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Abstract: We implemented a methodology to calibrate capital structure models for banks that have
issued contingent convertible securities (CoCos). Typical studies involving capital structure model
calibration focus on non-financial firms as they have lower leverage and no contingent convertible
securities. From a theoretical perspective, we found that jumps in the asset value process were
necessary to obtain a satisfactory fit to the market data. In practice, contingent capital conversion
triggers are discretionary, and there is considerable uncertainty around when regulators are likely
to enforce conversion. The market-implied conversion triggers we obtain indicate that the market
expects regulators to enforce conversion while the issuing bank is a going concern, as opposed to a
gone concern. This fact is presumably of interest to potential dealers, regulators, issuers, and investors.

Keywords: capital structure model; contingent convertible securities; discontinuous asset value
process; calibration

1. Introduction

In this paper, we introduced a methodology to calibrate capital structure models for
financial firms. We applied this methodology to the five largest Canadian banks, often
referred to as the Big Five. These banks are the Bank of Montreal (BMO), the Canadian
Imperial Bank of Commerce (CIBC), the Royal Bank of Canada (RBC), the Bank of Nova
Scotia (BNS), and TD Canada Trust (TD). The Big Five banks represent over 85% of the total
assets in the Canadian banking sector1, demonstrating their importance in the Canadian
banking system.2

We first considered a continuous asset value process and a capital structure having
deposits, senior debt, junior debt, and equity (no contingent capital). For each bank, the
model parameters were calibrated to market-observed quantities (e.g., stock price, equity
option price, and credit default swap spreads). We found unrealistic calibrated parameter
values for the continuous asset value process and hence added a jump component, which
provided a more sensible fit to the data.

Next, we introduced contingent capital by replacing junior debt with contingent
convertible securities (CoCos). We calibrated the (exogenous) conversion threshold for
each bank, shedding light on when market participants expect the regulator to trigger
CoCo conversion. This expected trigger level is clearly of interest to regulators, along with
CoCo issuers and investors in CoCos (and other securities in the capital structure). Notably,
our approach offers two key innovations: it accommodates discontinuous jumps in asset
value, and it allows us to deduce market-implied discretionary trigger levels for existing
contingent convertibles.

Our results show that in the absence of CoCo instruments in the bank’s capital struc-
ture, the calibration results appear to be more realistic when incorporating jumps. The
conversion threshold reveals that CoCo conversion is indicated to occur when the bank’s
asset–liability ratio decreases to a level situated between the OSFI-required minimum and
the bank’s actual total capital ratio at time zero, suggesting that the market expects that the
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regulators will enforce conversion while the issuing firm is a going concern, as opposed to
a gone concern.3

1.1. Structural Models

Pioneered by Black and Scholes (1973), and Merton (1973), capital structure models
(CSMs) apply option pricing techniques to evaluate corporate liabilities. Merton (1974)
first applied option pricing theory to value and analyze corporate debt securities. This
model assumes the firm can only default at debt maturity (liquidation date) and equity is
viewed as a European call option written on firm value with a strike price equal to the debt
face value. Black and Cox (1976) extended the Merton framework by investigating three
provisions from debt covenants. First, they allowed default to happen before debt maturity,
such that creditors can take over when firm value falls below a certain threshold. In this
model, equity is a down-and-out call option on firm value. Second, they considered debt
subordination arrangements and developed an approach to valuing coupon-paying debt
based on seniority. Finally, they imposed financing restrictions on asset sales. Leland (1994)
further generalized the model by introducing taxes and bankruptcy costs.

CSMs are an important tool for conceptualizing and quantifying corporate default risk.
A recent search shows that Merton (1974) has been cited over 16,500 times, demonstrating
the importance of the model. As a direct application of the Merton model, Moody’s
Investors Service uses Merton’s Distance to Default (Merton’s DD) to rate corporate bonds
(Crosbie and Bohn (2019)). Bharath and Shumway (2008) examined the performance of
Merton’s DD model in forecasting defaults and compared it to other credit risk models.
Tarashev (2008) compared the performance of five structural credit risk models (Leland
and Toft (1996), Anderson et al. (1996), Longstaff and Schwartz (1995), Collin-Dufresne
and Goldstein (2001), and Huang and Huang (2012)) in predicting default probabilities
(PD) for a sample of corporate bonds and found that the probability of default implied by
the models tended to match the level of actual default rates, and the models explained a
substantial portion of the variability of default rates over time. Sundaresan (2013) provided
a comprehensive review of CSMs and their wide applications.

CSMs are typically characterized by a number of parameters that describe, among
other things, the temporal dynamics of the firm’s asset value and specific features of its
corporate securities. Prudent use of CSMs requires accurate estimates of these parameters.
There are two approaches for determining the value of unknown parameters. First is
estimation, which applies statistical methods to available data, often time-series data, to
obtain estimates and make inferences about these unknown parameters. For example,
Duan (1994) used the observed prices of a derivative contract to compute maximum likeli-
hood parameter estimates for an unobserved asset value process. The second is calibration,
which usually involves fine-tuning a model to fit market data at a particular point in time.
Because asset value is not directly observable, calibration to market prices of primary
securities issued by the firm, as well as derivative securities that reference the firm and its
securities, is the standard approach to obtaining calibrated parameter values.

Forte (2011) noted that the CSMs can be difficult to calibrate because many parameters
(such as asset volatility) are not observed directly. To address this challenge, the author
proposed a new calibration methodology that uses stock prices to estimate asset volatility
and credit default swap (CDS) spreads to estimate the default barrier. Forte (2011) applied
the methodology to a sample of large firms and found that their calibrated model provided
a better fit to both the stock and CDS spreads than traditional calibration methods. The
calibrated model also provided more accurate predictions of PD than models calibrated
using only one type of data (either stock price or CDS spreads).

Unfortunately, the extant literature on the calibration of CSMs to market data focuses
almost exclusively on non-financial firms. The fact that financial firms, especially banks,
are typically excluded constitutes a significant gap in the literature. Compared with firms
from virtually any other industry, the capital structure of banks is much different. For
example, banks tend to have much higher leverage than their non-financial counterparts
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with a different liability structure, and many now have CoCos in their capital structures.
The reasons for the differences in capital structures include business models and regulatory
constraints. See Sundaresan and Wang (2023) for a detailed discussion on bank capital
structures and the differences between non-bank firms. An important contribution of our
paper is to calibrate the parameters of capital structure models for banks.

1.2. Contingent Convertible Securities

Originating from the aftermath of the 2008 financial crisis, a contingent convertible
security (contingent capital or CoCo) is a hybrid capital security that is a bond when issued
and converts to common equity when a pre-determined trigger event occurs; for example,
when the asset value of the issuing bank falls below a certain threshold. CoCos are designed
to prevent disruptive insolvency of large financial institutions since they absorb losses
through conversion to equity or writedowns when trigger events occur, hence decreasing
firm leverage.

The hybrid feature of CoCos provides a dual advantage: (1) during good financial
times, CoCos4 function as a bond and do not dilute earnings for the original equity holders,
and (2) during financial stress, the conversion to equity is triggered and hence an instant
capital infusion (or de-leveraging) is provided when capital markets are difficult to access.
These characteristics of CoCos ostensibly enable financial institutions to remain viable by
keeping their leverage high during good times and remaining solvent during financially
stressed times without the aid of a public capital bail-out.

The recent UBS/Credit Suisse merger has once again brought CoCos into the spotlight.
The Swiss regulatory authorities triggered a complete writedown of Credit Suisse CoCos in
the amount of USD 17 billion, prior to an impending failure. Although controversial, the
move did bring a swift resolution of uncertainty and did not put public money at risk (see
Bolton et al. (2023) for more details).5

Oster (2020) provides a comprehensive review of CoCos, including a range of opinions
on whether CoCos are a useful tool for reducing risk, or whether they may actually increase
systemic risk. The complexity of CoCos can potentially cause confusion among issuers,
investors, and regulators; thus, policymakers should carefully consider the potential risks
and benefits of CoCo issuance and ensure that the terms and conditions of CoCos are as
clear as possible. Overall, Oster concluded that CoCos can be a useful tool for reducing
bank fragility, but their effectiveness will depend on the specific design and implementation
of the securities. Avdjiev et al. (2020) examined the effectiveness of CoCos in practice by
conducting a comprehensive empirical analysis of CoCo issues and found that CoCos help
reduce the issuing financial institution’s default risk and lower their costs of debt.

There are two types of conversion triggers: (1) mechanical and (2) discretionary. Avd-
jiev et al. (2013) summarized the difference between the two types of triggers. Under me-
chanical triggers, conversion happens when the CoCo-issuing bank’s asset value falls below
a pre-specified fraction of its risk-weighted assets. Discretionary triggers, on the other hand,
are activated based on supervisors’ judgment when they believe the issuing bank’s solvency
is in doubt. However, discretionary triggers could create uncertainty unless the conditions
that regulators will exercise are made absolutely clear. Consiglio and Zenios (2015) pointed
out that a discretionary trigger threshold based on a regulatory response will conflict
between precaution and forbearance; hence, it might only be suitable for sovereign finance.

Conversion trigger levels can be either endogenously or exogenously specified. Endoge-
nously specified triggers can be optimal in a certain sense. However, studies that focus on
an endogenously specified trigger level do not deal with the problem faced by regulators
when the trigger is discretionary. Hence, we considered a trigger level that is exogenously
specified. In this setting, there is no consensus on what exogenously specified trigger level
is optimal as there are trade-offs between setting a trigger level too high or too low. A high
trigger level corresponds to a firm being a going concern or viable, while a low trigger level
corresponds to a firm being a gone concern or non-viable.
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Albul et al. (2015) concludes that the conversion threshold should be set sufficiently
high so that the bank does not default before or at conversion, and yet not so high that
the conversion threshold is breached prematurely. Chen et al. (2013) developed a capital
structure model to analyze the incentives created by CoCos and found that there are
positive incentive effects when the conversion trigger is not set too low. McDonald (2013)
showed that when an equity trigger threshold is set too high, a typical false positive “type I”
error will occur and vice versa for a too-low trigger. When the trigger threshold is set too
high, the early conversion may increase a bank’s capital at a time when the bank is not
in need, hence a false positive, i.e., a “type I” error. On the other hand, if the threshold
is set too low, contingent capital might fail to provide capital when it is required, hence
a false negative, i.e., a “type II” error. Flannery (2017) proposed that CoCos convert to
equity when the market value of common stocks falls below 4% of total assets. Bolton and
Samama (2012) proposed that the decision of conversion should be left to the issuer and
CoCos can be converted under normal circumstances so that the issuer could strengthen
their capital structure.

In summary, the present literature does not offer a consensus on an optimal (exoge-
nous) conversion threshold level, and neither do the regulators. Whether the conversion
trigger should be set high or low is still in debate. In our paper, we assume the conversion
threshold is exogenous, as in Sundaresan and Wang (2015) and Javadi et al. (2023). To
the best of our knowledge, none of the previous research attempts to infer the conversion
threshold from market-based data. In our view, this represents a major contribution of the
present paper. Our calibration results allow the issuing banks and market participants to
infer when regulators might force a conversion. Additionally, we included a more complex
capital structure in the model than in previous research. We found that a simpler capital
structure does not generate meaningful results.

1.3. Brief Summary

This paper is organized as follows. Section 2 describes the asset value dynamics
used and considers capital structures without CoCos. We develop pricing formulas for
market-observed quantities and capital structure securities. Section 3 extends the model
by replacing junior debt with CoCos and develops the pricing formulas for the capital
structure securities, including the bank’s stock price. After describing the data in Section 4,
we calibrate the model to the observed market data and interpret the results in Section 5.
Section 6 concludes this paper.

2. Capital Structure without Contingent Capital

In this section, we develop pricing formulas for market-observed quantities and capital
structure securities, assuming there is no contingent capital issued by the bank; observed
quantities include stock prices, CDS spreads, European call option prices, and bond yields.

2.1. Firm–Value Model

Throughout this paper, we fix a probability space (Ω,F ,Q), with a filtration F = {Ft}t≥0
that represents the information generated by the bank’s asset value process. We assume
that the market is arbitrage-free, and Q represents the corresponding risk-neutral pricing
measure. Let E denote expectation with respect to Q. The interest rate r is deterministic
and independent of both time and tenor, such that r > 0 and the term structure is flat.
Lando (2009) discussed stochastic interest rates and found that the interest rates have to
be very volatile to have a significant effect on credit spreads, supporting our assumption
regarding the interest rate.

Let Vt denote the time-t value of the bank’s assets. The non-negative process {Vt}t≥0
is adapted to F such that the discounted gains process is a Q martingale. We assume Vt
follows a jump-diffusion process with dynamics:

dVt = (r − q − λν)Vt−dt + σVVt−dWt + (Π − 1)Vt−dNt, (1)
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where q represents the payout ratio, σV is the bank’s asset volatility, and both q and σV are
assumed constant over time. {Wt}t≥0 is a standard Brownian motion, {Nt}t≥0 is a Poisson
process with intensity parameter λ, Π > 0 is the jump amplitude with E[Π] = ν + 1, where
ν is the expected percentage change in the asset value when a jump occurs, and the asset
price V changes by V · (Π − 1). The Brownian motion {Wt}t≥0, Poisson process {Nt}t≥0,
and the jump sizes are mutually independent. Both λ and ν are non-negative parameters,
and when λ = 0, the process reduces to geometric Brownian motion (GBM).

We assume that the jump size Π = eY follows a log-normal distribution, such that

ln(Π) ∼ N(µY, σ2
Y), (2)

where N(µ, σ2) refers to a normal distribution with mean µ and variance σ2. Hence,

ν = E[eY]− 1 = eµY+σ2
Y/2 − 1. (3)

In the interest of being conservative, we forced the vast majority of jumps to be negative
by imposing the following relation between µY and σY, such that σY can be obtained once
µY is specified:

P
(

Z ≤ −µY
σY

)
= 0.9999, (4)

where Z ∼ N(0, 1). This arbitrarily imposed relation between µY and σY not only imposes
negative jumps but also reduces the number of parameters to be calibrated.

2.2. Capital Structure Assumptions

Following two previous studies on Canadian banks, Beyhaghi et al. (2014) and
Li (2015), we classified bank debt liabilities into three buckets based on their seniority:
deposits, senior debt, and junior debt. We assume that liabilities have a common maturity
of T > 0 years. Default is defined as the event when the bank’s asset value first falls
below the corresponding default barrier, and the default time is defined as the first time
the asset value breaches the barrier. As demonstrated in Figure 1, we assume the default
barrier Bd does not vary through time. The bank will cease operations at min(τd, T), where
τd = inf{t ∈ (0, T] : Vt ≤ Bd} represents the default time; by convention, the infimum of
an empty set is equal to infinity, such that if the default does not happen, τd = ∞, the bank
liquidates at time T and the debtholders are fully paid. We denote Bd = d · F as the default
barrier. The default threshold d > 1 is expressed as a percentage of the total nominal
liability F = FD + FS + FJ , where Fj represents the nominal value of liability j ∈ {D, S, J},
and D, S, J denote deposits, senior debt, and junior debt, respectively. The default threshold
d is treated as a parameter to be calibrated.

Under the absolute priority rule, debts to creditors are paid off first, then equity
holders divide any remaining assets. Creditors are paid based on seniority; for example,
junior creditors do not receive any payment unless senior creditors are fully paid. Let F̂j be
the payoff of debt at terminal time, τd ∧ T, for j ∈ {D, S, J}. The absolute priority rule can
be expressed by

F̂D = Vτd∧T ∧ FD, (5)

F̂S =
(
Vτd∧T − FD

)+ −
(
Vτd∧T − FD − FS

)+, and (6)

F̂J =
(
Vτd∧T − FD − FS

)+ −
(
Vτd∧T − FD − FS − FJ

)+. (7)

Equations (5)–(7) assume there are no bankruptcy costs.
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Figure 1. Demonstration of default and payoff at maturity: two types of asset price paths starting at
Vt > Bd are depicted for the equity value of the bank. The equity value is similar to a down-and-out
call option with strike F and knockout barrier Bd. Only paths that do not fall below level Bd and also
end up above the strike F, i.e., face value of the total liabilities, at terminal time T generate positive
payoffs to equity, assuming an absolute priority rule.

Weiss (1990) showed that the absolute priority rule of claims is rarely followed in
practice as equity holders usually receive some compensation during bankruptcy and
senior creditors are normally not fully paid. Hence, in this paper, we assume the absolute
priority rule is not strictly followed. That is, the junior debt holders may receive payments
without the senior debt holders being fully paid. Equity holders may also be compensated.
We assume the following:

• The depositors are always paid fully, i.e., the recovery rate of deposits RD is 100%.
It is worth noting that deposits are normally fully insured by government agencies
under a certain amount, such as the Federal Deposit Insurance Corporation (FDIC) in
the United States and the Canada Deposit Insurance Corporation (CDIC) in Canada.6

• Both senior and junior debts are partially recovered, where the recovery rate of senior
debt is higher than that of junior debt. We denote RS and RJ as the recovery rate for
senior and junior debt, respectively, and assume that RS ≥ RJ . The recovery rates are
treated as unknown constants to be calibrated.

• We assume that the residual value at liquidation, RV, is split equally between equity
holders and bankruptcy costs. RV is defined as the difference between the bank’s asset
value at default and the total amount paid to creditors:

RV =
(
Vτd − (RDFD +RSFS +RJ FJ)

)
I{τd≤T}. (8)

Remark 1. To complete the definition of the residual value, we need to specify what happens when
the bank’s asset value jumps below the sum of the recovered values, i.e., when Vτd < (RDFD +
RSFS +RJ FJ) in Equation (8). For the parameter values in this paper, this event never occurred,
so we are agnostic about the residual value in this case.
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Remark 2. Stochastic recovery rates are empirically observed, and these are built into certain
models; for example, the Merton model. However, we were able to obtain acceptable calibration
results without the added complexity of stochastic recovery rates.

In summary, we assume that the default payout is distributed to three parties: (1) liabil-
ity holders, with total payout RDFD + RSFS + RJ FJ , where RD = 100%, and
RJ ≤ RS ≤ 100%; (2) equity holders, with payout 0.5 · RV; and (3) bankruptcy costs, with
payout 0.5 · RV. We could introduce an additional parameter ω, which dictates the propor-
tion of residual value that leaves the bank in the form of bankruptcy costs, such that the
bankruptcy costs are (1 − ω) · RV when default occurs and equity holders receive w · RV,
but we have not found that useful.

2.3. Valuation

In this section, we derived the valuation expressions for stock price, equity volatility,
CDS spread, equity option price, and bond yields. These rely on valuation equations for
the capital structure securities.

Two scenarios are considered: (1) when λ = 0, the asset value dynamics reduce to
geometric Brownian motion (GBM), and closed-form valuation expressions are derived,
and (2) when λ > 0, we approximated the valuation through simulation. The simulation
steps are provided in Appendix C.

2.3.1. Debt Valuation

The time-t value of debt-j, j ∈ {D, S, J}, equals the summation of the present value of
coupon payments received and the payoff at maturity or default,

Lj
t(Vt; Bd, T) = Et,Vt

[∫ T∧τd

t

(
e−r(s−t)ijFj

)
ds + e−r(T−t)FjI{τd=∞} + e−r(τd−t)RjFjI{τd≤T}

]
, (9)

where ij represents the coupon rate of debt j, and Et,Vt [·] denotes the time-t asset value-Vt
conditional expected value. Equation (9) evaluates debt in the context of all possible asset
value processes. When we allow jumps, such that λ > 0, the debt value is approximated
through simulation, and the details are in Appendix C.

When the asset value evolves as GBM, Equation (9) can be evaluated following
Leland and Toft (1996), such that the debt value with maturity T is:

Lj
t(Vt; Bd, T) =

ijFj

r
+ e−r(T−t)

[
Fj −

ijFj

r

](
1 − Fτd(T − t)

)
+

[
RjFj −

ijFj

r

]
G(T − t), (10)

where fτd(t) = fτd(t; Vt, Bd) is the probability density of the first passage time τd to Bd from
Vt and Fτd(t) = Fτd(t; Vt, Bd) is the corresponding cumulative distribution function, and

Fτd(T − t) = N (h1(T − t)) +
(

Vt

Bd

)−2a
N (h2(T − t)), (11)

G(T − t) =
∫ T

t
e−r(s−t) fτd(t; Vt, Bd)ds

=

(
Vt

Bd

)−a+z
N (q1(T − t)) +

(
Vt

Bd

)−a−z
N (q2(T − t)), (12)

where N (·) is the standard normal cumulative distribution function and expressions for
h1(T − t), h2(T − t), q1(T − t), q2(T − t), and a, z, δ, γ are provided in Appendix A. G(T − t)
represents the expected present value of the payoff received by the debtholders on the
bond with a USD 1 face value if a default occurs.



Risks 2024, 12, 55 8 of 35

2.3.2. Bankruptcy Costs

The bankruptcy costs can be expressed as

BCt = Et,Vt

[
1
2
· e−r(τd−t) · RV

]
. (13)

With the additional assumption that the asset value evolves as GBM, we obtain

BCt =
1
2
·
∫ T

t
e−r(s−t)

(
Vτd − ∑

j
RjFj

)
fτd(s; Vt, Bd)ds

=
1
2
·
(

Vτd − ∑
j
RjFj

)
· G(T − t), j ∈ {D, S, J}. (14)

The value of the bankruptcy cost is zero if τd > T.7

2.3.3. Equity Valuation

The time-t equity value and share price can be expressed as

Et = g(t, Vt) = Vt − Lt − BCt, and (15)

St =
Et

NS
, (16)

respectively, where NS is the number of shares outstanding, Lt = ∑j Lj
t, and j ∈ {D, S, J} is

the time-t total value of liabilities.

2.3.4. Model-Implied Equity Volatility

As shown in Equation (15), the equity value is a function of time and the bank’s
asset value. We derived the model-implied equity volatility by applying Itô’s formula to
Equation (15), where the jumps follow a compound Poisson process:

dEt = dg(t, Vt) (17)

=

(
gt + gVVt−(r − q − λν) +

1
2

gVVσ2
VV2

t−

)
dt + gVσVVt−dWt + ∆gdNt, (18)

where ∆g = g(t, Vt− · (Π − 1)) − g(t, Vt−), gt = ∂
∂t g(t, Vt), gV = ∂

∂Vt
g(t, Vt), and

gVV = ∂2

∂V2
t

g(t, Vt).

We defined

σE(t, V) = gVσVV (19)

as the diffusive component of equity volatility and

βE(t, V) =

√
λ
∫ ∞

0
[g(t, V · (ey − 1))− g(t, V)]2 fY(y)dy (20)

as the jump component of equity volatility, where fY(y) is the PDF of the random variable Y.
When there is no jump component, βE(t, V) = 0, and the diffusive component of

equity volatility is given by

σE(t, Vt) = σV
(
1 −AG′

Vt
+ BF′

Vt
− CG′

Vt

)
Vt. (21)

It can be shown that the standard deviation of the daily log return on equity over time
interval (t, t + h) is approximately

√
hσE(t, Vt)/Et. The derivation of Equation (21) and the

expressions for A, B, C, G′
Vt

, and F′
Vt

are detailed in Appendix B.
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When λ > 0, there is no closed-form solution for g(t, Vt) and its derivatives, making
it challenging to compute both the diffusive and jump components to equity volatility.
Thus, we approximated the equity volatility through simulation. Our simulation result
suggests that the variance of the log return on equity prices over time interval (t, t + h) is
proportional to the length of the time interval h:

Var
(

ln
(

Et+h
Et

))
=

σ2
E(t, Vt) + β2

E(t, Vt)

Et
· h + o(h). (22)

This result ensures that we can compare the model-implied equity volatility with the
market-observed equity volatility, computed as the standard deviation of historical daily
log returns (annualized). Thus, the model-implied equity volatility can be approximated by√

σ2
E(t, Vt) + β2

E(t, Vt)

Et
≈ SD

(
ln(Et+h/Et)√

h

)
. (23)

Thus, for the jump-diffusion model, we approximated the model-implied equity
volatility using √

σ2
E(t, Vt) + β2

E(t, Vt)

Et
≈ SD

(
ln
(
ET∧τd /Et

)
√

T ∧ τd − t

)
, (24)

where the right-hand side is estimated by simulation (see Appendix C).

2.3.5. CDS Spread

A credit default swap (CDS) is an insurance contract that pays off if a particular
company or country defaults. The company or country is known as the reference entity.
The buyer of credit protection pays an insurance premium, known as the CDS spread,
to the seller of protection for the life of the contract or until the reference entity defaults
(Hull (2018) and Hull and White (2000)). As the simplest contract, a single-name CDS
covers the risk if the reference entity defaults. Following the reference entity default event,
the buyer of the CDS receives a payment from the seller to compensate for credit losses
(see Amato and Gyntelberg (2005)).

The protection leg–also known as the default leg or the contingent leg–is the payment
that the seller makes to the buyer upon default. The premium leg refers to the payments
made by the buyer to the seller (see Metzler (2008)). The amount that the protection seller
pays out if a credit event is triggered is referred to as the contingent leg. Assume the CDS
is on the senior debt and let st denote the CDS spread at time t, then st is set to equate the
premium and contingent legs, leading to

(1 −RS)Et,Vt

[
e−r(τd−t)I{τd≤T}

]
= st

∫ T

t
e−r(u−t)Et,Vt

[
I{τd>u}

]
du, (25)

giving

st =
r(1 −RS)Et,Vt [e

−r(τd−t)I{τd≤T}]

1 −Et,Vt [e−r(τd∧T−t)]
. (26)

When the asset value process evolves as GBM, Equation (26) simplifies to

st =
r(1 −RS)G(T − t)

1 − G(T − t)− e−r(T−t)[1 − Fτd(T − t)]
, (27)

with Fτd(T − t) and G(T − t) defined in Equations (11) and (12), respectively.
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2.3.6. Equity Option Valuation

The equity option, written on the firm share price, can be viewed as a down-and-out
compound option with a barrier. Following Geske (1979), Geske et al. (2016), Zhou (2018),
and Campolieti and Makarov (2018), let To be the maturity time of the equity call option,
with a strike price K,8 and the time-t (European) call option price can be expressed as

Ct = Et,St

[
e−r(To−t)(STo − K)+I{τd>To}St

]
= e−r(To−t)Et,St

[
(STo − K)I{τd>To ,STo>K}

]
, (28)

where Et,St [·] denotes the time-t and stock price-St conditional expected value. Note that
the option payoff is positive if, and only if, a default does not happen before the option
matures, and the time-To stock price is greater than the strike price K.

We denote the realized minimum asset value on the interval [t, To] as

m(To) ≡ mV(To) := inf
t≤u≤To

Vu. (29)

Then, we have the equivalence of events:

{m(To) > Bd} = {τd > To}, (30)

such that a default does not occur before To, and the value of the call option is equivalent to

Ct = e−r(To−t)Et,St

[
(STo − K)I{m(To)>Bd ,STo>K}

]
= e−r(To−t)Et,Vt

[(
g(To, VTo )

NS
− K

)
I{m(To)>Bd ,VTo>V∗}

]
, (31)

where STo = ETo /NS = g(VTo )/NS, NS is the number of shares outstanding, and V∗ solves
g(To, VTo ) = KNS.9

When the asset value evolves as jump-diffusion, we approximated Equation (31) using
simulation, and the simulation steps are in Appendix C. When the asset value evolves as
GBM, Equation (31) simplifies to

Ct = e−r(To−t)
∫ ∞

V∗

(
g(To, v)

NS
− K

)
fVTo

(v)dv, (32)

where

fVTo
(v) =

1
vσV

√
To − t

n

(
ln Vt

v + µ(To − t)
σV

√
To − t

)
−
(

Bd
Vt

) 2µ

σ2
V n

 ln B2
d

vVt
+ µ(To − t)

σV
√

To − t

, (33)

g(To, VTo ) = ETo = VTo − ∑
j

Lj(VTo ; Bd, T − To)− BCTo

= VTo − ∑
j

[ ijFj

r
+ e−rT̄

(
Fj −

ijFj

r

)(
1 − Fτd(T)

)
+

(
RjFj −

ijFj

r

)
G(T)

]

− 1
2

(
Bd − ∑

j
RjFj

)
· G(T), (34)

where T = T − To, fVTo
(v) is the transition density of the asset value process starting at Vt

and ending at v conditioned on not hitting the default barrier Bd between time-t and To,
g(To, VTo ) represents the equity value at time To as a function of the asset value at To, and
n(·) is the standard normal probability density function.
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2.3.7. Debt Yield

For debt with face value Fj, its corresponding yield, yj, is determined by solving the
equation below:

Fj ·
∫ T

t
ij · e−yjudu + e−yj(T−t) = Lj

t, (35)

where Fj is the face value of the debt, Lj
t is the time-t value of the debt, defined in

Equation (9), and ij represents the coupon rate of debt j, where j ∈ {S, J}. Since the
deposits are assumed to be fully recovered, the yield of deposits is the risk-free rate. When
the asset value evolves as GBM (λ = 0), the time-t debt value is expressed in Equation (10),
and we determined the yield through Equation (35).

On the other hand, when jumps are allowed in the model (λ > 0), we employed
simulation for debt yield estimation. Note that it is time-consuming to determine the debt
yield using simulation. To avoid this, we approximated the true yield with the yield on an
otherwise identical zero-coupon bond.10 Hence, Equation (35) simplifies to

e−yj(T−t) = Et,Vt

[
e−r(T−t)I{τd>T} + e−r(τd−t)RjI{τd≤T}

]
, (36)

which is equivalent to

yj = − 1
T − t

Et,Vt

[
ln
(

e−r(T−t) − e−r(T−t)
[
(1 −Rj)I{τd≤T}

])]
. (37)

3. Capital Structure with Contingent Capital

We now consider a bank that replaces the junior debt with a contingent convertible
security (CoCo), such that the bank’s liabilities consist of (1) deposits, (2) senior debt, and
(3) CoCo. We assume that the coupon rate iCC, face value FCC, and tenor of the CoCo are
the same as those of the junior debt.

3.1. Assumptions

Figure 2 demonstrates the mechanism of CoCo and the leverage decrease that occurs at
CoCo conversion. As described in Section 2, if there is no CoCo in the capital structure, such
as in Figure 2a, the bank enters bankruptcy when its asset value process reaches the default
barrier Bd. With CoCo in the capital structure, on the other hand, the key assumptions and
features are as follows:

1. We assume that conversion is triggered when the bank’s asset–liability ratio falls
below a pre-specified level c, defined as Bc = cF, where Bc is the conversion barrier,
assumed to be constant over time, and the conversion threshold c is expressed as a
percentage of the face value of total liabilities F.

2. A main goal of this paper is to use market-observed data to infer the exogenous
conversion threshold c.

3. Upon conversion, the bank’s liabilities are reduced from F to F − FCC, and we assume
that default occurs upon the first passage of asset value to the level d · (F − FCC) and
cF > d · (F − FCC), or c > d · (1 − FCC/F).

4. As illustrated in Figure 2b, incorporating CoCo instruments would delay the time of
default when compared to the scenario where the bank did not issue any CoCos, as in
Figure 2a.
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(a) Capital Structure without CoCo
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(b) Capital Structure with CoCo
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Figure 2. Capital structure without vs. with CoCo: Subplot (a) illustrates the default scenario when no
CoCo is issued. When the bank’s asset value process reaches the default barrier Bd for the first time,
the bank enters liquidation. We assume that the default barrier is positioned above the total liability
level. Subplot (b) illustrates the mechanism of conversion and default when CoCo instruments
are integrated into the capital structure. The conversion barrier Bc is situated above the default
barrier, meaning Bc > Bd, to ensure that default does not occur before conversion. Upon conversion,
CoCos transform into common equity, and the face value of total liabilities decreases to F̃ = F − FCC.
Consequently, the default barrier also decreases to B̃d = d · F̃. The inclusion of CoCo instruments
results in a delay in the time of default.

Denote N∗
S as the number of newly issued common shares distributed to the CoCo

holders upon conversion. Also upon conversion, the CoCo holders become 100w% owners
of the bank, where w = N∗

S /(N∗
S + NS). Note that, in general, both N∗

S and w are stochastic
whose values are not necessarily determined prior to conversion. However, there is the
reasonable assumption that both variables are Fτc -measurable, where τc = {t ∈ (0, T] :
Vt ≤ Bc} represents the conversion time. Similar to the rules determining the default time
in Section 2, the infimum of the empty set is equal to infinity, and N∗

S and w are determined
upon conversion.

We assume that CoCo investors lose a certain percentage of face value on the debt
when the conversion occurs. Denote l as the percentage loss, where l ∈ (0, 1), and we have

N∗
S =

(1 − l)FCC
Sτc

=
FCC

(1 − l)−1Sτc

, (38)

where we may interpret S∗
τc = (1 − l)−1Sτc as a conversion price of the CoCo. With this

interpretation, the conversion price is proportional to the bank’s stock price at conversion,
and we would call (1 − l)−1 the multiplier. A more rigorous discussion on CoCo can be
found in Metzler and Reesor (2015).
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3.2. Valuation

In this section, we discuss valuation expressions for debt and equity at time-t and
conversion time τc, where t < τc ≤ τd

11. We start with the time-τc value of deposits, senior
bonds, and bankruptcy costs:

LD
τc = Eτc ,Vτc

[(
e−r(T−τc)FD + CPD

τc ,T

)
I{τd=∞} +

(
e−r(τd−τc)RDFD + CPD

τc ,τd

)
I{τd≤T}

]
, (39)

LS
τc = Eτc ,Vτc

[(
e−r(T−τc)FS + CPS

τc ,T

)
I{τd=∞} +

(
e−r(τd−τc)RSFS + CPS

τc ,τd

)
I{τd≤T}

]
, (40)

BCτc = Eτc ,Vτc

[
1
2

e−r(τd−τc)
(
Vτd −RDFD −RSFS

)+I{τd≤T}

]
, (41)

where

CPj
t1,t2

=
∫ t2

t1

(
e−r(s−t1)ijFj

)
ds (42)

denotes the time-t1 value of the continuously received coupon between time t1 and t2 for
investors of debt j ∈ {D, S, CC}.

Denote the residual value at conversion Rτc as12

Rτc = (Vτc − LD
τc − LS

τc − BCτc)
+. (43)

Note that the residual values are defined slightly differently between the case with CoCo
and without CoCo in the capital structure. Upon conversion, CoCo holders receive 100w%
of the bank’s equity, where

w = min
(

1,
(1 − l)FCC

Rτc

)
. (44)

Note that wRτc denotes the market value of the equity received at conversion and is equal
to the minimum of (i) (1 − l)FCC, in which case the debt is redeemed at 100(1 − l)%, and
(ii) Rτc . Thus, the time-τc value of CoCo13 is

LCC
τc = wRτc . (45)

Prior to conversion, the time-t values are

LD
t = Et,Vt

[(
e−r(T−t)FD + CPD

t,T

)
I{τc=∞} +

(
e−r(τc−t)LD

τc + CPD
t,τc

)
I{τc≤T}

]
(46)

LS
t = Et,Vt

[(
e−r(T−t)FS + CPS

t,T

)
I{τc=∞} +

(
e−r(τc−t)LS

τc + CPS
t,τc

)
I{τc≤T}

]
(47)

LCC
t = Et,Vt

[(
e−r(T−t)FCC + CPCC

t,T

)
I{τc=∞} +

(
e−r(τc−t)RJ FCC + CPCC

t,τc

)
I{τc=τd≤T}

+
(

e−r(τc−t)LCC
τc + CPCC

t,τc

)
I{τc≤T,τc ̸=τd}

]
. (48)

Under the jump-diffusion model, there is a possibility that the process jumps over the
conversion and default barriers simultaneously; CoCo conversion does not occur and the
bank enters default.14

Finally, the time-t value of the bank’s original equity Et and the corresponding per
share price St are

Et = Vt − LD
t − LS

t − LCC
t , and (49)

St =
Et

NS
, (50)
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respectively. The capital structure securities and stock prices are approximated through
simulation for the jump-diffusion model (see Appendix D).

4. Data

The data used in this paper are for the Big Five Canadian banks for fiscal year 2019,
ending on October 31, 2019. For the risk-free interest rate, we approximate the risk-free
rate using the yield of Canadian government one-year treasury bills on 31 October 2019,
which is 1.76%, continuously compounded (following Hull (2018)). Alternatively, we can
take the average yield of one-year treasury bills from 31 October 2018 to 31 October 2019.
The yield during this period is relatively stable, quite close to the yield on 31 October 2019.
The risk-free interest rates are obtained from Thomson-Reuters Datastream. Table 1 reports
the bank-specific data collected from various sources.

Table 1. Data of Big Five Canadian banks at the end of fiscal year 2019. The details of the variables
are described in Section 4.

Panel A: Capital Structure (in millions)

Bank BMO CIBC RBC BNS TD

Deposits 568,143 485,712 886,005 733,390 913,862

Senior Debt 221,338 122,563 439,064 263,546 383,741
Junior Debt 16,328 7574 25,948 22,917 35,786

Total Debt (Senior + Junior) 237,666 130,137 465,012 286,463 419,527

Total Liabilities 805,809 615,849 1,351,017 1,019,853 1,333,389

Equity (Market Cap) 61,363 47,175 145,741 83,658 129,521

Total Assets 867,172 663,024 1,496,758 1,103,511 1,462,910

Panel B: Capital Structure by Proportion

Bank BMO CIBC RBC BNS TD

Deposits/Total Assets 65.52% 73.26% 59.19% 66.46% 62.47%
Senior Debt/Total Assets 25.52% 18.49% 29.33% 23.88% 26.23%
Junior Debt/Total Assets 1.88% 1.14% 1.73% 2.08% 2.45%
Equity/Total Assets 7.08% 7.12% 9.74% 7.58% 8.85%

Panel C: Payout Ratios

Bank BMO CIBC RBC BNS TD

Interest Rate of Deposits 1.52% 1.73% 1.47% 1.89% 1.50%
Coupon Rate of Debts 3.90% 2.45% 3.20% 1.16% 2.70%
Dividend Yield 0.30% 0.38% 0.39% 0.39% 0.36%
Total Payout Ratio 1.85% 1.92% 1.85% 1.82% 1.61%

Panel D: Volatility, Yield, Spread, Stock, and Option

Bank BMO CIBC RBC BNS TD

Equity Volatility 16.35% 17.06% 16.58% 17.47% 16.14%
Time-to-maturity of Liabilities (year) 5.63 4.21 6.03 6.47 3.68
Senior Debt Yield 2.17% 2.08% 2.26% 2.25% 2.15%
Junior Debt Yield 2.37% 2.28% 2.46% 2.45% 2.35%
CDS Spread 0.56% 0.47% 0.60% 0.73% 0.33%
Stock Price (CAD) 97.50 112.31 106.24 75.54 75.21
Option Price (CAD) 9.7 12.95 11.3 17.75 9.6
Option Strike Price (CAD) 90 100 96 58 66
Option Maturity (year) 0.96 0.55 0.55 0.55 0.55
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Capital structure data: Panel A reports the capital structure data, including the face
value of deposits, senior and junior debt, total liabilities, equity value (market cap), and
total assets. As described in Sections 2 and 3, we assume the banks issue three types of
liabilities: deposits, senior debt, and junior debt/CoCo. All equities are assumed to be
common equity.

For the largest Canadian banks, deposits account for the largest part of the capital
structure, between 60% and 75% of total assets. Thus, the inclusion of deposits can more
accurately reflect the capital structure of these banks.

Li (2015) assigned senior secured debt and senior unsecured debt as senior debt and
subordinated debt, preferred shares, and non-controlling interests as junior debt/CoCo.
Here, we follow the same assignment as Li (2015), with additional assumptions. In the
case of the Big Five Canadian banks, about 10% of liabilities cannot be classified into any
bucket. These liabilities, including pension liabilities, deferred tax, derivative liabilities,
other liabilities, etc., are too sizable to be ignored. Thus, in this paper, we assign these
liabilities proportionally into senior debt and junior debt. Bloomberg provides a quarterly
report on the aggregate proportion of senior secured and unsecured debt in relation to the
total debt. We utilize this ratio to determine the percentage of total debt categorized as
senior debt, while the remainder of liabilities, along with preferred shares, is designated as
junior debt/CoCo.15

All data on liabilities are obtained from Bloomberg. Total debt is the summation of
senior and junior debt, and when deposits are included, it results in the total liabilities.
The equity values, i.e., equity (market cap), are obtained from the Center for Research in
Security Prices, LLC (CRSP), computed as the fiscal year-end stock price multiplied by
the shares outstanding, and the total assets are computed as the summation of the total
liabilities and market cap of equity.

Capital structure by proportion: Panel B displays the share of deposits, senior debt, junior
debt, and equity as a proportion of total assets. The results are computed based on Panel A.

Payout ratios: The payout ratios are presented in Panel C. We distinguish between
interest and coupon payouts, where the interest payout refers to the payout made to the
deposit holders only and the coupon payout represents the payout made to either senior or
junior debtholders. Thus, total payouts include (1) interest payments to deposit holders,
(2) coupon payments to senior debtholders, (3) coupon payments to junior debt (CoCo)
holders, and (4) dividend payments to equity holders. We assume that all payouts are
made continuously.

Bloomberg reports the total interest paid to the deposit holders and the total coupon
paid to debtholders, without distinguishing between senior and junior holders. The interest
rate on deposits is calculated by dividing the total interest paid by the deposit amount. The
coupon rate of debts is a weighted average of both senior and junior debt, computed by
dividing the total coupon payment by the total debt amount. To compute the respective
senior and junior coupon rates, we assume that the coupon rate of junior debt is 20 basis
points higher than the senior rate.

We compute the dividend yield following the methodology in Li (2015). The dividend
yield, or dividend payout ratio at time t, is computed as the average of the previous ten
years’ dividend yield, i.e.,

divt =
1

10

t−1

∑
i=t−10

Cash Dividendi
Asset Valuei

. (51)

Both the cash dividend amount and the asset value are from Compustat-Capital IQ of
Wharton Research Data Services (WRDS).

Thus, the time-t total payout ratio is

q · Vt = ∑
j

ijFj + divt · Vt, (52)



Risks 2024, 12, 55 16 of 35

giving

q = ∑
j

ijFj

Vt
+ divt, (53)

and we assume it is constant across time. The value of q is determined at the initial time
t = 0.

Volatility, yield, CDS spread, stock, and equity option data: Panel D reports the value of
equity volatility, senior and junior debt yield, CDS spread, the time-to-maturity of liabilities
and CDS contracts, stock price, equity option price, strike price, and time-to-maturity
for options.

We use the daily log returns to compute the equity volatility. The data are obtained
from CRSP and are adjusted for dividends and stock splits. The time-t equity volatility is
computed as the annualized standard deviation of previous 5-year returns, continuously
compounded.

We assume that all liabilities (as well as the CDS contract) have the same time-to-
maturity; Bloomberg provides the weighted average of the time-to-maturity for all debts
(excluding deposits).

The senior debt yield is obtained from Bloomberg. We assume that each bank issues
only one senior debt. Bloomberg reports a yield-to-maturity index for the senior debt of
each bank on any given trading day, similar to the yield curve. Thus, the yield is computed
by the linear interpolation of the yields of the nearest tenors. For example, in the case of
BMO, the time-to-maturity for liabilities is 5.63 years and the 5-year and 7-year senior debt
yields are 2.13% and 2.26%, respectively. Interpolating the yield curve, the senior debt yield
for the debt maturing in 5.63 years is approximately 2.17%.

The yield of junior debt under a non-contingent framework, however, is not directly
observable in any of the data sources that we can access. Thus, we follow the results of
Beyhaghi et al. (2014) and assume that the junior debt yield is 20 basis points higher than
the corresponding senior debt yield. Similarly, we assume that each bank issues only one
junior debt, with the maturity time the same as that of senior debt.

We assume that for each bank there is a single-name CDS contract on its senior debt.
Similar to the senior debt yield, we source the CDS spread data from Bloomberg, which
provides a curve of CDS spreads for any given trading day, with tenors ranging from 6
months to 10 years. Consequently, we calculate the CDS spread by linearly interpolating
the spreads of the nearest tenors.

The stock prices at fiscal year-end are from CRSP and the data for equity options are
from Datastream, where only in-the-money call options are considered, such that the option
contract chosen has a strike price not higher than the stock price and the time-to-maturity
is between half a year and one year. We exclude the option contracts that have zero trading
volumes on 31 October 2019, and rank the strike prices of the remaining contracts, and
choose the median as the strike price. If there are multiple contracts (at different maturities)
with that strike price, we choose the one with the smallest bid-ask spread. For the options
selected, we use the ask price at close on 31 October 2019.16 Note that the traded equity
options are American style, though we treat them as European style here.

5. Calibration and Results

In this section, we calibrate the unknown parameters. The calibration includes
two parts:

1. Capital structure without CoCo: The parameters to be calibrated include the default
threshold d, asset volatility σV , recovery rates for senior debt RS and junior debt RJ ,
and the average jump size µY and jump frequency λ under the jump-diffusion model.
The reasons we start with no CoCos in capital structure are as follows:
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(1) To provide insights for the banks that only have regular debts in their capi-
tal structure.

(2) Chen et al. (2013) showed that as long as conversion precedes default, the optimal
default threshold remains unaffected by the conversion trigger. This forms the
basis for incorporating these calibrated parameters when introducing CoCo
instruments into the capital structure.

2. Capital structure with CoCo: using the parameter values from Step 1, we then calibrate
the conversion threshold, which is the only unknown parameter.

5.1. Non-Contingent Capital Structure
5.1.1. Calibration

The calibration is conducted by minimizing the loss function below:

L = argmin

( Ŝt
St

− 1

)2

+

(
σ̂E
σE

− 1
)2

+

(
ŝt
st

− 1
)2

+

(
Ĉt
Ct

− 1

)2

+

(
ŷS
yS

− 1
)2

+

(
ŷJ

yJ
− 1
)2
, (54)

where Ŝt, σ̂E, ŝt, Ĉt, ŷS, and ŷJ represent the initial time, t = 0, the model-implied quantities
of stock price, equity volatility, CDS spread, European call option price, senior debt yield,
and junior debt yield, respectively, and St, σE, st, Ct, yS, and yJ refer to the corresponding
market observed data. Note that other loss functions or instrument weights could be used.

A gradient-based optimization method is applied in the calibration.17 Since all model-
computed quantities are from non-linear equations, the optimization results could heavily
rely on the initial input, resulting in a local optima. In order to mitigate the impact of
local optima, we initially assessed the functional values for a given set of parameters and
calculated the sum of squared errors across various combinations of parameter values. For
example, in the case of BMO under the GBM model, we generated five equally spaced
values for each parameter, where d ∈ [1, 1.0762], σV ∈ [0.01%, 3%],RS ∈ [60%, 100%],
RJ = ℓ×RS, where ℓ ∈ [50%, 100%], such that the recovery rate for junior debt is not
higher than that of the senior debt.18 In total, there are 625 groups of parameters. Next, we
determine the sum of squared errors for all parameter groups according to Equation (54)
and arrange these errors in ascending order, with the group of parameters producing
the smallest sum of squared errors selected as the initial input for the gradient-based
approach.19

There are a total of six instruments and six parameters when the asset value follows
a jump-diffusion model, making calibration relatively straightforward. However, when
the asset value follows GBM, the system becomes overdetermined as there are more instru-
ments than parameters. To this end, we separately calibrate the four model parameters to
each of the 24 subsets of our six instruments and rank them based on the loss function value.

5.1.2. Results

The calibration results are shown in Table 2, where Panel A corresponds to the results
under GBM. We report the square root of the sum of squared errors on a per-instrument
basis, RSS (Error), computed as the square root of the loss function value divided by the
number of instruments used in the calibration. The calibration results of the jump-diffusion
model are presented in Panel B.
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Table 2. Calibration results under the GBM and jump-diffusion models. The A–L ratio is the asset–
liability ratio at fiscal year-end for the given bank. d and σV are calibration results for the liquidation
threshold and the bank’s asset volatility, respectively. RS and RJ are recovery rates of senior and
junior debts, where RJ ≤ RS ≤ 100%. RSS (Error) is the square root of the per-instrument sum of
squared errors. Panel A reports the calibration results under 4 equations of GBM; both best-case and
worst-case scenarios are reported. Equations (1)–(4) represent the instruments used in calibration.
Panel B illustrates the calibration results under the jump-diffusion model, where λ and µY denote
the jump frequency and average jump size under the jump-diffusion model and σY is computed
following Equation (4).

Panel A (Part I): Calibration Results for GBM (4 Equations)—Best Case

Bank BMO CIBC RBC BNS TD

A–L ratio 1.0762 1.0766 1.1079 1.0820 1.0971

d 1.0548 1.0257 1.0831 1.0514 1.0928
σV 0.82% 1.10% 1.05% 1.13% 0.31%
RS 93.43% 98.70% 93.56% 89.74% 95.78%
RJ 92.76% 96.57% 69.01% 88.79% 57.44%

RSS (Error) 1.73% 1.00% 3.61% 0.00% 2.00%

Equation (1) Stock Price Stock Price Stock Price Stock Price Stock Price
Equation (2) Equity Vol Equity Vol Equity Vol Equity Vol Equity Vol
Equation (3) CDS Spread Option Price CDS Spread CDS Spread CDS Spread
Equation (4) Option Price Junior Yield Option Price Option Price Senior Yield

Panel A (Part II): Calibration Results for GBM (4 Equations)—Worst Case

Bank BMO CIBC RBC BNS TD

A–L ratio 1.0762 1.0766 1.1079 1.0820 1.0971

d 1.0387 1.0683 1.0838 1.0653 1.0603
σV 0.60% 0.03% 0.08% 0.29% 0.62%
RS 60.06% 71.44% 73.40% 60.09% 60.00%
RJ 59.47% 71.27% 63.12% 59.65% 36.00%

RSS (Error) 51.52% 40.32% 51.28% 17.29% 32.54%

Equation (1) CDS Spread Stock Price Equity Vol CDS Spread Stock Price
Equation (2) Option Price CDS Spread CDS Spread Option Price Equity Vol
Equation (3) Senior Yield Senior Yield Option Price Senior Yield Option Price
Equation (4) Junior Yield Junior Yield Senior Yield Junior Yield Junior Yield

Panel B: Calibration Results for Jump-Diffusion

Bank BMO CIBC RBC BNS TD

A–L Ratio 1.0762 1.0766 1.1079 1.0820 1.0971

d 1.0200 1.0100 1.0716 1.0403 1.0606
σV 1.25% 1.50% 1.25% 1.52% 1.26%
RS 86.67% 78.33% 86.67% 86.63% 90.00%
RJ 77.50% 77.50% 77.50% 77.46% 85.00%
λ 0.01 0.10 0.10 0.10 0.0275
µY −1.00% −1.00% −1.00% −0.99% −0.10%
σY 0.27% 0.27% 0.27% 0.27% 0.03%

RSS (Error) 30.9% 24.31% 5.20% 6.93% 18.92%

Regarding the parameters, our most important insights are as follows:

• When the asset value process follows GBM, and we restrict our calibration to just
four instruments, the optimal selections among these instruments (i.e., the set of
instruments that are priced with minimum error) are typically the stock price and
equity volatility, while CDS spreads and option prices may be considered as secondary
options. Bond yields, in contrast, prove challenging to calibrate. It is important to note
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that there is no single, universally applicable set of instruments suitable for calibrating
parameters across all banks.

• When jumps are considered in the model:

– The asset volatility σV falls within the range of 1% to 2% for all banks. This range
is consistent with the asset volatility calculated based on the book value of assets
for each respective bank. Including jumps produces more realistic values for σV ,
compared with those obtained from the GBM model, which are unrealistically
low.20

– The recovery rates tend to be lower when compared to the (best-case) GBM model,
implying that debtholders would incur greater losses in the event of a default
under the jump-diffusion model. This results in a total amount of debtholder
losses that are more in line with realism, as supported by prior research (see
Altman (2014)).

– The jump frequency represents, on average, the number of jumps occurring in a
year. As an illustration, CIBC has a jump frequency of 0.10, indicating that, on
average, 0.421 jumps are expected to occur during CIBC’s time-to-maturity of
liability of 4.21 years. Across all banks, the jump frequencies are relatively low,
with the highest frequency being 0.10, and considering that the average liability
maturity time for all banks is 5.2 years, the frequency of jumps is not significant.

– The calibrated average jump size, denoted as µY, exhibits a maximum average
size of −1%. Much like the jump frequency λ, the average jump size is also
relatively modest in magnitude.

– Compared to the outcomes obtained under the GBM model, the default threshold
is extended even further below the current asset–liability ratio, experiencing an
average reduction of 2%.

In summary, when comparing the results from GBM and jump-diffusion, we find the
following: (1) the calibrated asset volatilities under jump-diffusion are more consistent
across banks and aligned with the results computed from book values; (2) the total amount
of debtholder loss under the jump-diffusion model, suggested by the recovery rates, is
consistent with previous research; (3) the sporadic and moderate jumps are reasonable for
the major Canadian banks; and (4) the default thresholds under jump-diffusion are in line
with the regulator’s capital requirement, which is detailed in the following section. In light
of these observations, it seems important to allow for small and infrequent jumps when
applying CSMs to financial institutions.

5.2. Default Threshold and Capital Requirement

According to the Office of the Superintendent of Financial Institutions (OSFIs) guide-
lines, which are based on the capital standards developed by the Basel Committee on
Banking Supervision, the minimum risk-based capital ratios for Canadian banks are as
follows:

• 4.5% Common Equity Tier 1 (CET1) ratio;
• 6% Tier 1 capital ratio;
• 8% total capital ratio.

The CET1, Tier 1, and total capital ratios are defined in the Basel III document21.
The default threshold in this paper is defined as a percentage of the bank’s face value

of total liabilities. In this section, we aim to establish a link between the default threshold
and the capital ratios by connecting total assets with the risk-weighted assets (RWAs). This
connection will allow us to determine at what point default occurs in relation to the capital
ratios required by the regulators, bridging the gap between our model and real-world
regulatory requirements.

We assume that risk-weighted assets are proportional to asset value; specifically,

RWAt = α · Vt, (55)
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and use each bank’s previous 10 years’ total assets and RWAs22 to compute the correspond-
ing value of α. The estimate of α for each bank is (1) BMO: 0.39, (2) CIBC: 0.34, (3) RBC:
0.37, (4) BNC: 0.40, and (5) TD: 0.33.

When default occurs, in the jump-diffusion model, the values of total assets and RWAs
are Vτd ≤ d · F and RWAτd = α · Vτd , respectively. Thus,

d · F − F
RWAτd

=
d − 1
α · d

(56)

expresses the default threshold as a percentage of RWAs. As such, the model-implied
default threshold can be directly compared to regulator-mandated minimum capital ratios.
For instance, if the result is 6%, it implies that the bank is in default when its capital ratio
falls to 6%, a level that surpasses the minimum required CET1 ratio of 4.5%.

The results for the five banks are (1) BMO: 5%, (2) CIBC: 3%, (3) RBC: 18%, (4) BNS:
9.7%, and (5) TD: 17.6%. With the exception of the CIBC result, all other findings indicate
that model-implied bankruptcy would occur before the capital ratio reaches the minimum
required CET1 ratio. This gives us confidence that the linear model in (55) is a reasonable
(and simple) assumption about the relation between RWAs and asset value.

5.3. Capital Structure with Contingent Capital

Prior research on CoCo conversion has primarily centered on the debate over whether
the conversion trigger should be set high or low in comparison to the CET1 ratio, each
having its own set of advantages and disadvantages. Nevertheless, to the best of our
knowledge, there has been no dedicated research aimed at identifying the model-implied
conversion level based on market data, a focus we address in this section. We perform this
with the jump-diffusion model.

5.3.1. Calibration

To calibrate the conversion threshold, we minimize the loss function

L =

(
Ŝt

St
− 1

)2

, (57)

where St is the market stock price observed at initial time t = 0 and Ŝt is the model-implied
stock price described in Section 3. We do not consider the other five instruments for the
following reasons: (1) the conversion threshold is indirectly linked to the CDS spread, and
senior and junior debt yields, since these quantities are assessed using the default time
instead, (2) when we calibrate the parameter values in the previous section, the option
price is often the instrument generating the highest error, and (3) CoCo conversion has
the potential to alter the dynamics of equity volatility. Thus, we use stock price as the
instrument to calibrate the conversion threshold.

Similar to Section 5.1, we use the gradient-based minimization for calibration. Since
the capital structure of the bank reduces to the model without contingent capital after
conversion, we adopt the parameters calibrated from the model without CoCo from Panel
B of Table 2.

We assume that when the conversion occurs, contingent capital securities convert to
common shares through an automatic conversion formula. Typically, the conversion price
is based on the market price of the common shares. The number of common shares issued
is determined by dividing the par value of the CoCo by the conversion price and then
applying the multiplier. This gives a conversion price of S∗

τc = (1 − l)−1Sτc , proportional
to the bank’s stock price at conversion with a multiplier (1 − l)−1, where l ∈ (0, 1) is the
percentage loss of the CoCo face value imposed upon conversion.
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The CoCos issued by the Big Five Canadian banks comprise subordinated debentures
and preferred shares, each with its own multiplier. Subordinated debentures typically have
a multiplier of 1.5, while preferred shares have a multiplier of 1. We calculate the weighted
average multiplier by considering the relative weight of each asset in the CoCo structure,
assuming all subordinate debentures and preferred shares belong to CoCos:

Weighted-Average Multiplier = 1.5 × Face Value of Subordinated Debentures
Face Value of CoCo

+ 1.0 × Face Value of Preferred Shares
Face Value of CoCo

, (58)

where the face value of CoCo is the summation of the face values of subordinated deben-
tures and preferred shares, obtained from each bank’s annual report. The weighted-average
multiplier is used to assess the loss at conversion for CoCos and

l = 1 − 1
Weighted-Average Multiplier

. (59)

While the conditions for CoCo conversion may vary among securities and regulatory
authorities, one common prerequisite is that a bank’s capital must not fall below the
minimum requirement. We calibrate the model twice with different default thresholds:
(1) we use the calibrated default threshold from Section 5.1.2, and (2) we employ the
OSFI-required minimum CET1 ratio as the default threshold, as a validation check. In
the latter case, we first align the CET1 ratio with the total liabilities, so that the calibrated
default threshold and the CET1 ratio can be compared under the same measure. Table 3
illustrates the disparity in values between these two measures. Both the minimum capital
requirements and the actual capital ratios of the banks are presented in the table. Panel A
showcases the OSFI requirements, while Panel B displays the actual capital ratios of each
bank. The relationship between these measures is determined by

Capital ratio as a percentage of total liabilities =
RWA × capital ratio

F
. (60)

Unsurprisingly, the actual capital ratios in Panel B are all higher than the corresponding
OSFI requirements, showing the financial strength of these Canadian banks.

Table 3. The OSFI capital requirement and actual capital ratio for the Big Five Canadian banks. We
present the OSFI minimum capital requirements in Panel A and the actual capital ratios in Panel B.
For each bank, the columns in the tables are as follows: Column (1) displays the RWA-based capital
ratios. The ratios in Panel A are sourced from OSFI documentation, while the ratios in Panel B are
computed by dividing the dollar amount of capital by RWAs. Column (2) presents the liability-based
ratio. This is calculated by dividing the dollar amount of capital by the face value of total liabilities, as
defined in Equation (60). These tables provide a detailed comparison between the regulatory capital
requirements and the actual capital positions of the banks, helping to assess their compliance with
regulatory standards.

Panel A: OSFI Requirement

Ratio BMO CIBC RBC BNS TD

(1) * (2) ** (1) (2) (1) (2) (1) (2) (1) (2)

CET1 4.5% 1.8% 4.5% 1.8% 4.5% 1.7% 4.5% 1.9% 4.5% 1.5%
Tier 1 6.0% 2.4% 6.0% 2.3% 6.0% 2.3% 6.0% 2.5% 6.0% 2.1%
Total Capital 8.0% 3.1% 8.0% 3.1% 8.0% 3.0% 8.0% 3.3% 8.0% 2.7%
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Table 3. Cont.

Panel B: Actual Ratio at Time Zero

Ratio BMO CIBC RBC BNS TD

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

CET1 11.4% 4.5% 11.6% 4.5% 12.1% 4.6% 11.1% 4.6% 12.1% 4.1%
Tier 1 13.0% 5.1% 12.9% 5.0% 13.2% 5.0% 12.2% 5.0% 13.5% 4.6%
Total Capital 15.2% 6.0% 15.0% 5.8% 15.2% 5.8% 14.2% 5.9% 16.3% 5.6%

* RWA-based ratio, computed as the dollar amount of capital as a percentage of RWAs. ** Liability-based ratio,
computed as the dollar amount of capital as a percentage of total liabilities.

5.3.2. Results

Table 4 presents the calibrated conversion thresholds. To facilitate comparison, we
include the multiplier, CoCo loss at conversion, A–L ratio (representing the asset–liability
ratio at time-t), adjusted default threshold (adjusted CET1 ratio), and adjusted total capital
ratio alongside the calibrated conversion threshold. The multiplier and CoCo loss at
conversion were introduced in Section 3. The A–L ratio serves as a reference for gauging
how far the conversion threshold lies below this ratio.

Table 4. Calibration results of conversion threshold. Panel A presents the results where default
thresholds are obtained from the model without CoCo in the capital structure. In Panel B, the
default thresholds are the banks’ required minimum Common Equity Tier 1 capital (CET1) ratio.
The multiplier is obtained from each bank’s annual report, computed as the weighted average of
multipliers on non-viability subordinated notes (with a multiplier of 1.5) and preferred shares (with a
multiplier of 1). CoCo loss at conversion is a function of the multiplier. The A–L ratio represents the
asset–liability ratio at time-t. RSS (Error) is the square root of the loss function value. The calibrated
conversion thresholds are highlighted.

Panel A: Calibration Results as Default Thresholds

BMO CIBC RBC BNS TD

Multiplier 1.3044 1.2930 1.3132 1.3419 1.3224
CoCo Loss at Conversion 0.2334 0.2266 0.2385 0.2548 0.2438
A–L Ratio 1.0762 1.0766 1.1079 1.0820 1.0971
Adjusted Default Threshold 0.9993 0.9976 1.0510 1.0169 1.0321
Conversion Threshold 1.0316 1.0312 1.0520 1.0400 1.0383
Adjusted Total Capital Ratio 1.0598 1.0584 1.0577 1.0586 1.0557

RSS (Error) 6.3% 0.00% 5.66% 10.49% 8.54%

Panel B: CET1 Ratio as Default Thresholds

BMO CIBC RBC BNS TD

Multiplier 1.3044 1.2930 1.3132 1.3419 1.3224
CoCo Loss at Conversion 0.2334 0.2266 0.2385 0.2548 0.2438
A–L Ratio 1.0762 1.0766 1.1079 1.0820 1.0971
Adjusted CET1 Ratio (Default Threshold) 1.0177 1.0175 1.0171 1.0186 1.0154
Conversion Threshold 1.0189 1.0287 1.0423 1.0401 1.0383
Adjusted Total Capital Ratio 1.0598 1.0584 1.0577 1.0586 1.0557

RSS (Error) 5.39% 1.41% 3.16% 8.19% 8.43%

After calibrating the conversion threshold using the adjusted default threshold and
capital ratios, we proceed to convert it based on RWAs to derive meaningful insights from
the calibration results. We apply the same method as in the previous section (Equation (56))
that connected the default threshold to the conversion level based on RWAs. This ensures
consistency in our approach for analyzing the conversion threshold and allows us to gain
insight into what the model suggests regarding when the conversion might occur. Table 5
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presents the results. To facilitate comparison, the table includes the required CET1 ratio,
total capital ratio, and the corresponding actual ratios for each bank. The RWA-based
capital ratios linked to the conversion thresholds are calculated as follows:

c · F − F
RWAτc

=
c − 1
α · c

, (61)

where α is defined in Section 5.2.

Table 5. Conversion thresholds expressed as RWA-based capital ratio. The OSFI required CET1 ratio,
total capital ratio, and the corresponding actual ratios for each bank are included as a comparison.
Conv. Threshold (1) includes the calibrated conversion threshold with the default threshold derived
from the model without CoCo, while Conv. Threshold (2) represents the calibrated conversion
threshold with the minimum required CET1 ratio as the default threshold. Both conversion thresholds
are converted to RWA-based capital ratios.

Ratios BMO CIBC RBC BNS TD

Minimum Required CET1 Ratio 4.50% 4.50% 4.50% 4.50% 4.50%
Minimum Required Total Capital Ratio 8.00% 8.00% 8.00% 8.00% 8.00%
Actual CET1 Ratio at Time Zero 11.4% 11.6% 12.1% 11.1% 12.1%
Actual Total Capital Ratio at Time Zero 15.2% 15.0% 15.2% 14.2% 16.3%
Conv. Threshold (1) 7.90% 8.90% 13.40% 9.60% 11.20%
Conv. Threshold (2) 4.80% 8.20% 11.00% 9.60% 11.20%

(1) uses non-contingent model’s default threshold. (2) uses adjusted CET1 ratio as default threshold.

In order to make a direct comparison with the conversion threshold, which is expressed
as a percentage of the face value of total liabilities before conversion, we make adjustments
to the default threshold. While the value of the default threshold remains constant after
conversion, the default barrier, i.e., the asset value level, undergoes a change as total
liabilities decrease upon conversion. To ensure a direct comparison between the two
thresholds, we convert the post-conversion default threshold based on the original face
value of total liabilities as follows:

Adjusted Default Threshold =
d · (FD + FS)

FD + FS + FCC
. (62)

Similarly, we include the adjusted capital ratio as a percentage of total liabilities based
on Equation (60), such that the conversion threshold, adjusted default threshold, and
adjusted capital ratio are all expressed as a percentage of the pre-conversion face value of
total liabilities:

Adjusted capital ratio =
RWA × capital ratio

F
+ 1. (63)

The results from Tables 4 and 5 provide important insights:

• Under both types of default thresholds, the model-implied conversion would occur
prior to the minimum CET1 ratio being breached (i.e., calibrated parameters are
consistent with regulatory mandates).

• Except in the case of BMO, all results indicate that conversion should occur when the
capital ratio exceeds the OSFI-required minimum total capital ratio.

• In summary, the model’s implied conversion thresholds indicate that conversion
occurs at a capital level situated between the OSFI-required minimum total capital
ratio and the bank’s actual total capital ratio at time zero, which suggests that the
market expects the regulators will enforce conversion while the issuing bank is a going
concern, as opposed to a gone concern.

Next, we examine whether the issuance of CoCos is advantageous to the financial
institution. We assume the market-observed senior debt yield and CDS spread reflect a
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situation without contingent capital, and we use the calibrated parameters to estimate the
senior debt yield and CDS spread with CoCos. We also compute the CoCo par yield and
compare it to the junior debt yield of each bank. Furthermore, we determine the weighted
average cost of debt under a contingent capital structure compared to a scenario with no
contingent capital. All estimations are conducted through simulation. The par yield of
CoCos is computed by equating the market value of CoCo to the face value of CoCo, i.e.,
LCC

t = FCC, such that

ypar
CC = f

(
r, σV , ypar

CC , Vt, c, d
)

. (64)

The weighted average cost of debt is determined as

Weighted average cost of debt =
rFD + ySFS + ypar

CC FCC

FD + FS + FCC
. (65)

Since deposits are assumed risk-free, we set the deposit yield to the risk-free rate r.
The simulation steps are detailed in Appendix E and the computational results for

senior debt yields, CDS spreads, par yields, and the weighted average cost of debt are
presented in Table 6. As in Table 4, we divide the results into two cases based on default
thresholds. Panel A displays the results using the non-contingent model’s default threshold,
while Panel B exhibits the results when the adjusted Common Equity Tier 1 (CET1) ratio is
employed as the default threshold. While there is no uniform trend in CoCo par yields, it is
noteworthy that senior debt yields, CDS spreads, and the cost of debt have all decreased, of-
ten significantly. This indicates a reduced likelihood of default and a decrease in borrowing
expenses for financial institutions that incorporate CoCos into their capital structure.

Table 6. A comparison of senior debt yields, CDS spreads, and the cost of all debts. The results with
CoCos are computed based on the calibrated results presented in Table 4, while the results without
CoCos use the market data, as described in Section 4. The senior debt yields are calculated following
Equation (A51), and the CDS spreads are determined using Equation (A50). The computation of the
par yield is detailed in Section 5.3.2. The cost of debt is computed as the weighted average of yields
on all liabilities, which includes the risk-free rate for deposits, senior yield for senior debt, junior
yield for junior debt in the case without CoCo, and par yield when CoCo is included.

Panel A: Calibration Results as Default Thresholds

BMO CIBC RBC BNS TD

Senior debt yield (without CoCo) 2.17% 2.08% 2.26% 2.25% 2.15%
Senior debt yield (with CoCo) 1.81% 1.87% 1.96% 1.99% 1.78%

CDS spread (without CoCo) 0.56% 0.47% 0.60% 0.73% 0.33%
CDS spread (with CoCo) 0.04% 0.10% 0.19% 0.22% 0.02%

Junior debt yield (without CoCo) 2.37% 2.28% 2.46% 2.45% 2.35%
CoCo par yield (with CoCo) 2.62% 2.90% 2.12% 3.09% 1.85%

Cost of debt (without CoCo) 1.88% 1.83% 1.94% 1.90% 1.89%
Cost of debt (with CoCo) 1.79% 1.80% 1.83% 1.85% 1.77%

Panel B: CET1 Ratio as Default Thresholds

BMO CIBC RBC BNS TD

Senior debt yield (without CoCo) 2.17% 2.08% 2.26% 2.25% 2.15%
Senior debt yield (with CoCo) 1.80% 1.97% 1.76% 1.83% 1.76%

CDS spread (without CoCo) 0.56% 0.47% 0.60% 0.73% 0.33%
CDS spread (with CoCo) 0.03% 0.18% 0.00% 0.06% 0.00%
Junior debt yield (without CoCo) 2.37% 2.28% 2.46% 2.45% 2.35%
CoCo par yield (with CoCo) 2.12% 2.73% 1.95% 3.13% 1.86%

Cost of debt (without CoCo) 1.88% 1.83% 1.94% 1.90% 1.89%
Cost of debt (with CoCo) 1.78% 1.81% 1.76% 1.81% 1.76%
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6. Conclusions

In contrast to previous studies that calibrate CSMs, which tend to focus on non-
financial firms, this paper presents a methodology for calibrating the parameters of banks
under capital structure models. Using data from the five largest Canadian banks, we
first considered a capital structure without contingent capital and calibrated each bank’s
parameters to multiple market observed quantities, including stock price, option price,
equity volatility, debt yields, and CDS spread, where the bank’s asset value process allowed
for jumps. We then incorporated contingent capital by replacing junior debt with contingent
convertible securities (CoCos) and calibrated the conversion threshold for each bank.

We studied major Canadian banks at a single point in time. The possible limitations are
as follows: we simplified the bank’s balance sheet by mapping it into certain buckets and
ignored some balance sheet data and off-balance sheet data, and we made some modeling
assumptions, such as constant recovery rates, the residual value being split evenly between
bankruptcy costs and compensation to equity holders upon default, and the distribution of
jump sizes. Our assumption of deposits being fully recovered might be violated in practice
since not all deposits are insured.

We found that in the absence of CoCo instruments in the bank’s capital structure, the
calibration results appeared to be more realistic when incorporating jumps. This approach
exhibited greater consistency in asset volatilities across banks, aligning well with the results
computed from book values. Additionally, the calculated debtholders’ loss amounts were
in agreement with prior research findings. The sporadic and moderate jumps appeared to
be a good fit for the major Canadian banks, and the default thresholds aligned with the
regulator’s capital requirements.

The calibration of the conversion threshold revealed that CoCo conversion is indicated
to occur when the bank’s asset–liability ratio decreases to a level between the OSFI-required
and the bank’s actual total capital ratio at time zero, which suggests that the market expects
the regulators will enforce conversion while the issuing bank is a going concern, as opposed
to a gone concern. Incorporating CoCos also reduces the issuing bank’s default risk and
decreases its borrowing expenses. Our results allow regulators and market participants
to infer market-implied conversion triggers for existing contingent convertibles. The
major avenues of future research include the following: (1) investigating the incentives
for CoCo investors to short the issuing bank’s stock, and (2) modeling the situation where
other ways of dealing with financial distress are considered rather than liquidation, such
as reorganization.
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Appendix A. Expressions in Leland and Toft (1996)

The expressions of q1(T − t), q2(T − t), h1(T − t), h2(T − t), a, z, γ, and δ in Fτd(T − t)
and G(T − t) are as follows:

q1(T − t) = −
ln Vt

Bd
+
√

κ2 + 2rσ2
V(T − t)

σV
√

T − t
, (A1)

q2(T − t) = −
ln Vt

Bd
−
√

κ2 + 2rσ2
V(T − t)

σV
√

T − t
, (A2)

h1(T − t) = −
ln Vt

Bd
+ κ(T − t)

σV
√

T − t
, (A3)

h2(T − t) = −
ln Vt

Bd
− κ(T − t)

σV
√

T − t
, (A4)

a =
r − q − σ2

V/2
σ2

V
=

κ

σ2
V

, (A5)

κ = r − q − σ2
V/2, (A6)

z =

√
(aσ2

V)
2 + 2rσ2

V

σ2
V

=

√
κ2 + 2rσ2

V

σ2
V

, (A7)

γ = −a − z, and (A8)

δ = −a + z. (A9)

Appendix B. Derivation of Model-Implied Equity Volatility under GBM

In this appendix, we provide the derivation of Equation (21) under the GBM model.
From Equations (9), (14), and (15):

Et = Vt − Lt − BCt

= Vt + BFτd(T − t)− (A+ C)G(T − t)− Const, (A10)

where Fτd(T − t) and G(T − t) are defined in Equations (11) and (12), respectively, and

A = ∑
j

(
RjFj −

ijFj

r

)
, (A11)

B = ∑
j

e−r(T−t)
(

Fj −
ijFj

r

)
, (A12)

C =
1
2

e−r(T−t)

(
Bd − ∑

j
RjFj

)
, and (A13)

Const = ∑
j

( ijFj

r
+ e−r(T−t)

(
Fj −

ijFj

r

))
, (A14)

where j ∈ {D, S, J},RD = 100%. Applying Itô’s formula to Equation (A10):

dEt = dVt + BdFτd(T − t)− (A+ C)dG(T − t). (A15)
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The stochastic differentials of dFτd(T − t) and dG(T − t) are

dFτd(T − t) = µFτd
dt + σFτd

dWt

=

(
(r − q)VtF

′
Vt
+

1
2

F
′′
Vt

σ2
VV2

t

)
dt + σVVtF

′
Vt

dWt, (A16)

dG(T − t) = µGdt + σGdWt

=

(
(r − q)VtG

′
Vt
+

1
2

G
′′
Vt

σ2
VV2

t

)
dt + σVVtG

′
Vt

dWt, (A17)

and hence

µFτd
= (r − q)VtF

′
Vt
+

1
2

F
′′
Vt

σ2
VV2

t , (A18)

σFτd
= σVVtF

′
Vt

, (A19)

µG = (r − q)VtG
′
Vt
+

1
2

G
′′
Vt

σ2
VV2

t , and (A20)

σG = σVVtG
′
Vt

, (A21)

where

G′
Vt

=
δ

Bd

(
Vt

Bd

)δ−1
N (q1(T − t))− 1

VtσV
√

T − t

(
Vt

Bd

)δ

n(q1(T − t))

+
γ

Bd

(
Vt

Bd

)γ−1
N (q2(T − t))− 1

VtσV
√

T − t

(
Vt

Bd

)γ

n(q2(T − t)), (A22)

F′
Vt

= − 1
VtσV

√
T − t

n(h1(T − t))− 2a
Bd

(
Vt

Bd

)−2a−1
N (h2(T − t))

− 1
VtσV

√
T − t

(
Vt

Bd

)−2a
n(h2(T − t)), (A23)

where n(·) represents the standard normal probability density function (PDF). As above,
h1(T − t), h2(T − t), q1(T − t), q2(T − t), and a, z, δ, γ are defined in Appendix A, and

F
′′
Vt

=
n(h1(T − t))
V2

t σV
√

T − t
− n

′
(h1(T − t))

VtσV
√

T − t
+

2a(2a − 1)
B2

d

(
Vt

Bd

)−2a−2
N (h2(T − t))

+
4a · n(h2(T − t))
VtBdσV

√
T − t

(
Vt

Bd

)−2a−1
− n

′
(h2(T − t))

VtσV
√

T − t

(
Vt

Bd

)−2a
+

n(h2(T − t))
V2

t σV
√

T − t

(
Vt

Bd

)−2a
, (A24)

G
′′
Vt

=
δ(δ − 1)

B2
d

(
Vt

Bd

)δ−2
N (q1(T − t))− 2δ · n(q1(T − t))

VtBdσV
√

T − t

(
Vt

Bd

)δ−1

+
n(q1(T − t))
V2

t σV
√

T − t

(
Vt

Bd

)δ

− n
′
(q1(T − t))

VtσV
√

T − t

(
Vt

Bd

)δ

+
γ(γ − 1)

B2
d

(
Vt

Bd

)γ−2
N (q2(T − t))− 2γ · n(q2(T − t))

VtBdσV
√

T − t

(
Vt

Bd

)δ−1

+
n(q2(T − t))
V2

t σV
√

T − t

(
Vt

Bd

)γ

− n
′
(q2(T − t))

VtσV
√

T − t

(
Vt

Bd

)γ

, (A25)

where n(·) and N (·) represent the standard normal PDF and CDF, respectively, and
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n
′
(h1(T − t)) = − h1(T − t)

VtσV
√

T − t
· n(h1(T − t)), (A26)

n
′
(h2(T − t)) = − h2(T − t)

VtσV
√

T − t
· n(h2(T − t)), (A27)

n
′
(q1(T − t)) = − q1(T − t)

VtσV
√

T − t
· n(q1(T − t)), and (A28)

n
′
(q2(T − t)) = − q2(T − t)

VtσV
√

T − t
· n(q2(T − t)). (A29)

Thus,

dEt = µEdt + σEdWt, (A30)

where

µE(t, Vt) = (r − q)Vt + BµFτd
− (A+ C)µG, (A31)

σE(t, Vt) =
(

σVVt + BσFτd
− (A+ C)σG

)
= σV

(
1 −AG′

Vt
+ BF′

Vt
− CG′

Vt

)
Vt. (A32)

Appendix C. Jump-Diffusion Algorithm without Contingent Capital

This appendix corresponds to Section 2.3. The main simulation steps follow Metzler
and Reesor (2015). For the hitting times, Beskos and Roberts (2005) provides an algorithm
that simulates the hitting time of a Brownian bridge to a fixed level. The jump–diffusion
model follows Equation (1). The simulation steps are as follows:

1. Simulate the number of jumps NT between time zero and T, the jump sizes (Y1, . . . , YNT ),
and the jump times (τ1,. . . ,τNT ), following Metzler and Reesor (2015).

2. If NT = 0, simulate

VT = V0exp((r − q − σ2
V/2)T + σVWT), (A33)

and apply the Beskos and Roberts (2005) algothrim to determine the default time. We
fixed a stopping time τd, taking values in (0, T] ∪ {∞}. We said that default occurs or
does not occur according to τd < ∞ or τd = ∞, and Vτd = Bd is the asset value when
default happens.

3. If NT > 0, for i = 1, . . . , NT , simulate Wτi − Wτi−1 and Yi, where τ0 = t, then compute

Vτ−i
= Vτi−1exp

(
(r − q − σ2

V/2)(τi − τi−1) + σV(Wτi − Wτi−1)
)

, (A34)

where Vτ0 = Vt, and

Vτi = Vτi− Yi. (A35)

Finally, simulate WT − WτNT
and compute

VT = VτNT
exp

(
(r − q − σ2

V/2)(T − τNT ) + σV(WT − WτNT
)
)

. (A36)

The default time is determined by two parts:
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– τ
(1)
d : the first time at which the asset value “diffuses” to the default barrier. For

i = 0, 1, . . . , NT , simulate

τ
(1),i
d = min{t ∈ (τi, τi+1) : Vt ≤ Bd}, (A37)

with the convention that min ∅ = ∞, and we defined τ0 = t and τNT+1 = T.

Setting τ
(1)
d = min{τ

(1),0
d , ..., τ

(1),NT
d }, we obtained the first time at which the asset

value “diffuses” to the default barrier.
– τ

(2)
d : the first time that the asset value jumps over the default barrier. Determine

i∗ = min
{

1 ≤ i ≤ NT : Vτ−i
> Bd, Vτi ≤ Bd

}
. (A38)

τ
(2)
d = τi∗ if i∗ < ∞, and τ

(2)
d = ∞ if i∗ = ∞, with the convention that min ∅ = ∞.

Thus, the default time, i.e., the first hitting time, is

τd = τ
(1)
d ∧ τ

(2)
d . (A39)

If τd < ∞ and τd = τ
(1)
d , Vτd = Bd, and if τd = τ

(2)
d , then Vτd = Vτ∗i

.
4. The stock price, equity volatility, CDS spread, and senior and junior debt yields can be

obtained based on τd, Vτd , and VT under the equations below. First, the time-t stock
price Ŝt can be estimated as follows:

Ŝt =
1
N

N

∑
k=1

Sk,t, (A40)

Sk,t =
Ek,t

NS
, (A41)

Ek,t = Vt − ∑
j

Lj
k,t − BCk,t, (A42)

Lj
k,t =

(
e−r(T−t)Fj +

ijFj

r
(e−rt − e−rT)

)
I{τk,d=∞}

+

(
e−r(τk,d−t)RjFj +

ijFj

r
(e−rt − e−rτk,d)

)
I{τk,d≤T}, and (A43)

BCk,t =
1
2

e−r(τk,d−t)

(
Vk,τk,d

− ∑
j
RjFj

)
I{τk,d≤T}, (A44)

where j ∈ {D, S, J}, N = 1000 is the number of simulated sample paths, and Ns
represents the shares outstanding for common shares. For each sample path k, where
k = 1, 2, . . . , N, Sk,t and Ek,t denote the time-t stock price per share and equity value,
Lj

k,t is the time-t value of debt j, BCk,t is the time-t bankruptcy cost, Vk,T and Vk,τk,d
are

the asset value at maturity T and default time τk,d, respectively, and Rj and Fj are the
recovery rate and face value of debt j, respectively.
The sample path-k simulated terminal stock price is

Sk,T∧τk,d
=

(Vk,T − F)+I{τk,d=∞} + 0.5 · RVkI{τk,d≤T}
NS

, (A45)

where the residual value along a path that defaults is

RVk = Vk,τk,d
− ∑

j
RjFj. (A46)
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The simulated path-k return and the average return across all paths are

Rk =
ln
(

Sk,T∧τk,d
/St

)
√

T ∧ τk,d
, and (A47)

R̄ =
1
N

N

∑
k=1

Rk, (A48)

respectively. The estimated equity volatility is

σ̂λ
E (t, Vt) =

√
∑N

k=1 (Rk − R̄)2

N − 1
k = 1, 2, · · · , N. (A49)

Let st be the time-t fair CDS spread, which for the jump–diffusion model is approxi-
mated by

ŝt =
1
N r(1 −RS)∑N

k=1 e−r(τk,d−t)I{τk,d≤T}

1 − 1
N ∑N

k=1 [e
−r(τk,d−t)I{τk,d≤T} + e−r(T−t)I{τk,d=∞}]

. (A50)

The approximated yields for senior and junior debt can be expressed as follows:

ŷS = − 1
T − t

· 1
N

N

∑
k=1

ln
(

e−r(T−t) − e−r(T−t)
[
(1 −RS)I{τk,d≤T}

])
, (A51)

ŷJ = − 1
T − t

· 1
N

N

∑
k=1

ln
(

e−r(T−t) − e−r(T−t)
[
(1 −RJ)I{τk,d≤T}

])
. (A52)

5. Since the option maturity, To, is shorter than that for long-term debts, an additional
simulation is required to determine the option price:

– Simulate the number of jumps NTo between time zero and To, the jump sizes
(Y1, . . . , YNTo

), and the jump times (τ1,. . . ,τNTo
).

– Determine if default happens between time zero and To. If default happens before
time To, the option value is zero; otherwise, move to the next step.

– If default does not happen before To, perform an additional simulation for each
sample path between time To and T, where the bank’s asset value is VTo . Repeat
Steps 1 to 4 with the additional simulation parameters and determine the stock
price STo at time To.

– The payoff of the option at time To is thus (STo − K)+, and the option price at
time zero is e−rTo (STo − K)+.

We used N = 1000 sample paths to compute the stock prices, equity volatility, CDS
spread, and senior and junior debt yields. For the computation of the equity option price,
and for each sample path k, where k = 1, 2, . . . , N, additional simulation M = 1000 sample
paths are simulated from time To to T if the default does not happen between (0, To], i.e.,
from option maturity to debt maturity.

Appendix D. Jump-Diffusion Algorithm for Time-t Stock Price with Contingent Capital

This appendix corresponds to Section 3. Similar to Appendix C, the main simulation
steps follow Metzler and Reesor (2015) and Beskos and Roberts (2005). The jump–diffusion
model follows Equation (1). The simulation steps are as follows:

1. For each sample path k, where k = 1, 2, . . . , N and N = 1000, simulate the number
of jumps NT between time t and T, the jump sizes (Y1, . . . , YNT ), and the jump times
(τ1,. . . ,τNT ), following Metzler and Reesor (2015).

2. Determine the conversion time and asset value at conversion:
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(a) If NT = 0, simulate the time-T asset value following Equation (A33) and apply
the Beskos and Roberts (2005) algorithm to determine the conversion time. We
fixed a stopping time τk,c, taking values in (0, T]∪ {∞} for path k. We said that
conversion occurs or does not occur according to τk,c < ∞ or τk,c = ∞, and
Vτk,c = Bc is the asset value when the conversion happens.

(b) If NT > 0, follow Step 3 of Appendix C to determine the conversion time τk,c
and asset value at conversion Vτk,c .

3. If conversion does not occur, i.e., τk,c = ∞, default does not occur either since default
cannot precede conversion; thus, the CoCo does not convert to equity, and the stock
price at time-t is the same as in the model of non-contingent when default does
not happen.

4. Determine whether conversion and default happen at the same time. If Vτk,c ≤ Bd,
upon default, the CoCo is treated as junior debt, and the time-t stock price is estimated
as in the model of non-contingent when default happens. Otherwise, move to the
next step.

5. If conversion precedes default, perform an additional simulation for each sample
path k between time τk,c and T with the additional M = 1000 paths. Apply Steps 1
to 3 of Appendix C to determine the default time between time-τk,c and T for each
additional sample path m, where m = 1, 2, . . . , N and the asset value process starts at
Vτk,c . Denote τm,d and Vτm,d as the default time and asset value at default, respectively,
and Vm,T represents the asset value at maturity if default does not occur.
Thus, the values of the deposit and senior debt at conversion time for sample path k
can be determined under Equations (39) and (40):

Lj
k,τk,c

=
1
M

M

∑
m=1

[(
CPj

τk,c ,T + e−r(τm,d−τk,c)Fj

)
I{τm,d=∞}

+
(

CPj
τk,c ,τm,d + e−r(τm,d−τk,c)RjFj

)
I{τm,d≤T}

]
, (A53)

where j ∈ {D, S}, and the coupon payment CPj
t1,t2

=
∫ t2

t1

(
e−r(s−t1)ijFj

)
ds is defined

in Section 3. The value of the CoCo23 at time-τk,c can be determined following
Equation (45):

LCC
k,τk,c

=
1
M

M

∑
m=1

[
(1 − l)FCC · I{τm,d=∞} + wmRm,τk,c · I{τm,d≤T}

]
, (A54)

where

Rm,τk,c =
1
2

e−r(τm,d−τk,c)
(

Vτm,d −RDFD −RSFS

)
I{τm,d≤T}, and (A55)

wm = min

(
1,

(1 − l)FCC
Rm,τk,c

)
. (A56)

6. Determine the time-t value of the deposit and senior debt under Equations (46) and
(47) by combining the results from the previous steps:

Lj
t =

1
N

N

∑
k=1

[(
CPj

t,T + e−r(T−t)Fj

)
I{τk,c=∞} +

(
CPj

t,τk,c
+ e−r(τk,c−t)Lj

k,τk,c

)
I{τk,c≤T}

]
, (A57)
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and under Equation (48), the time-t value of the CoCo is

LCC
t =

1
N

N

∑
k=1

[(
CPCC

t,T + e−r(T−t)FCC

)
I{τk,c=∞}

+
(

CPCC
t,τk,c

+ e−r(τk,c−t)RJ FCC

)
I{τk,c=τk,d≤T}

+
(

CPCC
t,τk,c

+ e−r(τk,c−t)LCC
k,τk,c

)
I{τk,c≤T,τk,c ̸=τk,d}

]
. (A58)

7. Determine the time-t stock price under Equation (50):

Ŝt =
Vt − LD

t − LS
t − LCC

t
NS

. (A59)

Appendix E. Simulation Steps for Yield, Spread, and Par Yield

This appendix corresponds to Section 5.3.2 and Table 6, where we examine whether
the issuance of CoCos is advantageous to the financial institution. We assumed the market-
observed senior debt yield and CDS spread reflected a situation without contingent capital,
and we used the calibrated parameters to estimate the senior debt yield and CDS spread
with CoCos. We also computed the CoCo par yield and compared it to the junior debt yield
of each bank. The steps are as follows:

1. For each sample path k = 1, 2, ..., N, where N = 1, 000, 000, simulate the number of
jumps NT between time zero and T, the jump sizes (Y1, ..., YNT ), and the jump times
(τ1,...,τNT ), following Metzler and Reesor (2015).

2. Determine whether conversion happens following Step 2 of Appendix D.
3. If conversion does not occur, then τk,d = ∞.
4. If conversion occurs, i.e., τk,c < ∞, determine whether default occurs between τk,c

and T and the corresponding default time τk,d, following the first three steps of
Appendix C. Thus, the senior debt yield yS and CDS spread st can be estimated
following Equations (37) and (26):

ŷS = − 1
T − t

· 1
N

N

∑
k=1

[
ln
(

e−r(T−t) − e−r(T−t)
[
(1 −RSFS)I{τk,d≤T}

])]
, and (A60)

ŝt =
r(1 −RS)

1
N ∑N

k=1 e−r(τk,d−t)I{τk,d≤T}

1 − 1
N ∑N

k=1 e−r(τk,d∧T−t)
. (A61)

5. To estimate the par yield of CoCos, we first estimated the time-t CoCo value LCC
t

under Equation (A58), following the steps in Appendix D. We then equated LCC
t and

the face value of CoCo, FCC, such that LCC
t = FCC, and numerically evaluated the

par yield.

Notes
1 Data source: Bank of Canada historical bank assets database.
2 It is worth noting that the National Bank of Canada (NB) is typically grouped with the Big Five, constituting the Big Six. We

excluded NB in this study due to the lack of data.
3 See https://www.bis.org/fsi/fsisummaries/defcap_b3.pdf (accessed on 2 September 2023) for the discussion of going concern

and gone concern capital.
4 In some cases, CoCos are issued originally as preferred stocks. For simplicity, in this paper, we assume CoCos are coupon bonds

at issuance.
5 Some contingent capital can be written down, rather than converting to equity, upon the trigger event, as in the case of the Credit

Suisse issuance.

https://www.bis.org/fsi/fsisummaries/defcap_b3.pdf
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6 In principle, it is impossible to ensure RD is 100% when jumps are allowed, as the asset value at default may jump far enough
below the barrier to be less than FD. However, under realistic parameter values, this will happen quite rarely.

7 See Remark 1 for the situation when the bank’s asset value at default falls below the sum of the recovered values.
8 Due to the short-term nature of option contracts, the option maturity To is generally shorter than the liability maturity T. Thus, if

equity can be considered as a European call option written on the firm’s assets, the equity option is essentially an option-on-option
on the firm’s assets, i.e., a compound option, where the strike price and maturity time of the inner option are the option strike
price and maturity, respectively, and the strike price and maturity time of the outer option is the firm’s face value of liability (on a
per share basis), and the liability maturity, respectively.

9 {g(To, VTo ) > KNS} ≡ {VTo > V∗} and g(To, VTo )− KNS is a monotonic function of VTo .
10 For realistic parameter values, we calculated debt yields in two scenarios, both simplified by assuming constant values for all

the other parameters: (1) with a coupon, and (2) without a coupon. Our findings indicate that the disparity between the two
computed yields is minimal, with a maximum difference of only 5 to 8 basis points.

11 We denote τc = τd as a representation when the asset value process breaches the conversion and default barriers simultaneously.
In this case, CoCos do not convert to equity but enter default as junior debt.

12 Similar to Remark 1, in our simulation, the scenario where the bank’s asset value jumps below the sum of the recovered values
and bankruptcy costs at the conversion time never occurred.

13 For simplicity, we use the name “CoCo” after conversion to distinguish it from the original equity.
14 We verify the unique equilibrium of price restriction in Theorem 1 of Sundaresan and Wang (2015) using our notations. The

equity value at time t is a function of time and asset value: Et = g(t, Vt). Let Kt be the conversion barrier such that when the
equity value falls to the conversion barrier, the CoCos convert to equity. When Et = Kt, conversion occurs, the CoCo investors
receive 100w% of the bank’s equity, and w = N∗/(N∗ + NS). Thus, NSw = N∗(1 − w). Multiplying Rτc on both sides gives
NSLCC

t = N∗Et, which satisfies Theorem 1 of Sundaresan and Wang (2015).
15 For all five banks, the senior debt accounts for more than 90% of non-deposit debts.
16 The selected call options for each bank are (a) BMO—strike price of CAD 90 and expiry date 20 October 2020; (b) CIBC—strike

price of CAD 100 and expiry date 20 May 2020; (c) RBC—strike price of CAD 96 and expiry date 20 May 2020; (d) BNS—strike
price of CAD 58 and expiry date 20 May 2020; and (e) TD—strike price of CAD 66 and expiry date 20 May 2020.

17 We used the Scipy package of Python to calibrate all parameters; specifically, under Scipy-Optimize-Minimize, the conjugate
gradient algorithm is applied.

18 In Table 2, we report the value of RJ , ℓ can be computed as the RJ/RS.
19 In the GBM model, a second approach is employed, wherein we do not initially compute the sum of squared errors. Instead,

we use each of the 625 parameter groups as individual initial inputs and calibrate them one by one, resulting in 625 calibration
outcomes. This approach is feasible in the GBM model as analytical functions are utilized. The two methods yield comparable
results. However, in the context of jump-diffusion, where all equations are evaluated through simulation, we cannot employ the
same methodology due to the considerable time required for the calibration of one parameter group, typically spanning two to
three days.

20 To validate the calibrated asset volatility, one method is to compute the volatility of the book values of assets from the bank’s
quarterly balance sheet. Using 10-year balance sheet data, the computed asset volatilities are between 1% and 2% for all banks.

21 https://www.bis.org/fsi/fsisummaries/defcap_b3.pdf (accessed on 2 September 2023).
22 Data sources: annual reports of BMO, CIBC, RBC, BNS, and TD from 2010 to 2019, https://www.sedarplus.ca/ (accessed on

15 July 2023).
23 To distinguish between the CoCo and the original common equity, we still refer to it as CoCo after conversion.
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