEL when φm, φg, φb changes for SAI in the IDT and WMT case. The dashed line is for
φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.

Finally, when examining the SBI scenario, we find that both PLS and GWEL are
exclusively influenced by φb, as shown in Figures 9 and 10. This result arises from the
fact that

b− bs =
1
2

λ2
bσ2

3
αb

1− αb + φb
. (39)

It is worth noting that augmenting φb decreases both PLS and GWEL, resulting in
a 30% reduction in PLS and a 20% reduction in GWEL when φb increases from 0 to 10.
Furthermore, the SBI scenario occupies an intermediary position between UUI and SAI in
terms of loss. The maximum loss is 62% when φb = 0.
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Figure 9. PLS when φm, φg, φb changes for SBI in the IDT and WMT case. The solid line is for φg = 0,
φg = 5, and also for φg = 10.
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Figure 10. GWEL when φm, φg, φb changes for SBI in the IDT and WMT case. The solid line is for
φg = 0, φg = 5, and also for φg = 10.

These analyses of UUI, SAI, and SBI investors underscore the pivotal role of ambi-
guity aversion in financial decision-making. It emphasizes the necessity for investors
to transparently communicate their risk preferences and ambiguity aversions to avoid
selecting suboptimal models that could result in substantial losses. Investors characterized
by higher ambiguity aversion levels should be particularly vigilant about their portfolio
positions, given the potential for greater losses when deviating from optimal choices. This
suggests a need for more frequent portfolio rebalancing. For asset managers, aligning their
models with clients’ ambiguity aversion becomes critical. Effective communication and a
comprehensive approach to measuring ambiguity aversion are imperative for the success
of asset managers aiming for ESG objectives. Despite the growing significance of ESG con-
siderations, these findings emphasize the importance of ESG education for investors and
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the necessity of fostering an open and efficient environment for communication regarding
ESG investing.

6. Conclusions

This study bridges the gap between the well-established concept of ambiguity aversion
in portfolio choice and the increasingly relevant field of environmental, social, and corporate
governance (ESG) investing. It extends the existing literature by introducing ESG ambiguity
aversions into the portfolio choice problem within a multivariate utility framework. We
address the ambiguity aversion of an investor who can allocate resources to a risk-free asset,
a market index, a green stock, and a brown stock. The robust control approach employed,
which is based on relative entropy, allows us to derive optimal investment strategies and
investigate the effects of ambiguity in the ESG context.

This study makes several significant contributions. First, it demonstrates the sub-
stantial impact of ambiguity on optimal trading strategies, highlighting the differential
effects on market, green, and brown assets. Plausible levels of ambiguity significantly
alter optimal strategies, with potential changes exceeding 50%. Second, the study provides
insights into the comparative behavior of ambiguity-averse and non-ambiguity investors.
Ambiguity-averse investors exhibit less aggressive risk exposure and reduced short-selling
positions. Finally, the paper quantifies the welfare loss incurred by investors who neglect
model uncertainty, revealing substantial financial costs amounting to nearly 100% for
empirically relevant parameter values. Our findings about the impact of uncertainty are
corroborated by two measures of performance (i.e., PLS and GWEL) and two case studies,
each involving a green, brown, and market index. Moreover, this research highlights
the importance of transparent communication regarding risk preferences and ambiguity
aversions for both investors and asset managers. Advocating ESG education can enhance
the effectiveness of this communication, thereby reducing the risk of substantial losses
resulting from suboptimal strategies.

There are avenues for further exploration in our study. For instance, the inclusion
of jumps, stochastic volatility, or stochastic correlation in our model could better capture
extreme shifts in asset prices, particularly post-2020.

In summary, this study enriches the understanding of ambiguity aversion in the
context of ESG-integrated portfolio optimization by emphasizing the nuanced impact of
ESG ambiguity aversion and its potential welfare implications. This conveys valuable
insights to investors, asset managers, and policymakers seeking to navigate the evolving
landscape of responsible and sustainable investing. The integration of ESG criteria into the
analysis of ambiguity aversion represents an original and vital contribution to the ongoing
discourse in the field of finance.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Solving the infimization problem in Equation (15), we obtain

https://www.reprisk.com/
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(em)∗ =ΨmxJx(π1σ1 + π2σ2ρ12 + π3σ3ρ13)

(eg)∗ =ΨgyJyπ2σ2

√
1− ρ2

12

(eb)∗ =ΨzzJzπ3σ3

√
1− ρ2

13.

(A1)

Substituting Equation (A1) into the HJB Equation (15), J satisfies

sup
π1,π2,π3

{
Jt + (θmr + π1λ1σ2

1 + π2λ1σ1σ2ρ12 + π3λ1σ1σ3ρ13)xJx

+
1
2
(π1σ1 + π2σ2ρ12 + π3σ3ρ13)

2x2 Jxx + (θgr + π2λgσ2
2

√
1− ρ2

12)yJy

+
1
2

π2
2σ2

2 (1− ρ2
12)y

2 Jyy + (θbr + π3λbσ2
3

√
1− ρ2

13)zJz +
1
2

π2
3σ2

3 (1− ρ2
13)z

2 Jzz

− Ψm

2
(π1σ1 + π2σ2ρ12 + π3σ3ρ13)

2x2(Jx)
2 −

Ψg

2
π2

2σ2
2 (1− ρ2

12)y
2(Jy)

2

−Ψb
2

π2
3σ2

3 (1− ρ2
13)z

2(Jz)
2
}

= 0.

(A2)

Solving for π1, π2, π3 in the above equation, the optimal weights have the form

π∗1 =
λ1 Jx

Ψmx(Jx)2 − xJxx
− σ2

σ1
ρ12π∗2 −

σ3

σ1
ρ13π∗3 ,

π∗2 =
λg√

1− ρ2
12

Jy

Ψgy(Jy)2 − yJyy
,

π∗3 =
λb√

1− ρ2
13

Jz

Ψbz(Jz)2 − zJzz
.

(A3)

Given the linearity of the HJB, we assume that J has the form of J = xαm
αm

yαg

αg
zαb
αb

exp(b(T−
t)), together with Equation (14), we obtain

0 = sup
π1,π2,π3

{
− b + (θmr + π1λ1σ2

1 + π2λ1σ1σ2ρ12 + π3λ1σ1σ3ρ13)αm

+
1
2
(π1σ1 + π2σ2ρ12 + π3σ3ρ13)

2αm(αm − 1) + (θgr + π2λgσ2
2

√
1− ρ2

12)αg

+
1
2

π2
2σ2

2 (1− ρ2
12)αg(αg − 1) + (θbr + π3λbσ2

3

√
1− ρ2

13)αb

+
1
2

π2
3σ2

3 (1− ρ2
13)αb(αb − 1)− φm

2
(π1σ1 + π2σ2ρ12 + π3σ3ρ13)

2αm

−
φg

2
π2

2σ2
2 (1− ρ2

12)αg −
φb
2

π2
3σ2

3 (1− ρ2
13)αb

}
,

(A4)

Again, solving for π1, π2, π3 in the above equation, we obtain the optimal weights

π∗1 =
λ1

1− αm + φm
− σ2

σ1
ρ12π∗2 −

σ3

σ1
ρ13π∗3 ,

π∗2 =
λg√

1− ρ2
12(1− αg + φg)

,

π∗3 =
λb√

1− ρ2
13(1− αb + φb)

.

(A5)
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Substituting the optimal weights back into Equation (A4), we obtain

J(X, t) =
Xαm

m
αm

X
αg
g

αg

Xαb
b

αb
exp(b(T − t)), (A6)

where

b =
1
2

λ2
1σ2

1
αm

1− αm + φm
+

1
2

λ2
gσ2

2
αg

1− αg + φg
+

1
2

λ2
bσ2

3
αb

1− αb + φb

+ (θmαm + θgαg + θbαb)r.
(A7)

In addition, substituting the optimal weights back into Equation (5), the optimal
wealth process is given as

dWt

Wt
=(r +

λ2
1σ2

1
1− αm + φm

+
λ2

gσ2
2

1− αg + φg
+

λ2
bσ2

3
1− αb + φb

)dt +
λ1σ1

1− αm + φm
dzm

+
λgσ2

1− αg + φg
dzg +

λbσ3

1− αb + φb
dzb.

(A8)

Appendix A.2. Proof of Proposition 2

The infimization problem for the suboptimal value function Js is

Js(X, t) = inf
e∈ε[t,T]

{
EPe

t

[∫ T

t

(
(em

τ )
2

2Ψm(τ, Xτ)
+

(eg
τ)

2

2Ψg(τ, Xτ)
+

(eb
τ)

2

2Ψb(τ, Xτ)

)
dτ

]

+we(X, t; πs)

}
.

(A9)

Js satisfies the HJB equation

inf
em ,eg ,eb

{
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(A10)

Assuming a constant πs, and Js = xαm
αm

yαg

αg
zαb
αb

exp(bs(T− t)), together with Equation (14),
we obtain

bs = (θmr + πs
1λ1σ2
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(A11)
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Substituting πs = (πs
1, πs

2, πs
3) back into Equation (5), the suboptimal wealth process

Ws
t is given as

dWs
t

Ws
t

=(r + πs
1λ1σ2

1 + πs
2λ1σ1σ2ρ12 + πs

2λgσ2
2

√
1− ρ2

12 + πs
3λ1σ1σ3ρ13

+ πs
3λbσ2

3

√
1− ρ2

13)dt + (πs
1σ1 + πs

2σ2ρ12 + πs
3σ3ρ13)dzm + πs

2σ2

√
1− ρ2

12dzg

+ πs
3σ3

√
1− ρ2

13dzb.

(A12)

Appendix B. Empirical Analysis for the Shenandoah and DuPont Case

Appendix B.1. Optimal Weights

Compared with the IDT and WMT case, the Shenandoah and DuPont case shows
similar behavior but not the same results. This is because DuPont has a negative price for
the risk premium and is short-sold. Nevertheless, the reasoning is the same because the
increased brown ambiguity aversion would reduce investors’ risk exposure to the brown
stock and, in this case, decrease the short-selling position in their portfolio. Similar to the
IDT and WMT case, the decreased position is compensated by the market weight.
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Figure A1. Impact of ambiguity aversion parameters on optimal weights in the Shenandoah and
DuPont case.5

Appendix B.2. Detection Error Probabilities

Figures A2–A4 corroborate our speculation that as ambiguity aversion parameters
increase, investors can better discern between the reference model and the alternative
model. As a result, the probability of making a mistake decreases.

We also observe that φm exerts the most substantial influence on the detection er-
ror probability. Figure A2 shows that increases in φm have the greatest impact on the
detection error probability, and Figure A2 exhibits a more pronounced curvature than
Figures A3 and A4.
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Figure A2. Detection error probability when φm, φg, φb changes in the Shenandoah and DuPont case.
The dashed line is for φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.
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Figure A3. Detection error probability when φm, φg, φb changes in the Shenandoah and DuPont case.
The dashed line is for φm = 0, the dotted line is for φm = 5, the solid line is for φm = 10.
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Figure A4. Detection error probability when φm, φg, φb changes in the Shenandoah and DuPont case.
The dashed line is for φm = 0, the dotted line is for φm = 5, the solid line is for φm = 10.

Appendix B.3. Suboptimal Losses Analysis

For the UUI case illustrated in Figure A5, UUI investors witness more pronounced
declines in satisfaction as the ambiguity aversion parameters escalate. This heightened
PLS can be attributed to any of the three ambiguity aversion parameters, with φm exerting
the most substantial influence. Setting φm = 10, φg = φb = 0 leads to a nearly 100%
higher loss in satisfaction compared to when φm = φg = φb = 0. Figure A6 shows a
staggering 95% loss in the green index. Figure A6, while displaying a lower GWEL than
Figure 6, reaffirms the heightened sensitivity of GWEL to investors with higher ambiguity
aversion parameters.
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Figure A5. PLS when φm, φg, φb changes for UUI in the Shenandoah and DuPont case. The dashed
line is for φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.
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Figure A6. GWEL when φm, φg, φb changes for UUI in the Shenandoah and DuPont case. The dashed
line is for φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.

For the SAI case, Figures A7 and A8 show that φm does not affect PLS and GWEL.
However, it is worth emphasizing that the overall satisfaction reduction is substantially
smaller than that in the UUI case.
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Figure A7. PLS when φm, φg, φb changes for SAI in the Shenandoah and DuPont case. The dashed
line is for φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.
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Figure A8. GWEL when φm, φg, φb changes for SAI in the Shenandoah and DuPont case. The dashed
line is for φg = 0, the dotted line is for φg = 5, the solid line is for φg = 10.

When examining the SBI scenario, both PLS and GWEL are exclusively influenced by
φb, as shown in Figures A9 and A10. The SBI scenario occupies an intermediary position
between UUI and SAI in terms of loss.
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Figure A9. PLS when φm, φg, φb changes for SBI in the Shenandoah and DuPont case. The solid line
is for φg = 0, φg = 5, and also for φg = 10.
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Figure A10. GWEL when φm, φg, φb changes for SBI in the Shenandoah and DuPont case. The solid
line is for φg = 0, φg = 5, and also for φg = 10.

Notes
1 Denoting the return of the wealth process as µ and the three volatilities as σi for i = 1, 2, 3, the proportions πi, i = 1, 2, 3 must

satisfy that µWt is an L1-process and that σiWt is an L2-process for each i = 1, 2, 3.
2 For simplicity we will take θm = 1, θg = 0, θb = 0 in the numerical section; this has the interpretation of treating the cash account

as part of the market portfolio, ideally these weights should be related to the ESG rating of the source of this cash.
3 Parameter estimations for the empirical analysis involved computations for the standard deviation (σ), correlation (ρ), and risk

premium factor (λ). These estimations were derived from monthly data on the adjusted close price of each asset spanning the
period from 2010 to 2020. Additionally, the average RepRisk Rating (RRR) scores were determined by calculating the mean of the
monthly RRR scores over the same time frame.

4 In each figure, one ambiguity aversion changes, and the other two are set to 10. The robust optimal weights (solid curves) are
compared with the optimal weights without uncertainty consideration (dashed curves).

5 In each figure, one parameter changes, and the other two are set to be equal to 10. The robust optimal weights are compared with
the optimal weights without uncertainty consideration.
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