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Abstract: Composite models have received much attention in the recent actuarial literature to describe
heavy-tailed insurance loss data. One of the models that presents a good performance to describe
this kind of data is the composite Weibull–Pareto (CWL) distribution. On this note, this distribution
is revisited to carry out estimation of parameters via mle and mle2 optimization functions in R.
The results are compared with those obtained in a previous paper by using the nlm function, in terms
of analytical and graphical methods of model selection. In addition, the consistency of the parameter
estimation is examined via a simulation study.
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1. Introduction

Composite models have received much attention in the recent actuarial literature to
explain unimodal and positively skewed insurance claim datasets (Cooray and Ananda 2005;
Scollnik 2007). In one of the recent papers on this topic, Bakar et al. (2015) developed a new approach
to derive composite models with the head based on the Weibull distribution to explain heavy-tailed
insurance loss data. They proposed models with the tail belonging to a family of transformed beta
distributions. One of the models discussed in that paper, the Weibull–Pareto, was previously studied by
Cooray (2009) and also by Scollnik and Sun (2012).

Bakar et al. (2015) define the probability density function (PDF) of the latter composite model in
the following way:

f (x) =


1

1 + φ

f1(x)
F1(θ)
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)α} as the PDF and cumulative distribution function (CDF) of the Weibull

distribution (with α, λ > 0) and f2(x) = β σβ

(σ+x)β+1 and F2(x) = 1−
(

σ
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)β as the PDF and CDF of
the Pareto type II or Lomax distribution (with β, σ > 0). In this approach, the authors imposed the
following conditions: (i) the continuity condition, that is, f (θ−) = f (θ+); (ii) the differentiability
condition, that is, f ′(θ−) = f ′(θ+); (iii) in order to have a genuine density, the mixing weights must

sum to 1 with φ = −
d
dθ log F1(θ)

d
dθ log(1−F2(θ))

; (iv) the threshold θ is expressed as a function of the other parameters,

and it is obtained by solving d
dθ log f1(θ)

f2(θ)
= 0. Clearly, conditions (i) and (ii) are satisfied, as they are

imposed in the third composite Weibull–Pareto (CWL) model in Scollnik and Sun (2012); it is simple
to see that condition (iii) implies that φ = f1(θ) (1−F2(θ))

f2(θ) F1(θ)
, and therefore r = f2(θ) F1(θ)

f2(θ) F1(θ)+ f1(θ) (1−F2(θ))
; this

result coincides with Equation (4.5) in Scollnik and Sun (2012) by taking r f1(θ)
F1(θ)

= (1− r) f2(θ)
1−F2(θ)

; finally,
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condition (iv) is equivalent to the condition f ′1(θ)
f1(θ)

=
f ′2(θ)
f2(θ)

, which is satisfied by the third CWL model in
Scollnik and Sun (2012).

This model was fitted by Scollnik and Sun (2012) and Bakar et al. (2015) to a dataset that consisted
of 2492 fire losses, adjusted for inflation, arising from claims in Copenhagen. It was recorded in millions
of Danish krone (DKK) for a period from 1980 to 1990. This dataset can be found in the SMPracticals
add-on package for R, available from the CRAN website http://cran.r-project.org/. Bakar et al. (2015)
also fitted this model to a second dataset that concerned general liability claims. They examined the
allocated loss adjustment expenses (ALAE) in thousands of US$. The dataset comprised 1500 general
liability claims randomly chosen from late settlement lags. This dataset can be found in the R evd
add-on package. In Bakar et al. (2015), the nlm optimization function in R was used to fit different
composite models, on the basis of the Weibull distribution, to these datasets. This function is included
in the stats package. Although this method can be faster than other algorithms in terms of the number of
iterations to converge, its main limitation is that it only uses a Newton-type algorithm. This algorithm
is more sensitive to the shape of the likelihood surface, and its application depends to a great extent on
the type of data available. Consequently, it might lead to a false solution. On this note, we fit these two
datasets by using the mle ( stats4 package) and mle2 (bbmle package) optimization functions. These
functions rely on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms. We show that the
fit of the CWL distribution to the latter dataset by using the R optimization functions mle and mle2
considerably differs from that reported in Table 2 in Bakar et al. (2015) in terms of three measures of
model selection. Moreover, it is illustrated that the fit in terms of these two optimization functions
adheres much closer to the empirical data in the respect of a Zipf plot. These plots (see Levy 2009) use
a double logarithmic framework to explain the relationship between the city log-rank and city log-size.
In this work, the graphs have been adapted to show the connection between the claim log-rank and
claim log-size.

The rest of this paper is organized as follows. In Section 2, parameter estimation for the ALAE
dataset has been computed for the CWL distribution using two different optimization functions in R,
the mle and mle2 optimization functions. The results are compared with the estimates obtained in
Bakar et al. (2015) by using the nlm optimization function in terms of analytical and graphical methods
of model validation. Next, in Section 3, a simulation analysis has been performed for the estimates
obtained in the previous section under the two optimization functions considered in this work. Finally,
conclusions are given in the last section.

2. Parameter Estimation and Model Selection

The Weibull distribution (W), Pareto type II or Lomax distribution (L) and the
CWL distribution have been firstly fitted to Danish fire insurance losses using the
functions mle and mle2 in R. The results coincide with those reported in Table 1 in
Scollnik and Sun (2012) and in Table 2 in Bakar et al. (2015), obtained using the nlm optimization
function in R. For the CWL model, the estimated value for the threshold θ was 0.9717.
The corresponding standard error was 0.0069. The value of the unrestricted mixing weight r was 0.1075.
However, for the CWL model, with respect to the ALAE dataset, the estimates, the negative of the
maximum of the log-likelihood function (NLL), Akaike’s information criterion (AIC) and Schwarz’s
Bayesian criterion (SBC) differed considerably from the values reported in Table 1 in Bakar et al. (2015).
They are shown below (Table 1).

http://cran.r-project.org/.
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Table 1. R optimization function, parameter estimates, standard errors (S.E.), Akaike’s information
criterion (AIC) and Schwarz’s Bayesian criterion (SBC) under composite Weibull–Pareto (CWL)
distribution model for allocated loss adjustment expenses (ALAE) dataset.

Model R Function Estimate (S.E.) NLL AIC SBC

Weibull Lomax mle

α̂ = 1.0375 (0.0386)

5047.110 10,102.220 10,123.473λ̂ = 6.3207 (0.4898)
σ̂ = 9.5937 (2.2659)
θ̂ = 8.0407 (2.0436)

Weibull Lomax mle2

α̂ = 1.0375 (0.0386)

5047.110 10,102.220 10,123.473λ̂ = 6.3207 (0.4892)
σ̂ = 9.5937 (2.2646)
θ̂ = 8.0407 (2.0407)

Under both optimization functions, the estimated value for the shape parameter β was 1.8386,
and the value of the unrestricted mixing weight r was 0.6216. Of course, as the global maximum of
the likelihood surface is not guaranteed, different initial values were considered as seed points. It is
observable that the performance of the CWL model does not improve the behaviour of the Pareto type
II distribution by taking SBC as the criterion of comparison (the value obtained was 10,118.258).

These results largely differed from those reported in Table 1 in Bakar et al. (2015) using the nlm
optimization function. For those results, the estimated threshold θ was 750.958, and the unrestricted
mixing weight r was 0.0694. In addition to this, by combining the latter values together with the
results in Table 1 in that paper, the figures of the NLL, AIC and SBC were 536,438.272, 1,072,876.544
and 1,072,905.797, respectively. In Figure 1 is illustrated the relationship between the claim log-rank
and claim log-size. The scatter dots represent the empirical data. For example, the largest claim,
501.863, is represented as the dot on the bottom right; it is ranked number 1, log(rank) = 0, and it has
a logarithm of claim size of log(size) = 6.218. On the other hand, the lowest claim 0.015, is depicted
as the dot in the top left; it is ranked number 1500, log(rank) = 7.313, and it has a logarithm of claim
size of log(size) = −4.200. We have superimposed to this graphical representation the graphs of the
inverse of the survival function of the Weibull (W, dashed), Pareto type II or Lomax (L, dotted) and
CWL (CWL, solid) distributions. The inverse of the survival function of the latter model is given by

S−1(u) =


F−1

1

(
F1(θ)

r
(1− u)

)
, 0 < u ≤ r

F−1
2

(
(1− F2(θ))

1− r− u
1− r

)
, r < u < 1

(2)

where u ∈ (0, 1) and F−1
1 (·) and F−1

2 (·) are the quantile functions of the Weibull and Lomax
distributions, respectively. It is observable that the Weibull distribution (although it explains the
low part of the distribution) fails to describe either the moderate-size claims or large claims. The Pareto
type II distribution is a good model to explain this dataset; however, it underestimates the largest
claims. On the other hand, the CWL model remains closer to the empirical data than the other
two standard distributions throughout the whole set of empirical points. In addition, the largest
observations are better explained by means of this composite model.
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Figure 1. Relationship between claim rank and claim size in log–log scale and graphs of the inverse
of the survival function of Weibull (W, dashed), Lomax (L, dotted) and composite Weibull–Pareto
(CWL, solid) distributions.

In Figure 2 is shown the relationship between the claim log-rank and claim log-size.
Again, the scatter dots represent the empirical data. The inverse of the survival function of the CWL
model under the parameter estimates in Table 1 in Bakar et al. (2015) (CWL2) has been superimposed
to this scatterplot. It is noticeable that first, the quantile function of the first component (i.e., Weibull)
cannot be derived for all the values of 0 < u ≤ r, and the quantile function of the second component
(i.e., Lomax) lies far away from the empirical data.

The empirical values at risk (VaRs) at the 99% security level for the Danish fire insurance losses
and for the ALAE dataset were 24.61 and 131.71, respectively. The corresponding values under the
CWL model were 22.648 and 117.523. Similarly, the empirical conditional tail expectations (CTE) for
the Danish fire insurance losses and for the ALAE dataset were 54.60 and 222.68, respectively. On the
other hand, the VaR and CTE values reported in Table 3 in Bakar et al. (2015) for the CWL model were
58.079 and 268.913. The latter values also differed from those reported above.
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Figure 2. Relationship between claim rank and claim size in log–log scale and graphs of the inverse of
the survival function of composite Weibull–Pareto model in Bakar et al. (2015) (CWL2, solid).
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3. A Simulation Analysis

Asymptotic normality of the maximum likelihood estimates holds only under certain regularity
conditions that are not easy to check analytically. In this section, the performance of the maximum
likelihood estimates with respect to the sample size is assessed. This assessment is on the basis of
simulations. We show that the usual asymptotic results still hold for composite distributions.

A general form to generate a random variate x from the CWL distribution is based on the use of
the inverse transformation method of simulation, as the CDF of the CWL distribution is invertible. If u
is a value generated from the uniform distribution U(0, 1), then a value generated from Equation (1)
can be obtained as follows:

• If u ≤ r, then

x = λ

{
− log

[
1− u

r

(
1− exp

[
−
(

θ

λ

)α])]}1/α

• If u > r, then

x = (σ + θ)

(
1− u
1− r

)−1/β

− σ

We used the estimates reported in Table 1 to perform a simulation analysis. Because of the
highly skewed nature of the original dataset, and given that the sample size of this dataset was 1500,
we allowed the sample size to vary from 1000 to 2000 in steps of 500. The simulation study was carried
out 1000 times. We denote Θ̂i = (α̂i, λ̂i, σ̂i, θ̂i) and sΘ̂i

= (sα̂i , sλ̂i
, sσ̂i sθ̂i

) for i = 1, 2, . . . , 1000. We have
calculated the following measures:

1. Average bias of the simulated estimates:

ABn(Θ̂) =
1
N

N

∑
i=1

(Θ̂i −Θ) for Θ = (α̂, λ̂, σ̂, θ̂)

2. Average root-mean-square errors:

RMSEn(Θ̂) =

√√√√ 1
N

N

∑
i=1

(Θ̂i −Θ)2 for Θ = (α̂, λ̂, σ̂, θ̂)

3. Coverage probability: percentage of confidence intervals containing the true value of Θ at the 95%
confidence level.

Table 2 shows that the average bias was always positive for α̂ under the two optimization functions
and always decreased with the sample size n. The values of the parameters λ̂ and σ̂ were always
positive. We note that there existed some discrepancy in the values between the two functions. Table 3
shows the average root-mean-square error. These values consistently reduced with the sample size,
regardless of the optimization function used. The values obtained for this composite model also
highlight the consistency of the parameter estimation. In general, a reasonably large sample size is
needed to produce a good interval estimation for the parameter. Table 4 illustrates that the coverage
probabilities were closer to the intended significance confidence level of 0.95 for the estimate α̂ than
for the other parameter estimates. It is evident that by increasing the sample size, the accuracy of the
parameter estimates increases. Of course, the true parameter values are those previously given in
Table 1, and these were the limits of the estimates as the sample size n increased.
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Table 2. Average bias (AB) for the composite Weibull–Pareto (CWL) distribution model involving
1000 simulations of samples of size n for the mle (second column) and mle2 (third column) functions.

R Function

Sample Size n mle mle2

n = 1000

AB(α̂) = 0.0194 AB(α̂) = 0.0318
AB(λ̂) = −0.2747 AB(λ̂) = −0.4641
AB(σ̂) = −0.1697 AB(σ̂) = −0.3226
AB(θ̂) = 0.0174 AB(θ̂) = 0.0532

n = 1500

AB(α̂) = 0.0105 AB(α̂) = 0.0127
AB(λ̂) = −0.1800 AB(λ̂) = −0.1710
AB(σ̂) = 0.0374 AB(σ̂) = −0.2408

AB(θ̂) = −0.0653 AB(θ̂) = 0.1194

n = 2000

AB(α̂) = 0.0078 AB(α̂) = 0.0059
AB(λ̂) = −0.1177 AB(λ̂) = −0.1070
AB(σ̂) = −0.0909 AB(σ̂) = −0.2437
AB(θ̂) = 0.0350 AB(θ̂) = 0.1371

Table 3. Average root-mean-square errors (RMSE) for the composite Weibull–Pareto (CWL) model
involving 1000 simulations of samples of size n for the mle function (second column) and mle2 function
(third column).

R Function

Sample Size n mle mle2

n = 1000

RMSE(α̂) = 0.0763 RMSE(α̂) = 0.0957
RMSE(λ̂) = 1.1908 RMSE(λ̂) = 1.5083
RMSE(σ̂) = 3.5354 RMSE(σ̂) = 4.4062
RMSE(θ̂) = 3.8563 RMSE(θ̂) = 3.7280

n = 1500

RMSE(α̂) = 0.0557 RMSE(α̂) = 0.0588
RMSE(λ̂) = 0.9361 RMSE(λ̂) = 0.9129
RMSE(σ̂) = 2.7904 RMSE(σ̂) = 2.8334
RMSE(θ̂) = 3.1370 RMSE(θ̂) = 3.2292

n = 2000

RMSE(α̂) = 0.0459 RMSE(α̂) = 0.0437
RMSE(λ̂) = 0.7717 RMSE(λ̂) = 0.7283
RMSE(σ̂) = 2.3913 RMSE(σ̂) = 2.4617
RMSE(θ̂) = 2.7425 RMSE(θ̂) = 2.7723
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Table 4. Average coverage probability (CP) at the 95% confidence level for the composite Weibull–Pareto
(CWL) model involving 1000 simulations of samples of size n for the mle (second column) and mle2
(third column) functions.

R Function

Sample Size n mle mle2

n = 1000

CP(α̂) = 0.9220 CP(α̂) = 0.9170
CP(λ̂) = 0.8720 CP(λ̂) = 0.8690
CP(σ̂) = 0.9050 CP(σ̂) = 0.9050
CP(θ̂) = 0.8270 CP(θ̂) = 0.8330

n = 1500

CP(α̂) = 0.9420 CP(α̂) = 0.9150
CP(λ̂) = 0.8980 CP(λ̂) = 0.8880
CP(σ̂) = 0.9100 CP(σ̂) = 0.9220
CP(θ̂) = 0.8580 CP(θ̂) = 0.8590

n = 2000

CP(α̂) = 0.9310 CP(α̂) = 0.9310
CP(λ̂) = 0.8970 CP(λ̂) = 0.9020
CP(σ̂) = 0.9190 CP(σ̂) = 0.9210
CP(θ̂) = 0.8830 CP(θ̂) = 0.8860

4. Conclusions

In this paper, the parameter estimation and model assessment of the CWL
distribution have been revisited. It has been shown that the formulation of this model in
Bakar et al. (2015) is equivalent to the third CWL model in Scollnik and Sun (2012). The two datasets
examined in Bakar et al. (2015) have been fitted to data by using the optimization functions mle and
mle2 in R. In spite of the fit to Danish fire insurance losses, the dataset coincides with that reported in
Table 1 in Scollnik and Sun (2012) and in Table 2 in Bakar et al. (2015) (under nlm function); the fit
to the ALAE dataset considerably differs from that reported in Table 1 in the latter paper in terms
of the three measures of model selection. These results are also confirmed in terms of a Zipf plot.
The consistency of these estimates was examined via a simulation analysis. However, no matter
which method was used to find the maximum likelihood estimates of the parameters, these estimates
were biased. Alternatively, we could have followed the work of Giles et al. (2013). In that paper, the
authors carried out an exploration of the bias of the maximum likelihood estimators of the Lomax
distribution parameters. They also completed a comparison with alternative methods of reducing the
bias when the sample size was relatively small. As an extension of this work, this study could be
implemented for the CWL distribution. This investigation could be complemented with the alternative
bias-correction mechanism based on Efron’s bootstrap resampling as in Wang and Wang (2017).
These authors derived simple closed-form expressions for the second-order biases of the maximum
likelihood estimators of the weighted Lindley distribution parameters.

Although the performance of composite models is, in general, better than the
behaviour of standard distributions to describe highly skewed loss data or city size data
(see Calderín-Ojeda 2016), the practitioner must be cautious when choosing these models, as the
principle of parsimony (Klugman et al. 2008) can be violated. This principle states that unless
there is considerable evidence to choose otherwise, a simple model is preferred. In this sense, for
the ALAE dataset, the superiority of composite Weibull models to describe highly skewed data is
arguable. In this regard, the behaviour of the Weibull–Pareto model is worse than that of the Lomax
distribution in terms of SBC. The fit to data of the latter model would have been even better if we had
considered the shifted Lomax distribution with PDF f (x) = β(σ+θ)β

(σ+x)β+1 , x > θ, σ > −θ where θ = 0.015
(e.g., minimum sample value). In this case, we obtained 5048.502, 10,101.004 and 10,111.631 for the
NLL, AIC and SBC, respectively. Consequently, the best choice of a model always depends on the set
of data being analyzed, and therefore, it requires an exercise in judgment and experience.
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