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Abstract: This work proposes a simple model to take into account the annual volatility of the
mortality level observed on the scale of a country like France in the construction of prospective
mortality tables. By assigning a frailty factor to a basic hazard function, we generalise the Lee–Carter
model. The impact on prospective life expectancies and capital requirements in the context of a life
annuity scheme is analysed in detail.
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1. Introduction

The construction of life expectancy projections has been the subject of many works
since the seminal article by Lee and Carter (Lee and Carter 1992).

For the purpose of extrapolating trends observed in the past into the future, most of the
approaches that have been proposed are based on a “mortality surface”, which measures
mortality forces by age and year at a given time, and smoothly extrapolates these into
the future.

The models inspired by Lee and Carter start by reducing dimensions by performing
a PCA and then extrapolating one or two time series associated with the projection on the
principal axes (see Plat 2009 for a detailed discussion).

Bongaarts (Bongaarts 2004) proposed a different approach, based on parametric ad-
justments by year of time vs. year of age and extrapolation of the estimated coefficients
each year.

In Bongaarts (2004), however, the author uses a rather simple parametric representa-
tion (Thatcher’s model, see Thatcher 1999), which does not allow all ages to be included.
Moreover, he limits his extrapolation to two out of three parameters (the age structure
of the mortality is assumed to be independent of time), treating them independently,
which is a questionable approximation (time varying coefficients for accident and aging
should be dependent).

This type of model projects a smooth t → µ(x, t) series. Given µ(x, t) and the risk ex-
posures E(x, t), we compute the annual global mortality rate in France, q(t) = ∑x E(x, t)×
µ(x, t)/ ∑x E(x, t). When looking at annual variations in this mortality rate from 1982 to
2022 (see Figure 1), we see a rather high degree of volatility. On this figure, the red line is the
annual variation of mortality, whereas the blue line is a quadratic fit of this annual variation.

The classic models described above cannot easily account for these short-term vari-
ations. The “probabilistic version” of the Lee–Carter model proposed by Brouhns et al.
(2002) could be used as a stochastic mortality model, but at the cost of being somewhat
cumbersome to implement. What is more, the uncertainty included in this model refers
solely to the estimation risk, whereas here we are seeking to account for a different kind
of uncertainty, relating to the underlying mortality itself. Proposed approaches for this
have been put forward, for example, in Guette (2010) or Currie et al. (2003), but with
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a slightly different objective, as these works propose to model catastrophes (rare high-
intensity events) such as wars or severe epidemics. More recently, an approach using
regime-switching models was proposed in Robben and Antonio (2023).
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However, our aim here is not to model rare events, but to incorporate the above
volatility into the model, in order to provide a more accurate assessment of residual
life expectancies when an unbiased estimate of mortality rates is available. We are not
concerned here with trend risk, for which there are many models (see Juillard et al. 2008;
Juillard and Planchet 2006; Plat 2009), but only with the short-term shift in mortality trend.

Therefore, a specific approach is proposed here, with the aim of accounting for this
short-term volatility and measuring its impact on the anticipation of prospective residual
life expectancies in a parsimonious way.

We draw inspiration here from the frailty models proposed by Vaupel and his co-
authors (Vaupel et al. 1979) by applying to a regular base hazard function a shock that
depends only on time, under a proportional hazards assumption. This model was gener-
alised by Barbi (1999), who proposed a heterogeneity model called “combined fragility”,
still assuming proportional fragility initially distributed according to a Gamma distribution.
It is used in Barbi et al. (2003), for example, to study the extreme age of survival.

Very recently, Carannante et al. (2023) offered a frailty version of the Lee–Carter model
which is very close to ours.

The frailty factor is not used here to consider population heterogeneity, as is usually
the case, but to introduce uncertainty into the model’s basic hazard function. The frailty
factor is thus designed to account for annual shifts around a steady mortality trend.

For further references, reader may look at (Debonneuil 2015; Guilbaud 2018; Planchet
and Thérond 2011).

2. Proposed Stochastic Mortality Model

The proposed specification is described below, followed by a method for estimating
the parameters within the framework of conditional maximum likelihood.
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2.1. Specification

Consider the following specification of the (stochastic) hazard function for the year of
time t:

µ(x, t) = Zt × µ0(x, t) (1)

with the semi-parametric form of the basic hazard function lnµ0(x, t) = αx + βxkt. The shocks
at time t are introduced through the random variable Zt. These shocks are assumed to
be independent, identically distributed and mean-centred, i.e., E(Zt) = 1. Because kt
is assumed to be deterministic, this model differs from the one described in Plat (2009).
What is more, in his article, Plat proposes interesting ways to model uncertainty about the
mortality trend. Here, we are interested in short-term deviations in the level of mortality,
with all ages combined. The two approaches are, therefore, complementary and do not
consider the same risks.

We use the usual identifiability conditions for the basic hazard function, which are
imposed1 as follows (cf. Brouhns et al. 2002):

xM

∑
x=xm

βx = 1 (2)

and
tM

∑
t=tm

kt = 0 (3)

This involves estimating the parameters of Zt and the matrix (α, β, k), then extrapolat-
ing the time series t → kt .

2.2. Log-Likelihood Determination

For maximum likelihood estimation, we know that everything happens as if the
number of deaths observed followed a Poisson distribution,

Dx,t ∼ P(Ex,t × µ(x, t)), (4)

which leads to the following expression for the conditional likelihood for an observation,
noting λ = Ex,t × µ0(x, t) and Z = Zt:

P(D = d|Z ) = e−λZ λd

d!
Zd. (5)

Likelihood for one observation is easy to obtain:

P(D = d) = EZ[P(D = d|Z )] =
∫

e−λzzd λd

d!
dFZ(z). (6)

We then choose a Gamma distribution of parameters a and b for the distribution of Zt,
i.e., fZ(z) = za−1 bae−b×z

Γ(a) , which leads to

P(D = d) =
λd

d!
ba

Γ(a)

∫ +∞

0
e−(λ+b)zzd+a−1dz. (7)

Using the change of variable u = (λ + b)z, we obtain the following expression for the
likelihood of an observation

P(D = d) =
λd

d!
ba

Γ(a)
1

(λ + b)d+a

∫ +∞

0
e−uud+a−1du, (8)
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which gives

P(D = d) =
λd

d!
ba

Γ(a)
1

(λ + b)d+a Γ(d + a), (9)

which in turn gives log-likelihood

lnP(D = d) = f (a, b) + dln(λ)− (d + a)ln(λ + b), (10)

with f (a, b) = ln
(

ba Γ(d+a)
Γ(d+1)Γ(a)

)
.

As a function of the parameters (α, β, k) and conditional on (a, b), the log-likelihood
for an observation is of the form l(α, β, k) = lnP(D = d) with λ = Ex,t × µ0(x, t) =
Ex,t × eαx+βxkt . Conditional on (a, b), the log-likelihood has the following form (with one
additive constant):

lnL =
xM

∑
x=xm

tM

∑
t=tm

lnP(Dx,t = dx,t|a, b ), (11)

which gives

lnL =
xM

∑
x=xm

tM

∑
t=tm

[dx,tln(λx,t)− (dx,t + a)ln(λx,t + b)]. (12)

Ultimately, this model aims to study the extent to which short-term volatility of
mortality rates may impact prospective mortality rates. It is accomplished through the
presence of parameters a and b in the log-likelihood, which can then be maximised by
(α, β, k) under the constraint given by Equations (2) and (3). This task is performed in the
next section.

2.3. Parameter Estimation

Parameter estimation can be carried out in two stages: in the first stage, the frailty
parameter is estimated, then, in the second stage, the above log-likelihood is maximised
at (α, β, k).

The condition E(Zt) = 1 implies a = b. We also have V(Zt) =
a
b2 =

1
a

, so the

disturbance control parameter Zt is the inverse of the variance a = σ−2
Z . A direct estimate

of this parameter can be made as follows, observing that the mean annual output intensities
are of the form

µ(t) = Zt × µ0(t), (13)

with

µ0(t) =
∑xM

x=xm Ex,tµ0(x, t)
∑xM

x=xm Ex,t
, (14)

from which we derive E(µ(t)) = µ0(t), V(µ(t)) = V(Zt)µ
2
0(t) then V(Zt) = V(µ(t))

E(µ(t))2 .

That last equation is equivalent to σ(Zt) = cv(µ(t)), with cv(µ(t)) being the coefficient of
variation of µ(t) and σ(Zt) being the standard deviation of Zt.

It is then straightforward to use the usual estimator for V(Zt):

σ̂2
Z =

1
tM−tm+1 ∑tM

t=tm

(
µ̂(t)− 1

tM−tm+1 ∑tM
t=tm

µ̂(t)
)2

(
1

tM−tm+1 ∑tM
t=tm

µ̂(t)
)2 . (15)

with µ̂(t) and µ̂(x, t) corresponding to the Hoem estimator of the hazard function:

µ̂(t) =
∑xM

x=xm Ex,tµ̂(x, t)
∑xM

x=xm Ex,t
, (16)
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and
µ̂(x, t) =

Dx,t

Ex,t
. (17)

Given that a = σ−2
Z and using Equation (15), the frailty parameter can be estimated

as follows:

a =
1

σ̂2
Z
=

(
1

tM−tm+1 ∑tM
t=tm

µ̂(t)
)2

1
tM−tm+1 ∑tM

t=tm

(
µ̂(t)− 1

tM−tm+1 ∑tM
t=tm

µ̂(t)
)2 . (18)

Once the frailty parameter has been estimated, the aim is to maximise the previously
expressed log-likelihood. The partial derivatives of the log-likelihood for an observation
are as follows:

∂

∂p
lnP(D = d) = d

1
λ

∂λ

∂p
− (d + a)

1
λ + b

∂λ

∂p
=

(
d
λ
− d + a

λ + a

)
∂λ

∂p
, (19)

with p one of the parameters (α, β, k). Since

∂λ

∂α
= λ, (20)

∂λ

∂β
= kλ, (21)

and
∂λ

∂k
= βλ, (22)

it is possible to estimate (α, β, k), as a solution of the following first-order conditions:

∂

∂αx
lnL =

tM

∑
t=tm

(
d

λx,t
− d + a

λx,t + a

)
λx,t = 0 (23)

∂

∂βx
lnL =

tM

∑
t=tm

(
d

λx,t
− d + a

λx,t + a

)
ktλx,t = 0 (24)

∂

∂kt
lnL =

xM

∑
x=xm

(
d

λx,t
− d + a

λx,t + a

)
βxλx,t = 0 (25)

This system is non-linear.

2.4. Calculating Prospective Residual Life Expectancies

In the proposed model, the calculation of prospective life expectancy proceeds as fol-
lows

e(x, t) = E(e(x, t|Z )) = E

(
∑
i≥0

i

∏
j=0

exp
(
−µx+j,t+j

))
(26)

Given the linearity of expectancy in a finite sum and knowing that the shocks are
assumed to be independent, the prospective life expectancy takes the form

e(x, t) = ∑
i≥0

i

∏
j=0

E
(
exp
(
−µx+j,t+j

))
(27)

We then have

e(x, t) = ∑
i≥0

i

∏
j=0

(
a

a + µ0(x + j, t + j)

)a
, (28)
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because the Laplace transform of a Gamma distribution is E
(
e−xZt

)
=

(
a

a+ x

)a
. As E

(
e−µ(x,t)

)
=

E
(

e−Zt×µ0(x,t)
)

, we deduce that:

E
(

e−µ(x,t)
)
= E

(
e−Zt×µ0(x,t)

)
=

(
a

a + µ0(x, t)

)a
. (29)

Note that lim
a→+∞

E
(

e−µ(x,t)
)
= e−µ0(x,t) and then we find the classic formula

e(x, t) = ∑
i≥0

i

∏
j=0

exp(−µ0(x + j, t + j)). (30)

3. Numerical Application

We use data for metropolitan France for the period of 2000 to 2020, with ages 0 to
105 included, from the Agalva and Blanpain (2021) study. The choice of these data is
motivated by the desire to be consistent with the work of estimating future mortality of
INSEE, which provided us with the data. The year 2020, which sees a significant increase
in mortality compared to 2019 (which was, on the contrary, a year of particularly low
mortality), is logically included in the study, as it is one of the non-catastrophic events
(in the sense defined above) that we want to include in the modelling.

All calibration was performed in R 4.3.1.
Prospective analyses are then carried out over the entire age range and for the years of

2021 to 2060, to enable comparisons to prospective tables compiled by INSEE.

3.1. Model Adjustment

All of these steps are discussed in turn in the following subsections. Throughout
the study, all of the results obtained are compared to those given by a Lee–Carter model
calibrated on the same data.

3.1.1. Estimation of Gamma Distribution Parameters

The estimation of the pair of parameters (a, b) has been made with the raw data,
and we find that σ2

Z = 4.3%, i.e., a = b = 550.

3.1.2. Estimation of Model Parameters

The calibration of (α, β, k) under constraints was then carried out using the2 Rsolnp
package, and more specifically the solnp function (see Ghalanos and Theussl 2015). This func-
tion is based on the solver by Yinyu Ye (see Ye 1987).

In order to carry out this calibration, the results of a Lee–Carter model were chosen
as initial parameters, calibrated using the lca function from the3 demography package
(see Hyndman 2023). All of these coefficients are transcribed in Appendix A.

As shown in the following figure (Figure 2), this leads to coefficients (α, β, k) that are
very close to those of the referenced Lee–Carter model:
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Figure 2. Comparison of the coefficients to those of a Lee–Carter model.

It can be seen that the time parameter shows a slower rate of decline from the 18th
year of the observation period.

3.1.3. Extrapolation of Time Coefficients

Whether in the model studied here or in the Lee–Carter model used as a reference, the
projection of coefficients (kt)t for t beyond the calibration range have been performed by
linear regression, by fitting the following equation to the calibrated parameters:

kt = m × t + p

In both cases, we find the coefficients shown in the following table (Table 1):

Table 1. Results of the extension of the time coefficients k.

m p

Model studied −2.19 4401.98
Lee–Carter reference model −2.19 4402.33
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The results are logically very similar in both cases.

3.2. Projected Mortality Forces

Here, we compare projected mortality forces with and without shocks integrated into
the model, as a function of age and year.

First, we look at the evolution of the mortality force as a function of age, for a few
fixed years, as show in Figure 3:
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The maximum relative deviation over the entire prospective range is 3.6% at age 80
for the year 2060.

We now compare the mortality forces of the two models over the entire prospective
analysis period, for a few selected ages. This comparison is performed in Figure 5:
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Overall, the mortality model studied tends to predict higher mortality forces than the
referenced Lee–Carter model at older ages, and the gap increases over time.

Before calculating prospective residual life expectancies, it is worth looking at the
overall impact on mortality forces. To this end, we calculate the following ratio:

r(x, t) =
µ(x, t)

µLC(x, t)

with µLC(x, t), the mortality force derived from the referenced Lee–Carter model and µ(x, t)
model. This ratio is shown in the following figure (Figure 6):
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The average value of this ratio for all ages and years combined is 100%, which means
that the model studied is equivalent to the Lee–Carter model. This reflects the assumption
made that the expectation of the frailty factor is equal to one.

The impact of the introduction of shocks on adjustment is, therefore, negligible when
assessed on a very global basis. However, the difference increases over time, leading the
two models to diverge in the medium term and at older ages.

If we restrict ourselves to ages over 65, we obtain a weighted average equal to 99.8%.
In addition, the average mortality rate of the population, calculated on the basis of

exposure to risk in 2020, evolves as represented on Figure 7:
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It can be seen that the model studied is on average more pessimistic than the Lee–
Carter model on mortality improvement in future mortality, with a projected average
mortality rate that is slightly higher than that derived from the Lee–Carter model.

3.3. Estimating Prospective Residual Life Expectancies

It is then possible to look at the consequences of the mortality model studied on
prospective residual life expectancies, first by variable age for a few fixed years, then by
variable year for a few fixed ages.

As shown in Figure 8, it appears that the mortality model studied does not greatly
change prospective residual life expectancies compared to the reference mortality model,
except possibly at high ages:
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An enlargement of these graphs at older ages is shown below on Figure 9, with the
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The maximum absolute difference between the two models is found at age 96 for the
year 2060, and it is worth 0.18, or around 65 days.

In this analysis, we return to the observation made in the previous section: he differ-
ence from the referenced Lee–Carter model is most marked for older ages, as shown on
Figure 10.
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Below on Figure 11 is an enlargement for age 96 with the algebraic difference between
the two models:
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3.4. Sensitivity to Frailty Parameter

The volatility of frailty is estimated at 4.3%; however, over a longer period, this
parameter can be higher. For example4, from 1982 to 2022 it comes out at 5.5%.

With this level of volatility, we note that P(Zt ≥ 1.09) ≈ 5%. Noting that 9% is the
excess mortality rate5 for the year 2020, we can deduce that the probability of observing
excess mortality at this level is of the order of 5%. Furthermore, VaR99.5%(Zt) ≈ 1.15,
which corresponds to the mortality shock for the “mortality” risk module of the Solvency 2
delegated regulation. In other words,
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- the severity of the COVID-19 pandemic remains below the Solvency 2 bicentennial
event. It is associated with a 10-fold higher probability of occurrence.

- the calibration of frailty with a volatility of 5.5% is consistent with that of the Solvency
2 standard formula for mortality risk.

Based on the central table µ0(x, t) adjusted above, the prospective residual life ex-
pectancies associated with a volatility coefficient of 5.5% are recalculated using

e(x, t) = ∑i≥0

i

∏
j=0

(
σ−2

σ−2 + µ0(x + j, t + j)

)σ−2

,

which leads to the results presented on Figure 12:
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Figure 12. Evolution of prospective residual life expectancies from age 65 to 105 for selected years,
with a new volatility coefficient.

There is no significant difference between the two models with this new volatility setting.

3.5. Consequences for the Capital Requirement of an Annuity Plan

The presence of the frailty factor, therefore, has no material impact on central tendency
indicators (mortality forces, residual life expectancies, etc.).

However, the random nature of the mortality distribution in a given year has conse-
quences for the assessment of the capital required to protect against adverse deviations in
mortality. In the specific context of a life annuity plan, following a logic analogous to that
of the Solvency 2 standard, we are led to consider the 99.5% quantile of the distribution
of residual life expectancies induced by frailty as a proxy for the SCR6. For each age from
60 to 100, we obtain the following results (Figure 13) for the ratio between this quantile and
the expectation, from a direct Monte-Carlo approach:
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Weighted by the age structure of the French population, the average ratio is around
101.3%.

For its part, the delegated regulation7 imposes a 20% discount on death rates when
calculating the SCR associated with longevity risk (cf. art. 138 of delegated regulation EU
n◦2015/35), which leads to a capital requirement equal to 10% of the expectation.

This means that the volatility observed in annual death rates explains around 12% of
the longevity SCR.

4. Conclusions and Discussion

The use of a Gamma frailty model enables us to correctly account for the annual
variations in mortality levels observed throughout France.

Incorporating these variations into the fitting of a forward-looking log-Poisson model
poses no major difficulty, and a two-stage parameter estimation process enables us to use
conventional likelihood maximisation algorithms.

The results obtained show that the impact of this additional volatility is negligible
on the central tendency indicators. However, those results follow the assumption that the
shocks are mean-centred. This document provides a more general structure to perform
prospective analyses under situations of durable deterioration or amelioration of mortality
(i.e., consider E(Zt) ̸= 1).

On the other hand, there is a material impact on the capital requirement associated
with longevity risk, with just under 15% of this requirement being induced by the presence
of this volatility. The remainder is associated with uncertainty about the trend in death rates.

Thus, while the main hazard associated with the construction of a prospective mortality
table remains the uncertainty attached to the determination of the trend (see Juillard
et al. (2008), Juillard and Planchet (2006) and Plat (2009) for detailed analyses on this
point), considering these short-term fluctuations in mortality levels provides a better
understanding of the determinants of longevity risk.

Finally, an important limitation of the proposed model is that the annual shock is
applied with the same intensity to all ages. The determinants of shocks of this type over the
last 40 years (typically heatwaves and/or flu epidemics or COVID-19) mainly concern older
age groups (over 65). The model should, therefore, be refined on this point. However, this
limitation needs to be put into perspective, as applications of this model mainly concern
pension schemes, where participants are older.



Risks 2024, 12, 57 15 of 18

Author Contributions: Conceptualization, F.P.; Methodology, G.G.d.L.P.; Software, G.G.d.L.P.; Data
curation, G.G.d.L.P.; Writing—original draft, F.P.; supervision—F.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: Authors Frédéric Planchet and Guillaume Gautier de la Plaine were employed
by the company Prim’Act. The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest. The
company Prim’Act had no role in the design of the study; in the collection, analyses, or interpretation
of data; in the writing of the manuscript, or in the decision to publish the results.

Appendix A

Table A1. Calibrated model coefficients (1/3).

Alpha

Age Model
Studied

LC
Reference

Model
Age Model

Studied

LC
Reference

Model
Age Model

Studied

LC
Reference

Model

0 −5.6542 −5.6553 36 −7.0173 −7.0186 72 −4.0422 −4.0456
1 −7.3447 −7.3457 37 −6.9390 −6.9396 73 −3.9592 −3.9625
2 −8.2790 −8.2804 38 −6.8474 −6.8480 74 −3.8668 −3.8713
3 −8.6679 −8.6695 39 −6.7630 −6.7633 75 −3.7867 −3.7882
4 −8.9672 −8.9721 40 −6.6729 −6.6733 76 −3.6851 −3.6862
5 −9.0765 −9.0803 41 −6.5862 −6.5867 77 −3.5790 −3.5803
6 −9.1958 −9.2028 42 −6.4878 −6.4880 78 −3.4774 −3.4791
7 −9.2892 −9.2924 43 −6.3872 −6.3877 79 −3.3674 −3.3679
8 −9.4087 −9.4124 44 −6.2849 −6.2854 80 −3.2163 −3.2216
9 −9.3935 −9.4009 45 −6.1800 −6.1803 81 −3.0838 −3.0881

10 −9.4223 −9.4329 46 −6.0917 −6.0922 82 −2.9510 −2.9556
11 −9.3577 −9.3662 47 −5.9813 −5.9817 83 −2.8178 −2.8236
12 −9.2768 −9.2809 48 −5.8840 −5.8845 84 −2.6937 −2.7014
13 −9.1674 −9.1742 49 −5.7947 −5.7952 85 −2.5725 −2.5850
14 −8.9411 −8.9443 50 −5.7068 −5.7077 86 −2.4381 −2.4498
15 −8.6907 −8.6949 51 −5.6157 −5.6166 87 −2.3015 −2.3126
16 −8.4690 −8.4721 52 −5.5399 −5.5411 88 −2.1619 −2.1733
17 −8.2022 −8.2047 53 −5.4596 −5.4605 89 −2.0266 −2.0390
18 −7.9805 −7.9814 54 −5.3712 −5.3722 90 −1.8871 −1.9001
19 −7.7424 −7.7441 55 −5.2853 −5.2866 91 −1.7522 −1.7651
20 −7.6642 −7.6654 56 −5.2062 −5.2078 92 −1.6216 −1.6351
21 −7.6042 −7.6051 57 −5.1270 −5.1289 93 −1.4936 −1.5072
22 −7.5935 −7.5952 58 −5.0598 −5.0611 94 −1.3657 −1.3777
23 −7.5824 −7.5837 59 −4.9902 −4.9925 95 −1.2453 −1.2594
24 −7.5520 −7.5540 60 −4.9156 −4.9178 96 −1.1239 −1.1367
25 −7.5513 −7.5531 61 −4.8551 −4.8570 97 −1.0154 −1.0262
26 −7.5195 −7.5211 62 −4.7853 −4.7877 98 −0.9056 −0.9177
27 −7.4982 −7.4995 63 −4.7165 −4.7182 99 −0.8059 −0.8166
28 −7.4795 −7.4816 64 −4.6552 −4.6571 100 −0.7093 −0.7208
29 −7.4393 −7.4409 65 −4.5875 −4.5894 101 −0.6286 −0.6345
30 −7.3880 −7.3899 66 −4.5141 −4.5163 102 −0.5389 −0.5481
31 −7.3594 −7.3607 67 −4.4558 −4.4580 103 −0.4581 −0.4679
32 −7.3008 −7.3012 68 −4.3774 −4.3802 104 −0.4095 −0.4185
33 −7.2536 −7.2544 69 −4.2982 −4.3005 105 −0.4625 −0.4652
34 −7.1764 −7.1771 70 −4.2170 −4.2209
35 −7.1106 −7.1110 71 −4.1381 −4.1415
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Table A2. Calibrated model coefficients (2/3).

Beta

Age Model
Studied

LC
Reference

Model
Age Model

Studied

LC
Reference

Model
Age Model

Studied

LC
Reference

Model

0 0.0033 0.0033 36 0.0120 0.0120 72 0.0070 0.0071
1 0.0115 0.0115 37 0.0115 0.0115 73 0.0070 0.0071
2 0.0114 0.0114 38 0.0123 0.0123 74 0.0075 0.0077
3 0.0118 0.0117 39 0.0119 0.0118 75 0.0090 0.0091
4 0.0130 0.0131 40 0.0129 0.0129 76 0.0094 0.0094
5 0.0121 0.0118 41 0.0134 0.0135 77 0.0097 0.0097
6 0.0097 0.0102 42 0.0140 0.0140 78 0.0096 0.0097
7 0.0145 0.0146 43 0.0137 0.0137 79 0.0099 0.0098
8 0.0119 0.0121 44 0.0135 0.0136 80 0.0136 0.0129
9 0.0126 0.0127 45 0.0132 0.0133 81 0.0139 0.0134

10 0.0144 0.0138 46 0.0136 0.0137 82 0.0141 0.0137
11 0.0114 0.0118 47 0.0128 0.0127 83 0.0142 0.0137
12 0.0165 0.0162 48 0.0122 0.0122 84 0.0115 0.0107
13 0.0143 0.0142 49 0.0108 0.0108 85 0.0083 0.0073
14 0.0151 0.0151 50 0.0106 0.0106 86 0.0065 0.0057
15 0.0155 0.0151 51 0.0099 0.0099 87 0.0059 0.0054
16 0.0180 0.0182 52 0.0093 0.0093 88 0.0056 0.0052
17 0.0171 0.0171 53 0.0093 0.0093 89 0.0057 0.0054
18 0.0185 0.0187 54 0.0095 0.0094 90 0.0051 0.0049
19 0.0183 0.0180 55 0.0093 0.0092 91 0.0049 0.0048
20 0.0170 0.0169 56 0.0082 0.0080 92 0.0044 0.0046
21 0.0158 0.0158 57 0.0082 0.0081 93 0.0039 0.0041
22 0.0146 0.0146 58 0.0067 0.0066 94 0.0026 0.0030
23 0.0156 0.0156 59 0.0061 0.0059 95 0.0023 0.0027
24 0.0132 0.0134 60 0.0050 0.0049 96 0.0016 0.0024
25 0.0126 0.0127 61 0.0042 0.0041 97 0.0008 0.0014
26 0.0113 0.0115 62 0.0039 0.0038 98 −0.0005 0.0004
27 0.0111 0.0112 63 0.0040 0.0039 99 −0.0013 −0.0006
28 0.0107 0.0108 64 0.0042 0.0042 100 −0.0002 −0.0001
29 0.0088 0.0088 65 0.0038 0.0038 101 0.0018 0.0022
30 0.0103 0.0102 66 0.0046 0.0046 102 0.0044 0.0047
31 0.0111 0.0110 67 0.0050 0.0051 103 0.0046 0.0048
32 0.0107 0.0106 68 0.0047 0.0047 104 0.0046 0.0053
33 0.0105 0.0104 69 0.0059 0.0059 105 0.0046 0.0051
34 0.0106 0.0105 70 0.0055 0.0055
35 0.0114 0.0113 71 0.0063 0.0064

Table A3. Calibrated model coefficients (3/3).

Kappa

Age Model
Studied

LC
Reference

Model
Age Model

Studied

LC
Reference

Model

2000 24.4565 24.4761 2030 −43.8008 −43.8043
2001 24.4627 24.5265 2031 −45.9908 −45.9945
2002 21.2073 21.2070 2032 −48.1809 −48.1847
2003 18.4710 18.4083 2033 −50.3709 −50.3750
2004 10.9651 10.9513 2034 −52.5610 −52.5652
2005 9.4399 9.4231 2035 −54.7510 −54.7554
2006 6.0386 6.0366 2036 −56.9410 −56.9456
2007 3.1599 3.1578 2037 −59.1311 −59.1358
2008 1.4649 1.4631 2038 −61.3211 −61.3260
2009 1.6981 1.6984 2039 −63.5112 −63.5163
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Table A3. Cont.

Kappa

Age Model
Studied

LC
Reference

Model
Age Model

Studied

LC
Reference

Model

2010 −1.1863 −1.1865 2040 −65.7012 −65.7065
2011 −4.7123 −4.7140 2041 −67.8912 −67.8967
2012 −6.6593 −6.6691 2042 −70.0813 −70.0869
2013 −8.5651 −8.5639 2043 −72.2713 −72.2771
2014 −12.6304 −12.6243 2044 −74.4614 −74.4673
2015 −9.8526 −9.8338 2045 −76.6514 −76.6575
2016 −13.5803 −13.5743 2046 −78.8414 −78.8478
2017 −15.8335 −15.8386 2047 −81.0315 −81.0380
2018 −15.6887 −15.6650 2048 −83.2215 −83.2282
2019 −16.4993 −16.4493 2049 −85.4116 −85.4184
2020 −16.1564 −16.2296 2050 −87.6016 −87.6086
2021 −24.0904 −24.0924 2051 −89.7916 −89.7988
2022 −26.2805 −26.2826 2052 −91.9817 −91.9891
2023 −28.4705 −28.4728 2053 −94.1717 −94.1793
2024 −30.6606 −30.6630 2054 −96.3618 −96.3695
2025 −32.8506 −32.8532 2055 −98.5518 −98.5597
2026 −35.0406 −35.0435 2056 −100.7418 −100.7499
2027 −37.2307 −37.2337 2057 −102.9319 −102.9401
2028 −39.4207 −39.4239 2058 −105.1219 −105.1304
2029 −41.6108 −41.6141 2059 −107.3120 −107.3206

2060 −109.5020 −109.5108

Notes
1 It should be remembered that Lee and Carter’s initial model is not a probabilistic model, and simply proposes a parsimonious

decomposition of interactions between age and year in the structure of mortality rates across a country.
2 https://cran.r-project.org/web/packages/Rsolnp/index.html (accessed on 31 December 2023).
3 https://cran.r-project.org/web/packages/demography/index.html (accessed on 31 December 2023).
4 https://www.ressources-actuarielles.net/C1256F13006585B2/0/39B54166464089AFC12572B0003D88C2/$FILE/20230921_FP.pdf?

OpenElement (accessed on 31 December 2023).
5 https://actudactuaires.typepad.com/laboratoire/2021/03/mortalit%C3%A9-en-france-en-2020-suite.html (accessed on 31 De-

cember 2023).
6 The SCR is the minimum capital required to control the probability of ruin at one year in the sense of the economic balance sheet

at the level of 0.5%.
7 EU Delegated Regulation n◦2015/35: https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX:32015R0035 (accessed on

31 December 2023).

References
Agalva, Élisabeth, and Nathalie Blanpain. 2021. Projections de Population 2021–2070. Insee Résultats. Paris: INSEE.
Barbi, Elisabetta. 1999. Eterogeneità Della Popolazione e Sopravvivenza Umana: Prospettive Metodologiche ed Applicazioni alle

Generazioni Italiane 1870–1895. Ph.D. thesis, Dipartimento Statistico, Università degli Studi di Firenze, Florence, Italy; 91p.
Barbi, Elisabetta, Graciella Casellic, and Jacques Vallin. 2003. Hétérogénéité des générations et âge extrême de la vie. Population

58: 45–68. [CrossRef]
Bongaarts, John. 2004. Long-range trends in adults mortality: Models and projection methods. Demography 42: 23–49. [CrossRef]

[PubMed]
Brouhns, Natacha, Michael Denuit, and Jeroen K. Vermunt. 2002. A Poisson log-bilinear regression approach to the construction of

projected lifetables. Insurance, Mathematic and Economics 31: 373–93. [CrossRef]
Carannante, Maria, Valeria D’Amato, Steven Haberma, and Massimilliano Menzietti. 2023. Frailty-based Lee–Carter family of

stochastic mortality models. Quality and Quantity. [CrossRef]
Currie, Ian, Maria Durban, and Paul Eilers. 2003. Using P-splines to extrapolate two-dimensional Poisson data. Paper presented at the

18th International Workshop on Statistical Modelling, Leuven, Belgium, July 7–11.

https://cran.r-project.org/web/packages/Rsolnp/index.html
https://cran.r-project.org/web/packages/demography/index.html
https://www.ressources-actuarielles.net/C1256F13006585B2/0/39B54166464089AFC12572B0003D88C2/$FILE/20230921_FP.pdf?OpenElement
https://www.ressources-actuarielles.net/C1256F13006585B2/0/39B54166464089AFC12572B0003D88C2/$FILE/20230921_FP.pdf?OpenElement
https://actudactuaires.typepad.com/laboratoire/2021/03/mortalit%C3%A9-en-france-en-2020-suite.html
https://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX:32015R0035
https://doi.org/10.3917/popu.301.0045
https://doi.org/10.1353/dem.2005.0003
https://www.ncbi.nlm.nih.gov/pubmed/15782894
https://doi.org/10.1016/S0167-6687(02)00185-3
https://doi.org/10.1007/s11135-023-01786-6


Risks 2024, 12, 57 18 of 18

Debonneuil, Edouard. 2015. Parametric age-dependent mortality model, for applications to retirement portfolios. In Actuarial Thesis.
Lyon: ISFA.

Ghalanos, Alexios, and Stefan Theussl. 2015. Rsolnp: General Non-Linear Optimization. Available online: https://cran.r-project.org/
package=Rsolnp (accessed on 31 December 2023).

Guette, Vivien. 2010. La prise en compte des catastrophes dans la modélisation de la mortalité. In Actuary Thesis. Lyon: ISFA.
Guilbaud, Corentin. 2018. Nouveaux modèles d’analyse et de projection de la mortalité, application a la population française.

In Mémoire d’Actuaire. Paris: Dauphine.
Hyndman, Rob. 2023. Demography: Forecasting Mortality, Fertility, Migration and Population Data. Available online: https:

//cran.r-project.org/package=demography/index.html (accessed on 31 December 2023).
Juillard, Marc, and Frederic Planchet. 2006. Mesure de l’incertitude tendancielle sur la mortalité—Application à un régime de rentes.

Assurances et Gestion des Risques 75: 357–74.
Juillard, Marc, Frédéric Planchet, and Pierre E. Thérond. 2008. Perturbations extrêmes sur la dérive de mortalité anticipée. Assurances et

Gestion des Risques 76: 1–11.
Lee, Ronald D., and Lawrence R. Carter. 1992. Modeling and forecasting us mortality. Journal of the American Statistical Association

87: 659–71.
Planchet, Frédéric, and Pierre E. Thérond. 2011. Modélisation Statistique des Phénomènes de Durée—Applications Actuarielles. Paris: Eco-

nomica.
Plat, Richard. 2009. On stochastic mortality modelling. Insurance: Mathematics and Economics 45: 393–404.
Robben, Jens, and Katrien Antonio. 2023. Catastrophe risk in a stochastic multi-population mortality model. arXiv arXiv:2306.15271.
Thatcher, A. R. 1999. The Long-term Pattern of Adult Mortality and the Highest Attained Age. Journal of the Royal Statistical Society

162: 5–43. [CrossRef] [PubMed]
Vaupel, James W., Kenneth Manton, and Eric Stallard. 1979. The impact of heterogeneity in individual frailty on the dynamics of

mortality. Demography 16: 439–54. [CrossRef] [PubMed]
Ye, Yinyu. 1987. Interior Algorithms for Linear, Quadratic, and Linearly Constrained Non-Linear Programming. Ph.D. thesis,

Department of EES Stanford University, Stanford, CA, USA.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cran.r-project.org/package=Rsolnp
https://cran.r-project.org/package=Rsolnp
https://cran.r-project.org/package=demography/index.html
https://cran.r-project.org/package=demography/index.html
https://doi.org/10.1111/1467-985X.00119
https://www.ncbi.nlm.nih.gov/pubmed/12294994
https://doi.org/10.2307/2061224
https://www.ncbi.nlm.nih.gov/pubmed/510638

	Introduction 
	Proposed Stochastic Mortality Model 
	Specification 
	Log-Likelihood Determination 
	Parameter Estimation 
	Calculating Prospective Residual Life Expectancies 

	Numerical Application 
	Model Adjustment 
	Estimation of Gamma Distribution Parameters 
	Estimation of Model Parameters 
	Extrapolation of Time Coefficients 

	Projected Mortality Forces 
	Estimating Prospective Residual Life Expectancies 
	Sensitivity to Frailty Parameter 
	Consequences for the Capital Requirement of an Annuity Plan 

	Conclusions and Discussion 
	Appendix A
	References

