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Abstract: The concept of best-estimate, prescribed by regulators to value insurance
liabilities for accounting and solvency purposes, has recently been discussed extensively in
the industry and related academic literature. To differentiate hedgeable and non-hedgeable
risks in a general case, recent literature defines best-estimates using orthogonal projections
of a claim on the space of replicable payoffs. In this paper, we apply this concept of
best-estimate to long-maturity claims in a market with reinvestment risk, since in this case the
total liability cannot easily be separated into hedgeable and non-hedgeable parts. We assume
that a limited number of short-maturity bonds are traded, and derive the best-estimate price
of bonds with longer maturities, thus obtaining a best-estimate yield curve. We therefore use
the multifactor Vasiček model and derive within this framework closed-form expressions for
the best-estimate prices of long-term bonds.

Keywords: best-estimate price; reinvestment risk; dynamic hedging; sequential local risk
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1. Introduction

Life insurers are often faced with the problem of valuing liabilities with long maturities. While the
market for long-term bonds is rarely liquid, insurers regularly need to value liabilities with terms over
30 years. Under the new solvency regulations, in which liabilities must be valued on a “mark-to-market”
approach, such maturities can pose a challenge for insurers. In fact, the market consistency prescribed



Risks 2015, 3 251

by regulators dictates that hedgeable risks (the part of financial obligations that can be replicated by
admissible traded assets) be valued using the market prices of their traded counterparts. To be admissible,
the assets must be traded on a deep, liquid and transparent market, which is not the case for bonds
with long maturities (see Wüthrich [1] for more details). Further techniques are thus needed to value
long-term insurance liabilities for accounting and solvency purposes.

When liabilities cannot be marked to market, a popular approach is to “mark-to-model”, that is, to
fit a model using information available in active markets and to use this model to price the liabilities
(see, for example, Bierbaum et al. [2] and Martin [3]). This approach disregards the impossibility to
completely hedge long-term payoffs, even deterministic ones, using only the short- and medium-term
bonds traded in active markets. In such cases, the hedging portfolio must be readjusted as short-term
bonds reach maturity and new bonds become available. This strategy involves reinvestment risk, which
should be reflected in the value of the long-term liabilities. An introduction to reinvestment risk in
the context of long-term contracts is given in Dahl [4]. Stefanovits-Wüthrich [5] present a method to
hedge and value long-term zero-coupon bonds with reinvestment risk by extrapolating the yield curve
for different risk tolerance levels. In this paper, we attempt to calculate the best-estimate price of a long
term zero-coupon bond in a market with reinvestment risk, where “best-estimate” is as prescribed by
Solvency II regulations.

In a recent work, Happ et al. [6] provide a rigorous definition of best-estimate insurance reserves
in a multiperiod discrete time financial market setting. Under this interpretation of the Solvency II
Framework Directive [7], best-estimate reserves are obtained as follows: insurance risks that can be
separated (independently) into a hedgeable part using market traded admissible assets and a (orthogonal)
non-hedgeable part should be valued at the market price of the resulting portfolio of these traded
instruments. In simple cases, the two types of risk can be separated using conditional expectations,
as explained in Section 4.1 of [6]. However, when this separation is not possible, the authors conclude
that the sequential local risk-minimization approach of Föllmer-Schweizer [8] and Malamud et al. [9,10]
is an appropriate and consistent approach in the Solvency II framework. They show that this approach
corresponds to the recursive application of orthogonal projections onto the space of one-period replicable
payoffs. Since there might not exist an equivalent risk-neutral measure under which this best-estimate
price can be calculated, appropriate state-price deflators are used and expectations are taken under the
real-world (objective) measure.

The best-estimate definition given by [6] was developed for a general financial model. In this paper,
we apply their definition of best-estimate reserves to value zero-coupon bonds with long maturities in
financial markets with reinvestment risk, whose hedgeable part cannot be separated by a conditional
expectation. In our market, reinvestment risk stems from the fact that only a limited number of bonds are
available on the market. In this context, we value a zero-coupon bond with time to maturity longer than
the longest traded bond. The best-estimate thus obtained takes into account the lack of liquidity on the
long-maturity bond market. To analyse this valuation method we use the multifactor Vasiček model since
it provides a flexible modeling framework with tractable formulas for the valuation of long-term bonds.
We remark at this stage that this choice was mainly motivated by tractability, and similar studies should
also be conducted for other term structure models. Using numerical examples, we show that the number
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of bonds available and the correlation structure between the bond prices influence the best-estimate price
of the long-maturity bond.

The paper is organized as follows. In Section 2, we present the bond market with reinvestment risk
and recall the definition of best-estimates presented by [6]. In Section 3, we derive expressions for
best-estimate bond prices in the Vasiček model. Numerical illustrations are presented in Section 4 and
Section 5 concludes. Proofs are provided in the Appendix.

2. Bond Market with Reinvestment Risk

We begin by introducing the setting considered in [6] and we adapt it to model a bond market with
reinvestment risk. Fix a finite time horizon n ∈ N and consider a filtered probability space (Ω,F ,P,F)

where P is the real-world probability measure and F is a discrete time filtration F = (Ft)t=0,...,n

satisfying {∅,Ω} = F0 ⊂ Ft ⊂ Ft+1 ⊂ Fn = F for all t = 0, . . . , n − 1. We denote the
space of Ft-measurable and square-integrable random variables on (Ω,F ,P,F) by L2(Ft). Then, the
space L2(F) =

⊕n
t=0 L2(Ft) of F-adapted and square-integrable processes is a Hilbert space with

inner product

〈X,Y〉 =
n∑
t=0

E[XtYt] for XY ∈ L2(F).

Assumption 1. There is a bond market MF with L traded zero-coupon bonds with times to maturity
` = 1, . . . , L in each trading period t = 0, . . . , n − 1. The price processes of these zero-coupon
bonds are in L2(F), and the price of the zero-coupon bond with maturity m = 1, . . . , n+ L at time
t = 0, . . . ,m ∧ n is denoted by P (t,m). We initialize P (t, t) = 1.

Assume L < n, that is, one cannot buy zero-coupon bonds for all maturities at any trading period.
For instance, at time t = 0 one can purchase zero-coupon bonds for maturity dates m = 1, . . . , L,
but zero-coupon bonds for maturity dates m = L + 1, . . . , n are not traded at time t = 0. How can
we optimally value and hedge these latter zero-coupon bonds? Our aim is to answer such questions in
accordance with accounting rules for insurance companies.

We let x denote an L-dimensional and F-adapted process x = (xt)t=0,...,n with

xt = (x1,t, . . . , xL,t)
′ and xn = 0

Then, x defines a portfolio strategy. We assume that x is L2-admissible, meaning that it satisfies∑L
`=1 x`,t−1 P (t, t− 1 + `) ∈ L2(Ft) for all t.
Next we introduce the payoff subspace, which is analogous to the one introduced by [6]. Here we use

this concept to analyse incompleteness with respect to traded times to maturity. The subspace of payoffs
at time t resulting from portfolio strategies set up at time t− 1 is denoted byHt and defined by

Ht =

{
Vt = Vt(x) =

L∑
`=1

x`,t−1 P (t, t− 1 + `); x is a portfolio strategy

}
⊂ L2(Ft)

where Vt =
∑L

`=1 x`,t−1P (t, t − 1 + `) is the wealth of portfolio strategy x at time t. Ht contains the
one-period hedgeable claims, that is the payoffs at time t that can be attained by an Ft−1-measurable
portfolio strategy xt−1. Note that claim P (t, t + L) cannot be perfectly replicated from t − 1 to t by
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an Ft−1-measurable portfolio strategy xt−1 and bonds with payoffs P (t, t), . . . , P (t, t− 1 + L) because
time to maturity L+ 1 cannot be purchased at time t− 1.

The fact that bonds with times to maturity greater than L cannot be purchased describes the
incompleteness of the bond market MF. In fact, the (in)completeness of the bond market presented
here depends on the time horizon considered. If we were to set the final time horizon n = L, the
bond market would be complete because bonds of all maturities could be replicated. However, since we
have n > L, we can consider claims with maturities greater than L that cannot be exactly replicated
from time 0 because there do not exist bonds with such maturities. It is precisely the existence of such
non-replicable claims that makes our market incomplete.

Definition 1. A state-price deflator of the marketMF is a strictly positive process ϕ = (ϕt)t=0,...,n ∈
L2(F) such that

ϕtP (t,m) = E [ϕt+1P (t+ 1,m)| Ft]

for all m = 1, . . . , n+ L and t = 0, . . . , (m− 1) ∧ (n− 1).

If there exists a state-price deflator ϕ ∈ L2(F) for the market MF, any zero-coupon bond with
maturity date m can be priced at time t < m by

P (t,m) =
1

ϕt
E [ϕt+1P (t+ 1,m)| Ft] =

1

ϕt
E [ϕm| Ft]

where for the second identity we need m ≤ n because otherwise ϕm is not well-defined in our model.
The existence of a state-price deflator ϕ ∈ L2(F) fully specifies no-arbitrage prices with respect to

ϕ at the market MF. However, this does not say anything about optimal replication of zero-coupon
bonds with times to maturity that are not attainable by trading at the marketMF according to (2). This
is exactly what we would like to discuss in an insurance setting (i.e., where accounting and solvency
regulation for insurance companies applies). This is a typical situation in the (life-) insurance industry
where long-term liabilities, say with a time to maturity of 30 years, need to be replicated, but there are
no financial instruments at the financial market which perfectly replicate these claims.

Lemma 1 (No-arbitrage at MF). The market MF is free of arbitrage if and only if there exists a
state-price deflator ϕ ∈ L2(F), where for the former we refer to Definition 2.4 in Malamud et al. [11].

Lemma 1 corresponds to the first part of Lemma 2.5 from [6]. We always assume the existence of
state-price deflator ϕ ∈ L2(F) in order to have a model with consistent pricing.

We now recall the concept of best-estimate introduced in [6] and apply it to our market with
reinvestment risk. This definition of best-estimate price is in line with the concept of best-estimate
reserves in Solvency II, see Article 77.2 of the Solvency II Framework Directive [7].

We let Qt
H denote the orthogonal projection of L2(Ft) onto Ht. Then, for a claim ξt ∈ L2(Ft),

this means
Qt
Hξt = arg min

Vt∈Ht

E
[
(Vt − ξt)2

]
(1)

By Assumption 1, there exists a risk-free rollover rate in each period, so we have that

L2(Ft−1) ⊂ Ht ⊂ L2(Ft) (2)
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Thus, for any claim ξt−1 ∈ L2(Ft−1), we have Qt
Hξt−1 = ξt−1. Similarly, for any claims ξt−1 ∈ L2(Ft−1)

and ξt ∈ L2(Ft), Qt
H(ξtξt−1) = ξt−1Q

t
Hξt holds.

Note that the payoff space Ht describes hedgeable claims from t − 1 to t, i.e., claims that can be
replicated by Ft−1-measurable portfolio strategy xt−1 at the bond marketMF. Therefore, for any claim
ξt ∈ L2(Ft) we find the hedgeable best approximation ξ∗t = Qt

Hξt ∈ Ht. This approximation is best
in the sense that we can find a Ft−1-measurable portfolio strategy x∗t−1 that perfectly replicates the
hedgeable claim ξ∗t and minimizes the MSE for ξt, see (1). That is, by investing in the marketMF, we
can achieve payoff

ξ∗t = Qt
Hξt =

L∑
`=1

x∗`,t−1 P (t, t− 1 + `)

for an appropriate Ft−1-measurable portfolio strategy x∗t−1. At time t−1, claim ξ∗t has no-arbitrage price
(for given state-price deflator ϕ)

π
(0)
t−1(ξt)

def.
=

1

ϕt−1
E [ϕtξ

∗
t | Ft−1] =

1

ϕt−1
E
[
ϕtQ

t
Hξt
∣∣Ft−1] =

L∑
`=1

x∗`,t−1 P (t− 1, t− 1 + `)

The Ft−1-measurable value π(0)
t−1(ξt) is called best-estimate price of the (insurance) claim ξt at time

t− 1. This is exactly the (unique) price we need to pay for replicating ξ∗t = Qt
Hξt from t− 1 to t, where

the latter has minimal MSE with ξt, see (1). The uniqueness follows from Lemma 3.2 and Proposition
3.4 in [6]. The optimal portfolio strategy x∗t−1 and the corresponding one-period (conditional) MSE
are provided in Lemma 2 below. The best-estimate price π

(0)
t−1(ξt) corresponds to the one-period

mean-variance hedging price of [8], see also C̆erný-Kallsen [12]. This best-estimate price is closely
related to the minimal martingale measure, see Föllmer-Schied [13].

The above only solves the one-period pricing problem because, in general, π(0)
t−1(ξt) ∈ L2(Ft−1) is

not achievable seen from time t − 2, i.e., does not lie in the payoff space Ht−1. Therefore, we need to
iterate the procedure.

Definition 2 (Best-estimate price). The best-estimate price of ξt ∈ L2(Ft) at time s < t is defined by

πs(ξt)
def.
= π(0)

s ◦ π
(0)
s+1 ◦ . . . ◦ π

(0)
t−2 ◦ π

(0)
t−1(ξt)

πs(ξt) exactly describes the best-estimate price of ξt at time s < t, see Section 3.4 in [6]. In the next
section, we choose an explicit state-price deflator and apply this iterative best-estimate price calculation
to zero-coupon bonds with maturities that are not achievable by trading in earlier periods.

3. Best-Estimate Prices in Multifactor Vasiček Models

The concepts presented in the previous section can be applied to any bond market model with
reinvestment risk, regardless of the short rate or term structure model considered. In this section, we
apply the concept of best-estimate bond prices to a bond market in which the short rate is modeled by a
multifactor Vasiček model. This choice of model is partly motivated by its analytical tractability, which
allows us to derive closed-form expressions for best-estimate bond prices. These formulas will then be
used in Section 4 to numerically assess the impact of different market characteristics on the best-estimate
price of bonds.



Risks 2015, 3 255

Using the multifactor Vasiček model allows for more modeling flexibility compared to its one-factor
counterpart. In particular, multifactor models lead to richer covariance structures between spot rates with
different maturities, which in turn improve the calibration to observed yield curves. It is well-known that
at least two factors are necessary to accurately model yield curves (see, for example, Section 4.1 of
Brigo-Mercurio [14]).

3.1. The Multifactor Vasiček Bond Market Model

We assume that the bond market MF is modeled by the discrete time multifactor Vasiček model.
Following Wüthrich-Merz [15], we define an N -dimensional process Y(t) = (Y1(t), . . . , YN(t))′, t ≥ 0,
and assume that the spot rate process (rt)t≥0 is described by

rt =
N∑
j=1

Yj(t)

Let Y(0) ∈ RN and for j = 1, . . . , N and t ≥ 1,

Yj(t) = bj + (1− (kj + λjgj))Yj(t− 1) + gjεj,t = bj + βjYj(t− 1) + gjεj,t

with bj > 0, gj > 0, kj, λj ∈ R chosen such that βj > 0 for all j ∈ 1, . . . , N , and εt = (ε1,t, . . . , εN,t)t

being Ft-measurable and independent of Ft−1 under P. We further assume that (εt)t≥1 have standard
multivariate Gaussian distributions under P with independent components. Finally, we assume N ≥ 1,
so this setting includes as a special case the discrete time one-factor Vasiček model when N = 1.

For each factor Yj , the parameter βj is associated with the speed of reversion to the long-term mean
bj

1−βj , λj determines the market price of risk associated with the j th factor and gj is linked to the volatility
of the process.

For z = (z1, . . . , zN) ∈ RN , let

λ(z) = (λ1z1, . . . , λNzN) ∈ RN

The state-price deflator ϕ in the discrete time multifactor Vasiček model is then defined by (see
Section 3.6 of [15])

ϕt = exp

{
−

t∑
s=1

(
rs−1 +

1

2
‖λ(Y(s− 1))‖2

)
+

t∑
s=1

λ(Y(s− 1))εs

}
Note that the state-price deflator ϕ ∈ L2(F) is strictly positive. Therefore it induces a bond market

modelMF that is free of arbitrage when bonds of all maturities are traded. The zero-coupon bond prices
are affine and take the form

P (t, t+ `) = exp

{
A(`)−

N∑
j=1

Yj(t)Bj(`)

}
(3)

with A(1) = 0 and Bj(1) = 1, and for s ≥ 2

A(s) = A(s− 1)−
N∑
j=1

bjBj(s− 1) +
1

2

N∑
j=1

g2jBj(s− 1)2

Bj(s) =
1

kj
[1− (1− kj)s]
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for j ∈ {1, . . . , N} (see Section 3.6 of [15]) for more details).
We now consider the Vasiček model for modeling the bond marketMF described in Section 2, which

is restricted to L bonds with times to maturity ` = 1, . . . , L. In this market, we would like to dynamically
replicate a claim P (0, n) for maturity n > L. Note that this claim can perfectly be replicated from time
n−L to time n because we can purchase a zero-coupon bond with time to maturity ` = L at time n−L.
Thus, the first non-perfect hedge needs to be done from time n−L− 1 to time n−L, because the bond
with price P (n− L, n) is not attainable at time n− L− 1.

3.2. The Aggregate Market Span-Deflator

We consider the span-deflator given by

ϕ̆t = exp

{
−
(
rt−1 +

1

2
‖λ(Y(t− 1))‖2

)
+ λ(Y(t− 1))εt

}
and we aim to calculate the aggregate market span-deflator defined by

ψ̆t = Qt
Hϕ̆t

The aggregate market span-deflator can be used to obtain the best-estimate price of payoff ξt at time
t− 1. From Proposition 3.4 of [6], we have

π
(0)
t−1(ξt) = E [ϕ̆tξ

∗
t | Ft] = E

[
ψ̆tξt

∣∣∣Ft] (4)

Therefore, when using ψ̆t, it is not necessary to project the payoff ξt onHt.
Any wealth Vt ∈ Ht admits representation

Vt = Vt(x) =
L∑
`=1

x`,t−1 P (t, t− 1 + `) = x1,t−1 + x̃′t−1P̃t

for Ft−1-measurable xt−1 = (x1,t−1, x̃
′
t−1)

′ and random price vector P̃t = (P (t, t + 1), . . . ,

P (t, t − 1 + L))′. Note that the first component ` = 1 models the one-period risk-free rollover. In
order to find the aggregate market span-deflator we minimize

E
[
(Vt − ϕ̆t)2

∣∣Ft−1] = E
[(
x1,t−1 + x̃′t−1P̃t − ϕ̆t

)2∣∣∣∣Ft−1]
The resulting aggregate market span-deflator is given in Lemma 2 below. To simplify the notation,

we introduce the following covariance matrix

Σt−1 =

(
Cov (P (t, t− 1 + `), P (t, t− 1 + k)| Ft−1)

)
`,k=2,...,L

and the following covariance vector

vt−1(ϕ̆t) =
(
Cov (P (t, t+ 1), ϕ̆t| Ft−1) , . . . ,Cov (P (t, t− 1 + L), ϕ̆t| Ft−1)

)′
Note that these are Ft−1-measurable.
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Lemma 2. Assume that Σt−1 is positive definite. Then we have

ψ̆t = Qt
Hϕ̆t = E [ ϕ̆t| Ft−1] +

(
P̃t − p̃t

)′
Σ−1t−1vt−1(ϕ̆t)

where p̃t = E[P̃t|Ft−1].

This is the bond market version of Lemma A.1 from [6]. The proof is standard quadratic optimization.
We now apply Lemma 2 to the multifactor Vasiček model. The covariance of two bonds of different
maturities has a particularly attractive form in the multifactor Vasiček model, which allows us to express
the aggregate market span-deflator ψ̆t in a simple form. First, we define the matrix

C =

(
exp

{
N∑
j=1

g2jBj(s)Bj(u)

}
− 1

)
s,u=1,...,L−1

and the vector c′ = 1̃
′
C−1, with 1̃

′
= (1, . . . , 1). Note that we have Σt−1 = diag(p̃t) C diag(p̃t) for

t ∈ {1, . . . , n}. Since the covariance matrix Σ is always positive definite, it follows that C also is. For
t ∈ {1, . . . , n}, we also introduce the (L− 1)-dimensional vectors z(εt) and w(Y(t− 1)) defined by

z(εt)
′ =

(
exp

{
−

N∑
j=1

g2jBj(s)
2/2 + gjBj(s)εj,t

})′
s=1,...,L−1

C−1

and

w(Y(t− 1))′ =

(
exp

{
−

N∑
j=1

λjgjBj(s)Yj(t− 1)

}
− 1

)
s=1,...,L−1

Then we can state the following lemma.

Lemma 3. Under the discrete time multifactor Vasiček model the aggregate market span-deflator for
the bond marketMF is given by

ψ̆t = Qt
Hϕ̆t = e−rt−1 (1− c′w(Y(t− 1)) + z(εt)

′w(Y(t− 1)))

The proof of Lemma 3 is provided in the Appendix.

3.3. Best-Estimate Bond Prices

In this section we use Lemma 3 to derive a formula for the best-estimate price of a bond with time to
maturity ` > L. Note that, by definition, the best-estimate price of a bond with time to maturity ` ≤ L

(that is, a bond that is available at the bond marketMF) is equal to its no-arbitrage price P (t, t + `) at
time t. In the discrete time multifactor Vasiček model, this price is given by (3).

Before the main result is stated, we introduce the relevant notation.
Let A(0)(1) = A(1) = 0 and B(0)(1) = B(1) = 1, and for ` ∈ {2, . . . , L}, let B(`) and A(`) be

defined as in (3). Set

A(0)(L) = A(L) = A(L− 1)−
N∑
j=1

bjBj(L− 1) +
1

2

N∑
j=1

g2jB
2
j (L− 1)

B
(0)
j (L) = Bj(L) = 1 + (βj + λjgj)Bj(L− 1) = 1 + (1− kj)Bj(L− 1)
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Then, for ` ∈ {L+ 1, L+ 2, . . .} define

A(iL+s)(`) = A(i)(`− 1)−
N∑
j=1

bjB
(i)
j (`− 1) +

1

2

N∑
j=1

g2j

(
B

(i)
j (`− 1)

)2
and

B
(iL+s)
j (`) = 1 + βjB

(i)
j (`− 1) + λjgjBj(s)

for s ∈ {0, . . . , L− 1} and i ∈ {0, 1, . . . , L`−L−1 − 1} and let B(0) = 0. Define also ς0(L) = 1 and for
` ∈ {L+ 1, L+ 2, . . .},

(ςiL+s(`))s=1,...,L−1 =
(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`−1) − 1

)
s=1,...,L−1

C−1 (5)

for i ∈ {0, 1, . . . , L`−L−1 − 1}. Finally, let M0(L) = 1 and for ` ∈ {L+ 1, L+ 2, . . .},

MiL(`) = 1−
(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`−1) − 1

)
s=1,...,L−1

C−11̃

= 1−
L−1∑
s=1

ςiL+s(`) (6)

i ∈ {0, 1, . . . , L`−L−1 − 1}. Using this notation, we can state the following theorem.

Theorem 1. Under the discrete time multifactor Vasiček model, the best-estimate price at time t of a
bond that matures at time t+ `, for ` ≥ L+ 1, is given by

E

[
t+∏̀

u=t+1

ψ̆u

∣∣∣∣∣Ft
]

=
L`−L−1∑
i=0

ωi(`)e
A(i)(`)−

∑N
j=1 Yj(t)B

(i)
j (`)

where ω0(L+ 1) = 1 and for i ∈ {0, 1, . . . , L`−L−1 − 1},

ωiL(`) = ωi(`− 1)MiL(`)

ωiL+k(`) = ωi(`− 1)ςiL+k(`) for k = 1, . . . , L− 1

This result stems from the application of Definition 2 and Lemma 3. The proof is given in
the Appendix.

Example 1 (Best-estimate bond prices for L = 2 in the one-factor Vasiček model). We consider the
discrete time one-factor Vasiček model with two zero-coupon bonds with times to maturity ` = 1, 2.
Thus, the payoff spaceHt is given by

Ht = {Vt = Vt(x) = x1,t−1 + x2,t−1 P (t, t+ 1); x is a portfolio strategy} ⊂ L2(Ft)

with P (t, t+ 1) = exp{−rt}. In this case we have

C = exp{g2} − 1

c =
(
exp{g2} − 1

)−1 def.
= c

w(Y(t− 1)) = exp{−λgrt−1} − 1

z(εt) = exp{−g2/2− gεt}
(
exp{g2} − 1

)−1
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Using Lemma 3, this implies

ψ̆t = e−rt−1
(
1− c

(
1− exp{−g2/2− gεt}

)
(exp{−λgrt−1} − 1)

)
= e−rt−1

(
1 + c− c exp{−λgrt−1}+ c exp{−g2/2− gεt − λgrt−1} − c exp{−g2/2− gεt}

)
= (1 + c)e−rt−1 − ce−(λg+1)rt−1 + ce−g

2/2−gεt−(λg+1)rt−1 − ce−g2/2−gεt−rt−1

By the definition of ψ̆t, we have

E
[
ψ̆t+1

∣∣∣Ft] = e−rt = P (t, t+ 1)

and
E
[
ψ̆t+2ψ̆t+1

∣∣∣Ft] = E
[
P (t+ 1, t+ 2)ψ̆t+1

∣∣∣Ft] = P (t, t+ 2)

Note that these are the no-arbitrage prices since the zero-coupon bonds with times to maturity 1 and 2

can be hedged at time t. This is no longer the case for the zero-coupon bond with time to maturity ` = 3,
for which we have

E
[
ψ̆t+1ψ̆t+2ψ̆t+3

∣∣∣Ft] = E
[
ψ̆t+1P (t+ 1, t+ 3)

∣∣∣Ft]
= E

[
ψ̆t+1e

A(2)−rt+1B(2)
∣∣∣Ft]

=
eg

2 − eg2B(2)

eg2 − 1
e−B

(0)(3)rt+A(3) +
eg

2B(2) − 1

eg2 − 1
e−B

(1)(3)rt+A(3)

= M0(3)e−B
(0)(3)rt+A(0)(3) + ς1(3)e−B

(1)(3)rt+A(1)(3)

= ω0(3)e−B
(0)(3)rt+A(0)(3) + ω1(3)e−B

(1)(3)rt+A(1)(3)

Finally, for general ` > 2, the best-estimate bond price is given by

E

[
t+∏̀

u=t+1

ψ̆u

∣∣∣∣∣Ft
]

=
2`−2−1∑
i=0

ωi(`)e
A(i)(`)−rtB(i)(`) (7)

where A(0)(L) = A(L) and B(0)(L) = B(L), and for ` ∈ {L+ 1, L+ 2, . . .},

A(2i)(`) = A(i)(`− 1)− bB(i)(`− 1) +
g2

2

(
B(i)(`− 1)

)2
= A(2i+1)(`)

and

B(2i)(`) = 1 + βB(i)(`− 1)

B(2i)(`) = 1 + λg + βB(i)(`− 1)

for i ∈ {0, 1, . . . , 2`−L−1 − 1}. We also have ω0(2) = 1

and, for ` ∈ {3, 4, . . .},

ω2i(`) = ωi(`− 1)M2i(`) = ωi(`− 1)
eg

2 − eg2B(i)(`−1)

eg2 − 1

ω2i+1(`) = ωi(`− 1)ς2i+1(`) = ωi(`− 1)
eg

2B(i)(`−1) − 1

eg2 − 1

for i ∈ {0, 1, . . . , 2`−L−1 − 1}. Thus, when ` increases by one, the number of terms A(i)(`), B(i)(`) and
ωi(`) doubles.
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3.4. Hedging the Long-Term Bond

Although Theorem 1 gives the best-estimate price of a long-maturity zero-coupon bond not traded on
the market today, it does not indicate how that amount should be invested in the traded bonds to attain
the desired payoff. In this section, we derive the investment strategy underlying the best-estimate price
of a bond in the discrete time multifactor Vasiček model. To do so, we re-write the bond price obtained
in Theorem 1 as a linear combination of the market prices of the traded bonds.

Proposition 1. Under the discrete time multifactor Vasiček model, the best-estimate price at time t of a
bond that matures at time t+ `, for ` ∈ {L+ 1, L+ 2, . . . , }, can be expressed as

E

[
t+∏̀

u=t+1

ψ̆u

∣∣∣∣∣Ft
]

=
L∑
k=1

x∗k(t, `)P (t, t+ k)

where

x∗k(t, `) =
L`−1−L−1∑

i=0

ωi(`− 1)x∗i,k(t, `)

=

L`−1−L−1∑
i=0

ωiL+k−1(`)e
A(iL+k−1)(`)−

∑N
j=1 Yj(t)B

(iL+k−1)
j (`)

P (t, t+ k)−1

The proof is provided in the Appendix.

Example 2 (Best-estimate portfolio strategy for L = 2 in the one-factor Vasiček model). We consider
the same bond market model as in Example 1. At time t, the price of bonds with times to maturity 1 and
2 are given by the market. We express the price of the 3-year time to maturity zero-coupon bond as the
price of the portfolio that allows to replicate the 2-year time to maturity bond one period later, with the
smallest MSE. The portfolio is obtained by projecting the price of the 2-year bond on the payoff space
generated by the payoffs of the bonds available on the market one year earlier. Therefore, x∗1(t, 3) and
x∗2(t, 3) solve

arg min
x1,x2

E
[
(x1 − x2P (t+ 1, t+ 2)− P (t+ 1, t+ 3))2|Ft

]
Using quadratic minimization results, we obtain

x∗2(t, 3) =
Cov(P (t+ 1, t+ 2), P (t+ 1, t+ 3)|Ft)

Var(P (t+ 1, t+ 2)|Ft)
x∗1(t, 3) = E[P (t+ 1, t+ 3)|Ft]− x∗1(t, 3)E[P (t+ 1, t+ 2)|Ft]

The price at t of the portfolio is given by

x∗1(t, 3)E [ϕ̆t+1|Ft] + x∗2(t, 3)E [ϕ̆t+1P (t+ 1, t+ 2)|Ft] = x∗1(t, 3)P (t, t+ 1) + x∗2(t, 3)P (t, t+ 2)

Observe that we can write

x∗1(t, 3)P (t, t+ 1) = eA
(0)(3)−(1+βB(2))rt

(
1− eg

2B(2) − 1

eg2 − 1

)
= ω0(3)eA

(0)(3)−B(0)(3)rt
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and

x∗2(t, 3)P (t, t+ 2) = eA(3)−β(1−B(2))rt−B(2)rt
eg

2B(2) − 1

eg2 − 1
= ω1(3)eA

(1)(3)−B(1)(3)rt

which matches the results obtained in Example 1. For general time to maturity ` ≥ 3, we have that the
portfolio strategy at time t is given by

x∗1(t, `) =

∑2`−3−1
i=0 ω2i(`)e

A(2i)(`)−
∑N

j=1 Yj(t)B
(2i)
j (`)

P (t, t+ 1)

x∗2(t, `) =

∑2`−3−1
i=0 ω2i+1(`)e

A(2i+1)(`)−
∑N

j=1 Yj(t)B
(2i+1)
j (`)

P (t, t+ 2)

In other words, to obtain the portfolio strategy, it suffices to sum the correct terms of (7). The sum
of the terms indexed with an even number (and 0), divided by the one-year zero-coupon bond price give
the portfolio weight for that bond. To get the portfolio weight for the 2-year zero-coupon bond the sum
must be taken over the terms indexed by an odd number.

4. Numerical Illustrations

In this section, we consider applications of the discrete time multifactor Vasiček market model.
Compared to its one-factor counterpart, the multifactor model allows for an enhanced dependence
structure between zero-coupon bond prices (and for a better fit to the one observed from real data).
In particular, it can replicate decreasing correlation over time (for more details, see Chapter 3 of [15]).

To calibrate the multifactor Vasiček model, one must estimate the parameters of the unobserved
process Y(t) using the observed the spot rate process. This may lead to ambiguity, and one of the
most popular estimation method for the multifactor Vasiček model to resolve this issue is the Kalman
filter. For more details, see, for example, Section 3.6 of [15] or Nowman [16]. Since the calibration of
the multifactor Vasiček model to current market data is not the primary interest of this paper, we do not
perform a full calibration. Instead, we aim to produce results under different plausible parameter sets in
order to assess the robustness of the method under different market conditions.

We present two separate examples to highlight different characteristics of best-estimate bond prices.
In the first example, we perform sensitivity analysis using a two-factor Vasiček model. With this
example, we explore the robustness of our results under various market conditions. Our second example
is inspired by a more realistic life insurance situation. For this example, we consider a three-factor
model, since it is generally agreed that three factors provide a good fit to market data (see [16]), and
we use a calibration to Swiss Confederation bond prices to analyse the sensitivities of best-estimates for
long-term bonds.

4.1. Numerical Illustration 1

In the first example, we consider a two-factor model with parameters chosen to produce a market
plausible yield curve. Under such parameter sets, for different bond price correlation structures, we
obtain the best-estimate yield curve and the portfolio strategy underlying the best-estimate prices. To
assess the robustness of our results under changes in market conditions, we then perform sensitivity tests
by changing the value of key parameters and by increasing the number of factors in the model.
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Table 1. Parameter sets used for Example 1.

Parameters Parameter set 1 Parameter set 2

k [0.1360, 0.2000] [0.1360, 0.5500]

b [0.0045, 0.0005] [0.0045, 0.0005]

g [0.0080, 0.0052] [0.0080, 0.0123]

λ [8, 15] [8, 15]

y0 [0.0050,−0.0025] [0.0050,−0.0025]

0

2

4

6

8

10

0

2

4

6

8

10

0.85

0.9

0.95

1

(a)

0

2

4

6

8

10

0

2

4

6

8

10

0.85

0.9

0.95

1

(b)

0 2 4 6 8 10 12 14 16 18 20
  0%

0.5%

  1%

1.5%

  2%

2.5%

Time (in years)

 

 

Parameter set 1

Parameter set 2

(c)

Figure 1. Correlations and yield curves for Parameter sets 1 and 2. (a) Correlation between
bond prices for Parameter set 1; (b) Correlation between bond prices Parameter set 2;
(c) Yield curves obtained using no-arbitrage bond prices.
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4.1.1. Numerical Illustration 1: Parameter Sets

We first consider two parameter sets leading to very different covariance structures for zero-coupon
bond prices. The two parameter sets are described in Table 1. The main difference between the two
parameter sets lies in the second factor. In the first set, a lower k2 causes the effect of the second factor
to last as maturities increase. In addition, g2 is higher in the second parameter set, which increases the
volatility of the spot rate. The resulting correlation structure between bond prices of times to maturity
from ranging from 2 to 10 years are presented in Figure 1.

4.1.2. Numerical Illustration 1: Projected Yield Curve

Using the two parameter sets and Theorem 1, we compare the yield curve derived from best-estimate
zero-coupon bond prices to the no-arbitrage one. Note that we can calculate the no-arbitrage price of any
zero-coupon bond once a state-price deflator is given. The no-arbitrage price thus obtained is defined
with respect to this state-price deflator. However, in practical situations this price is not helpful because
incompleteness implies that this instrument is not necessarily traded. Therefore, in an insurance context,
this price is not a market price, but a marked-to-model price obtained by market-consistent valuation.

More specifically, we calculate the yield curve from no-arbitrage bond prices obtained from (3), while
the best-estimate yield curve is at time t obtained by

` > 0 7→ R(t, t+ `) = −1

`
log(πt(ξt+`)), (8)

with ξt+` = 1 at time t+ `. The resulting yield curves for bond markets containing L = 2, 3 and 4 bonds
are presented in Figure 2. The yield curves are almost visually indistinguishable, so the differences
between the best-estimate and the no-arbitrage yields are presented in Table 2.

The absolute differences between best-estimate and no-arbitrage spot yields increase with time to
maturity. This phenomenon is accentuated when bond correlation decreases faster as time to maturity
increases. As expected, when short- and long-term bonds present a lower correlation, the former are not
as useful for replicating the latter. The results in Table 2 also show that the best-estimate yield curves
approach the no-arbitrage one when the number (and the maturity) of traded bonds increase.

It is also important to note that the sign of the differences presented in Table 2 is negative in all cases,
except for the second parameter set when L = 4. A negative difference means that the best-estimate bond
price is less than the no-arbitrage one, while the opposite is true when the difference is positive. One
might assume that the best-estimate yield should always be higher than the no-arbitrage one, to account
for reinvestment risk. However, the replicating strategy underlying the best-estimate price allows for
short positions, which can result in potential profits, thus reducing the best-estimate price. Furthermore,
the best-estimate bond price is defined by a quadratic hedging criteria, which treats deviations above and
below the target in a similar way. Thus, best-estimate prices above and below the no-arbitrage price can
be expected. Finally, the deviations from the no-arbitrage yield for both parameter sets are very small,
and they decrease as L increases.
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Figure 2. No-arbitrage and best-estimate projected yield curves. (a) Parameter set 1;
(b) Parameter set 2.

Table 2. Differences between the best-estimate and the no-arbitrage yields for different
numbers L of traded bonds, for Parameter sets 1 and 2. Entries 0.0000 and -0.0000 indicate
positive and negative numbers whose absolute value is less than 10−8.

Difference between Best-Estimate and No-Arbitrage Yields (×10−4)

Time to
Maturity 3 4 5 6 7 8 9 10

Parameter set 1
L = 2 −0.0497 −0.1355 −0.2475 −0.3779 −0.5211 −0.6727 −0.8294 −0.9887
L = 3 0 −0.0004 −0.0016 −0.0037 −0.0069 −0.0112 −0.0167 −0.0234
L = 4 0 0 −0.0000 −0.0000 −0.0000 −0.0001 −0.0003 −0.0005

Parameter set 2
L = 2 −0.4996 −1.2757 −2.2378 −3.3359 −4.5347 −5.8052 −7.1227 −8.4663
L = 3 0 −0.0001 −0.0023 −0.0064 −0.0115 −0.0170 −0.0220 −0.0263
L = 4 0 0 0.0000 0.0005 0.0017 0.0037 0.0066 0.0105
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4.1.3. Numerical Illustration 1: Sensitivity of the Best-Estimate Yield Curve to λ

In the Vasiček model, each element of the vector λ is proportional to the market risk premium for the
associated factor. In this section, we study the impact of increasing the risk premium associated with the
first factor. We consider that there are L = 3 traded bonds in a market governed by Parameter set 1 with
different values of λ to assess its influence on the spread between the best-estimate and the no-arbitrage
yield curve. The results are presented in Figure 3.
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Figure 3. Difference between the best-estimate and no-arbitrage yield for times to maturity `
from 4 to 10, L = 3, for different market risk premium parameter λ. (a) λ2 = 0; (b) λ2 = 15.

Figure 3 illustrates that the magnitude of the spread increases with λ1, both for λ2 = 0 and λ2 = 15.
The increase is more important for longer times to maturity. In fact, the market price of risk increases
the price of the (risky) hedging strategy underlying the best-estimate yield. Claims with longer times to
maturity are riskier to hedge (for a constant number of traded bonds), partly because the strategy must
be applied for a longer period, during which errors can accumulate. Observe also that when both risk
premium parameters are equal to zero, the best-estimate and no-arbitrage yields coincide. This is not the
case when only λ1 = 0, because of the positive risk premium for the second factor.

4.1.4. Numerical Illustration 1: Sensitivity to the Number of Factors

It is well-known that at least two factors are necessary to adequately model the term structure of
interest rates (see, for example, Section 4.1 of [14]). To test the robustness of our results to a change in
the number of factors, we now consider the multifactor Vasiček model withN = 4. The parameters were
chosen such that their resulting yield curves are close to the ones obtained with the two-factor model.
Table 3 describes the parameter sets used for this sensitivity test. The resulting risk-neutral yield curve
and correlation structure between risk-neutral bond prices are shown in Figure 4.

It is worth noting that in this case, when there are L = 2 and L = 3 traded bonds, there are more
risk factors in the model than there are traded bonds on the market. This adds to the incompleteness
of the market.
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Table 3. Parameter sets used for sensitivity to the number of factors, N = 4.

Parameters Parameter set 3 Parameter set 4

k [0.1360, 0.1750, 0.0500, 0.4000] [0.1360, 0.5500, 0.2500, 0.4500]

b [0.0055, 0.0005, 0.0005, 0.0005] [0.00375, 0.0005, 0.0005, 0.0010]

g [0.0070, 0.0042, 0.0050, 0.0015] [0.0070, 0.0075, 0.0050, 0.0045]

λ [8, 15, 5, 5] [8, 15, 5, 5]

y0 [0.003,−0.00025, 0.00025, 0.00025] [0.003,−0.00025, 0.00025, 0.00025]
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Figure 4. Correlations and yield curves for Parameter sets 3 and 4. (a) Correlation between
bond prices for Parameter set 3; (b) Correlation between bond prices for Parameter set 4;
(c) Yield curves obtained using no-arbitrage bond prices.
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The resulting best-estimate yield curves are illustrated in Figure 5, and the differences between
the best-estimate and the no-arbitrage curves are presented in Table 4. The trends obtained under the
two-factor model can also be observed with four factors. The most noticeable difference between the
no-arbitrage and the best-estimate yield curves happens for longer times to maturity when the market
only contains two traded bonds. In that case, the bond market does not contain enough bonds to
adequately replicate bonds with longer times to maturity. This is especially true for the second parameter
set, since it presents lower correlation between short- and long-term bonds.
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Figure 5. No-arbitrage and best-estimate projected yield curves. (a) Parameter set 3;
(b) Parameter set 4.

Notice that for Parameter set 4, the difference between both yield curves is negative, indicating a
negative reinvestment risk premium. However, the risk premia remain comparably small and get closer
to zero as the number of traded bonds increase.
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Table 4. Differences between the best-estimate and the no-arbitrage yields for different
numbers L of traded bonds, for Parameter sets 3 and 4.

Difference between Best-Estimate and No-Arbitrage Yields (×10−4)

time to
maturity 3 4 5 6 7 8 9 10

Parameter set 3

L = 2 0.0028 0.0174 0.0499 0.1040 0.1822 0.2855 0.4141 0.5679

L = 3 0 0.0014 0.0063 0.0174 0.0367 0.0664 0.1078 0.1615

L = 4 0 0 0.0001 0.0006 0.0016 0.0034 0.0063 0.0100

Parameter set 4

L = 2 −0.1397 −0.4049 −0.7877 −1.2766 −1.8562 −2.5098 −3.2208 −3.9738
L = 3 0 −0.0033 −0.0146 −0.0372 −0.0729 −0.1222 −0.1845 −0.2589
L = 4 0 0 −0.0003 −0.0010 −0.0026 −0.0053 −0.0094 −0.0149

4.2. Numerical Illustration 2: Life Insurance Inspired

This second example is inspired by the long-term liabilities that insurers need to value, and the bonds
that may be available to them. So far, we have limited ourselves to bonds with maturities of 4 years or
less. However, many markets are deep and liquid for bonds with times to maturity up to 10 years or
more. Thus, in this example, we consider a claim with 11 to 20 years to maturity, which we price and
hedge using bonds with times to maturity up to 10 years.

The prices of bonds with times to maturity close to each other tend to be highly correlated. For this
reason, selected bonds with times to maturity further apart can be sufficient to replicate long-term bonds
in a satisfactory manner. From a numerical and computational point of view, this is also an advantage.
Indeed, when L = 10, the resulting covariance matrix is often ill-conditioned, making calculations
impractical and imprecise. This is due to the quasi-linear dependence between the prices of bonds with
similar times to maturity. Replicating long-term claims using less (but well-chosen) bonds also reduces
the magnitude of the long and short positions that must be taken to cover the liability.

In this numerical example, we assume that for each trading period, the hedge is built using bonds with
times to maturity m ∈ M = {m1, . . . ,mL}, with L ≤ 10. Here we choose the following examples:
M = {1, 10}, M = {1, 2, 10}, M = {1, 5, 10}, M = {1, 2, 5, 10}. In fact, yield curves can often be
interpolated using only a few bonds with well-chosen times to maturity (see, for example, Section 3.6
of [15]). Note that if we assume that there are gaps in the times to maturity tensors M , then we slightly
need to change the formulas presented in Theorem 1 and Proposition 1. For simplicity reasons we avoid
further details.

4.2.1. Numerical Illustration 2: Parameter Set

We consider a three-factor Vasiček model with parameters that match the actual yield curve
interpolated from the prices of Swiss Confederation bonds on 1 March 2005. Three factors are generally
sufficient to capture the evolution of the market yield curve (see Section 3.6 of [15,16]). We choose the
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parameters described in Table 5. The resulting yield curve and bond price correlations are presented in
Figure 6.

Table 5. Parameter set used for Example 3 for N = 3.

Parameters Parameter set 5

k [0.1600, 0.5214, 0.2728]

b [0.0060, 0.0005, 0.0005]

g [0.0060, 0.0064, 0.0042]

λ [7.8704, 13.8290, 4.6956]

y0 [0.0079, 0.0005, 0.0005]
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Figure 6. Correlation and yield curve for Parameter set 5.

4.2.2. Numerical Illustration 2: Projected Yield Curve

Again, we calculate the best-estimate yield curve resulting from the best-estimate prices of bonds.
This time we focus on maturities ranging from 11 to 20 years. The differences between the best-estimate
yield curve and the no-arbitrage one are presented in Table 6. As in the previous example, the absolute
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difference between both yield curves increases with time to maturity. A larger number of bonds used in
the hedging portfolio also helps to reduce the difference between the best-estimate and the no-arbitrage
yield curve. The second and third lines of Table 6 show that the choice of the bonds to include in the
portfolio has an impact on the difference. In fact, when M = {1, 5, 10}, the no-arbitrage yield curve
is better replicated compared to M = {1, 2, 10}, which makes sense since the bond with 5 years to
maturity is better able to complete the other bonds in capturing the no-arbitrage yield curve.

Table 6. Differences between the best-estimate and the no-arbitrage yields for different sets
of traded bonds, for Parameter set 5.

Difference between Best-Estimate and No-Arbitrage Yields (×10−6)

Time to
Maturity 11 12 13 14 15 16 17 18 19 20

M = {1, 10} −1.2626 −3.9880 −8.1578 −13.6365 −20.2351 −27.7488 −35.9780 −44.7389 −53.8692 −63.2290

M = {1, 2, 10} −0.3343 −1.0648 −2.1920 −3.6848 −5.4973 −7.5781 −9.8757 −12.341 −14.9308 −17.6051

M = {1, 5, 10} −0.1594 −0.5152 −1.07332 −1.8229 −2.7437 −3.8115 −5.0009 −6.2870 −7.6467 −9.0592

M = {1, 2, 5, 10} −0.0007 −0.0009 −0.0009 −0.0012 −0.0023 −0.0046 −0.0081 −0.0130 −0.0194 −0.0273

5. Conclusions

We apply the definition of best-estimate given by [6] in terms of span-deflators to price long-term
bonds in a market with reinvestment risk. We assume that there exists a limited number of traded bonds,
whose linear combination form a space of one-period replicable payoffs. We value the long-term claim
recursively and obtain the best-estimate price using a series of orthogonal projections on the space of
replicable payoffs. This allows to distinguish between the hedgeable and non-hedgeable parts of the
claim. We then consider a multifactor Vasiček model and obtain analytical expressions for the aggregate
market span-deflator, the best-estimate price of long-term bonds and the hedging portfolio. Through
numerical examples, we show that as the number of bonds included in the portfolio increases, the
best-estimate yield curve approaches the no-arbitrage one. For longer maturities, it is harder to replicate
the no-arbitrage yield curve using a limited number of bonds. By carefully picking the bonds to include
in the hedging portfolio, it is possible to obtain a yield curve that is close to the no-arbitrage one without
increasing the number of bonds in the portfolio.

The main goal of this paper was to obtain the best-estimate price of long-term bonds when only a
limited number of shorter term bonds can be traded. Orthogonal projections on a space of replicable
payoffs allowing short positions extend the conditional expectation in a natural way. The resulting
best-estimate yield curve is very close to the no-arbitrage one prescribed by the model, and no significant
reinvestment risk premium can be observed. However, the hedging strategy underlying the best-estimate
price is not necessarily realistic for insurers, since they typically do not take short positions in bonds.
The best-estimate yield curve also does not take model risk into account.

6. Proofs

Proof of Lemma 3. We use the first two moments of the bond price in the discrete time multifactor
Vasiček model from Section 3.6 of [15] to derive an expression for the market span-deflator. We have
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pt,s = E [P (t, t+ s)| Ft−1] = exp

{
A(s)−

N∑
j=1

Bj(s) [bj + βjYj(t− 1)] +
1

2

N∑
j=1

g2jBj(s)
2

}

and

Cov (P (t, t+ s), P (t, t+ u)| Ft−1) = pt,s pt,u

(
exp

{
N∑
j=1

g2jBj(s)Bj(u)

}
− 1

)

Using the notation defined in Section 3, this implies

Σt−1 = diag(pt,s)s=1,...,L−1

(
exp

{
N∑
j=1

g2jBj(s)Bj(u)

}
− 1

)
s,u=1,...,L−1

diag(pt,s)s=1,...,L−1

= diag(p̃t) C diag(p̃t)

Moreover, by the definition of ϕ̆t, we have

E [ ϕ̆t| Ft−1] = exp{−rt−1} = exp

{
−

N∑
j=1

Yj(t− 1)

}

and

vt−1(ϕ̆t) =

(
pt,s exp

{
−

N∑
j=1

Yj(t− 1)

}(
exp

{
−

N∑
j=1

λjgjBj(s)Yj(t− 1)

}
− 1

))
s=1,...,L−1

= exp{−rt−1} diag(p̃t)

(
exp

{
−

N∑
j=1

λjgjBj(s)Yj(t− 1)

}
− 1

)
s=1,...,L−1

= exp{−rt−1} diag(p̃t) w(Y(t− 1))

Setting 1̃
′
= (1, . . . , 1) = p̃′t diag(p̃t)

−1, this implies

ψ̆t = Qt
Hϕ̆t = e−rt−1 − p̃′t Σ−1t−1vt−1(ϕ̆t) + P̃′t Σ−1t−1vt−1(ϕ̆t)

= e−rt−1 − e−rt−11̃
′
C−1w(Y(t− 1)) + e−rt−1P̃′t diag(p̃t)

−1C−1w(Y(t− 1))

Observe that

P̃′t diag(p̃t)
−1C−1 =

(
exp

{
−

N∑
j=1

g2jBj(s)
2/2 + gjBj(s)εj,t

})′
s=1,...,L−1

C−1 = z(εt)
′

Under these assumptions, and recalling that c′ = 1̃
′
C−1, we obtain the desired result.
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Proof of Theorem 1. First, we show that the claim holds for ` = L+ 1, which initializes the recursion.
We have by the tower property of conditional expectation and using Lemma 3

E

[
t+L+1∏
u=t+1

ψ̆u

∣∣∣∣∣Ft
]

= E

[
ψ̆t+1E

[
t+L+1∏
u=t+2

ψ̆u

∣∣∣∣∣Ft+1

]∣∣∣∣∣Ft
]

= E
[
ψ̆t+1P (t+ 1, t+ L+ 1)

∣∣∣Ft]
= E

[
e−

∑N
j=1 Yj(t) (1− c′w(Y(t)) + z(εt+1)

′w(Y(t)))P (t+ 1, t+ L+ 1)
∣∣∣Ft]

= e−
∑N

j=1 Yj(t) {(1− c′w(Y(t)))E [P (t+ 1, t+ L+ 1)| Ft]
+ E [z(εt+1)

′w(Y(t))P (t+ 1, t+ L+ 1)| Ft]}

We calculate these expected values on the right-hand side.

e−
∑N

j=1 Yj(t) (1− c′w(Y(t)))E [P (t+ 1, t+ L+ 1)| Ft]

= e−
∑N

j=1 Yj(t) (1− c′w(Y(t))) e
A(L)−

∑N
j=1

{
(bj+βjYj(t))Bj(L)+

g2j
2
(Bj(L))

2

}

= (1− c′w(Y(t))) eA
(0)(L+1)−

∑N
j=1 Yj(t)(1+βjBj(L))

= (1− c′w(Y(t))) eA
(0)(L+1)−

∑N
j=1 Yj(t)B

(0)
j (L+1)

= (1 + c′1̃)eA
(0)(L+1)−

∑N
j=1 Yj(t)B

(0)
j (L+1) − c′

(
eA

(s)(L+1)−
∑N

j=1 Yj(t)B
(s)
j (L+1)

)′
s=1,...,L−1

Letting cs,u denote the uth term in the sth row of C, the second term is

e−
∑N

j=1 Yj(t)E [z(εt+1)
′w(Y(t))P (t+ 1, t+ L+ 1)| Ft]

= e−
∑N

j=1 Yj(t)

L−1∑
s=1

L−1∑
u=1

c−1s,u(e
−
∑N

j=1 λjgjB(u)Yj(t) − 1)

E

e−∑N
j=1

(
g2j
2
Bj(s)

2+gjBj(s)εj,t+1

)
+A(L)−

∑N
j=1 Yj(t+1)B(L)

∣∣∣∣∣∣Ft


=
L−1∑
s=1

L−1∑
u=1

c−1s,ue
∑N

j=1 g
2
jBj(s)Bj(L)

(
eA

(u)(L+1)−
∑N

j=1 Yj(t)B
(u)(L+1) − eA(0)(L+1)−

∑N
j=1 Yj(t)B

(0)(L+1)
)

=
(
e
∑N

j=1 g
2
jBj(s)Bj(L)

)
s=1,...,L−1

C−1
(
eA

(s)(L+1)−
∑N

j=1 Yj(t)B
(s)
j (L+1)

)′
s=1,...,L−1

−
(
e
∑N

j=1 g
2
jBj(s)Bj(L)

)
s=1,...,L−1

C−11̃eA
(0)(L+1)−

∑N
j=1 Yj(t)B

(0)
j (L+1)
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Collecting all terms and using (5) and (6) provides

E

[
t+L+1∏
u=t+1

ψ̆u

∣∣∣∣∣Ft
]

=

(
1−

(
e
∑N

j=1 g
2
jBj(s)Bj(L) − 1

)
s=1,...,L−1

C−11̃

)
eA

(0)(L+1)−
∑N

j=1 Yj(t)B
(0)(L+1)

+
(
e
∑N

j=1 g
2
jBj(s)Bj(L) − 1

)
s=1,...,L−1

C−1
(
eA

(s)(L+1)−
∑N

j=1 Yj(t)B
(s)(L+1)

)
s=1,...,L−1

= M0(L+ 1)eA
(0)(L+1)−

∑N
j=1 Yj(t)B

(0)
j (L+1)

+ ς1(L+ 1)eA
(1)(L+1)−

∑N
j=1 Yj(t)B

(1)
j (L+1)

+ . . .+ ςL−1(L+ 1)eA
(L−1)(L+1)−

∑N
j=1 Yj(t)B

(L−1)
j (L+1)

=
L−1∑
i=0

ωi(L+ 1)eA
(i)(L+1)−

∑N
j=1 Yj(t)B

(i)
j (L+1)

Now, we suppose that the claim holds for all k ∈ {L+1, L+2, . . . , `}, and we show that it also holds
for `+ 1. To do so, it suffices to observe that for any i ∈ {0, . . . , L`−L − 1},

E
[
ψ̆t+1ωi(`)e

A(i)(`)−
∑N

j=1 Yj(t+1)B
(i)
j (`)

∣∣∣Ft]
= ωi(`)E

[
e−

∑N
j=1 Yj(t) (1− c′w(Y(t)) + z(εt+1)

′w(Y(t))) eA
(i)(`)−

∑N
j=1 Yj(t+1)B

(i)
j (`)

∣∣∣Ft]
= ωi(`)

{(
1−

(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`) − 1

)
s=1,...,L−1

C−11̃

)
eA

(iL)(`+1)−
∑N

j=1 Yj(t)B
(iL)(`+1)

+
(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`) − 1

)
s=1,...,L−1

C−1
(
eA

(iL+s)(`+1)−
∑N

j=1 Yj(t)B
(iL+s)(`+1)

)
s=1,...,L−1

}
= ωi(`)

(
MiL(`+ 1)eA(`+1)−

∑N
j=1 Yj(t)B

(iL)
j (`+1)

)
+ ςiL+1(`+ 1)eA(`+1)−

∑N
j=1 Yj(t)B

(iL+1)
j (`+1) + . . .+ ςiL+L−1(m+ 1)eA(`+1)−

∑N
j=1 Yj(t)B

(iL+L−1)
j (`+1)

=
L`+1−1∑
i=0

ωi(`+ 1)eA
(i)(`+1)−

∑N
j=1 Yj(t)B

(i)
j (`+1)

Note that the second equality above stems from the fact that this term has the same affine structure
as when ` = L + 1, only with different constants. To obtain the last equality, we use the definition
of ωi(`).

Proof of Proposition 1. Observe that, using Theorem 1, we can calculate the best-estimate price at t of
a bond with time to maturity ` > L, (i.e., for payoff ξt+` = 1 at time t+ `) as

πt(ξt+`) = E

[
t+∏̀

u=t+1

ψ̆u

∣∣∣∣∣Ft
]

= E

ψ̆t+1

L`−1−L−1∑
i=0

(
ωi(`− 1)eA

(i)(`−1)−
∑N

j=1 Yj(t+1)B
(i)
j (`−1)

)∣∣∣∣∣∣Ft


=
L`−1−L−1∑

i=0

ωi(`− 1)E
[
ψ̆t+1

(
eA

(i)(`−1)−
∑N

j=1 Yj(t+1)B
(i)
j (`−1)

)∣∣∣Ft]
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Define ξit+1 = eA
(i)(`−1)−

∑N
j=1 Yj(t+1)B

(i)
j (`−1). Then, using (4) to express each expectation in terms of its

hedgeable best approximation, we have

E
[
ψ̆t+1

(
eA

(i)(`−1)−
∑N

j=1 Yj(t+1)B
(i)
j (`−1)

)∣∣∣Ft] = E
[
ψ̆t+1ξ

i
t+1

∣∣∣Ft]
= E

[
ϕ̆t+1ξ

i,∗
t+1

∣∣Ft]
where ξi,∗t+1 = Qt

Hξ
i
t+1 =

∑L
k=1 x

i,∗
k (t, `)P (t + 1, t + k). Here, x∗i (t) = (xi,∗1 (t, `), . . . , xi,∗L (t)) is the

Ft-measurable portfolio strategy that perfectly replicates ξi,∗t+1. Then, since ϕ̆t+1 is a span-deflator,
and because the bonds in the portfolio that perfectly replicates ξi,∗t+1 are available on the market at t,
E
[
ϕ̆t+1ξ

i∗
t+1|Ft

]
can be written as

E
[
ϕ̆t+1ξ

i∗
t+1|Ft

]
=

L∑
k=1

x∗i,k(t, `)P (t, t+ k)

Therefore, the total best-estimate portfolio weight for the bond with maturity k, k ∈ {1, . . . , L} at time
t is given by

x∗k(t) =
L`−1−L−1∑

i=0

ωi(`− 1)xi,∗k (t, `)

To complete the proof, it suffices to show that for k ∈ {1, . . . , L},

x∗k(t, `) =
L`−1−L−1∑

i=0

ωi(`− 1)xi,∗k (t, `) =

∑L`−1−L−1
i=0 ωiL+k−1(`)e

A(iL+k−1)(`)−
∑N

j=1 Yj(t)B
(iL+k−1)
j (`)

P (t, t+ k)
(9)

Using standard quadratic minimization arguments and the notation defined in Section 3.2, we have

x̃∗i (t, `) = (x∗i,2(t, `), . . . , x
∗
i,L(t))′

= Σ−1t vt

(
eA

(i)(`−1)−
∑N

j=1 Yj(t+1)B
(i)
j (l−1)

)
= eA(`)−

∑N
j=1 βjYj(t)B

(i)
j (`−1)

(
diag(p̃t+1)

−1C−1
(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (l−1) − 1

)
s∈{1,...,L−1}

)
and

x∗i,1(t) = E
[
eA

(i)(`−1)−
∑N

j=1 Yj(t+1)B
(i)
j (`−1) | Ft

]
− p̃t+1x

∗
i (t, `)

= eA(`)−
∑N

j=1 βjYj(t)B
(i)
j (`−1)

(
1− 1̃

′
C−1

(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`−1) − 1

)
s∈{1,...,L−1}

)
Now we observe that

(P (t, t+ 2), . . . , P (t, t+ L)) x̃∗i (t, `)

= eA(`−1)−
∑N

j=1 βjYj(t)B
(i)
j (`−1) ×((

P (t, t+ 2)

pt+1,2

, . . . ,
P (t, t+ L)

pt+1,L

)
C−1

(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`−1) − 1

)′
s∈{1,...,L−1}

)
=
(
eA(`)−

∑N
j=1 Yj(t)(1+βjB

(i)
j (`−1)+λigjBj(s))

)′
s∈{1,...,L−1}

C−1
(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`−1) − 1

)
s∈{1,...,L−1}
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so that for s ∈ {2, . . . , L},

P (t, t+ s)x∗i,s(t, `) = ωi(t− 1)ςiL+s−1e
A(i)(`)−

∑N
j=1 Yj(t)B

(i)
j (`) (10)

Similarly, note that

x∗1,tP (t, t+ 1) = eA(`)−
∑N

j=1 Yj(t)(1+βjB
(i)
j (`−1))

(
1− 1̃

′
C−1

(
e
∑N

j=1 g
2
jBj(s)B

(i)
j (`−1) − 1

)
s∈{1,...,L−1}

)
= M0(`)e

A(i)(`)−
∑N

j=1 Yj(t)B
(0)
j (`)

which confirms that (10) is also true for s = 1. Since this derivation holds for any
i ∈ {0, . . . , L`−1−L − 1}, it confirms (9).
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