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Abstract: We consider a one-period portfolio optimization problem under model
uncertainty. For this purpose, we introduce a measure of model risk. We derive analytical
results for this measure of model risk in the mean-variance problem assuming we have
observations drawn from a normal variance mixture model. This model allows for heavy
tails, tail dependence and leptokurtosis of marginals. The results show that mean-variance
optimization is seriously compromised by model uncertainty, in particular, for non-Gaussian
data and small sample sizes. To mitigate these shortcomings, we propose a method to adjust
the sample covariance matrix in order to reduce model risk.

Keywords: portfolio optimization; asset allocation; model risk; estimation uncertainty;
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1. Introduction

Traditional portfolio optimization techniques rely on the true model parameters being known.
However, in general, these model parameters are not known and need to be estimated, for example,
from historical data. The possible estimation error gives rise to model risk or model uncertainty. Let us
illustrate this with a prominent example, the mean-variance optimization introduced by Markowitz [1].
Consider the unconstrained version of the optimization problem

maximize (µ′w − κw′Σw) over w ∈ Rn
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where µ ∈ Rn is the vector of expected returns, Σ ∈ Rn×n is the positive definite covariance matrix and
κ > 0 is a risk aversion parameter. This optimization problem has a unique solution w∗ ∈ Rn given by

w∗ =
1

2κ
Σ−1µ

This solution crucially depends on the true expected returnsµ and the covariance matrix Σ. The standard
approach replaces true parameters by estimates ignoring any model uncertainty. In the literature, it has
been shown that this standard approach has serious drawbacks in mean-variance optimization, see e.g.,
Michaud [2].

The aim of this paper is to study analytically and numerically the consequences of such model
uncertainty in the mean-variance problem and derive parameter estimators which take model uncertainty
into account. Despite being a standard one-period problem, it becomes mathematically rather involved
when considering model uncertainty. We remark that the mean-variance portfolio remains one of the
most important benchmarks in the literature on asset allocation and in the asset management industry,
see e.g., Litterman, [3] Chapter 4, and Meucci, [4] Chapter 6. Numerically we will also analyze three
other important benchmarks in asset allocation: the minimum variance, the equal contributions to risk
and the maximum diversification problems; see e.g., Choueifaty and Coignard [5], Maillard et al. [6]
and Clarke et al. [7] for more information about the latter problems. In this paper we consider these
four major portfolio optimization problems. There is an extensive literature discussing mean-variance
optimization under model uncertainty. We briefly review the main contributions.

A first portfolio selection rule which takes model uncertainty into account has initially been studied in
Brown [8,9], and Klein and Bawa [10]. They use a Bayesian approach under a non-informative prior. In
this framework, the optimal portfolio is selected maximizing the expected value of the objective function
conditioned on the predictive distribution of the asset returns. This approach mostly outperforms the
standard one and has been studied in many subsequent articles, see e.g., Kandel and Stambaugh [11],
Barberis [12], Pástor [13], Pástor and Stambaugh [14], Xia [15], and Tu and Zhou [16].

A second approach to deal with model uncertainty has been proposed in Jobson et al. [17], Jorion [18],
and Frost and Savarino [19]. This consists in adjusting the estimated parameters in order to minimize or
reduce a certain loss function. The loss function measures the negative effects of model uncertainty.
Typically, it is defined by the expected loss in the mean-variance objective function caused by the
estimation. In [17–19] the mean-variance problem is considered within the Bayesian framework using
such a loss function. This approach differs from the one in [9] and subsequent papers. In [17–19]
informative priors are proposed with the aim of exploiting prior knowledge about the problem and
reducing estimation bias and error for the optimal portfolio weights. In [17] Stein-type estimators
(also known as shrinkage estimators) for µ and Σ are introduced. In [18] the problem is studied
under uncertainty in µ only. In [19] the mean-variance problem with linear constraints is considered
under uncertainty in both µ and Σ. Ter Horst et al. [20] analyze the same loss function as in [17–19]
under the assumption of known covariance matrix Σ and considering only estimation of µ. A uniform
rescaling of the optimal portfolio weights is proposed to account for model uncertainty. In Kan
and Zhou [21] a closed-form expression for the same loss function as in [17–19] is derived in the
unconstrained mean-variance problem under uncertainty in µ and Σ. In Jobson and Korkie [22]
the asymptotic distributions of the means, variances and optimal portfolio weights are derived in a
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constrained problem. Mori [23] obtains analytical results on the optimality of certain estimators in the
constrained mean-variance problem. General linear equality constraints are considered under uncertainty
in µ and Σ. Unlike these papers we use a more general class of models for the data than the multivariate
Gaussian assumption. Moreover, we consider a modification of the loss function used in [17–19].

As mentioned above, other optimization problems than mean-variance are also used in practice. In
particular, many variants involving different optimization criteria and different notions of risk have been
proposed. For this reason an appropriate model risk measure should be defined for a relatively general
portfolio optimization problem. In Kondor et al. [24] model uncertainty in a risk minimization problem is
studied under several different risk measures using simulated data. The loss function considered in [24]
is essentially a generalization of the one used in [17–19] to other risk measures than the variance. In
this paper we introduce a measure of model risk in a more general portfolio optimization context than
mean-variance or risk minimization.

Finally, Simaan [25] introduced an alternative loss measure to [17–19] based on the opportunity cost
of forgoing the optimal portfolio. The opportunity cost is defined by the minimal amount of money the
investor is willing to accept to replace the optimal portfolio with an alternative sub-optimal portfolio. If
the investor has full information on the true parameters, then the amount is positive. However, under
model uncertainty, the alternative portfolio may be superior out-of-sample and the amount may be
negative. In the framework of [25] the opportunity cost is evaluated and used to study the effects of
model uncertainty on the portfolio optimization. This approach is fundamentally different from the one
we follow in this paper.

Ledoit and Wolf [26], partially motivated by portfolio optimization applications, propose a shrinkage
estimator for Σ defined by the convex linear combination of the sample covariance matrix and the identity
matrix. The optimal weight in the combination is determined asymptotically for number of assets
and observations going simultaneously to infinity, i.e., they obtain asymptotically optimal covariance
estimators. An alternative portfolio selection rule to the shrinkage of the sample covariance matrix is
considered in DeMiguel et al. [27]. The approach of [27] can be interpreted as a shrinkage procedure
for the optimal portfolio weights. This is achieved by imposing an additional constraint on the norm
of the weights in the optimization. The paper shows that this corresponds to a Bayesian approach
where the investor has prior information on the optimal portfolio weights rather than the means and the
covariances. Recently, Zhou et al. [28] have considered an estimator based on a different regularization
structure. Monotonicity constraints on the covariances and a smoothness penalty term are imposed when
estimating the covariance matrix. They argue that a monotonic structure for the covariance matrix is
common in several situations, e.g., bonds with different maturities and options with different strikes or
expirations. In [28] the use of these smooth monotonic estimators is also extended to non-Gaussian data.
In contrast, in our paper we do not attempt to reduce estimation error based on prior information about
the structure of the problem; rather, we define a measure which describes how estimation uncertainty
affects portfolio optimization. We study the properties of this measure under non-Gaussian data, and
modify the estimates accordingly.

El Karoui [29,30] derives asymptotic results which highlight the severe problems arising in
high-dimensional optimization problems. The minimum variance problem with linear constraints and
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uncertainty in µ and Σ is considered under elliptical asset returns. The considerations in our paper are
in the spirit of [29,30] but relate to finite number of assets and sample size.

To conclude the review of the literature we would like to mention the deterministic approach studied
in Goldfarb and Iyengar [31]. In this framework model parameters are known to lie within appropriately
defined bounded sets. The optimization problem is then solved assuming worst case scenarios in these
sets. In [31] an efficient algorithm to compute such robust optimal portfolios is developed.

In this paper we give the following contributions. First, we introduce a measure of model risk based on
an alternative loss function to the one initially proposed by Jobson et al. [17], Jorion [18], and Frost and
Savarino [19]. In Section 2 we introduce this measure in a general optimization problem and describe
the reason why we believe it is more relevant for applications than the one considered in [17–19].

Secondly, most of the articles so far, have quantified model risk assuming i.i.d. multivariate Gaussian
observations. This is, of course, not a realistic model for asset returns in the financial market, see e.g.,
McNeil et al. [32], Chapter 3. In Ter Horst et al. [20] a non-i.i.d. case is considered. In [29,30] non-i.i.d.
elliptical data is considered and the problem is analyzed asymptotically. In this paper we derive analytical
results for finite number of assets and observations in a normal variance mixture model which allows for
heavy tails, tail dependence and leptokurtosis of marginals. In particular, we study the cases of small
and large number of assets relative to the sample size. Note also that some articles in the literature (see
e.g., [20]) consider only uncertainty in µ. From the analytical results derived in Kan and Zhou [21],
it follows that the uncertainty in the covariance matrix also has a large impact on the optimal portfolio
when the number of assets is large compared to the sample size. Therefore, in this paper, we consider
uncertainty in both µ and Σ.

Finally, we present an alternative method to adjust the estimated parameters for model uncertainty.
We consider modifications of the spectral decomposition of the sample covariance matrix in order to
reduce the drawbacks of model risk. In the literature, we can find many papers studying the spectrum
of the sample covariance matrix statistically, see e.g., Johnstone [33], Ledoit and Wolf [26], and El
Karoui [34]. It has been shown that, although the sample covariance matrix is an unbiased estimator, its
eigenvalues behave very differently from the true ones, especially, when the number of assets is large
compared to the sample size. The linear shrinkage procedure of Ledoit and Wolf [26] corresponds to
shrinking all the eigenvalues towards the same constant. In Ledoit and Wolf [35], it is argued that this
approach works well in the case where the true eigenvalues are close to each other (this is typically the
case when the number of assets is small compared to the sample size). However, if the eigenvalues are
highly dispersed (typically the case when the number of assets is large compared to the sample size)
linear shrinkage does not substantially improve the estimation. In their work they propose to apply
an individual shrinkage to each sample eigenvalue in order to obtain an improvement in the covariance
matrix estimation. This, however, without a direct consideration to portfolio optimization. The procedure
to estimate the shrinkage intensities for each eigenvalue is based on a large dimensional asymptotic
approximation, which relies on results from random matrix theory on the limiting spectral distribution
of the sample covariance matrix, see Marchenko and Pastur [36]. Papp et al. [37] investigate a filtering
procedure for the sample covariance matrix. Specifically, they consider a result which provides an exact
relationship between the spectral moments of the true matrix and the sample ones. This can be used
to revise the spectrum of the sample estimator. The applicability of this procedure is demonstrated
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using simulated data. In Menchero et al. [38] we find an empirical study on the bias of volatility
estimates for mean-variance portfolios and its relations to eigenvalues and eigenvectors of the sample
covariance matrix. In this paper we revisit the idea of modifying the eigenvalues individually and apply
it to reduce the negative effects of model uncertainty. In particular, we analyze the measure of model
uncertainty introduced in Section 2 in the mean-variance problem for the covariance matrix estimator
with rescaled eigenvalues.

Organization of the paper. In Section 2 we introduce our measure of model risk for general
portfolio optimization problems. Using this measure we prove in Proposition 1 the following result:
under the assumption of known constraints and unbiased estimators, optimal portfolios are on average
negatively affected by model risk. In Section 3 we consider mean-variance optimization assuming we
have observations drawn from a normal variance mixture model. We derive in Theorem 2 an analytical
formula for our measure of model uncertainty. This provides a good description of the effects of model
uncertainty. Moreover, we show that this measure of model risk attains its lowest value in the Gaussian
case. In Section 4 we introduce an estimator for the covariance matrix with adjusted eigenvalues.
In Theorem 4 we derive a relationship between our measure of model uncertainty and the adjusted
eigenvalues. Using this, we derive in Theorem 5 a rule which reduces the effects of model uncertainty
under the assumption of known eigenvectors. Even if these are unknown, we show numerically in
Section 5 that the rule provides significant improvements to the portfolio optimization problem.

2. General Definitions

We consider the portfolio optimization problem of an investor who allocates his wealth among n risky
assets. A portfolio is defined by w = (w1, . . . , wn)′ ∈ Rn, where wi denotes the proportion of wealth
invested in asset i. Let U : Rn → R be a real-valued function on the set of all portfolios. The function
U specifies the investor’s preference for portfolios and is called utility function. Let A ⊂ Rn be the set
of admissible portfolios which specifies the investment constraints. In this general setting we define the
optimal portfolio by

w∗(U,A) = argmaxw∈A U(w) (1)

under the assumption that the maximization problem has a unique solution. We think ofw∗(U,A) ∈ Rn

as the optimal portfolio based on utility U and constraints specified by A. In Example 1 we give
prominent examples of the general optimization problem (1).

Example 1. Assume the investor has complete knowledge of the mean vectorµ ∈ Rn and the covariance
matrix Σ ∈ Rn×n of the asset returns. We assume Σ is positive definite and formulate four major
portfolio optimization problems. For a detailed description of the first two problems we refer to
Meucci [4], Chapter 6.3–6.5. For the latter two see Choueifaty and Coignard [5], Maillard et al. [6],
and Clarke et al. [7].

(i) Mean-variance optimization: the investor is assumed to maximize

Umv(w) = µ′w − κw′Σw
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where κ > 0 is a given risk aversion parameter. The solution of Equation (1) in the unconstrained
case can be calculated using first order conditions and is given by

w∗(Umv,Rn) =
1

2κ
Σ−1µ

In the case of linear constraints we set A = {w ∈ Rn | A′w = a}, where A ∈ Rn×k is a matrix of
rank k and a ∈ Rk. The solution of Equation (1) can be calculated using the method of Lagrange
and is given by

w∗(Umv,A) =
1

2κ

(
Σ−1 − Σ−1A(A′Σ−1A)−1A′Σ−1

)
µ+ Σ−1A(A′Σ−1A)−1a

(ii) Minimum variance: the investor is assumed to maximize the following utility function

Uv(w) = −w′Σw

Consider the following linear equality constraints A = {w ∈ Rn | A′w = a and w′µ = µ0},
where A ∈ Rn×k is a matrix of rank k, a ∈ Rk and µ0 ∈ R. In this problem we are looking for the
portfolio with minimal variance satisfying linear constraints and having expected return equal to
µ0. The optimal portfolio can be calculated using the method of Lagrange and is given by

w∗(Uv,A) = Σ−1Ã(Ã′Σ−1Ã)−1ã

where Ã = (A,µ) ∈ Rn×(k+1) and ã = (a′, µ0)′ ∈ Rk+1. In this example note that the set of
admissible strategies A also depends on the distribution of the random returns through the mean
vector µ.

(iii) Equal contributions to risk: the investor is assumed to maximize

U ecr(w) = −
∑

i,j=1,...,n
i<j

(
RCi(w)− RCj(w)

)2

where RCi(w) = wi(Σw)i denotes the contribution of asset i to the total portfolio variance.
This means that the investor looks for a portfolio with risk contributions as close to each other as
possible with respect to the Euclidean distance. Typically, constraints as in (ii) are chosen.

(iv) Maximum diversification: the investor is assumed to maximize

Umd(w) =

∑n
i=1 wi

√
Σii√

w′Σw

where Σii is the i-th element on the diagonal of Σ. This means that the investor maximizes the
benefits of diversification. Typically, constraints as in (ii) are chosen.

Note that in practice µ and Σ are not observable. Therefore, the investor cannot directly maximize Umv,
Uv, U ecr or Umd, because neither U nor A are explicitly known.

Let (Ω,F , P ) be a probability space. Suppose the investor has m observations of the n-dimensional
return vectors given by

R = (Ri)i=1,...,m = ((Ri,1, . . . , Ri,n)′)i=1,...,m,

i.e., he has m random vectorsR1, . . . ,Rm on (Ω,F , P ) representing the returns of the n risky assets.
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Remark 1. In this section we do not make particular assumptions on the distribution or the dependence
structure ofR, except for certain integrability conditions specified below.

Based on the observationsR we define the utility estimator by

Û : w 7→ u(w,R1, . . . ,Rm)

for a given function u : Rn × (Rn)m → R. The estimator Û is called unbiased for U if
Û(w) ∈ L1(Ω,F , P ) and E[Û(w)] = U(w) for all w ∈ Rn. The set of admissible portfolios A may
also be unobservable, see e.g., Example 1(ii). Analogously to the utility estimator, we define the set Â
estimated from the observationsR, i.e.,

Â = a(R1, . . . ,Rm) ⊂ Rn

for a suitable function a. The investor then chooses the optimal portfolio (1) by replacing U and A with
the estimates Û and Â. This means,

w∗(Û , Â) = argmaxw∈Â Û(w) = argmaxw∈a(R1,...,Rm) u(w,R1, . . . ,Rm)

where we assume that the maximization problem has a unique solution, almost surely. The fact that the
investor can only compute the portfolio w∗(Û , Â) is often neglected in practice, assuming that the true
utility of this portfolio is on average similar to its estimated utility.

In order to get an understanding of this problem we introduce the following loss function

L(U, Û , Â) = E
[
Û(w∗(Û , Â))− U(w∗(Û , Â))

]
(2)

under the assumption U(w∗(Û , Â)), Û(w∗(Û , Â)) ∈ L1(Ω,F , P ). We motivate this definition as
follows. The quantity U(w∗(Û , Â)) describes the utility which the investor realizes out-of-sample if he
chooses the portfoliow∗(Û , Â) based on the estimates Û and Â. This out-of-sample utility is compared
to Û(w∗(Û , Â)) which represents the utility of w∗(Û , Â) calculated by the investor using the estimate
Û . In other words: if L(U, Û , Â) > 0 (< 0), then the out-of-sample utility of the portfolio choice is on
average lower (higher) than the one measured in-sample. We use loss function (2) as a measure of model
risk in the portfolio optimization problem.

Remark 2. In the literature the problem of model uncertainty in portfolio optimization is mostly studied
under the loss function

LJorion(U,A, Û , Â) = E
[
U(w∗(U,A))− U(w∗(Û , Â))

]
(3)

see e.g., Jobson et al. [17], Jorion [18], Forst and Savarino [19], Ter Horst at al. [20], Mori [23], and
Kan and Zhou [21]. According to this definition, the out-of-sample utility of w∗(Û , Â) is compared to
the optimal utility U(w∗(U,A)) under full information. Both Equations (2) and (3) describe the effect
of replacing unobservable quantities with estimates on the portfolio optimization. Loss function (2) is a
modification of Equation (3) where the optimal utility U(w∗(U,A)) under full information is replaced
with the perceived optimal utility of the investor Û(w∗(Û , Â)). In real applications the investor chooses
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the portfolio w∗(Û , Â) under in-sample utility Û based on the estimation. However, in the future, he
realizes utility U . In practice, this difference is more crucial to the investor than Equation (3), since
the quantity U(w∗(U,A)) does neither reflect the investor expectations nor the realized out-of-sample
utility. For this reason we choose Equation (2) as measure of model risk. More recently, El Karoui [30]
studies the difference between the variance forecast and the realized variance of the minimum variance
portfolio. This difference exactly corresponds to Equation (2) in the case of Example 1(ii). A similar
measure, called second order risk, has also been studied in Shepard [39].

Remark 3. In general (2) and (3) are unobservable since they depend on U . We derive analytical results
on Equation (2) and explain its estimation.

The measure of model risk (2) satisfies the following property (for proof see Appendix 1.1).

Proposition 1. Let Â = A be known and U(w∗(Û ,A)), Û(w∗(Û ,A)) ∈ L1(Ω,F , P ). Assume Û is
unbiased for U , i.e., E[Û(w)] = U(w) for all w ∈ Rn. Then,

L(U, Û ,A) ≥ 0

with strict inequality if P [w∗(U,A) 6= w∗(Û ,A)] > 0.

This result states that, assuming known constraints and unbiased utility estimator, the loss function is
positive and the portfolio choice w∗(Û ,A) is on average negatively affected by model uncertainty, i.e.,
the out-of-sample utility is on average lower than the in-sample one.

Remark 4. Under the assumptions of Proposition 1 we have by the same arguments as in Appendix 1.1

L(U, Û ,A) = E
[
Û(w∗(Û ,A))

]
− U(w∗(U,A)) + LJorion(U,A, Û ,A)

≥ LJorion(U,A, Û ,A)

This states that loss function (2) has an additional uncertainty component compared to Equation (3),
which corresponds to the difference between the perceived optimal utility of the investor and the optimal
utility under full information. In Section 5.1 we compare the two loss functions for a real world example.

Proposition 1 suggests to introduce a bias correction in the utility estimator in order to reduce the loss
function. In Section 4 we present a method to accomplish this task.

3. Analysis of the Loss Function in the Mean-Variance Case

We analyze loss function (2) in the mean-variance case. We start with this problem since it is one
of the most important benchmarks in portfolio optimization and because it is analytically tractable. In
Section 5 we consider the three problems presented in Example 1(ii)–(iv) from a numerical point of
view. In this section, we focus on analytical results. As in Example 1, let µ ∈ Rn and Σ ∈ Rn×n be the
unobservable mean vector and covariance matrix of the asset returns. Assume Σ is symmetric positive
definite. The portfolio w ∈ Rn is chosen to maximize the utility function Umv(w) = µ′w − κw′Σw,
where κ > 0 is a given risk aversion parameter.
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We derive a closed-form expression for loss function (2) in the unconstrained mean-variance problem
under non-Gaussian observations. In Kan and Zhou [21] this has been done for loss function (3)
under the assumption of i.i.d. multivariate Gaussian observations. Under the same assumption on the
observations, Mori [23] derived analytical results on the optimality of certain estimators with respect
to Equation (3) under linear equality constraints. El Karoui [30] studies the asymptotic behavior
of Equation (2) in a minimum-variance problem with linear equality constraints under non-i.i.d. and
non-Gaussian observations.

We assume the observations (Ri)i=1,...,m are drawn from a multivariate normal variance
mixture distribution

Ri ∼ µ+
√
WΣ

1
2Zi (4)

where

(i) (Zi)i=1,...,m
i.i.d.∼ N (0n, In) for 0n and In being the n-dimensional zero vector and identity

matrix, respectively;
(ii) W is an almost surely positive random variable, independent of (Zi)i=1,...,m, satisfying E[W ] = 1;

and
(iii) Σ

1
2 ∈ Rn×n is a non-singular matrix such that Σ

1
2

(
Σ

1
2

)′
= Σ.

This assumption encompasses models with heavy tails, tail dependence and leptokurtosis of marginals,
see e.g., McNeil et al. [32], Chapter 3. Often, this provides a reasonable description of returns in the
financial market. In Remark 6 below we discuss the connection between model assumption (4) and
subordinated stochastic processes.

Remark 5. Under the above assumptions we have

(i) (Ri|W )i=1,...,m
i.i.d.∼ N (µ,WΣ),

(ii) E[Ri] = µ, and Cov(Ri) = E[W ]Σ = Σ for all i = 1, . . . ,m.

Remark 6. We relate the model assumption to a continuous time perspective and assume that the price
process of asset j ∈ {1, . . . , n} is given by

Sj(t) = Sj(0) exp(µjt+Bj(t))

whereB = (B1, . . . , Bn)′ is a n-dimensional Brownian motion with E[B(t)] = 0 and Cov(B(t)) = tΣ

for all t ≥ 0. In this model logarithmic returns over non-overlapping time periods of length one are
i.i.d multivariate Gaussian with mean µ and covariance matrix Σ. In order to obtain a more general
class of models one introduces a random time change. Let T be a non-decreasing stochastic process with
T (0) = 0, almost surely. This process is called subordinator and represents a stochastic relationship
between the calendar time and the pace of the market. Based on this time change one considers the model

S̃j(t) = Sj(0) exp
(
µjt+Bj(T (t))

)
where the process

(
B(T (t))

)
t≥0

is called subordinated Brownian motion. If B and T are independent
processes, then we have for the logarithmic return

log
S̃j(t)

S̃j(t− 1)
∼ µj +

√
T (t)− T (t− 1)Bj(1)
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for all t ≥ 1. Setting T (t) = Wt for a positive random variable W independent of B we
obtain model assumption (4) for fixed t ≥ 1. For more details on subordinated models see e.g.,
De Giovanni et al. [40].

Example 2. The following special cases are often used in practice.

(i) Multivariate Gauss: set W = 1.

(ii) 2-points mixture: let W be discrete and take positive values x1 and x2 with probabilities p ∈ (0, 1)

and 1 − p. The condition E[W ] = 1 implies x1 ∈ (0, p−1) and x2 = 1−px1
1−p . This is a regime

switching model with 2 variance regimes characterized by x1 and x2.

(iii) Multivariate Student-t: let W ∼ ν−2
ν

Ig
(
ν
2
, ν

2

)
, where ν > 2 and Ig(·, ·) denotes the inverse gamma

distribution. The scaling is chosen so that E[W ] = 1. Then, for all i = 1, . . . ,m, the random
vector Ri has a multivariate Student-t distribution with ν degrees of freedom, mean vector µ and
covariance matrix Σ.

For µ and Σ we consider the sample estimators

µ̂ =
1

m

m∑
i=1

Ri and Σ̂ =
1

m− 1

m∑
i=1

(Ri − µ̂)(Ri − µ̂)′ (5)

In this way we estimate the mean-variance utility by Ûmv(w) = µ̂′w − κw′Σ̂w for w ∈ Rn.

Remark 7. Under Equation (4) the sample estimators satisfy the following properties.

(i) Conditional on W we have

µ̂|W ∼ N
(
µ,
W

m
Σ

)
and (m− 1)Σ̂|W ∼ W(Σ,m− 1)

whereW denotes the Wishart distribution. Moreover, µ̂ and Σ̂ are conditionally independent given
W . See Appendix 2 for more details.

(ii) For m > n the sample covariance matrix is almost surely positive definite and Σ̂−1 exists almost
surely. See Appendix 2 for more details.

(iii) For any w ∈ Rn we have E[µ̂] = µ, E[Σ̂] = Σ, and E[Ûmv(w)] = Umv(w). This means that µ̂,
Σ̂ and Ûmv are unbiased estimators for µ, Σ and Umv, respectively.

Under Equation (4) we have the following result (see Appendix 1.2).

Theorem 2. Assume m > n+ 4, then

L(Umv, Ûmv,Rn) =
1

4κ
α(m− 1, n)

{
n

m

(
1 + β(m− 1, n)E[W−1]

)
+
(
β(m− 1, n)E[W−2]− E[W−1]

)
µ′Σ−1µ

}
where α(m,n) = m

m−n−1
and β(m,n) = m(m−1)

(m−n)(m−n−3)
.
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As we will explain in Remark 8(ii) below, this result implies that the drawbacks of model uncertainty
cannot completely be eliminated by increasing the sample size m, unless we are in the multivariate
Gaussian case, i.e., W = 1. In practice, we need to find a trade-off between large and recent samples:
we need as many observations as possible in order to reduce parameter estimation error; on the other
hand we need the most recent ones since, in practice, the i.i.d. assumption is often violated over long
time horizons.

Remark 8. From Theorem 2 we observe the following facts.

(i) Jensen’s inequality implies E[W−2] ≥ E[W−1]2 ≥ E[W−1]. Hence for m > n+ 4

L(Umv, Ûmv,Rn) ≥ 1

4κ

(
β(m− 1, n)E[W−2]− E[W−1]

)
µ′Σ−1µ

≥ 1

4κ

(
E[W−2]− E[W−1]

)
µ′Σ−1µ ≥ 0

see also Proposition 1. This lower bound is strictly positive in the non-Gaussian case.
(ii) If we fix the number of assets n and let m→∞ we obtain

L(Umv, Ûmv,Rn) −→ 1

4κ

(
E[W−2]− E[W−1]

)
µ′Σ−1µ ≥ 0

In particular, in the multivariate Gaussian, case we have L(Umv, Ûmv,Rn) → 0 as m → ∞, see
Example 2(i).

(iii) For n,m→∞ and n/m→ c ∈ (0, 1) we get

L(Umv, Ûmv,Rn) −→ 1

4κ

1

(1− c)

{
c+

c

(1− c)2
E[W−1]

+

(
1

(1− c)2
E[W−2]− E[W−1]

)
µ′Σ−1µ

}
This asymptotic analysis corresponds to large number of risky assets n and comparable sample size
m. This limit is considered in El Karoui [29,30] to obtain asymptotic results on model uncertainty
in a problem with constraints. The same limit is also considered in Ledoit and Wolf [35] to study
asymptotic properties of the spectrum of Σ̂. In this paper, we have an explicit characterization of
model uncertainty for finite n and m. Note that for c→ 0+ we obtain the same limit as in (ii), and
for c→ 1− we have L(Umv, Ûmv,Rn)→∞.

(iv) Note that the loss function depends on the unobservable distribution of W , true mean vector µ and
true covariance matrix Σ.

We consider the special cases for W discussed in Example 2 (see Appendix 1.3).

Corollary 1. Let m > n+ 4. In the three special cases given in Example 2 we have for the loss function

(i) multivariate Gauss:

LGauss(Umv, Ûmv,Rn) =
1

4κ
α(m− 1, n)

{
n

m

(
1 + β(m− 1, n)

)
+
(
β(m− 1, n)− 1

)
µ′Σ−1µ

}
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(ii) 2-points mixture:

L2pm(Umv, Ûmv,Rn) =
1

4κ
α(m− 1, n)

{
n

m
−
(
p

x1

+
(1− p)2

1− px1

)
µ′Σ−1µ

+
n

m
β(m− 1, n)

(
p

x1

+
(1− p)2

1− px1

)
+ β(m− 1, n)

(
p

x2
1

+
(1− p)3

(1− px1)2

)
µ′Σ−1µ

}
where p ∈ (0, 1) and x1 ∈ (0, p−1);

(iii) multivariate Student-t:

Lt(Umv, Ûmv,Rn) =
1

4κ
α(m− 1, n)

{
n

m

(
1 + β(m− 1, n)

ν

ν − 2

)
+

ν

ν − 2

(
β(m− 1, n)

2 + ν

ν − 2
− 1

)
µ′Σ−1µ

}
where ν > 2.

Remark 9. From the results of Corollary 1 we observe the following facts.

(i) In the 2-points mixture model we have L2pm(Umv, Ûmv,Rn) → ∞ for x1 → p−1 or x1 → 0, and
L2pm(Umv, Ûmv,Rn) → LGauss(Umv, Ûmv,Rn) for x1 → 1. The more we increase the difference
between the two variance regimes (i.e., by considering x1 → p−1 or x1 → 0), the greater the
average negative effect of model risk. If we decrease the difference (by considering x1 → 1), then
the loss function becomes closer to the Gaussian case.

(ii) In the multivariate Student-t model we have Lt(Umv, Ûmv,Rn) → ∞ for ν → 2+, and
Lt(Umv, Ûmv,Rn) → LGauss(Umv, Ûmv,Rn) for ν → ∞. This means, by making the marginals
“less normal” (i.e., by considering ν → 2+), we increase the average negative effect of model risk.

We show that the drawbacks of model uncertainty in the general case are on average bigger than those
in the Gaussian case (see Appendix 1.4).

Corollary 2. Let m > n+ 4. Then, L(Umv, Ûmv,Rn) > LGauss(Umv, Ûmv,Rn), for any W 6= 1.

In the financial market asset returns show non-Gaussian behavior, which on average has a negative
effect on the optimal portfolio choice. In the next section we consider techniques to reduce the loss
function and improve the optimal portfolio.

4. Adjusting for Model Risk

As Proposition 1 and Remark 8(i) pointed out, if we solve the mean-variance problem using
the unbiased utility estimator Ûmv, model risk deteriorates the investor’s optimal portfolio choice
w∗(Ûmv,Rn). Therefore, we might want to introduce a bias correction in Ûmv which allows to reduce
the loss function (2). In the literature we can find several papers using this idea to improve the
optimal portfolio under loss function (3). See for example Jobson et al. [17], Jorion [18], Frost and
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Savarino [19], Mori [23], and Kan and Zhou [21]. These approaches typically result in rescaled or
shrinkage estimators for the mean or covariance matrix so that loss function (3) is improved. In this
work, we present an alternative approach based on the classical spectral decomposition of symmetric
positive definite matrices.

Remark 10. Contrary to Section 3, we do not make specific distributional assumptions on R in the
following results, unless explicitly specified.

Let R1, . . . ,Rm ∈ L2(Ω,F , P )n, and µ̂ and Σ̂ be unbiased estimators for µ and Σ. We assume that
Σ̂ is positive definite almost surely. We want to analyze a class of estimators for the covariance matrix
Σ obtained by individually rescaling the eigenvalues of Σ̂. An asymptotic analysis of this approach
is proposed in Ledoit and Wolf [35]. In [35] this is done to improve the covariance matrix estimation
without specific considerations on mean-variance optimization. Menchero et al. [38] analyze empirically
spectral properties of Σ̂ in the context of mean-variance optimization. The spectral decomposition of the
symmetric positive definite covariance matrix Σ is given by

Σ = TΛT ′

where

(i) Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues (also called eigenvariances in this
context) of Σ, which satisfy 0 < λ1 ≤ . . . ≤ λn; and

(ii) T is an orthogonal matrix with columns v1 = (T11, . . . , Tn1)′, . . . ,vn = (Tn1, . . . , Tnn)′ being the
eigenvectors (also called eigenportfolios) of Σ corresponding to λ1, . . . , λn, respectively.

In the same way set Σ̂ = T̂ Λ̂T̂ ′, where T̂ = (v̂1, . . . , v̂n) and Λ̂ = diag(λ̂1, . . . , λ̂n) are random matrices
with T̂ T̂ ′ = In and 0 < λ̂1 ≤ . . . ≤ λ̂n, almost surely. Note that T̂ and Λ̂ are in general dependent. In
this work we study the following class of covariance matrix estimators

Σ̂C = T̂ diag(c1λ̂1, . . . , cnλ̂n) T̂ ′

where c1, . . . , cn > 0 are referred to as adjustment factors. For finite n and m, there is only little known
about the distribution of Λ̂ and T̂ . Nevertheless, the decomposition of the sample covariance matrix
using eigenportfolios and eigenvariances is a useful tool in mean-variance optimization. It is understood
that the eigenvalues of Σ̂ behave very differently from those of Σ. Ledoit and Wolf [26] point out that the
largest sample eigenvalues are systematically biased upwards and the smallest ones downwards. This fact
has also been verified for market return data in different empirical studies, see e.g., Menchero et al. [38].
There is statistical literature studying asymptotic spectral properties of Σ̂ when n and m are large, see
e.g., Johnstone [33] and El Karoui [29].

Remark 11. Note that for any c1, . . . , cn > 0 the estimator Σ̂C is almost surely positive definite and

Σ̂C = (T̂CT̂ ′)Σ̂ = Σ̂(T̂CT̂ ′),

Σ̂−1
C = (T̂C−1T̂ ′)Σ̂−1 = Σ̂−1(T̂C−1T̂ ′)

where C = diag(c1, . . . , cn). If C = In then Σ̂C is unbiased for Σ.
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Using Σ̂C we define the following utility estimator for w ∈ Rn

Ûmv
C (w) = µ̂′w − κwΣ̂Cw = µ̂′w − κw(T̂CT̂ ′)Σ̂w

Our aim is to determine adjustment factors c1, . . . , cn so that

L(Umv, Ûmv
C , Â) ≤ L(Umv, Ûmv, Â) (6)

see also Proposition 1. In this way we obtain an optimal portfolio w∗(Ûmv
C , Â) which is more robust

to model uncertainty as measured by Equation (2). We can accomplish this in a straightforward way
considering the special case of equal adjustment factors (see Appendix 1.5).

Proposition 3. Choose c1 = . . . = cn = c̄ > 0. Let Σc̄ = Σ̂C = c̄Σ̂ and Ûmv
c̄ be the corresponding

utility estimator. Then,

L(Umv, Ûmv
c̄ ,Rn) =

1

4c̄κ
E
[
µ̂′Σ̂−1µ̂

]
− 1

2c̄κ
µ′E

[
Σ̂−1µ̂

]
+

1

4c̄2κ
E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
In particular, under assumption (4) on the observations, and setting

c̄ = β(m− 1, n)
E[W−2]

E[W−1]
(7)

we have L(Umv, Ûmv
c̄ ,Rn) ≤ L(Umv, Ûmv,Rn).

Remark 12. Observe the following about the approach of Proposition 3.

(i) Σ̂c̄ = c̄Σ̂ is a simple proportional scaling type estimator. The unconstrained mean-variance
portfolio constructed using Σ̂c̄ is given by

w∗(Ûmv
c̄ ,Rn) =

1

2c̄κ
Σ̂−1µ̂ (8)

(ii) In general, adjustment factors (7) are unobservable since they depend on the unknown distribution
of W . Note that, by Remark 8(i) we have

c̄ ≥ β(m− 1, n)

with equality in the multivariate Gaussian case.

Scaling Σ̂ by c̄ is useful since it reduces the impact of model risk. However, this proportional scaling
is not helpful to improve the relative asset allocation because it does not adjust the correlation structure
of Σ̂. For example, in the unconstrained mean-variance case, all portfolio weights are uniformly reduced
by a constant factor 1/c̄, i.e., the risk aversion is increased by factor c̄, see Equation (7). Since the
relative asset allocation remains the same, this cannot be considered as a substantial improvement in
the optimal portfolio allocation. Therefore, we consider individual adjustment factors c1, . . . , cn for the
eigenvariances λ̂1, . . . , λ̂n.

A heuristic approach to select the adjustment factors is to set for k = 1, . . . , n

ck =
λk

E[λ̂k]
(9)
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This rule ensures that the eigenvariances of Σ̂C are unbiased estimators for the ones of Σ.
In the next result we calculate L(Umv, Ûmv

C ,Rn) for general c1, . . . , cn in the unconstrained
mean-variance case (see Appendix 1.6). We first introduce some additional notation to simplify the
representation. Since the family {v1, . . . ,vn} of eigenportfolios builds an orthonormal basis for Rn we
can write the optimal portfolio as

w∗(Ûmv, Â) =
n∑
k=1

πk
(
w∗(Ûmv, Â),Σ

)
vk

where πk(w,Σ) = (T ′w)k denotes the projection of w ∈ Rn on the eigenportfolio vk. In the same way
we define πk(w, Σ̂) and πk(w, Σ̂C). Note that, in general, these two random variables depend on both T̂
and Λ̂.

Theorem 4. The loss function for the unconstrained mean-variance problem and the estimator Σ̂C is
given by

L(Umv, Ûmv
C ,Rn) =

1

2κ

n∑
k=1

E
[(
πk(µ̂, Σ̂)2 − πk(µ̂, Σ̂)πk(µ, Σ̂)

)
c−1
k λ̂−1

k

]
+

1

4κ

n∑
k=1

E
[
πk(Σ̂

−1
C µ̂,Σ)2λk − πk(µ̂, Σ̂)2c−1

k λ̂−1
k

]
From the general formula of Theorem 4 it is difficult to derive a simple rule to select the adjustment

factors c1, . . . , cn. However, this can be done under the following simplifying assumptions. For the
estimators µ̂ and Σ̂ we consider the following assumption

Σ̂ = T Λ̂T ′ (10)

where

(i) Λ̂ = diag(λ̂1, . . . , λ̂n) independent of µ̂,
(ii) 0 < λ̂1 ≤ . . . ≤ λ̂n almost surely and integrable, and

(iii) E[µ̂] = µ.

This means that we consider only estimation uncertainty in the means and eigenvariances, and assume
independence between eigenvariances and means.

Remark 13. The estimator Σ̂ is almost surely positive definite by assumption. The estimator Σ̂ is
unbiased for Σ if and only if Λ̂ is unbiased for Λ.

We derive the following result for the loss function (see Appendix 1.7).

Theorem 5. Under Equation (10) we have

L(Umv, Ûmv
C ,Rn) =

1

2κ

n∑
k=1

c−1
k Var

[
πk(µ̂,Σ)

]
E
[
λ̂−1
k

]
+

1

4κ

n∑
k=1

E
[
πk(µ̂,Σ)2

](
c−2
k E[λ̂−2

k ]λk − c−1
k E[λ̂−1

k ]
)
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Assume Σ̂ is unbiased for Σ and set

ck =
λkE[λ̂−2

k ]

E[λ̂−1
k ]

(11)

Then, ck ≥ 1 for all k = 1, . . . , n and L(Umv, Ûmv
C ,Rn) ≤ L(Umv, Ûmv,Rn).

In the simplified situation (10) we obtain a rule for selecting the adjustment factors c1, . . . , cn which
reduces the effects of model risk.

In Section 5 we show that adjustment factors (7), (9) and (11) considerably reduce the loss function (2)
in the mean-variance problem. This reduction is particularly large in the multivariate Student-t case
with small values of ν, or in the case when n is close to m. The numerical results show that the
adjustment factors (11) reduce the drawbacks of model uncertainty also when we use the sample
estimator for the covariance matrix. We interpret this fact as the property that estimation errors in
the eigenportfolios and eigenvariances of the sample covariance matrix may have low correlation with
each other. Therefore, selecting the adjustment factors based on the stand-alone effect of estimation
uncertainty in the eigenvariances is helpful. Note that the adjustment factors (7), (9) and (11) are, in
general, not observable and need to be estimated. This issue is also addressed in Section 5.

5. Case Studies

5.1. Simulated Observations

In the first place we compute loss function (2) using return observations simulated from known µ and
Σ. We consider the following four problems, see Example 1.

(i) Unconstrained mean-variance: U = Umv and A = Rn. We set κ = 1 for the risk
aversion parameter.

(ii) Long only fully invested minimum variance: U = Uv and A = {w ∈ Rn | 1′w = 1 and wi ≥
0 for all i = 1, . . . , n}.

(iii) Long only fully invested equal contributions to risk: U = U ecr and A as in (ii).
(iv) Long only fully invested maximum diversification: U = Umd and A as in (ii).

We set n = 50 assets and consider different values for the number of observations m. We set µ and
Σ equal to the sample estimates computed from the dataset of Section 5.2. We simulate independently
N samples of m return observations from the three distributional models of Example 2. In the 2-points
mixture case we set x1 = 5 and p = 0.1; in the multivariate Student-t case we set ν = 3.

In Figures 1 and 2 we see the values of loss function (2) in the unconstrained mean-variance
problem (i). AsN becomes larger we have convergence to the values given by Theorem 2. Note also that,
as expected by Corollary 2, the drawbacks of model risk are considerably more severe in the 2-points
mixture and the multivariate Student-t models compared to the multivariate Gaussian case. We observe
that the loss function is decreasing in the sample size m, steep for m close to n and flat for m � n.
From this analysis we conclude that the unconstrained mean-variance portfolio is severely compromised
by model risk and particularly so in the case of non-Gaussian returns and m close to n. An adjustment
in the sense of Section 4 is therefore necessary in this problem.
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Figure 1. LGauss(Umv, Ûmv,Rn), L2pm(Umv, Ûmv,Rn) and Lt(Umv, Ûmv,Rn) computed by
simulation for n = 50, m = 100 and different values of N . The values given by Theorem 2
are approximately 1.3814, 2.1236 and 3.8453, respectively.
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Figure 2. L(Umv, Ûmv,Rn) computed using Theorem 2 for n = 50 and different values
of m.
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In Figure 3 we compare the loss functions (2) and (3). Using similar arguments as in Appendix 1.2
we also have a closed-form expression for Equation (3). As expected from Remark 4 we see that (2) is
larger than (3) for each model. We observe that the additional positive component in Equation (2) is not
negligible.

In Figures 4–6 we provide loss function (2) in problem (i) using the covariance matrix estimator Σ̂C ,
where c1, . . . , cn are chosen according to Equations (7), (9) and (11). Note that rule (7) simply increases
the risk aversion, rule (9) is a heuristic approach and rule (11) is derived under simplifying assumptions.
These estimators provide a significant reduction in the loss function, in particular for small m, compare
Figures 4–6 to Figure 2. We conclude that using the adjustment factors of Section 4 we obtain optimal
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portfolios which are more robust to model risk. In practice, the adjustment factors (7), (9) and (11)
need to be estimated, and therefore the loss function improvement is less pronounced. Observe that the
loss function curves in Figures 4–6 are less steep for m close to n compared to Figure 2. In Figures
7–9 we show the adjustment factors computed for each eigenvariance. For adjustment factors (7) we
have constant scaling (see Figure 7), and for adjustment factors (9) and (11) each eigenvariance is scaled
individually (see Figures 8 and 9). In Figure 8 we also observe the stylized facts of Ledoit and Wolf
[26], and Menchero et al. [38], i.e., small eigenvariances are substantially biased downwards and large
eigenvariances are slightly biased.

Figure 3. Loss functions (2) and (3) for n = 50 and different values of m.
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Figure 4. L(Umv, Ûmv
C ,Rn) computed by simulation (N = 1000) for n = 50 and different

values of m. The adjustment factors c1, . . . , cn are selected according to Equation (7).
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Figure 5. As in Figure 4 where c1, . . . , cn are selected according to Equation (9).
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Figure 6. As in Figure 4 where c1, . . . , cn are selected according to Equation (11).

m

Lo
ss

 fu
nc

tio
n

●

●

●

●

●

62 75 100 150 200

0.
11

0.
38

0.
68

● Gauss
2−points mixture
Student−t

Figure 7. Adjustment factors (7) computed by simulation for N = 1000 and m = 100, for
each eigenvariance.
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Figure 8. Adjustment factors (9) computed by simulation for N = 1000 and m = 100, for
each eigenvariance.
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Figure 9. Adjustment factors (11) computed by simulation for N = 1000 and m = 100, for
each eigenvariance.
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Note that problem (i) requires estimation of µ and Σ, whereas problems (ii)–(iv) require only
estimation of Σ. We compare the behavior of the loss functions in (ii)–(iv) for different values of m,
since they are based on estimation of the same parameters. In Figures 10–12 we present these loss
functions. We observe that these problems are not severely deteriorated by model risk even in the case
of n close to m or non-Gaussian observations because they only require estimation of Σ. The equal
contributions to risk and maximum diversification portfolios are less affected by the distribution of the
observations compared to the minimum variance portfolio.
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Figure 10. L(Uv, Uv,A) for N = 1000 and different values of m.
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Figure 11. L(U ecr, U ecr,A) for N = 1000 and different values of m.
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Figure 12. L(Umd, Umd,A) for N = 1000 and different values of m.
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5.2. Large-Cap U.S. Equity Portfolios

We consider an investment universe of 50 large-cap U.S. stocks from different industry sectors. The
list of companies is given in Appendix 3. We set n = 50 and enumerate the companies according to
the list. For these stocks we consider daily total returns (i.e., dividends are included) for the period
from 2 January 1995 to 14 October 2011 (4380 daily observations). We study the mean-variance
optimization problem under long only fully invested constraints, i.e.,A = {w ∈ Rn |1′w = 1 and wi ≥
0 for all i = 1, . . . , n}, see Example 1(i). In this numerical example we set κ = 100 for the risk aversion
parameter. In this way the utility function is mainly determined by the portfolio variance and the problem
is comparable to a constrained minimum variance problem, see Example 1(ii). For parameter estimation
we use m = 100, i.e., for each trading day we consider the previous 100 daily observations to estimate
µ and Σ. Note that the estimation of µ is required in this problem, unlike in problems (ii)–(iv) of
Section 5.1. As shown in Section 5.1, the estimator Σ̂C , where c1, . . . , cn are selected according to
Equations (7) and (11), considerably reduces the negative effects of model risk in the unconstrained
mean-variance problem. In this section we apply Equations (7) and (11) to the problem of long only
fully invested constraints. Observe that for non-Gaussian observations the adjustment factors (7) depend
on the unobservable distribution of W . To estimate these values we calibrate a specific normal variance
mixture model to the data. The adjustment factors (11) are also unobservable since they depend on
the true covariance matrix. In order to estimate them we rely on the following simulation procedure.
For each trading day, we estimate Σ̂ and consider it as the true covariance matrix. We then simulate
N = 1000 samples of 100 observations using a specific normal variance mixture model calibrated to the
data. These samples are used, on the other hand, to estimate sample covariance matrices Σ(1), . . . ,Σ(N).
Diagonalization of these matrices provide the eigenvariances(

λ̂
(j)
i

)
i=1,...,n, j=1,...,N

which are ordered such that λ̂(j)
1 ≤ . . . ≤ λ̂

(j)
n for all j = 1, . . . , N . Then, we set for i = 1, . . . , n

ci = λ̂i

∑N
k=1

(
λ̂

(k)
i

)−2∑N
k=1

(
λ̂

(k)
i

)−1 (12)

We perform out-of-sample backtesting of the following five investment strategies, where we set κ = 100

and A = {w ∈ Rn | 1′w = 1 and wi ≥ 0 for all i = 1, . . . , n}.

(i) The classical mean-variance portfolio w∗(Ûmv,A) based on the sample estimators µ̂ and Σ̂.

(ii) Portfolio w∗(Ûmv
c̄ ,A) based on the estimators µ̂ and Σ̂c̄, where c̄ is determined by Equation (7)

under a multivariate Gaussian model.

(iii) As in (ii), where c̄ is determined by Equation (7) under a multivariate Student-t model.

(iv) Portfolio w∗(Ûmv
C ,A) based on the estimators µ̂ and Σ̂C , where c1, . . . , cn are determined

numerically by Equation (12) under a multivariate Gaussian model.

(v) As in (iv), where c1, . . . , cn are determined numerically by Equation (12) under a multivariate
Student-t model.
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In Tables 1 and 2 we present the out-of-sample backtesting results of investment strategies (i)–(v).

Table 1. Out-of-sample backtesting results of the strategies (i)–(iii). All numbers are
expressed in percent except for Sharpe ratios and average degrees of diversification. The
return and volatility values are annualized assuming 250 trading days per year.

Return Annualized Volatility Annualized Sharpe Ratio Maximum Drawdown Average Turnover Average Diversification
(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

All 7.63 8.03 8.66 15.06 15.01 15.00 0.51 0.53 0.58 47.80 47.16 45.31 13.38 12.78 12.25 10.05 10.10 10.15

2011 10.85 11.85 12.01 14.09 13.97 13.88 0.77 0.85 0.87 10.04 9.58 9.75 13.75 12.95 12.31 8.87 8.98 9.05
2010 9.13 9.26 8.90 11.12 10.97 10.86 0.82 0.84 0.82 7.63 7.35 7.33 10.39 9.94 9.80 7.74 7.88 8.05
2009 22.10 21.35 24.27 17.94 18.05 18.19 1.23 1.18 1.33 19.56 20.06 18.83 10.84 10.69 10.28 9.66 9.57 9.54
2008 −27.67 −26.57 −25.93 28.82 28.74 28.91 neg neg neg 39.68 38.59 38.05 12.95 12.31 11.60 8.03 7.97 7.94
2007 10.29 10.06 10.72 11.33 11.23 11.09 0.91 0.90 0.97 7.05 6.87 6.70 14.27 13.27 12.80 8.39 8.34 8.38
2006 9.30 10.04 10.91 8.05 7.96 7.89 1.16 1.26 1.38 5.93 5.37 4.78 15.06 13.62 12.40 8.43 8.23 8.03
2005 1.66 2.02 1.94 9.59 9.51 9.41 0.17 0.21 0.21 7.29 6.79 6.62 15.75 15.16 14.48 9.38 9.47 9.53
2004 9.17 9.76 10.38 9.45 9.35 9.26 0.97 1.04 1.12 7.68 7.18 6.79 14.28 13.50 12.59 8.52 8.68 8.86
2003 20.49 21.05 21.44 12.16 12.10 12.07 1.69 1.74 1.78 8.57 8.59 8.80 13.03 12.64 12.05 9.24 9.20 9.15
2002 −13.33 −13.29 −12.20 18.12 18.25 18.26 neg neg neg 27.35 27.56 27.19 12.33 12.05 11.74 9.39 9.52 9.56
2001 −7.23 −6.52 −5.41 13.97 13.89 13.94 neg neg neg 16.49 16.20 16.00 13.93 13.45 13.14 11.85 11.93 12.02
2000 6.64 6.29 6.83 17.99 17.99 18.01 0.37 0.35 0.38 22.37 22.42 22.34 14.70 14.49 13.95 12.80 12.94 13.00
1999 −2.76 −1.62 −0.41 15.32 15.30 15.25 neg neg neg 15.12 14.52 14.01 14.45 13.77 13.47 12.00 12.16 12.35
1998 18.57 19.22 19.09 17.63 17.57 17.61 1.05 1.09 1.08 17.41 17.57 17.88 13.82 13.53 13.35 11.09 10.99 10.92
1997 26.78 26.58 26.09 15.91 15.76 15.59 1.68 1.69 1.67 8.05 8.07 8.13 12.54 11.82 11.12 11.32 11.31 11.25
1996 18.62 19.32 20.01 12.01 11.94 11.88 1.55 1.62 1.68 7.33 7.13 7.17 14.93 14.22 13.70 12.03 12.33 12.61
1995 17.80 18.60 19.35 7.76 7.60 7.47 2.29 2.45 2.59 3.77 3.72 3.78 9.72 9.26 8.83 12.92 13.15 13.40

Table 2. Out-of-sample backtesting results of the strategies (i)–(v). All numbers are
expressed in percent except for Sharpe ratios and average degrees of diversification. The
return and volatility values are annualized assuming 250 trading days per year.

Return annualized Volatility annualized Sharpe ratio Maximum drawdown Average turnover Average diversification
(i) (iv) (v) (i) (iv) (v) (i) (iv) (v) (i) (iv) (v) (i) (iv) (v) (i) (iv) (v)

All 7.63 7.64 9.34 15.06 14.74 14.55 0.51 0.52 0.64 47.80 45.43 41.17 13.38 11.40 9.55 10.05 11.78 12.13

2011 10.85 11.46 13.43 14.09 13.95 13.35 0.77 0.82 1.01 10.04 10.10 9.65 13.75 11.63 8.65 8.87 10.19 10.64
2010 9.13 9.42 7.85 11.12 10.83 10.43 0.82 0.87 0.75 7.63 7.09 6.83 10.39 9.34 8.34 7.74 8.26 8.32
2009 22.10 17.63 18.27 17.94 16.48 16.00 1.23 1.07 1.14 19.56 19.49 19.72 10.84 8.77 7.83 9.66 10.94 10.13
2008 −27.67 −25.08 −20.81 28.82 28.09 28.06 neg neg neg 39.68 37.17 33.29 12.95 11.06 10.74 8.03 9.05 8.48
2007 10.29 11.40 13.34 11.33 11.23 10.77 0.91 1.02 1.24 7.05 6.67 5.60 14.27 12.58 9.21 8.39 9.82 9.91
2006 9.30 9.41 12.84 8.05 7.98 7.80 1.16 1.18 1.65 5.93 6.12 4.26 15.06 12.41 9.22 8.43 11.00 11.12
2005 1.66 2.60 0.69 9.59 9.55 9.28 0.17 0.27 0.07 7.29 6.80 7.42 15.75 13.71 11.14 9.38 11.37 11.87
2004 9.17 9.63 10.66 9.45 9.39 9.10 0.97 1.03 1.17 7.68 7.27 6.63 14.28 12.32 9.32 8.52 10.48 11.45
2003 20.49 20.85 22.23 12.16 11.98 11.90 1.69 1.74 1.87 8.57 7.95 8.03 13.03 11.12 9.81 9.24 10.07 9.54
2002 −13.33 −15.84 −15.64 18.12 17.72 18.16 neg neg neg 27.35 28.48 29.53 12.33 10.59 9.98 9.39 9.95 10.26
2001 −7.23 −10.55 −5.53 13.97 13.75 13.67 neg neg neg 16.49 17.88 15.71 13.93 10.92 9.44 11.85 13.61 14.53
2000 6.64 8.22 11.63 17.99 17.71 17.74 0.37 0.46 0.66 22.37 21.88 21.99 14.70 12.09 10.29 12.80 16.04 17.02
1999 −2.76 −0.29 4.73 15.32 14.97 14.79 neg neg 0.32 15.12 13.74 10.51 14.45 11.69 9.65 12.00 14.46 14.84
1998 18.57 16.90 15.64 17.63 17.57 17.45 1.05 0.96 0.90 17.41 18.08 18.41 13.82 12.30 11.17 11.09 12.08 11.89
1997 26.78 26.78 27.04 15.91 15.78 15.10 1.68 1.70 1.79 8.05 7.86 7.87 12.54 10.87 8.82 11.32 12.65 12.57
1996 18.62 18.54 22.43 12.01 12.03 11.77 1.55 1.54 1.91 7.33 6.94 7.78 14.93 13.33 11.13 12.03 15.06 16.62
1995 17.80 19.73 20.95 7.76 7.73 7.10 2.29 2.55 2.95 3.77 3.62 4.05 9.72 8.49 6.94 12.92 16.74 19.58

Remark 14. In Tables 1 and 2 we report the maximum drawdown, average turnover and average degree
of diversification of the optimal portfolios. We recall how these numbers are calculated. Let r1, . . . , rT ∈
Rn be T holding period returns andw1, . . . ,wT be T vectors of portfolio weights. The cumulative profit
and loss (pt)t=1,...,T is defined by p1 = 1 and pt = pt−1 + w′t−1rt for t = 2, . . . , T . The drawdown
curve (DDt)t=1,...,T is computed from the cumulative profit and loss as DDt = max1≤k≤t pk − pt. This
quantity measures the decline in value from a historical peak. This is a very important quantity in the



Risks 2014, 2 338

asset management industry since it measures the potential loss of an investor entering the strategy in an
unfavorable point in time. The maximum drawdown is defined by MDD = max1≤t≤T DDt. The turnover
(TOt)2≤t≤T and the degree of diversification (Divt)1≤t≤T are defined by

TOt =
n∑
i=1

|wt,i − wt−1,i| and Divt =

(
n∑
i=1

w2
t,i

)−1

The turnover measures trading activity: higher values mean higher transaction costs and more
difficulties in the practical realization of the strategy. Note that this definition does not consider the
trading activity necessary to rebalance the portfolio for changes in prices. We have Divt ∈ [1, n] for all
w ∈ A and t = 1, . . . , T . The lowest and highest values are attained if the wealth is invested in one asset
or equally in n assets, respectively. The averages over time are defined by ATO = (T − 1)−1

∑T
t=2 TOt

and ADiv = T−1
∑T

t=1 Divt.

In Tables 1 and 2 we see the following: first, we observe that the volatilities of the five investment
strategies are similar over the entire period and in most single years (slightly lower for investment
strategies (ii)–(v) compared to (i)). In terms of annualized return, Sharpe ratio and maximum drawdown
investment strategies (ii)–(v) outperform (i) over the entire period and in most single years. In particular,
investment strategy (v) shows the best annualized return, Sharpe ratio and maximum drawdown. The
average turnover of investment strategies (ii)–(v) is lower than the one of (i) over the entire period and in
most single years. The average degrees of diversification of (i)–(iii) are similar. Conversely, investment
strategies (iv) and (v) are on average considerably more diversified. These results resemble the ones
in Pantaleo et al. [41]. In the empirical study [41], several improved estimators for the covariance
matrix are considered including shrinkage and spectral estimators. In particular, it is shown that long
only mean-variance portfolios constructed using improved and sample estimators have very similar
out-of-sample volatilities. However, those based on improved estimators are on average more diversified.
In Table 2, we observe similar results for the estimator with rescaled eigenvalues. In this example,
we conclude the following: investment strategies (i)–(v) all show similar out-of-sample volatilities;
investment strategies (ii) and (iv) slightly improve the mean-variance optimization strategy; investment
strategies (iii) and (v) provide significant improvement, particularly so for (v).
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Appendix

1. Proofs

1.1. Proof of Proposition 1

Since w∗(U,A) ∈ A is the maximal point of U in A, we have

U(w∗(U,A)) ≥ U(w∗(Û ,A)), almost surely (A1)
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By definition w∗(Û ,A) is equal with probability one to the maximal point of Û on A, i.e., for all
deterministicw ∈ A we have P [Û(w∗(Û ,A))− Û(w) ≥ 0] = 1. Settingw = w∗(U,A) ∈ A we have

Û(w∗(Û ,A)) ≥ Û(w∗(U,A)), almost surely (A2)

Taking the expectation of Equation (A2) and using the assumption that Û is unbiased for U , we obtain

E[Û(w∗(Û ,A))] ≥ E[Û(w∗(U,A))] = U(w∗(U,A)) (A3)

Combining Equations (A1) and (A3) we get the desired inequality

L(U, Û ,A) = E[Û(w∗(Û ,A))]− U [(w∗(Û ,A))] ≥ U(w∗(U,A))− U(w∗(U,A)) = 0

Regarding the statement on strict inequality: because of the uniqueness of the maximum of U , the
assumption P [w∗(U,A) 6= w∗(Û ,A)] > 0 implies that there is a set in Ω with non-zero probability
such that the inequalities (A1) and (A2) hold in strict sense. Therefore, the inequalities obtained taking
expected values must hold strictly as well. This proves the claim.

1.2. Proof of Theorem 2

From Example 1(i) we have w∗(Ûmv,Rn) = 1
2κ

Σ̂−1µ̂. Thus, for the loss function we obtain

L(Umv, Ûmv,Rn) = E

[
Ûmv

(
1

2κ
Σ̂−1µ̂

)
− Umv

(
1

2κ
Σ̂−1µ̂

)]
=

1

4κ
E
[
µ̂′Σ̂−1µ̂

]
− 1

2κ
µ′E

[
Σ̂−1µ̂

]
+

1

4κ
E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

] (A4)

From assumption (4) on the observations we have (Ri|W )i=1,...,m
i.i.d.∼ N (µ,WΣ). Thus, Proposition 7

in the appendix, below, implies that the sample estimators µ̂ and Σ̂ are conditionally independent, given
W , with conditional distributions given by

µ̂|W ∼ N (µ,m−1WΣ) and (m− 1)Σ̂|W ∼ W(WΣ,m− 1)

For the inverse sample covariance matrix we have

E[Σ̂−1|W ] = (m− 1)E[((m− 1)Σ̂)−1
∣∣W ] = α(m− 1, n)W−1Σ−1 (A5)

and

E[Σ̂−1ΣΣ̂−1|W ] = (m− 1)2E[((m− 1)Σ̂)−1Σ((m− 1)Σ̂)−1
∣∣W ]

=
α(m− 1, n)β(m− 1, n)

m− 2
tr(W−1Σ−1Σ)W−1Σ−1

+
β(m− 1, n)(m− 1)

m− 2
W−1Σ−1ΣW−1Σ−1

= α(m− 1, n)β(m− 1, n)W−2Σ−1

(A6)

where we have used Proposition 8 in the appendix, below, tr(W−1Σ−1Σ) = nW−1 and

(m− 2)−1
(
α(m− 1, n)n+m− 1

)
= α(m− 1, n)
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Using Equation (A5), Equation (A6) and the conditional independence between µ̂ and Σ̂ we compute
the three expected values in Equation (A4)

E[µ̂′Σ̂−1µ̂] = E
[
E[µ̂′Σ̂−1µ̂|W ]

]
=

n∑
i,j=1

E
[
E[Σ̂−1

ij |W ]E[µ̂iµ̂j|W ]
]

= α(m− 1, n)
n∑

i,j=1

E

[
W−1Σ−1

ij

(
W

m
Σij + µiµj

)]
= α(m− 1, n)

(
n

m
+ E[W−1]µ′Σ−1µ

)
(A7)

µ′E[Σ̂−1µ̂] = µ′E
[
E[Σ̂−1µ̂|W ]

]
= µ′E

[
E[Σ̂−1|W ]E[µ̂|W ]

]
= α(m− 1, n)µ′E

[
W−1Σ−1µ

]
= α(m− 1, n)E[W−1]µ′Σ−1µ

(A8)

and

E[µ̂′Σ̂−1ΣΣ̂−1µ̂] = E
[
E[µ̂′Σ̂−1ΣΣ̂−1µ̂|W ]

]
=

n∑
i,j=1

E
[
E[(Σ̂−1ΣΣ̂−1)ij|W ]E[µ̂iµ̂j|W ]

]
= α(m− 1, n)β(m− 1, n)

n∑
i,j=1

E

[
W−2Σ−1

ij

(
W

m
Σij + µiµj

)]
= α(m− 1, n)β(m− 1, n)

(
n

m
E[W−1] + E[W−2]µ′Σ−1µ

)
(A9)

Finally, substituting the last three expectations into Equation (A4), proves the claim.

1.3. Proof of Corollary 1

We obtain the following expressions for the expectations E[W−1] and E[W−2].

(i) Multivariate Gauss: the statement follows directly setting W = 1.
(ii) 2-points mixture: set W ∼ x2 + (x1 − x2

)
Bernoulli(p), where x1 ∈ (0, p−1) and x2 = 1−px1

1−p .

Then, E[W−1] = p
x1

+ (1−p)2
1−px1 and E[W−2] = p

x21
+ (1−p)3

(1−px1)2
.

(iii) Multivariate Student-t: set W ∼ ν−2
ν

Ig
(
ν
2
, ν

2

)
. Then, W−1 ∼ ν

ν−2
Gamma

(
ν
2
, ν

2

)
, E[W−1] =

ν
ν−2

and E[W−2] = ν2

(ν−2)2

(
2
ν

+ 1
)
.

Substituting these expressions into Theorem 2 proves the statements.

1.4. Proof of Corollary 2

For non-deterministic W we have by Jensen’s inequality E[W−1] > 1, E[W−2] > 1 and E[W−1] <

E[W−2]
1
2 < E[W−2]. Using these inequalities in combination with the result of Theorem 2 we have

L(Umv, Ûmv,Rn) >
1

4κ
α(m− 1, n)

{
n

m

(
1 + β(m− 1, n)

)
+ E[W−2]

(
β(m− 1, n)− 1

)
µ′Σ−1µ

}
> LGauss(Umv, Ûmv,Rn)
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This proves the claim.

1.5. Proof of Proposition 3

We introduce the function l(c̄) = L(Umv, Ûmv
c̄ ,Rn). Using Equation (A4) we have

l(c̄) =
1

4c̄κ
E[µ̂′Σ̂−1µ̂]− 1

2c̄κ
µ′E[Σ̂−1µ̂] +

1

4c̄2κ
E[µ̂′Σ̂−1ΣΣ̂−1µ̂]

Observe that l(1) = L(Umv, Ûmv,Rn). Using Equations (A7)–(A9) we have

l(c̄) = α(m− 1, n)

{
n

m

(
1

c̄
+

1

c̄2
β(m− 1, n)E[W−1]

)
+

(
1

c̄2
β(m− 1, n)E[W−2]− 1

c̄
E[W−1]

)
µ′Σ−1µ

}
From Remark 8(i) we have β(m− 1, n)E[W−2]− E[W−1] ≥ 0. Set

c̄ = β(m− 1, n)
E[W−2]

E[W−1]
≥ 1

Then, we obtain

L(Umv, Ûmv,Rn) = l(1) ≥ 1

4κ
α(m− 1, n)

n

m

(
1 + β(m− 1, n)E[W−1]

)
≥ 1

4κ
α(m− 1, n)

n

m

(
1

c̄
+

1

c̄2
β(m− 1, n)E[W−1]

)
= l(c̄) = L(Umv, Ûmv

c̄ ,Rn)

This proves the claim.

1.6. Proof of Theorem 4

First observe that Σ̂C and Σ̂ have the same eigenportfolios (v̂k)k=1,...,n with eigenvariances
(ckλ̂k)k=1,...,n and (λ̂k)k=1,...,n, respectively. Since the set of eigenportfolios (vk)k=1,...,n is an orthonormal
basis of Rn we have

w∗(Ûmv
C , Â) =

n∑
k=1

πk
(
w∗(Ûmv

C , Â),Σ
)
vk

and v′kΣvl = δklλk for k, l = 1, . . . , n. Similarly, for the set of eigenportfolios (v̂k)k=1,...,n we have

w∗(Ûmv
C , Â) =

n∑
k=1

πk
(
w∗(Ûmv

C , Â), Σ̂
)
v̂k

and v̂′kΣ̂C v̂l = δklckλ̂k for k, l = 1, . . . , n. The loss functionL(Umv, Ûmv
C , Â) for any Â can be written as

L(Umv, Ûmv
C , Â) = E

[
w∗(Ûmv

C , Â)′(µ̂− µ)− κw∗(Ûmv
C , Â)′Σ̂Cw

∗(Ûmv
C , Â)

+ κw∗(Ûmv
C , Â)′Σw∗(Ûmv

C , Â)
]
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Using the orthonormal basis (vk)k=1,...,n and (v̂k)k=1,...,n we obtain

L(Umv, Ûmv
C , Â) = E

[
w∗(Ûmv

C , Â)′(µ̂− µ)
]

− κ
n∑

k,l=1

E
[
πk
(
w∗(Ûmv

C , Â), Σ̂
)
πl
(
w∗(Ûmv

C , Â), Σ̂
)
v̂′kΣ̂C v̂l

]
+ κ

n∑
k,l=1

E
[
πk
(
w∗(Ûmv

C , Â),Σ
)
πl
(
w∗(Ûmv

C , Â),Σ
)
v′kΣvl

]
= E

[
w∗(Ûmv

C , Â)′(µ̂− µ)
]

+ κ

n∑
k=1

E
[
πk
(
w∗
(
Ûmv
C , Â),Σ

)2
λk − πk

(
w∗
(
Ûmv
C , Â), Σ̂

)2
ckλ̂k

]
(A10)

In the unconstrained problem we have w∗
(
Ûmv
C ,Rn) = 1

2κ
Σ̂−1
C µ̂, and therefore we obtain

w∗(Ûmv
C ,Rn)′µ̂ =

1

2κ
µ̂′Σ̂−1

C µ̂ =
n∑
k=1

πk
(
µ̂, Σ̂−1

C

)2
c−1
k λ̂−1

k =
n∑
k=1

πk(µ̂, Σ̂)2c−1
k λ̂−1

k

w∗(Ûmv
C ,Rn)′µ =

1

2κ
µ̂′Σ̂−1

C µ =
n∑
k=1

πk
(
µ̂, Σ̂−1

C

)
πk
(
µ, Σ̂−1

C

)
c−1
k λ̂−1

k

=
n∑
k=1

πk
(
µ̂, Σ̂

)
πk
(
µ, Σ̂

)
c−1
k λ̂−1

k

πk
(
w∗(Ûmv

C ,Rn),Σ
)

=
1

2κ
πk(Σ̂

−1
C µ̂,Σ), and

πk
(
w∗(Ûmv

C ,Rn), Σ̂
)

=
(
T̂ ′w∗

(
Ûmv
C ,Rn)

)
k

=
1

2κ

(
T̂ ′Σ̂−1

C µ̂
)
k

=
1

2κ
(T̂ ′T̂C−1Λ̂−1T̂ ′µ̂)k

=
1

2κ
c−1
k λ̂−1

k (T̂ ′µ̂)k =
1

2κ
c−1
k λ̂−1

k πk(µ̂, Σ̂)

Inserting these expressions into Equation (A10) we obtain

L(Umv, Ûmv
C ,Rn) =

1

2κ

n∑
k=1

E
[(
πk(µ̂, Σ̂)− πk(µ, Σ̂)

)
c−1
k λ̂−1

k πk(µ̂, Σ̂)
]

+
1

4κ

n∑
k=1

E
[
πk(Σ̂

−1
C µ̂,Σ)2λk − πk(µ̂, Σ̂)2c−1

k λ̂−1
k

]
This proves the statement.

1.7. Proof of Theorem 5

Under assumption (10) we have πk(·,Σ) = πk(·, Σ̂) = πk(·, Σ̂C) almost surely. Then, using
Theorem 4, E[µ̂] = µ and the independence between µ̂ and Λ̂ we obtain
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L(Umv, Ûmv
C ,Rn) =

1

2κ

n∑
k=1

E
[(
πk(µ̂,Σ)2 − πk(µ̂,Σ)πk(µ,Σ)

)
c−1
k λ̂−1

k

]
+

1

4κ

n∑
k=1

E
[
πk(Σ̂

−1
C µ̂,Σ)2λk − πk(µ̂,Σ)2c−1

k λ̂−1
k

]
=

1

2κ

n∑
k=1

c−1
k Var[πk(µ̂,Σ)]E[λ̂−1

k ]

+
1

4κ

n∑
k=1

E[(T ′TC−1Λ̂−1T ′µ̂)2
kλk − πk(µ̂,Σ)2c−1

k λ̂−1
k ]

=
1

2κ

n∑
k=1

c−1
k Var[πk(µ̂,Σ)]E[λ̂−1

k ]

+
1

4κ

n∑
k=1

E[πk(µ̂,Σ)2]
(
c−2
k E[λ̂−2

k ]λk − c−1
k E[λ̂−1

k ]
)

(A11)

This proves the first part of the theorem. Set for k = 1, . . . , n

ck =
λkE[λ̂−2

k ]

E[λ̂−1
k ]

By Jensen’s inequality we have for k = 1, . . . , n

ck ≥ λkE[λ̂−1
k ] ≥ 1

where we have used the assumption of unbiased Σ̂. Then, using Equation (A11) we have for these ck’s

L(Umv, Ûmv
C ,Rn) =

1

2κ

n∑
k=1

c−1
k Var[πk(µ̂,Σ)]E[λ̂−1

k ] ≤ 1

2κ

n∑
k=1

Var[πk(µ̂,Σ)]E[λ̂−1
k ]

≤ 1

2κ

n∑
k=1

(
Var[πk(µ̂,Σ)]E[λ̂−1

k ]

+
1

2
E
[
πk(µ̂,Σ)2

](
E[λ̂−2

k ]λk − E[λ̂−1
k ]
))

= L(Umv, Ûmv,Rn)

where in the last step, we have used Equation (A11) for c1 = . . . = cn = 1. This proves the claim.

2. Wishart Distribution

We recall the definition of the Wishart distribution and some properties we use in this paper. For more
details on the Wishart distribution we refer to Mardia et al. [42]. Let X be a m × n random matrix
whose rows are i.i.d multivariate Gaussian distributed random vectors with mean vector 0n and positive
definite covariance matrix Σ. Then, M = X ′X has a Wishart distribution with scale matrix Σ and m
degrees of freedom denoted by W(Σ,m). In particular, for n = 1, we have X = (X1, . . . , Xm)′ with
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i.i.d. Xk ∼ N (0, σ2). Hence, M =
∑m

k=1X
2
k ∼ σ2χ2

m, i.e., is chi-squared distributed. The mean and
the variance of a Wishart matrix M are given by,

E[M ] = mΣ, Var[Mij] = m
(
Σ2
ij + ΣiiΣjj

)
(A12)

for i, j = 1, . . . , n. The first important fact of the Wishart distribution is the following.

Proposition 6. Let A ∈ Rp×n and M ∼ W(Σ,m). Then AMA′ ∼ W(AΣA′,m).

In particular, this proposition implies that for m ≥ n the random matrix M is positive definite with
probability 1 if Σ is positive definite. To verify this let a ∈ Rn be a non-zero vector. Using the above
proposition, we have that

a′Ma ∼ W(a′Σa,m) ∼ a′Σaχ2
m

which implies a′Ma > 0 almost surely since a′Σa > 0. We also rely on the following key property.

Proposition 7. LetR1, . . . ,Rm be n-dimensional i.i.d multivariate Gaussian random vectors with mean
µ and covariance matrix Σ. Let µ̂ and Σ̂ be the sample mean and sample covariance matrix given by

µ̂ =
1

m

m∑
i=1

Ri and Σ̂ =
1

m− 1

m∑
i=1

(Ri − µ̂)(Ri − µ̂)′

Then, µ̂ and Σ̂ are independent, µ̂ ∼ N (µ, 1
m

Σ) and (m− 1)Σ̂ ∼ W(Σ,m− 1).

Note that the sample covariance matrix estimator is a Wishart matrix with only m − 1 degrees of
freedom. This is because in the sample covariance matrix estimator we subtract the sample mean from
the observations and not the true mean. Finally, important for this paper are the first two moments of the
inverse of a Wishart matrix. In Haff [43] the following result is proven.

Proposition 8. Let M ∼ W(Σ,m), A ∈ Rn×n positive semi definite and m > n+ 3. Then,

(i) E
[
M−1

]
= α(m,n)

m
Σ−1; and

(ii) E[M−1AM−1] = α(m,n)β(m,n)
m2(m−1)

tr(Σ−1A)Σ−1 + β(m,n)
m(m−1)

Σ−1AΣ−1;

where α(m,n) = m
m−n−1

and β(m,n) = m(m−1)
(m−n)(m−n−3)

.
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3. Equity Universe for Case Studies

Nr. Company Bloomberg Ticker Industry Sector

1 Wells Fargo & Company WFC US Equity financials
2 JP Morgan Chase & Co. JPM US Equity financials
3 Citigroup, Inc. C US Equity financials
4 Bank of America Corporation BAC US Equity financials
5 American Express Company AXP US Equity financials
6 American International Group AIG US Equity financials
7 PNC Financial Services Group PNC US Equity financials
8 General Electric Company GE US Equity industrials
9 United Technologies Corporation UTX US Equity industrials
10 3M Company MMM US Equity industrials
11 Caterpillar, Inc. CAT US Equity industrials
12 Boeing Company BA US Equity industrials
13 Union Pacific Corporation UNP US Equity industrials
14 Honeywell International HON US Equity industrials
15 Wal-Mart Stores, Inc. WMT US Equity consumer staples
16 McDonald’s Corporation MCD US Equity consumer discretionary
17 Comcast Corporation CMCSA US Equity consumer discretionary
18 Walt Disney Company DIS US Equity consumer discretionary
19 Home Depot, Inc. HD US Equity consumer discretionary
20 CVS Caremark Corporation CVS US Equity consumer staples
21 Costco Wholesale Corporation COST US Equity consumer staples
22 Apple Inc. AAPL US Equity information technology
23 Microsoft Corporation MSFT US Equity information technology
24 International Business Machines (IBM) IBM US Equity information technology
25 Oracle Corporation ORCL US Equity information technology
26 Intel Corporation INTC US Equity information technology
27 Hewlett-Packard Company HPQ US Equity information technology
28 EMC Corporation Common EMC US Equity information technology
29 Exxon Mobil Corporation XOM US Equity energy
30 Chevron Corporation Common CVX US Equity energy
31 Schlumberger N.V. SLB US Equity energy
32 ConocoPhillips COP US Equity energy
33 Occidental Petroleum OXY US Equity energy
34 Anadarko Petroleum APC US Equity energy
35 Apache Corporation APA US Equity energy
36 Procter & Gamble Company PG US Equity consumer staples
37 Coca-Cola Company KO US Equity consumer staples
38 Pepsico, Inc. PEP US Equity consumer staples
39 Altria Group, Inc. MO US Equity consumer staples
40 Colgate-Palmolive Company CL US Equity consumer staples
41 Ford Motor Company F US Equity consumer discretionary
42 Nike, Inc. NKE US Equity consumer discretionary
43 Kimberly-Clark Corporation KMB US Equity consumer staples
44 Johnson & Johnson JNJ US Equity health care
45 Pfizer, Inc. Common Stock PFE US Equity health care
46 Merck & Company, Inc. MRK US Equity health care
47 Abbott Laboratories ABT US Equity health care
48 Bristol-Myers Squibb Company BMY US Equity health care
49 Amgen Inc. AMGN US Equity health care
50 UnitedHealth Group UNH US Equity health care
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