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Abstract: The complexity of estimating multivariate GARCH models increases significantly with the
increase in the number of asset series. To address this issue, we propose a general regularization
framework for high-dimensional GARCH models with BEKK representations, and obtain a penalized
quasi-maximum likelihood (PQML) estimator. Under some regularity conditions, we establish some
theoretical properties, such as the sparsity and the consistency, of the PQML estimator for the BEKK
representations. We then carry out simulation studies to show the performance of the proposed
inference framework and the procedure for selecting tuning parameters. In addition, we apply the
proposed framework to analyze volatility spillover and portfolio optimization problems, using daily
prices of 18 U.S. stocks from January 2016 to January 2018, and show that the proposed framework
outperforms some benchmark models.

Keywords: Markov chain Monte Carlo; multivariate GARCH; spillover; stochastic approximation

1. Introduction

Modeling the dynamics of high-dimensional variance–covariance matrices is a chal-
lenging problem in high-dimensional time series analysis and has wide applications in
financial econometrics. Classical time series models for variance–covariance matrices
assume that the number of component time series is low with respect to the number of
observed samples. However, many financial and economic applications these days need to
model the dynamics of high-dimensional variance–covariance matrices. For example, in
modern portfolio management, the number of assets can easily be more than thousands
and be larger or on the same order as the observed historical prices of the assets; in ana-
lyzing the movements in the financial markets of different products in different countries,
it is critical to understand the interdependence and contagion effects of price movements
over thousands of markets, while the amounts of jointly observed financial data are only
available in decades.

In this paper, we propose an inference procedure with L1 regularization for high-
dimensional BEKK representations and obtain a class of penalized quasi-maximum likeli-
hood (PQML) estimators. The L1 regularization allows us to identify important parameters
and shrink the non-essential ones to zero, hence providing an estimate of sparse parameters
in BEKK representations. Under some regularity conditions, we establish some theoretical
properties, such as the sparsity and the consistency, of the PQML estimator for BEKK
representations. The proposed procedure is a fairly general framework that can be applied
to a large class of high-dimensional MGARCH models; by applying our regularization
techniques, the complexity of making inferences from high-dimensional MGARCH mod-
els can be greatly reduced and the intrinsic sparse model structures can be uncovered.
We carried out simulation studies to show the performance of the proposed inference
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framework and the procedure for selecting tuning parameters. In addition, we applied the
proposed framework to analyze volatility spillover and portfolio optimization problems,
using daily prices of 18 U.S. stocks from January 2016 to January 2018. In the comparison
of portfolio optimization based on different MGARCH models, we show that the proposed
framework outperforms three benchmark models, i.e., the constant covariance model, the
factor MGARCH model, and the dynamic conditional correlation model.

The proposed framework can be viewed as an extension of the literature on regular-
ization techniques for converting high-dimensional linear models to nonlinear time series
models. Since Tibshirani (1996) introduced LASSO for linear regression models, various
regularization techniques concerning high-dimensional statistical inference have been stud-
ied for various problems in linear models. For example, Fan and Li (2001) proposed the
smoothly clipped absolute deviation (SCAD) penalty that generates sparse estimation of
regression coefficients with reduced bias and explored the so-called “oracle property”,
in which the estimator has asymptotic properties that are equivalent to the maximum
likelihood estimator in the non-penalized model. Zou (2006) proposed adaptive LASSO
by adding adaptive weights for different parameters in the L1 penalty to obtain better
estimator performance. Yuan and Lin (2006) proposed a group LASSO penalty to solve
the problem of selecting grouped factors in regression models. Zhang (2010) proposed a
minimax concave penalty that gives nearly unbiased variable selection in linear regression.
In addition to discussions on regularized estimation in high-dimensional statistics, which
relies primarily on independent and identically distributed (i.i.d.) samples and linear
models, regularization techniques have also been applied to study inference problems in
high-dimensional linear time-series models. For instance, Uematsu (2015) studied a class of
penalty functions and showed the oracle properties for the estimators in high-dimensional
vector autoregressive (VAR) models. Basu and Michailidis (2015) investigated the theoreti-
cal properties of L1-regularized estimates in high-dimensional stochastic regressions with
serially correlated errors and transition matrix estimation in high-dimensional VAR models.
Sun and Lin (2011) developed a regularization framework for full-factor MGARCH models
(Vrontos et al. 2003), in which the dynamics of covariance matrices are determined by the
dynamics of univariate GARCH processes for orthogonal factors. Using the group LASSO
technique, Poignard (2017) studied the inference problem for MGARCH models with vine
structure, an alternative to dynamic conditional correlation MGARCH models.

The proposed regularization framework is also related to the problem of estimat-
ing p × p covariance matrices using various shrinkage and regularization methods. For
instance, Ledoit and Wolf (2004) proposed an optimal linear shrinkage method to esti-
mate constant covariance matrices of p-dimensional i.i.d. vectors, and, later on, Ledoit
and Wolf (2012) extended the method and developed nonlinear shrinkage estimators for
high-dimensional covariance matrices. Bickel and Levina (2008) and Cai and Liu (2011) pro-
posed covariance regularization procedures that are based on the thresholding of sample
covariance matrices to estimate inverse covariance matrices. Lam and Fan (2009) studied
sparsistency and rates of convergence for estimating covariance based on penalized likeli-
hood with nonconcave penalties, and Ravikumar et al. (2011) estimated high-dimensional
inverse covariance by minimizing L1-penalized log-determinant divergence. This method
is also called graphical LASSO and was studied in Yuan and Lin (2006) and Friedman et al.
(2007). We note that all these discussions focus on high-dimensional constant covariance
matrices; thus, they do not involve the dynamics of covariance matrices.

The remainder of the paper is organized as follows. Section 2 provides a literature
review of MGARCH models and their applications in volatility spillover. Section 3 explains
the BEKK model with L1-penalty functions in detail. In Section 4, we provide theoretical
properties and implementation procedures for the regularized BEKK model. Simulation
results and real data analysis are presented in Sections 5 and 6, respectively. Section 7 gives
concluding remarks.
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2. Literature Review

Inspired by the idea of univariate generalized autoregressive conditionally heteroskedas-
tic (GARCH) models Bollerslev (1986); Engle (1982); Francq and Zakoian (2019); Hafner et al.
(2022), various multivariate GARCH (MGARCH) models were proposed to characterize the
dynamics of covariance matrices during the last three decades. Among these MGARCH
models, the Baba–Engle–Kraft–Kroner (BEKK) model (Engle and Kroner 1995) uses a general
specification to describe the dynamics of covariance matrices of an n-dimensional multi-
variate time series. Since such a specification contains unknown parameters of order O(n2),
inference on the BEKK model becomes complicated, even for not very large ns. When n2

increases with the same order as, or larger order than, the length of the time series, infer-
ence on the MGARCH–BEKK representation becomes even more difficult due to “the curse
of dimensionality”.

To reduce the complexity of inference procedures for unknown parameters in MGARCH
models, other forms of MGARCH specifications were proposed to reduce the number of
unknown parameters in the model. An important improvement to MGARCH models is
the dynamic conditional correlation (DCC) model (Aielli 2013; Bauwens and Laurent 2005;
Boudt et al. 2013; Engle 2002). The DCC model allows for time-varying conditional corre-
lations and reduces the dimensionality by factorizing the conditional covariance matrix
into the product of a diagonal matrix of conditional standard deviations and a correlation
matrix that evolves dynamically over time. Other forms of MGARCH specifications make
more assumptions on structures and dynamics of covariance matrices and include, for
example, the MGARCH in mean model (Bollerslev et al. 1988), the constant conditional
correlation GARCH model (Bollerslev 1990; Ling and McAleer 2003; McAleer et al. 2009),
the time-varying conditional correlation MGARCH model (Tse and Tsui 2002), the orthogo-
nal factor MGARCH model (Hafner and Preminger 2009; Lanne and Saikkonen 2007), and
so on. Although these MGARCH models provide relatively simple inference procedures,
the assumptions on dynamics of covariance matrices are usually too specific to capture
the complexity of dynamics of covariance matrices. Furthermore, these models still fail to
address the issue of making inference on high-dimensional MGARCH models.

In addition to modeling the joint behavior of volatilities for a set of returns, another
aspect of MGARCH models is to characterize volatility spillover in financial markets.
Volatility spillover refers to as the process and magnitude by which the instability in one
market affects other markets. Volatility spillover is widely observed in equity markets
(Hamao et al. 1990), bond markets (Christiansen 2007), futures markets (Pan and Hsueh
1998), exchange markets (Baillie and Bollerslev 1990), markets of equities and exchanges
(Apergis and Rezitis 2001), various industries and commodities (Apergis and Rezitis 2003;
Kaltenhäuser 2002), and so on. Understanding volatility spillover can provide an insight
into financial vulnerabilities, as well as the source and nature of financial exposures, for
academic researchers, financial practitioners, and regulatory authorities. For investors, as
significant volatility spillover may increase non-systemic risk, understanding volatility
spillover can help them diversify the risks associated with their investment. For financial
sector regulators, understanding volatility spillover can help them formulate appropriate
policies to maintain financial stability, especially when stress from a particular market is
transmitted to other markets, such that the risk of systemic instability increases. MGARCH
models are generally used to characterize volatility spillover in the markets, which are
represented via a low-dimensional multivariate series; see Hamao et al. (1990), Christiansen
(2007), Pan and Hsueh (1998), Engle et al. (1990), and Baillie and Bollerslev (1990). In
particular, Theodossiou and Lee (1993) used multivariate GARCH-in-mean model to study
the economic spillover effect across five countries, Worthington and Higgs (2004) applied
a BEKK(1,1) model to study transmission of weekly equity returns and volatility in nine
Asian countries from 1988 to 2000, and Hassan and Malik (2007) employed the BEKK(1,1)
specification to study three-dimensional US sector indices. Spillover effect has also been
explored recently for other financial markets, such as cryptocurrency markets (Billio et al.
2023) and European banks with GARCH models (Giacometti et al. 2023). Additionally,
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there has been an investigation into the spillover effects using network representations
derived from GARCH models in recent studies (Ampountolas 2022; Hong et al. 2023).

The aforementioned studies on spillover effects rely on the foundational structures
of the DCC model for analysis (Ampountolas 2022; Shiferaw 2019; Siddiqui and Khan
2018). Although these MGARCH models provide relatively simple inference procedures,
the assumptions on dynamics of covariance matrices are usually too specific to capture
the complexity of the dynamics of covariance matrices. Moreover, these models still fail
to address the issue of making inference on high-dimensional MGARCH models. Under
these constraints, the performance and accuracy of these simplified MGARCH models need
further investigation in real markets (Engle and Colacito 2006).

3. The MGARCH–BEKK Representations with L1 Regularization

We first introduce the following notations. Given a vector x and a matrix A, the ith
component of x and the ijth elements of A are written as xi and Aij, respectively. The jth
column and the ith row vectors of A are denoted as A.j and Ai., respectively. ||x|| is the
Euclidean norm for vector x. ||x||∞ is the largest element of x in the modulus. ρ(A) is the
spectral radius of A, i.e., the largest modulus of eigenvalues of A. λmin(A) and λmax(A)
are the minimum and maximum eigenvalues of A, respectively. ||A|| is the spectral norm,
i.e., a square root of ρ(AT A). ||A||∞ represents the operator norm induced by ||x||∞, or the
largest absolute row sum. For any matrix A and vector x such that Ax is well defined, let
||A||2,∞ := max||x||=1 ||Ax||∞. We use sign(x) to denote the sign of x : sign(x) = x/|x| if
x ̸= 0, and sign(x) = 0 otherwise.

3.1. The MGARCH–BEKK Representation

Let rt be the vector of returns on n assets in period t. Let ϵt be i.i.d. n-dimensional
standard normal random vectors. Let Ft be the sigma field generated by the past infor-
mation from rts. Then, Σt is measurable with respect to Ft−1; the distribution of rt can be
specified as

rt = Σ
− 1

2
t ϵt, ϵt ∼ N(0, In), (1)

where In is an n × n identity matrix. Denote the conditional covariance matrix of rt given
Ft−1 as Σt, i.e., Σt = Cov(rt|Ft−1). Engle and Kroner (1995) proposed the following
BEKK(a, b) model to characterize the dynamics of Σt:

Σt = C′C +
K

∑
k=1

a

∑
i=1

Aikrt−1r′t−1 A′
ik +

K

∑
k=1

b

∑
i=1

BikΣt−1B′
ik, (2)

where Aik, and Bik are n × n parameter matrices, C is an n × n triangular matrix, and the
summation limit K determines the generality of the process.

To illustrate the idea, we consider BEKK(1,1) in our examples with K = 1 in this paper,
which can be written as

Σt = C′C +
a

∑
i=1

Airt−ir′t−i A
′
i +

b

∑
i=1

BiΣt−iB′
i . (3)

in which Ai, Bi, and C are real n × n matrices. And, without loss of generality, we choose
Σ−1/2

t to be symmetric. For identification purposes, Engle and Kroner (1995) showed the
following property for the BEKK model.

Proposition 1. Suppose that the diagonal elements in C, a11, and b11 are positive. Then, there
exists no other C, A, or B in Model (3) that gives an equivalent representation.

Proposition 1 is also known as the identification condition (Comte and Lieberman 2003).
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Let vec and vech be the vector operators that stack the columns of a matrix and the
lower triangular part of a matrix, respectively. That is, if

Y =

 y11 · · · y1n
...

. . .
...

yn1 · · · ynn

,

then
vec(Y) = (y11, · · · , yn1, y12, · · · , yn2, · · · , y1n, · · · , ynn)

′,

and
vech(Y) = (y11, · · · , yn1, y22, · · · , yn2, · · · , yii, · · · , yin, · · · ynn)

′.

Then, Model (3) can be rewritten in a vector form:

vec(Σt) = vec(C′C) +
a

∑
i=1

Åivec(rt−ir′t−i) +
b

∑
i=1

B̊ivec(Σt−i). (4)

in which Åi = Ai ⊗ Ai, B̊i = Bi ⊗ Bi, and ⊗ is the Kronecker product. Since the covariance
matrices Σt are symmetric, we can also write (3) in the vector-half form:

vech(Σt) = vech(C′C) +
a

∑
i=1

Ãivech(rt−ir′t−i) +
b

∑
i=1

B̃ivech(Σt−i). (5)

where Ãi = Ln ÅiK′
n, B̃i = LnB̊iK′

n, and Ln and Kn are matrices of dimension n(n + 1)× n2

extracting the upper triangular parts of symmetric matrices Åi and B̊i . Note that
dim(vec(Σt)) = n2 and dim(vech(Σt)) = n(n + 1)/2. For convenience, we denote
θ = (θ1, . . . , θp)′ by the parameter vector in Model (3), in which p = 2(a + b)n2 + n(n + 1)/2,
so that the matrices C, Ai, and Bi are functions of θ: C = C(θ), Ai = Ai(θ), Bi = Bi(θ). And
we denote by θ0 the true parameter vector of the model.

We assume that the values of rt in (1) are stationary; then, the following stationary
condition should be imposed for the BEKK(a, b) Model (5) (see Engle and Kroner (1995)
and Comte and Lieberman (2003)).

Condition 1 (Stationary Condition). The p-dimensional return series rt in (1) is stationary if
the following conditions hold for Model (3):

(i) C∗(θ) = C′C is a continuous function of θ, and there exists C0 > 0, det(C∗(θ)) ≥ C0,
where det(·) represents the determinant of a matrix;

(ii) For any θ, Ãi(θ) and B̃i(θ) are continuous functions of θ;
(iii) For any θ, ρ(∑a

i=1 Ãi(θ) + ∑b
i=1B̃i(θ)) < 1, i.e., the largest modulus of eigenvalues of

∑a
i=1 Ãi(θ) + ∑b

i=1B̃i(θ) is less than 1.

3.2. Likelihood Function

In this section, we discuss some properties of the likelihood of the BEKK(a, b) model.
Assume that ϵt follows a standard n-dimensional Gaussian distribution. Ignoring constants,
we can write the quasi-log-likelihood as

ℓT(θ) =
1

2T

T

∑
t=1

lt(θ), lt(θ) = −(log[det(Σt)] + r′tΣ
−1
t rt). (6)

Taking the derivative on Σt with respect to the ith element of θ, we obtain
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∂Σt

∂θi
=

∂C′C
∂θi

+
a

∑
j=1

(
∂Aj

∂θi
rt−jr′t−j A

′
j + Ajrt−jr′t−j

∂A′
j

∂θi

)
+

b

∑
j=1

(
∂Bj

∂θi
Σt−jBj

+ BjΣt−j
∂B′

j

∂θi
+ Bj

∂Σt−j

∂θi
B′

j

)
, (7)

which can be computed recursively. The derivative in (7) has the following property (the
proof is given in Appendix A).

Proposition 2. Let Rt = vech(rtr′t); then,∥∥∥∥∂Σt

∂θi

∥∥∥∥ ≤ Ψ1 + Ψ2 · sup ||Rt||.

where Ψ1 and Ψ2 are two constants.

Assume that LT(θ) is twice continuously differentiable in a neighborhood Θ0 ∈ Θ of θ0.
We define the averages of the score vector and Hessian matrix as follows:

ST(θ) = T−1
T

∑
t=1

st(θ) and HT(θ) = T−1
T

∑
t=1

ht(θ),

where st(θ) = ∂lt(θ)/∂θ and ht(θ) = ∂2lt(θ)/∂θ∂θ′. Taking the derivative of (6) with
respect to θi yields

∂lt
∂θi

= −Tr
(

∂Σt

∂θi
Σ−1

t − rtr′tΣ
−1
t

∂Σt

∂θi
Σ−1

t

)
,

∂2lt(θ)
∂θj∂θi

= −Tr

(
∂2Σt

∂θj∂θi
Σ−1

t − ∂Σt

∂θi
Σ−1

t
∂Σt

∂θj
Σ−1

t + rtr′tΣ
−1
t

∂Σt

∂θj
Σ−1

t
∂Σt

∂θi
Σ−1

t

−rtr′tΣ
−1
t

∂2Σt

∂θj∂θi
Σ−1

t + rtr′tΣ
−1
t

∂Σt

∂θi
Σ−1

t
∂Σt

∂θj
Σ−1

t

)
,

in which Tr(·) represents the trace of a matrix. Comte and Lieberman (2003) showed the
following property for lt(θ).

Proposition 3. Under Condition 1, the following properties hold:

(i) When T → +∞, −H0
T := − 1

T

T

∑
t=1

∂l2
t (θ

0)

∂θ∂θ′
P→ H for a nonrandom positive-definite matrix

H;

(ii) For the Fisher information matrix I0 := E
(∂lt(θ0)

∂θ
· ∂lt(θ0)

∂θ′

)
= E(S0

T(S
0
T)

′), ||I0||∞ < ∞;

(iii) For θ ∈ Θ, E
(

sup||θ−θ0||≤ϵ

∣∣∣ ∂3lt(θ)
∂θi∂θj∂θk

∣∣∣) is bounded for all ϵ > 0 and i, j, k = 1, . . . , p.

In the sparse representation, the majority elements of the true parameter vector θ0

are exactly 0. Hence, we could partition θ0 into two sub-vectors. Let U0 be the set of
indices {j ∈ {1, . . . , p} : θ0

j ̸= 0} and θ0
U0

be the q-dimensional vector composed of the

nonzero elements {θ0
j ̸= 0 : j ∈ U0}. Similarly, we define θ0

U c
0

as a (p − q)-dimensional zero

vector. Without loss of generality, θ0 is stacked as θ0 = ((θ0
U0

)′, 0′) = ((θ0
U0

)′, (θ0
U c

0
)′). For

convenience, we define the average of the “score subvector” SU0,T(θ) and the “Hessian sub-
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matrix” HU0,T(θ) by sU0,t(θ) = ∂lt(θ)/∂θU0 and hU0,t(θ) = ∂2lt(θ)/∂θU0 ∂θ′U0
. Similarly, we

define SU c
0 ,T(θ). We also denote ST(θ

0) = ST(θ
0
U0

, 0) as S0
T .

Proposition 4. The quasi-log-likelihood function LT for the BEKK(1,1) has the following properties:

(i) For i = 1, . . . , p, E
(
|T · S0

T,i|
4) < ∞, where S0

T,i is the ith element of S0
T ;

(ii) For a sufficiently large T, −H0
U0,T is almost surely positive definite, and λmin(−H0

U0,T) =

Op(1);
(iii) There exists a neighborhood Θ0

U0
⊂ Θ of θ0

U0
such that, for all θ(1) and θ(2) ∈ Θ0

U0
and some

KT = Op(1),

||HU0,T(θ
(1), 0)− HU0,T(θ

(2), 0)|| ≤ KT ||θ(1) − θ(2)||.

Here, aT = Op(1) means that |aT | ≤ c with probability 1 when T → ∞ and c is a constant.
Proposition 4(i) shows that the fourth moment of the score function ST is always finite.
Proposition 4(ii) indicates that λmin(−H0

U0,T) is almost surely positive and bounded away
from 0. Hence, when the L1 penalty is combined with the quasi-likelihood function, the
concavity around θ0 can be ensured, so that a local maximizer can be obtained. Proposi-
tion 4(iii) is trivial in linear models, but not in our case. The proof of Proposition 4 is given
in Appendix A.

3.3. L1 Penalty Function and Penalized Quasi-Likelihood

Before discussing the consistency of the sparse estimator, we introduce the following
condition, by following the strong irrepresentable condition for LASSO-regularized linear
regression models in Zhao and Yu (2006).

Condition 2 (Irrepresentable condition). There exists a neighborhood Θ0
U0

⊂ Θ of θ0
U0

,
such that

sup
θ(1),θ(2)∈Θ0

U0

||[(∂/∂θT
U0

)SU c
0 ,T(θ

(1), 0)][HU0,T(θ
(2), 0)]−1||∞ ≤ c

for a constant c that takes its value in (0,1) almost surely.

Definition 1. The half of the minimum signal d is defined as

d(d = dT) =
1
2

min{|θ0
j | : θ0

j ̸= 0} =
1
2

min
j∈U0

|θ0
j |. (8)

Assume that pλ(x) is an L1 penalty function, i.e., pλ(|x|) = λ|x|. We consider the
following penalized quasi-likelihood (PQL):

QT(θ) = LT(θ)− PT(θ) (9)

in which PT(θ) = ∑
p
j=1 pλ(|θj|) = λ ∑

p
j=1 |θj| is the penalty term and λ(= λT) ≥ 0 is the

regularization parameter determining the size of the model. If θ̂ maxmizes the PQL, i.e.,

θ̂ = arg max
θ∈Θ

QT(θ).

we say that θ̂ is a penalized quasi-maximum likelihood estimator (PQMLE).
Similar to Fan and Lv (2011) and Uematsu (2015), we add some conditions on the

penalty function pλ(·) and the half minimum signal.

Condition 3. The penalty function pλ satisfies the following properties:
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(i) λ = min{O(T−α), o(q−
1
2 T−γ log T)} for some α ∈ (δ0 + γ, 1

2 −
δ0
4 ) , γ ∈ (0, 1

2 ] and large
T. Here, a = O( f (T)) means |a/ f (T)| is bounded by a constant and b = o(g(T)) means
|b/g(T)| → when T → ∞;

(ii) d ≥ T−γ log T for some γ ∈ (0, 1
2 ] and large T, where d is the half-minimum signal we

defined before.

4. Properties of the PQML Estimator and Implementation

This section studies the sparsity and the consistency of the PQML estimator and
discuss some implementation issues.

4.1. Sparsity of the PQML Estimator

First, we introduce three lemmas whose proofs are given in Appendix A. For conve-
nience, we denote Û := supp(θ̂), which is a set of indices corresponding to all nonzero
components of θ̂, where supp is the notation of support set and θ̂

Û
is a subvector of θ̂,

formed by its restriction to Û . Then, Û c represents a set of indices corresponding to all 0
components in θ̂. We also denote � as the Hadmard product.

Lemma 1. When the penalty function pλ satisfies Condition 3, θ̂ is a strict local maximizer of the
L1-PQL QT(θ) defined in (9) if

S
Û ,T(θ̂)− λT1 � sign(θ̂

Û
) = 0, (10)

||S
Û c ,T(θ̂)||∞ < λT , (11)

λmin[−H
Û ,T(θ̂)] > 0, (12)

in which 1 represents the vector with all elements equaling to 1 and sign(·) is as defined at the
beginning of Section 3.

To show the weak oracle property of the PQML estimator, we also need the follow-
ing lemma.

Lemma 2. Let wt be a martingale difference sequence with E|wt|m ≤ Cw for all t, where m > 2
and Cw is a constant. Then, we have

T− m
2 E
( T

∑
t=1

wt

)m
< ∞.

Then, the weak oracle property of the PQML estimator can be established by the
following theorem, whose proof is provided in Appendix A.

Theorem 1. (L1-PQML estimator) Under Conditions 2 and 3, for the L1 penalty function PT(θ) =
λ ∑

p
i=1 |θ|, in which p = O(Tδ) and q = O(Tδ0), if

δ ∈ [0, 4(
1
2
− α)), 0 < δ0 < min{2

3
(1 − 2γ), γ},

with α ∈ (δ0 + γ, 1
2 − δ0

4 ), γ ∈ (0, 1
2 ], and δ > δ0, then there exists a local maximizer θ̂ =

((θ̂U0)
′, (θ̂U c

0
)′)′ for QT(θ), such that the following properties are satisfied:

(i) (Sparsity) θ̂U c
0
= 0 with probability approaching one;

(ii) (Rate of convergence) ||θ̂U0 − θ0
U0

||∞ = Op(T−γ log T).

p = O(Tδ) is equivalent to p
Tδ ≤ c when T → ∞. The growth rate of p is controlled

by Tδ and q is slower than with Tδ0 . For example, to make this growth rate of q much
slower than p, we can find a set of values for δ = 3

2 , δ0 = 1
20 , γ = 1

30 , and α = 1
5 that satisfy
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the conditions above. Since, in our case, p ∼ O(n2), we have n = O(T
3
4 ) and, hence, it is

possible for n to exceed the sample size T. Although the difference between the rates of p
and n is not as large as that in (Fan and Lv 2011), in which log p = O(T1−2α) and q = o(T),
it is enough to be applied in most cases in practice.

4.2. Implementation and Selection of λ

To compute the whole regularization path of L1-PQML estimators, we note that
several algorithms have been proposed to solve penalized optimization problems. For
example, Efron et al. (2004) proposed the least-angle regression (LARS) algorithm to
compute an efficient solution to the optimization problem for LASSO. Later on, pathwise
coordinate descent methods were proposed to solve the LASSO-type problem efficiently;
see Friedman et al. (2007) and Wu and Lange (2008). For the PQML estimator, we used an
algorithm inspired by the BLasso algorithm (Zhao and Yu 2006, 2007) with some necessary
modifications since the BLasso algorithm does not need to explicitly calculate the first
derivatives and second derivatives of the likelihood function, which are complicated in our
case. We note that the original BLasso algorithm uses 0 as initial values for all parameters,
but the diagonal elements of A and B are positive by definition, so we make the following
modification. We set 0 as the initial values for all off-diagonal elements in A, B, and C, and
set the estimated values of fitting the component series into a univariate GARCH model as
the initial values of the diagonal elements in parameter matrices A, B, and C.

Another issue in the implementation is to select the tuning parameter λ, which leads
to the problem of model selection. The tuning parameter λ can be chosen by several
criteria. For example, it is usually easy to consider the Akaike information criterion (AIC),
the small-sample corrected AIC (AICC), and Bayesian information criterion (BIC) criteria
to select the tuning parameter. In addition, Wang et al. (2009) proposed a modified BIC
criterion and Fan and Tang (2013) extended it for the case p > T. Sun et al. (2013) proposed
using Cohen’s kappa coefficient, which measures the agreement between two sets. Another
method for model selection is to use cross-validation (CV). Zhang and Yang (2015) used
CV to choose the best model among model selection procedures such as AIC and BIC. In
our study, we apply the AIC and BIC criteria on the testing data and select the best tuning
parameters. Note that, since our data are ordered, k-fold CV is not applicable here and the
data are split in time order.

5. Simulation

In this section, we study the performance of the regularized BEKK models on some
simulated examples. Consider Model (3) with n = 4 and a = b = 1. Note that we then
have p = 42 parameters, as matrix C is lower triangular. We assume that the parameter
matrices satisfy the stationary condition, Condition 2, and, for identification purposes, we
assume that the diagonal elements in C are positive, a11 > 0, and b11 > 0. We consider
two cases for matrices A, B, and C, which are summarized in Table 1. In both cases, the
indices of nonzero elements in coefficient matrices A, B, and C are randomly generated. To
ensure that the matrices satisfy Condition 1, values of the diagonal elements in A and B are
randomly generated from a uniform distribution on U(−0.45, 0.45), and the off-diagonal
nonzero elements in A and B are generated from U(−0.5, 0.5). All the nonzero elements in
C are generated from U(−0.1, 0.1).

For each case, we simulate the data rt (1 ≤ t ≤ T) with T = 600, and then use
the proposed regularized procedure to make inference on the model. Since the diagonal
elements in A, B, and C cannot be zero, we do not shrink the diagonal elements in A, B,
and C. Additionally, we set the estimates of parameters in univariate GARCH models for
each component series as the initial values of diagonal elements in A, B, and C.
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To demonstrate the performance of our estimates, we consider three measurements. The
first is the success rate in estimating zero and nonzero elements in θ or parameter matrices:

τ0 =
∑

p
i=1 I(θ0

i = 0 ∧ θ̂i = 0)

∑
p
i=1 I(θ0

i = 0)
, τ0C =

∑
p
i=1 I(θ0

i ̸= 0 ∧ θ̂i ̸= 0)

∑
p
i=1 I(θ0

i ̸= 0)
.

The second measure is the root of mean squared errors, which is defined as ν = ||θ0 − θ̂λ||2.
The third measure is the Kullback–Leibler information, which is given by

κ =
1

2T

T

∑
t=1

(
|ΣtΣ̂−1

t | − log |ΣtΣ̂−1
t |
)

,

where Σ̂t = Ĉ′Ĉ + Ârt−1r′t−1 Â′ + B̂Σt−1B̂′. We run N = 500 simulations for each case, and
present the performance measures and their standard errors (in parentheses) for different
λs in Table 2.

Table 1. Parameter matrices in simulations.

Case 1 Case 2

A


0.1268 0 0.0358 −0.0618

0 0.1737 0 0
0 0 0.2621 0
0 0 0 0.4096




0.4040 −0.0200 0 0
0 0.4434 −0.0752 0
0 0 0.0406 0.0684
0 0 0 0.2226


B


0.4257 0 0 0

0 0.3008 0 0
0.0912 0 0.2868 0

0 0 0 0.0372




0.2453 0 0 0
0 0.2401 0 0

0.2398 0 0.2157 0
0 0 0 0.3996


C


0.0324 0 0 0

0 0.0681 0 0
0 0.0349 0.0469 0

0.0728 0 0 0.0739




0.0804 0 0 0
0 0.0473 0 0
0 0 0.0521 0

0.0200 0 0 0.0628


Table 2. Performance measures in two cases.

Case λ 6 5 4 3 2 1 0.64 0.32 0.16 0.08

1

τ0

0.988 0.988 0.984 0.981 0.974 0.954 0.934 0.890 0.841 0.756
(0.031) (0.031) (0.035) (0.037) (0.040) (0.046) (0.051) (0.058) (0.066) (0.083)

τ0C

0.755 0.755 0.767 0.786 0.814 0.821 0.822 0.834 0.864 0.897
(0.028) (0.033) (0.035) (0.036) (0.024) (0.014) (0.013) (0.026) (0.034) (0.038)

ν
0.151 0.151 0.150 0.147 0.142 0.133 0.132 0.131 0.128 0.125

(0.029) (0.029) (0.029) (0.029) (0.030) (0.032) (0.032) (0.031) (0.030) (0.029)

100κ
3.104 3.533 2.370 1.611 0.735 0.461 0.359 0.325 0.289 0.282

(6.463) (7.124) (5.471) (4.158) (1.051) (0.460) (0.356) (0.294) (0.242) (0.257)

2

τ0

0.985 0.985 0.983 0.977 0.960 0.918 0.889 0.841 0.805 0.767
(0.030) (0.030) (0.034) (0.034) (0.043) (0.048) (0.052) (0.052) (0.054) (0.065)

τ0C

0.740 0.742 0.745 0.752 0.759 0.766 0.765 0.767 0.768 0.782
(0.029) (0.029) (0.028) (0.025) (0.019) (0.011) (0.014) (0.013) (0.014) (0.030)

ν
0.151 0.151 0.151 0.149 0.145 0.136 0.136 0.135 0.132 0.126

(0.022) (0.022) (0.022) (0.021) (0.021) (0.023) (0.023) (0.022) (0.021) (0.022)

100κ
2.004 2.040 1.818 0.330 0.323 0.369 0.402 0.278 0.275 0.209

(8.525) (9.024) (7.710) (1.381) (1.936) (1.829) (2.388) (0.163) (0.163) (0.180)

To select the tuning parameter λ, we use the first 500 samples as the training data
and the last 100 samples as the test data. The training data are used to estimate model
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parameters θλ for a given λ, and the test data are used to choose the best λ, i.e., the one
that gives the minimum AICs and BICs. That is,

λ̂BIC = arg min
λ

BICλ, λ̂AIC = arg min
λ

AICλ,

in which the AICλ and BICλ are defined as

BICλ = −2LTtest(θ̂λ) +
k log(Ttest)

Ttest
AICλ = −2LTtest(θ̂λ) +

2k
Ttest

,

where, in this case, k = ∑
p
i=1 I(θ̂λ

i ̸= 0), Ttest = 100, and

LTtest(θ) =
1

2Ttest

600

∑
t=501

− (log[det(Σt)] + r′tΣ
−1
t rt).

Figure 1 shows the histograms of selected λs via BIC and AIC with CV for Cases 1 and 2.
In general, we can see from Figure 1 that λ is favored by BIC and AIC when its value is
between 0.64 and 2. However, slight differences between these two cases can be found. For
Case 1, λs around 1 are most favored by both BIC and AIC, while, for Case 2, λs around 1
and 2 are most favored by BIC and AIC, respectively.

Figure 1. Histograms of selected λ in Cases 1 (top) and 2 (bottom) via BIC (left) and AIC (right).

6. Real Data Applications

In this section, we use the regularized BEKK representation to study the volatility
spillover effect and find optimal Markowitz’s mean–variance portfolios. The data we
studied consist of daily log-returns of 18 stocks during the period 4 January 2016–31 January
2018, which are listed in Table 3 (NASDAQ Stock Symbols n.d.). Figure 2 shows the time
series of these 18 stocks and Table 4 summarizes the sample mean, the sample standard
deviation, the sample skewness, the sample kurtosis, and the correlations of these 18 series.
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All the correlations are positive for every two stocks in the selected period, and, except for
IPG, all the stocks have a positive mean. The sample kurtosis for some stocks is way larger
than 3, which indicates that we cannot simply assume that those returns are following
normal distributions individually. Hence, it is natural to employ a suitable time series
model to examine the data.

Table 3. Full names of 18 tickers.

Ticker Company Ticker Company

GOOG Alphabet Inc., Mountain View, CA, USA GWW W.W. Grainger, Inc., Lake Forest, FL, USA

IBM International Business Machines Corporation, Armonk, NY, USA JPM JPMorgan Chase & Co., New York, NY, USA

MSFT Microsoft Corporation, Redmond, WA, USA NKE Nike Inc., Beaverton, OR, USA

ORCL Oracle Corporation, Austin, TX, USA TIF Tiffany & Co., New York, NY, USA

IPG The Interpublic Group of Companies, New York, NY, USA MAS Masco Corporation, Livonia, MI, USA

MCD Mcdonald’s Corp., Chicago, IL, USA NFLX Netflix, Inc., Los Gatos, CA, USA

RL Ralph Lauren Corporation, New York, NY, USA TXT Textron Inc., Providence, RI, USA

LNC Lincoln National Corporation, Radnor, PA, USA MRO Marathon Oil Corporation, Houston, TX, USA

TGT Target Corporation, Minneapolis, MN, USA WMT Walmart Inc., Bentonville, AR, USA
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Figure 2. Daily returns of 18 stocks from 4 January 2016 to 31 January 2018.
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Table 4. Correlation and statistical features of 18 stocks for 2016–2017.

GOOG GWW IBM JPM MSFT NKE ORCL TIF IPG MAS MCD NFLX RL TXT LNC MRO TGT WMT

Mean 7.037 ×
104

5.164 ×
104

4.297 ×
104

1.150 ×
103

1.033 ×
103

1.420 ×
104

6.439 ×
104

8.143 ×
104

−7.648
× 105

1.029 ×
103

8.891 ×
104

1.304 ×
103

1.610 ×
104

7.103 ×
104

1.148 ×
103

1.217 ×
103

5.523 ×
105

1.116 ×
103

Std. Dev. 0.013 0.016 0.011 0.013 0.012 0.014 0.012 0.015 0.015 0.014 0.009 0.023 0.021 0.015 0.019 0.034 0.017 0.012

Skewness −0.440 0.124 0.291 0.348 0.040 0.509 0.097 −0.391 −1.779 −0.456 0.005 0.635 −2.332 −1.438 −0.779 0.640 −1.108 2.291

Kurtosis 6.120 16.399 14.446 8.907 8.926 11.683 15.022 6.274 16.842 9.409 9.640 17.196 33.455 17.970 10.830 7.383 13.600 24.910

GOOG 0.04 0.24 0.26 0.67 0.28 0.36 0.22 0.28 0.33 0.29 0.44 0.15 0.23 0.27 0.11 0.06 0.13

GWW 0.38 0.34 0.13 0.17 0.16 0.24 0.29 0.27 0.03 0.06 0.09 0.34 0.28 0.21 0.16 0.09

IBM 0.38 0.30 0.15 0.42 0.27 0.30 0.31 0.12 0.13 0.15 0.39 0.37 0.19 0.15 0.14

JPM 0.37 0.23 0.38 0.41 0.31 0.44 0.23 0.19 0.28 0.52 0.78 0.36 0.16 0.09

MSFT 0.26 0.45 0.29 0.29 0.38 0.35 0.36 0.19 0.32 0.33 0.20 0.08 0.12

NKE 0.20 0.23 0.30 0.30 0.18 0.18 0.33 0.23 0.30 0.12 0.27 0.16

ORCL 0.34 0.26 0.36 0.26 0.26 0.15 0.30 0.35 0.19 0.09 0.12

TIF 0.23 0.33 0.14 0.18 0.25 0.33 0.42 0.26 0.27 0.11

IPG 0.38 0.09 0.12 0.21 0.26 0.32 0.15 0.21 0.10

MAS 0.28 0.23 0.26 0.36 0.46 0.20 0.24 0.12

MCD 0.14 0.13 0.12 0.16 0.07 0.09 0.16

NFLX 0.10 0.22 0.19 0.07 0.02 0.09

RL 0.22 0.35 0.16 0.31 0.09

TXT 0.53 0.26 0.17 0.09

LNC 0.39 0.19 0.05

MRO 0.08 0.04

TGT 0.36
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6.1. Volatility Spillovers

To use the MGARCH–BEKK representation to analyze the market, consisting of
18 stocks, we should realize that certain types of regularization or shrinkage are nec-
essary, due to the complexity of the volatility dynamics. In particular, we use the pro-
posed L1-regularized BEKK(1,1) model and procedure to study the volatility spillover
among the 18 stocks. We first compute the PQML estimates of the model for different
λs. Figure 3 shows the estimated structures of estimated coefficient matrices Âλ and B̂λ

for λ = 4, 2, 1, 0.5, 0.3, in which the nonzero values of Âλ and B̂λ are represented as the
directional lines among stocks. Since matrices A and B in the model are not symmetric
before the quadratic forms, we use the directional lines to distinguish the nonzero elements
between upper-diagonal and lower-diagonal elements. Specifically, if aij ̸= 0, the direc-
tional line progresses from i to j. As the PQML estimates Âλ and B̂λ tell us the significant
interdependence and contagion effects of the 18 stocks, the network structures in Figure 3
provide a clear representation on volatility spillover. Furthermore, we notice that, for some
moderate values of λ, for example, λ = 0.5, Âλ is very sparse, whereas B̂λ demonstrates
more interdependence among stocks. When larger values of λ are used in the regularization
procedure, the PQML estimates Âλ are quickly shrunk into diagonal matrices, and B̂λ also
become more sparse than for the case λ = 0.5.
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Figure 3. The network structure of estimated matrices A (top) and B (bottom) under different λs.

Using the PQML estimates of Âλ, B̂λ, and Ĉλ and the BEKK(1, 1) representation, we
compute the estimated volatilities and the dynamic correlations among 18 stocks. Figure 4
shows the volatilities estimated by the regularized BEKK(1,1) model with λ = 2, 0.5 and
univariate GARCH models. Note that most volatility series estimated by the three models
are similar, except for stocks NFLX, ORCL, and TIF. We also show the estimated dynamic
correlations among 18 stocks in a regularized BEKK(1,1) model with λ = 1 in Figure 5. We
note that most correlations among the 18 stocks are positive during the sample period.
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Figure 4. Estimated volatilities by regularized BEKK(1,1) with λ = 2 (red lines), λ = 0.5 (blue lines),
and univariate GARCH models (green lines).

To show the overall volatility spillover, we extend the idea of the spillover index in

Diebold and Yilmaz (2009). Specifically, note that E[ϵt+1ϵ′t+1] = Σt+1 = Σ
1
2
t+1(Σ

1
2
t+1)

′, where

Σ
1
2
t+1 is the unique lower-triangular Cholesky factor of Σt+1. We denote elements of Σ

1
2
t by

σ1
2 ,i,j,t; then, the Spillover Index St+1 is defined as

St+1 =
∑n

i,j=1,i ̸=jσ̂
2
1
2 ,i,j,t+1

trace(Σ̂t+1)
× 100%,
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where n is the number of stocks, which is equal to 18. We plot the daily spillover indices of
18 stocks for λ = 2 and 0.5. The spillover indices during the sample period vary between
5% and 80%, and smaller λs seem to generate more correlations among stocks. In particular,
three big spikes can be found on 4 February 2016, 24 June 2016, and 9 November 2016.
In addition to finding the PQML estimates for different λs, we also find the whole Ł1
regularization path. Note that the number of parameters in the BEKK(1,1) model for
18 stocks is p = 819, and we only show the regularized path for 819 − 18 × 3 = 765
off-diagonal elements in Âλ, B̂λ, and Ĉλ. And both plots are shown in Figure 6.
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Figure 6. Daily spillover index (top) and regularization paths of estimated off-diagonal parameters in
BEKK regularization Model represented by different colors (bottom).

6.2. Portfolio Optimization

We further apply the regularized BEKK model to Markowitz mean–variance port-
folio optimization (Markowitz 1952). Using portfolio variance as a measure of the risk,
Markowitz portfolio optimization theory provides an optimal pay-off between the profit
and the risk. Since the means and covariance matrix of assets are assumed to be known
in the theory, they need to be estimated before being plugged into the framework. For
high-dimensional portfolios, regularized methods are commonly used to achieve better
performance. For instance, Brodie et al. (2009) and Fastrich et al. (2015) used an L1 penalty
function for sparse portfolios, and Di Lorenzo et al. (2012) used a concave optimization-
based approach to estimate the optimal portfolio. In our case, we use the regularized BEKK
model to predict the covariance matrices in the next period, and then apply Markowitz
portfolio theory to find the optimal portfolios.

In particular, we assume that the portfolio consists of n = 18 risky assets and denote
µt and Σt as the mean and covariance matrix, respectively, of the n risk assets at time t. Let
1 = (1, . . . , 1)′ be an n-dimensional vector of ones. Markowtiz mean–variance portfolio
theory minimizes the variance of the portfolio minwt w′

tΣtwt, subject to the constraint
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w′
t1 = 1 and w′

tµt = µ∗, where µ∗ is the target return. When short selling is allowed, the
efficient portfolio can be explicitly expressed as

weffi,t =
b̃
d̃

Σ−1
t 1 − ã

d̃
Σ−1

t µt + µ∗
( c̃

d̃
Σ−1

t µt −
ã
d̃

Σ−1
t 1

)
,

where ã = µtΣ−1
t 1, b̃ = µ′

tΣtµt, c̃ = 1′Σt1, and d̃ = b̃c̃ − ã2. When the target return µ∗ is
chosen to minimize the variance of the efficient portfolio, we obtain the global minimum
variance (GMV) portfolio:

wminvar,t = Σ−1
t 1

/(
1′Σt1

)
.

For comparison purposes, we also use another three multivariate volatility models to
predict the covariance matrices of n = 18 stocks. The first is very simple, and it assumes a
constant covariance matrix for n stocks. The second is a factor-GARCH model (Alexander
2000; Engle 1990; van der Weide 2002; Vrontos et al. 2003), which assumes the following for
asset return vector rt, factors ft, and volatilties of k independent factors:

rt = W ft, Cov( ft) = Σt = diag{σ2
1t, σ2

2t, . . . , σ2
kt},

σ2
it = 1 + βix2

i,t−1 + γiσ
2
i,t−1,

where W is a k × k lower-triangular matrix with diagonal elements equal to 1 and
xt = (x1t, . . . , xkt)

′ is a vector of k independent factors. The third covariance model is
a dynamic conditional correlation GARCH (DCC–GARCH) model (Engle 2002), which has
the form

rt = Σ
1
2
t ϵt, ϵt ∼ N(0, In), Σt = DtRtDt,

Qt = (1 − α − β)C + αst−1s′t−1 + βQt−1, Rt = diag(Qt)
− 1

2 Qtdiag(Qt)
− 1

2 ,

where Dt = diag(d1t, . . . , dnt), si,t = ri,t/di,t, st = (s1,t, . . . , sT,t)
′, and Rt is the conditional

correlation matrix at time t, that is, Rt = Corr(rt|Ft−1). And C is the unconditional
correlation matrix, i.e., C = E(Rt). The matrix Qt can be interpreted as a conditional
covariance matrix of devolatilized residuals. For the dynamics of the univariate volatilities,
di,ts are assumed to follow a GARCH(1,1) process:

di,t = ωi + air2
i,t−1 + bid2

i,t−1,

where (wi, ai, bi) are GARCH(1,1) parameters.
Let t = 2 January 2018, . . . , 31 January 2018; we first fit 4 covariance models to the

returns of 18 stocks from 4 January 2016 to t, and then compute the 1-day-ahead prediction
of covariance matrices. Using the predicted covariance matrices, we compute the efficient
portfolios wminvar,t+1 and weffi,t+1 for µ∗ = 0.15%, 0.10%, and 0.05%. Table 5 shows the
means, standard deviations (SD), and the information ratios (IR, i.e., ratio of means and
standard deviations) for realized portfolio returns in the month of January 2018. As argued
by Engle and Colacito (2006) and Engle et al. (2019), these statistics are good measurements
of the out-of-sample performance of Markowitz portfolios. As DeMiguel et al. (2007)
claimed that it is difficult to outperform equally weighted portfolios in terms of the out-
of-sample mean for Markowitz portfolios, we also include the performance of equally
weighted portfolios as a benchmark in Table 5. We note that all the means generated from
four covariance models are smaller than that from equally weighted portfolios (0.430%),
and the standard deviations of covariance models, except the factor GARCH, are smaller
than that of equally weighted portfolios. Notably, the regularized BEKK model consistently
maintains the second-best mean performances at 0.39%, 0.352%, 0.382%, and 0.416% for
GMV, and µ∗ values of 0.15%, 0.10%, and 0.05%. However, the information ratio of the
regularized BEKK model surpasses that of all other portfolios. It achieves the highest values
across all scenarios—0.601, 0.540, 0.654, and 0.657—for GMV and µ∗ = 0.15%, 0.10%, and
0.05%. These results show the robustness and efficiency of the regularized BEKK model in
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portfolio optimization, consistently delivering competitive mean performance and superior
risk-adjusted returns compared to other covariance models.

Table 5. Performance of portfolios using different covariance models.

Model Mean (%) SD. (%) IR Mean (%) SD. (%) IR

Equally weighted 0.430 0.761 0.565
GMV µ∗ = 0.15%

Regularized BEKK 0.390 0.650 0.601 0.352 0.652 0.540

Factor GARCH 0.326 0.885 0.368 0.223 1.200 0.186

DCC–GARCH 0.244 0.665 0.367 0.302 0.677 0.446

Constant covariance 0.261 0.658 0.397 0.165 0.777 0.212

µ∗ = 0.10% µ∗ = 0.05%

Regularized BEKK 0.382 0.585 0.654 0.416 0.633 0.657

Factor GARCH 0.210 1.169 0.180 0.221 1.321 0.167

DCC–GARCH 0.286 0.631 0.452 0.316 0.660 0.479

Constant covariance 0.219 0.669 0.327 0.273 0.668 0.409

7. Discussion and Conclusive Remarks

Modeling the dynamics of high-dimensional covariance matrices is an interesting
and challenging problem in both financial econometrics and high-dimensional time series
analysis. To address this issue, this paper proposes an inference procedure with L1 regu-
larization for the sparse representation of high-dimensional BEKK and to obtain a class
of penalized quasi-maximum likelihood estimators. The proposed regularization allows
us to find significant parameters in the BEKK representation and shrink the non-essential
ones to zero, hence providing a sparse estimate of the BEKK representations. We show that
the sparse BEKK representation has suitable theoretical properties and is promising for
applications in portfolio optimization and volatility spillover.

The proposed sparse BEKK representation also contributes to the application of ma-
chine learning methods in time series modeling. As most discussion on applying regular-
ization methods to time series modeling focuses on regularizing high-dimensional vector
autoregressive models and their variants (Nicholson et al. 2017; Sánchez García and Cruz
Rambaud 2022), it seems that the sparse representation of dynamics of high-dimensional
variance–covariance matrices has been ignored in the literature. While obtaining a sparse
representation of the dynamics within high-dimensional variance–covariance matrices
is crucial to enhance interpretability in time series modeling, our study bridges this gap
by considering a basic L1 regularization method. One obvious extension from our cur-
rent study is to replace the L1 penalty with other types of penalty for high-dimensional
MGARCH models, for instance, the SCAD penalty (Fan and Li 2001), the adaptive LASSO
(Zou 2006), and the group LASSO (Yuan and Lin 2006). With different types of penalty
functions, one can regularize the assets in the model with different requirements, hence
causing the estimates to have different kinds of asymptotic properties.

As the proposed sparse BEKK representation simplifies the dynamics of covariance
matrices of high-dimensional time series, it has advantages over existing MGARCH models
in some financial applications. In particular, the sparse BEKK representation can capture
significant volatility spillover effects in high-dimensional financial time series, which usu-
ally cannot be analyzed using other MGARCH models. Since significant volatility spillover
is captured, the proposed method also improves the performance of portfolio optimization
based on the dynamics of high-dimensional covariance matrices. The proposed procedure
can certainly be extended to incorporate more empirical aspects of financial time series.
Taking the leverage effect as an example, one may modify the regularization procedure to
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obtain sparse representation of high-dimensional multivariate exponential or threshold
GARCH models.

Although the proposed framework shows advantages in modeling dynamics of high-
dimensional covariance matrices, the computational challenge is not completely resolved.
The main reason is that the proposed inference procedure involves a step of computing
derivatives via the Kronecker product of parameter matrices. Since the Kronecker product
turns two n× n matrices into an n2 × n2 matrix, the requirement for computational memory
resources increases significantly. Hence, the proposed procedure is suitable for problems in
which the number of component time series ranges from several to 100. If the number of
assets progresses beyond 200, the computational cost is still a major concern. One possible
remedy for this is training a neural network to approximate the regularized likelihood of
the high-dimensional model. In such a way, the proposed regularization using the high-
dimensional MGARCH model can be extended to characterize the dynamics of covariance
matrices of larger size.
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Appendix A. Proofs of Propositions, Lemmas, and Theorems

Appendix A.1. Proof of Propostion 2

Let Rt,C, and Σ∗
t be defined by

Rt = (vech(rtr′t)
′, . . . , vech(rt−m+1r′t−m+1)

′)′, Σ∗
t = (vech(Σt)

′, . . . , vech(Σt−m+1)
′)′,

where m = max(a, b), and let

C = (vech(C′C)′, 0, . . . , 0)′,
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with dimensions mn(n + 1)/2 .

Define A =



Ã1 . . . . . . . . . Ãm
I 0 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 I 0

 and B =



B̃1 . . . . . . . . . B̃m
I 0 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 I 0

,

with convention Ãi = 0 if i > a and B̃i = 0 if i > b. Then, the model can be written as

Σ∗
t = C+ ARt + BΣ∗

t−1 =
t−1

∑
k=0

[Bk(θ)C(θ)] + Bt(θ)Σ∗
0 +

t−1

∑
k=0

Bk(θ)A(θ)LkRt−1(θ0)

where L is the backshift operator Lrt = rt−1. Here, Σ∗
0 is fixed and Rt depends on θ0 but is

not a function of θ. Then, we have

∂Σ∗
t

∂θi
=

∂

∂θi
(

t−1

∑
k=0

B̃kC) +
∂

∂θi
(B̃t)Σ∗

0 +
∂

∂θi
(

t−1

∑
k=0

B̃k ÃL)Rt−1 (A1)

Since
∂B̃k

∂θ
=

k−1

∑
j=0

B̃j ∂B̃
∂θj

B̃k−1−j,

we have ∥∥∥∥∥Bj ∂B
∂θj

Bk−1−j

∥∥∥∥∥ ≤ ||Bj||
∥∥∥∥ ∂B

∂θi

∥∥∥∥||Bk−1−j||, j = 0, . . . , k − 1.

Applying Lemma A.3. from Comte and Lieberman (2003), ||Bk|| ≤ Ψkn0 ρk
0 for all k,

we have ∥∥∥∥∥Bj ∂B
∂θj

Bk−1−j

∥∥∥∥∥ ≤ Ψ2kn0 ρk
0

∥∥∥∥ ∂B
∂θi

∥∥∥∥.

in which n0 is a fixed number, Ψ is a constant independent of θ, and −1 < ρ0 < 1.
To bound (A1), there are three terms to bound:

∥∥∥∥∥ ∂

∂θi
(

t−1

∑
k=0

B̃kC)

∥∥∥∥∥ =

∥∥∥∥∥t−1

∑
k=1

∂B̃k

∂θi
C+

t−1

∑
k=0

B̃k ∂C

∂θi

∥∥∥∥∥ ≤

t−1

∑
k=1

∥∥∥∥∥∂B̃k

∂θi

∥∥∥∥∥|||C||+ t−1

∑
k=0

||B̃k||
∥∥∥∥ ∂C

∂θi

∥∥∥∥
≤ Ψ2||C||

t−1

∑
k=1

kn0 ρk
0

∥∥∥∥∥ ∂B̃
∂θi

∥∥∥∥∥+ Ψ
∥∥∥∥ ∂C

∂θi

∥∥∥∥t−1

∑
k=0

kn0 ρk
0

≤ π(n0)Ψ
(
Ψ||C|| ·

∥∥∥∥∥ ∂B̃
∂θi

∥∥∥∥∥+
∥∥∥∥ ∂C

∂θi

∥∥∥∥),
using ∑t−1

k=0kn0 ρk
0 ≤ ∑t

k=0kn0 ρk−1
0 ≤ ∑∞

k=0kn0 ρk−1
0 = π(n0), where π(n0) is a constant that

only depends on n0. And, if ρ0 = 0, this term is then easily bounded because B̃ is the
nilpotent and all sums are finite. In the same way,∥∥∥∥ ∂

∂θi
(B̃t)Σ∗

0

∥∥∥∥ ≤ Ψπ(n0)

∥∥∥∥∥ ∂B̃
∂θi

∥∥∥∥∥||Σ∗
0 ||.

Finally,
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|| ∂

∂θi
(

t−1

∑
k=0

B̃kLk Ã)Rt−1|| ≤ ||
t−1

∑
k=0

(
∂

∂θi
B̃kLk Ã)Rt−1||+ ||[

t−1

∑
k=0

B̃kLk(
∂

∂θi
Ã)Rt−1||.

Denote the first and second sums on the right-hand side of the inequality as T1 and T2,
respectively, we have

||T1|| ≤ Ψ2
( t−1

∑
k=1

kn0+1ρk−1
0 ||Ã|| · ||Rt−k−1||

)
· || ∂B̃

∂θi
||

≤ Ψ2||Ã|| · || ∂B̃
∂θi

|| ·
( t−1

∑
k=1

kn0+1ρk−1
0

)
· sup

t
||Rt|| ≤ π(n0 + 1)Ψ2||Ã|| · || ∂B̃

∂θi
|| · sup

t
||Rt||,

and

||T2|| ≤ Ψ2π(n0)||
∂Ã
∂θi

||sup
t
||Rt||.

By our assumption, ||C||, || ∂C
∂θi

||, ||Ã||, || ∂Ã
∂θi

||, || ∂B̃
∂θi

||, ||Σ∗
0 || are all bounded. And there exists

a constant w such that || ∂Σ∗
t

∂θi
|| = m|| ∂Σt

∂θi
||. Hence,

||∂Σt

∂θi
|| ≤ Ψ1 + Ψ2sup

t
||Rt||.

where Ψ1 = Ψπ(n0)(Ψ||C|| · || ∂B̃
∂θi

|| + || ∂C
∂θi

||) + Ψπ(n0)|| ∂B̃
∂θi

|| · ||Σ∗
0 ||, and Ψ2 = Ψ2π

(n0 + 1)||Ã|| · || ∂B̃
∂θi

||+ Ψ2π(n0)|| ∂Ã
∂θi

||. □

Appendix A.2. Proof of Proposition 4

As ∂lt(θ)
∂θi

= Tr( ∂Σt
∂θi

Σ−1
t − rtr′tΣ

−1
t

∂Σt
∂θi

Σ−1
t ), where Tr(·) denote the trace of a matrix,

and E[rtr′t|Ft−1] = Σt, we, hence, have E[ ∂lt(θ)
∂θi

|Ft−1] = 0, which means that ∂lt(θ)
∂θi

is a martingale difference. Then, we want to prove that E[|T1/2T−1 ∑t=1 T ∂lt(θ0)
∂θi

|m] =

E[|T−1/2 ∑T
t=1

∂lt(θ0)
∂θi

|m] < ∞ holds for m = 4. By Lemma 2, this proof is thus completed if

we show that E[| ∂lt(θ0)
∂θi

|4] < ∞. By Proposition 2,
∥∥∥ ∂Σt

∂θi

∥∥∥ ≤ Ψ1 + Ψ2 sup ||vech(rtr′t)||. Since∥∥∥∥∂Σt

∂θi
Σ−1

t − rtr′tΣ
−1
t

∂Σt

∂θi
Σ−1

t

∥∥∥∥ =

∥∥∥∥(I − rtr′tΣ
−1
t )

∂Σt

∂θi
Σ−1

t

∥∥∥∥
≤ ||(I − rtr′tΣ

−1
t )||

∥∥∥∥∂Σt

∂θi
Σ−1

t

∥∥∥∥ ≤ ||(I − rtr′tΣ
−1
t )||

∥∥∥∥∂Σt

∂θi

∥∥∥∥||Σ−1
t ||,

it is equivalent to show that

E

[∣∣∣∣∂lt(θ0)

∂θi

∣∣∣∣4
]
= E

[
Tr4
(

∂Σt

∂θi
Σ−1

t − rtr′tΣ
−1
t

∂Σt

∂θi
Σ−1

t

)]
< ∞.

Since Tr(AB) ≤ ||A|| · ||B|| and ||Σ−1
t || is finite, there exists a constant M such that

||Σ−1
t || ≤ M for all t. Additionally, ||(I − rtr′tΣ

−1
t )|| ≤ ||I|| + ||rtr′t|| · ||Σt||−1 ≤ 1 +

M||rtr′t||, then

Tr
(

∂Σt

∂θi
Σ−1

t − rtr′tΣ
−1
t

∂Σt

∂θi
Σ−1

t

)
≤ ||(I − rtr′tΣ

−1
t )||||Σ−1

t ||
∥∥∥∥∂Σt

∂θi

∥∥∥∥
E
[

Tr4
(

∂Σt

∂θi
Σ−1

t − rtr′tΣ
−1
t

∂Σt

∂θi
Σ−1

t

)]
≤ E[(1+ M sup ||rtr′t||)4(Ψ1 +Ψ2sup

t
||vech(rtr′t)||)4].
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Because ||A|| ≤ ||vech(A)|| ≤ rank(A)||A||, there exists a constant k such that ||rtr′t|| =
k||vech(rtr′t)||. Hence, if we let ||vech(rtr′t)|| = ||Rt||,

E[(1 + Msup
t
||rtr′t||)4(Ψ1 + Ψ2sup

t
||Rt||)4]

= E[(1 + kMsup
t
||Rt||)4(Ψ1 + Ψ2sup

t
||Rt||)4] = E(

8

∑
i=0

ai||Rt||i)

where ais are constants. Since rt ∼ Σ
1
2
t ϵt, where ϵts follow a normal distribution, rts,

hence, admit 16 moments of order. Hence, E||Rt||i < ∞, for i from 0 to 8. Hence,

E(∑8
i=0ai||Rt||i) < ∞; then, E[| ∂lt(θ0)

∂θi
|4] < ∞.

Next, we check (c) and (d). (c) is clear, as we said before. By (III) in Lemma 1, the
derivative of HU0,T(θ) is bounded. By the mean-value theorem,

vec(HU0,T(θ
(1), 0)− HU0,T(θ

(2), 0)) =
∂HU0,T(θ, 0)

∂θ

∣∣∣
θ=θ∗

· (θ(1) − θ(2)).

Hence,

||HU0,T(θ
(1), 0)− HU0T(θ

(2), 0)|| ≤ ||vec(HU0,T(θ
(1), 0)− HU0,T(θ

(2), 0)||

=

∥∥∥∥∥∂HU0,T(θ, 0)

∂θ

∣∣∣
θ=θ∗

· (θ(1) − θ(2))

∥∥∥∥∥ ≤
∥∥∥∥∂HU0,T(θ, 0)

∂θ

∣∣∣
θ=θ∗

∥∥∥∥ · ||θ(1) − θ(2)||

≤ K̃||θ(1) − θ(2)||

where K̃ is bounded by (iii) in Proposition 3. Hence, K̃ = Op(1) and θ∗ lies between θ(1)

and θ(2).
Next, we verify (e) with β = δ0/2. For every i ∈ {1, . . . , p}, it is sufficient to

show that max||v||=1 |(H0
i1,T , . . . , H0

iq,T)v| = Op(Tδ0/2) for a vector v ∈ Rq. Using the
Cauchy–Schwarz inequality and property of the norm, the left-hand side is bounded
by ||(H0

i1,T , . . . , H0
iq,T)|| ≤ q1/2 max1≤j≤q |Hij,T |. Since, from (I) and (II) in Lemma 1, H0

ij,T =

Op(1) and q = O(Tδ0), the result follows. □

Appendix A.3. Proof of Lemma 1

First, consider the PQL QT(θ), as defined in (5), in the constrained ||θ̂||0-dimensional
subspace S := {θ ∈ Rp : θc = 0} of Rp, where θc denotes the subvector of θ formed by
the components in Û c. It follows from (12) that QT(θ) is strictly concave in a ball N0 ∈ S
centered at θ̂. This, along with (10), entails that θ̂, as a critical point of QT(θ) in S, is the
unique maximizer of QT(θ) in N0.

Now, we show that θ̂ is indeed a strict local maximizer of QT(θ) on the whole space
Rp. Take a small ball N1 ⊂ Rp centered at θ̂ such that N1 ∩ S ⊂ N0. We then need to show
that QT(θ̂) > QT(γ1) for any γ1 ∈ N1 \N0. Let γ2 be the projection of γ1 onto S, such that
γ2 ∈ N0. Thus, it suffices to prove that QT(γ2) > QT(γ1). By the mean value theorem,
we have

QT(γ1)− QT(γ2) =
∂QT(γ0)

∂γT (γ1 − γ2),

where the vector γ0 lies between γ1 and γ2. Note that the components of γ1 − γ2 are zero
for their indices in Û and (γ0j) = sgn(γ1j) for j ∈ Û c. Therefore, we have

∂QT(γ0)

∂γT (γ1 − γ2) = ST(γ0)
T(γ1 − γ2)− λT [1 � sgn(γ0)]

T(γ1 − γ2)

= S
Û cT(γ0)

Tγ1Û c − λT ∑
j∈Û c

|γ1j| (A2)
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where γ1Û c is a subvector of γ1 formed by the components in Û c. By (10), there exists
some δ > 0 such that, for any θ in a ball in Rp centered at θ̂ with radius δ,

||S
Û cT(θ)||∞ < λT (A3)

We further shrink the radius of ball N1 to less than δ, so that |γ0j| ≤ |γ1j| < δ for
j ∈ Û c and (A3) holds for any θ ∈ N1. Since γ0 ∈ N1, it follows from (A3) that (A2) is
strictly less than

λT ||γ1Û c ||1 − λT ||γ1Û c ||1 = 0

Since ||S
Û cT(γ0)||∞ < λT , S

Û cT(γ0)
Tγ1Û c ≤ λT ||γ1Û c ||1, and

λT ∑
j∈Û c

|γ1j| ≥ λT ∑
j∈Û c

|γ1j| = λT ∑
j∈Û c

||γ1Û c ||1.

we have ∂QT(γ0)
∂γT (γ1 − γ2) ≤ 0 and QT(γ1) ≤ QT(γ2). □

Appendix A.4. Proof of Lemma 2

A Marcinkiewicz-–Zygmund inequality for martingales (Rio 2017) states that

E(
T

∑
t=1

wt)
m ≤ {4m(m − 1)}m/2T(m−2)/2

T

∑
t=1

E|wt|m (A4)

holds for m > 2 . Because E|wt|m ≤ Cw for all t, we have

T−m/2E(
T

∑
t=1

wt)
m ≤ {4m(m − 1)}m/2T−1

T

∑
t=1

E|wt|m ≤ {4m(m − 1)}m/2Cw. (A5)

Thus, the result follows. □

Appendix A.5. Proof for Theorem 1

For notational simplicity, we write, for example, QT(((θU0)
′, (θc

U0
)′)′) as QT(θU0 , θc

U0
).

Consider events

E 1
T = {||S0

U0,T ||∞ ≤ (q1/2/T)1/2log1/4T}, E 2
T = {||S0

U c
0 ,T ||∞ ≤ λlog−1T},

where q = O(Tδ0) and λ = O(T−α). It follows from Bonferroni’s inequality and Markov’s
inequality, together with Proposition 4(i), that

P(E 1
T ∩ E 2

T ) ≥ 1 − ∑
i∈U0

P(|T1/2S0
i,T | > q1/4(log T)1/4)− ∑

i∈U c
0

P(|T1/2S0
i,T | > T1/2−α)

≥ 1 −
max
i∈U0

E(|T1/2S0
i,T |

4)

q log T
− (p − q)

max
i∈U c

0

E(|T1/2S0
i,T |

4)

T4(1/2−α)(log T)−4

= 1 − O(log−1 T)− O(Tδ−4(1/2−α)(log T)4), (A6)

where the last two terms are o(1) because of the condition δ < 4(1/2 − α). Under the event
E 1

T ∩ E 2
T , we will that there exists a solution θ̂ ∈ Rp to (10)–(12) with sgn(θ̂) = sgn(θ0) and

||θ̂ − θ0||∞ = O(T−γ log T) for some γ ∈ (0, 1/2].
First, we prove that, for a sufficiently large T, Equation (10) has a solution θ̂U0 inside

the hypercube N = {θU0 ∈ Rq : ||θU0 − θ0
U0

||∞ = T−γ log T}, when we suppose Û = U0.
Define the function Ψ : Rq → Rq by

Ψ(θU0) = SU0,T(θU0 , 0)− λ1 � sgn(θU0). (A7)
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Then, (10) is equivalent to Ψ(θ̂U0) = 0. To show that the solution is in the hypercube
N, we expand Ψ(θU0) around θ0

U0
. Function (A7) is written as

Ψ(θU0) = S0
U0,T + HU0T(θ

∗
U0

, 0)(θU0 − θ0
U0

)− λ1 � sgn(θU0)

= H0
U0,T(θU0 − θ0

U0
) + [S0

U0,T − λ1 � sgn(θU0)] + [HU0,T(θ
∗
U0

, 0)− HU0,T ](θU0 − θ0
U0

)

= H0
U0,T(θU0 − θ0

U0
) + vT + wT (A8)

where θ∗U0
lies on the line segment that joins θU0 and θ0

U0
. Since the matrix H0

U0
is invertible

by Proposition 4(ii), (A8) is further written as

Ψ̃(θU0) := (H0
U0,T)

−1Ψ(θU0) = θU0 − θ0
U0

+ (H0
U0,T)

−1vT + (H0
U0,T)

−1wT

= θU0 − θ0
U0

+ ṽT + w̃T (A9)

We now derive bounds for the last two terms in (A8). We consider ṽT first. For any θU0 ∈ N,

min
j∈U0

|θj| ≥ min
j∈U0

|θ0
j | − dT = dT ≥ T−γ log T (A10)

by Condition 3(ii), and sgn(θU0) = sgn(θ0
U0

). Using Condition 3(i), we have

||λ1 � sgn(θU0)||∞ = λ ≤ o(q−1/2T−γ log T).

This, along with the property of matrix norms and Proposition 4(ii), entails that, during the
event E 1

T ,

||ṽT ||∞ = ||H0−1
U0T [S

0
U0T − λ1 � sgn(θU0)]||∞

≤ ||H0−1
U0T ||∞||S0

U0T − λ1 � sgn(θU0)||∞
≤ q1/2||H0−1

U0T ||(||S
0
U0T ||∞ + ||λ1 � sgn(θU0)||∞)

≤ q1/2Op(1)((q2/4/T)1/2(log T)1/2 + o(q−1/2T−γ log T)) (A11)

= op(T−γ log T)

where the last equality follows from q = O(Tδ0) and δ0 < 2
3 (1 − 2γ). Next, we consider w̃T .

By the property of norms and Propositions 4(ii) and (iii),

||w̃T ||∞ = ||(H0
U0,T)

−1(θ∗U0
, 0)[HU0,T(θ

∗
U0

, 0)− H0
U0,T ](θU0 − θ0

U0
)||∞

≤ q1/2||(H0
U0,T)

−1||||[HU0,T(θ
∗, 0)− H0

U0,T ](θU0 − θ0
U0

)||∞
≤ qOp(1)||HU0,T(θ

∗
U0

, 0)− H0
U0,T ||||θU0 − θ0

U0
||∞

≤ qOp(1)KT ||θ∗U0
− θ0

U0
||∞||θU0 − θ0

U0
||∞,

Since KT = Op(1) and q = O(Tδ0) with δ0 < γ,

||w̃T ||∞ = qOp(T−2γ(log T)2) = op(T−γ log T), (A12)

with θi − θ0
i = T−γlogT for all i ∈ U0. By (A9), (A11), and(A12), for sufficiently large T,

and for all i ∈ U0,
Ψ̃i(θU0) ≥ T−γlogT − ||ṽT ||∞ − ||w̃T ||∞ ≥ 0, (A13)

if θi − θ0
i = T−γ log T, and

Ψ̃i(θU0) ≤ −T−γlogT + ||ṽT ||∞ + ||w̃T ||∞ ≤ 0, (A14)

if θi − θ0
i = −T−γ log T.
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By the continuity of Ψ̃ and inequalities (A13) and (A14), an application of Miranda’s
existence theorem tells us that Ψ̃(θU0) = 0 has a solution θ̂U0 in N. Clearly, θ̂U0 also solves
the equation Ψ(θU0) = 0 with regard to the first equality in (A8). Thus, we have shown
that (10) indeed has a solution in N.

Second, let θ̂ = (θ̂′U0
, θ̂′U c

0
)′ ∈ Rp, with θ̂U0 ∈ N as a solution to (10), and θ̂U c

0
= 0.

Next, we show that θ̂ satisfies (11) for the event E 2
T . By the triangle inequality and mean

value theorem, we have

λ−1||SU c
0 T(θ̂)||∞ ≤ λ−1||S0

U c
0 T ||∞ + λ−1||SU c

0 T(θ̂)− S0
U c

0 T ||∞

≤ (log T)−1 + λ−1||(∂/∂θU0)SU c
0 T(θ̂

∗∗
U0

, 0)(θ̂U0 − θ0
U0

)||∞, (A15)

where θ̂∗∗U0
lies on the line segment joining θ̂U0 and θ0

U0
. The first term of the upper bound in

(A15) is negligible, so that it suffices to show that the second term is less than g′(0+) = 1.
Since θ̂U0 solves the equation Ψ(θU0) = 0 in (12), we obtain

S0
U0T + HU0T(θ̂

∗
U0

, 0)(θ̂U0 − θ0
U0

)− λ1 � sgn(θ̂U0) = 0

with θ̂∗U0
lying between θ̂U0 and θ0

U0
. From Proposition 4(ii),(iii) and Condition 1, the last

term in (A15) can be expressed as

λ−1||(∂/∂θU0)SU c
0 T(θ̂

∗∗
U0

, 0)[HU0T(θ̂
∗
U0

, 0)]−1[S0
U0T − λ1 � sgn(θ̂U0)]||∞

≤ λ−1 sup
θ,θ′∈N

||(∂/∂θU0)SU c
0 T(θ, 0)[HU0T(θ

′, 0)]−1||∞(||S0
U0T ||∞ + λ)

≤ λ−1c(q1/2/T)1/2log1/2T + λ

= λ−1c(q1/2/T)1/2 log1/2 T + c. (A16)

By Condition 3(i), the first term in the last equation of (A16) is op(1); hence, (A16) is
eventually less than 1. This verifies (11).

Finally, (12) is guaranteed by Lemma 1: we have θ̂ as a strict local maximizer of QT(θ)
with ||θ̂ − θ0||∞ = O(T−γ log T) and θ̂U c

0
= 0 in the event that E 1

T ∩ E 2
T . Thus, the proofs of

Theorems 1(a) and (b) are complete, by (A6). □
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