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Abstract: In this paper, we offer a novel class of utility functions applied to optimal portfolio selection.
This class incorporates as special cases important measures such as the mean-variance, Sharpe ratio,
mean-standard deviation and others. We provide an explicit solution to the problem of optimal
portfolio selection based on this class. Furthermore, we show that each measure in this class generally
reduces to the efficient frontier that coincides or belongs to the classical mean-variance efficient frontier.
In addition, a condition is provided for the existence of the a one-to-one correspondence between
the parameter of this class of utility functions and the trade-off parameter λ in the mean-variance
utility function. This correspondence essentially provides insight into the choice of this parameter.
We illustrate our results by taking a portfolio of stocks from National Association of Securities Dealers
Automated Quotation (NASDAQ).

Keywords: global optimization; fractional programming; linear constraints; mean-variance model;
optimal portfolio selection; Sharpe ratio

1. Introduction

The portfolio selection problem is of both theoretical and of practical interest
(Castellano and Cerqueti 2014; Li and Hoi 2014; Shen et al. 2014; Fletcher 2015; Fulga 2016;
Ray and Jenamani 2016). The pioneering work of Markowitz (1952) (see Elton and Gruber. 1987;
Steinbach 2001) on optimal portfolio selection (OPS) introduced the classical mean variance
(MV) approach

MV (R) = E (R)− λVar (R) , λ > 0, (1)

which has been studied extensively in the financial literature ( Landsman and Valdez 2003;
Li and Hoi 2014; Bera et al. 2015; Graham et al. 2015; Qin 2015; Markowitz 2014). Here R = πTX is the
portfolio return, π and X are n× 1 vectors of weights and excess returns, respectively, and 1Tπ = 1,
where 1 is vector of n ones. E (R) = πTµ, where µT = (µ1, µ2, ..., µn) is the vector of expected returns
and Var (R) = πTΣπ, where Σ is the n × n covariance matrix of X, the vector of portfolio excess
returns. Let us notice that the mean-variance model is the balanced difference between the expectation
of returns, which measures an average asset profit, and the variance of returns, which measures the
associated risk. Maximization of MV (R) is motivated, therefore, by maximization of average asset
profit and minimization of asset risk. Let us also notice that in the case when short selling is possible,
the mean-variance OPS problem has an analytic explicit-form solution, because it reduces to a classical
quadratic programming problem.
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Another key approach in the OPS theory is the maximization of the Sharpe ratio (see, for instance,
Sharpe 1998), which was introduced in Sharpe (1966), and has the form

S(R) =
E (R)− R f√

Var (R)
, (2)

where R f is the risk free rate. Here we have a ratio between expectation of returns and their standard
deviation. Again, the maximization of the Sharpe ratio is motivated by maximization of expected
profit and minimization of risk. We observe that there is no analytic solution to this maximization
problem even for the situation when short selling is permitted.

In this paper, we offer a novel utility measure, which generalizes both the mean-variance,
Sharpe measures and many other celebrated risk measures, and represents a much more flexible
measure for incorporating E(R) and Var(R),

F (π) = F (π; t, p, v) = t
(

p (E (R))
v (Var (R))

)
. (3)

Here t(x), p(x) and v(x) are differentiable functions, where t(x) is a monotonic increasing
function, i.e., t′(x) > 0, p(x) is a positive convex or concave function, and v(x) is defined on [0, ∞)

and is positive on (0, ∞).
We found an analytical explicit-form solution of the optimization of the general functional F (π)

subject to a system of affine equality constraints, when short selling is permitted. The solution takes
the following explicit form

π∗ = π0+w∗z, (4)

where both π0 ∈ Rn and z ∈ Rn have explicit closed-forms and they do not depend on the functionals
t, p, and v, which means that these vectors are the same for different OPS models (e.g., the MV and the
Sharpe ratio models), while the parameter w∗ ∈ R+ depends on the models that are used.

The paper is organized as follows: In Section 2 we provide an explicit solution to the maximization
of (3) subject to (5). In Section 3 we give a numerical illustration of the main results for a special case of
the general model. Section 4 provides a conclusion to the paper.

2. Main Results

The generalized measure we introduce is based on the maximization of (3) subject to the
linear constraints

Bπ = c, c 6= 0, (5)

where B = (bij)
m,n
i,j=1 is m× n, m < n, rectangular matrix of full rank, c is some m× 1 vector and 0 is a

vector-column of m zeros. The motivation of such a system of linear constraints arises from models,
such as the MV, where the linear constraint 1Tπ = 1 ascertains that the sum of the weights of the
portfolio is equal to one, with positive and negative values corresponding to long and short positions,
respectively. More elaborate systems of constraints associated with optimal portfolio selection can be
found in Best and Grauer (1990); Landsman (2008b), and in Landsman and Makov (2016). For example,
in the case where c = (1, m1, m2)

T and B is of dimension 3× n and is equal to

B =

 1 ... ... ... ... 1
µ1 ... µj 0 ... 0
0 ... 0 µj+1 ... µn

 ,

Equation (5) represents the case when the expected return of a sub-portfolio of size j (the first j
returns) is equal to m1 and the expected return of a remaining sub-portfolio of size n− j (the remaining
n− j returns) is equal to m2.
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We show that π∗, the solution of the maximization of (3) subject to (5), is taking an explicit form,
which coincides with the solution of the mean-variance problem (16), where the trade-off parameter is
λ∗ = 1/(2w∗), and w∗ is a solution of an algebraic equation to be presented later.

Before we formulate the main theorem, we begin by introducing certain notations and partitions,
which will be helpful in the sequel. Consider the natural partitions of vector πT = (πT

1 , πT
2 )

where π1 = (π1, ..., πn−m)T and π2 = (πn−m+1, ..., πn)T , and consider the respective partitions of
µT = (µT

1 , µT
2 ), 1T = (1T

1 , 1T
2 ) and 0T = (0T

1 , 0T
2 ), where 1, 0 are vectors of n ones and zeros, respectively.

In a similar way, let us partition the matrix Σ,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

and matrix
B =

(
B21 B22

)
,

where matrices B21 and B22 are of dimensions m× (n−m) and m×m, respectively. As matrix B is full
rank, suppose, without loss of generality, that matrix B22 is non singular.

Furthermore, we define m× (n−m) and (n−m)×m matrices

D21 = B−1
22 B21,

D12 = DT
21,

(6)

and (n−m)× (n−m) matrix

Q = Σ11 − Σ12D21 − D12Σ21 + D12Σ22D21 =
(
qij
)n−m

i,j=1 .

Notice that as Σ is positive definite, Q is also positive definite (see Landsman 2008a).
Denote by

∆ = µ1 − D12µ2,

f0 = cT
(

BΣ−1BT
)−1

c >0, (7)

b2 = ∆TQ−1∆ > 0

and define functions u1 and u2

u1(x) =
v′(x)
v(x)

, (8)

and

u2(x) =
p′(x)
p(x)

, (9)

where v(x) and p(x) are functions in (3).
We note that function v(x) must satisfies the following condition:
(C) The function h(x) = v(ax2 + 2qx + r) is strictly convex on R for any numbers a > 0, q, and r

such that q2 − ar < 0.
This condition is essentially weaker than a condition of convexity of v. For example, v(x) =

√
x is

concave but condition (C) still holds.

Theorem 1. Suppose that u1(x) > 0 and u2(x) > 0. If the following equation with respect to w,

u1( f0 + b2w2)w =
1
2

u2(µ
T
2 B−1

22 c + ∆TQ−1(D12Σ22 − Σ12)B−1
22 c + wb2), (10)
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has a positive solution w∗, this solution is unique and the problem of maximization

F (π) = t

(
p
(
πTµ

)
v (πTΣπ)

)
→ max, (11)

subject to (5) coincides with the solution of the mean-variance optimal problem, where the trade-off parameter λ

takes the value
λ∗ =

1
2w∗

.

In other words the solution to (11) is given by

π∗ = π0+w∗z. (12)

Here
π0 = Σ−1BT(BΣ−1BT)−1c,

and
z = Σ−1 µ− Σ−1BT(BΣ−1BT)−1BΣ−1µ.

The proof of the Theorem is given in the Appendix A.
This Theorem essentially generalizes Theorem 1 of Landsman and Makov (2016), where a

special case was considered when t(x) = log x, p(x) = exp(x), v(x) = exp(λs(x)). Notice that
in Landsman and Makov (2016) vector z was presented in a less convenient form than that of (A19).

Theorem 1 may have the following economic interpretation: it expresses the competition between
the minimum variance portfolio (π0) and vector z; these vectors appear in the classical mean variance
portfolio and do not depend on the choice of the utility function and tuning parameter w∗, which reflects
by investor’s preference. From expression of vector z, (A19), immediately follows that

Bz = 0.

Then, for the special case, when m = 1, matrix B = 1T and c = 1 we have 1Tz = 0 and the
vector z can be interpreted as a self-financing portfolio in the sense that long-positions are financed
by corresponding short positions (see, for instance, Panjer and Boyle (1998), sct. 8.2.1). This case is
considered in more details below, in Remark 1.

We now state a property related to the efficient frontier of the class of utility measures generated
by (3). First of all we notice that for our utility function (3)

∂F
∂E

= t′(·) p′(x)
v(y)

> 0,
∂F

∂Var
= −t′(·) p(E)

v(Var)2 v′(Var) < 0. (13)

These inequalities are very natural and important. They say that utility function F is increased
with respect to E(R) and decreased with respect to Var(R).

Corollary 1. The efficient frontier of the optimization problem (3) subject to (5) coincides with or belongs to
the efficient frontier of the classical mean-variance utility function and has a parabolic form (see below (A22)
and (A23)).

The proof of the Corollary is given in the Appendix A.

Remark 1. In the special case when m = 1, matrix B = 1T and c = 1, we can conclude that

π0 =
Σ−11

1TΣ−11
,
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z =Σ−1 µ− µTΣ−11
1TΣ−11

Σ−11,

which conform with Panjer and Boyle (1998, (8.2.7)–(8.2.9)). See also (Steinbach 2001, Theorem 1.4). From (A22)
follows that elements of the efficient frontier are

µ0 =
1TΣ−1µ

1TΣ−11
, µz = µTΣ−1 µ− (1TΣ−1µ)2

1TΣ−11
, σ2

0 =
1

1TΣ−11
, σ2

z = µz.

The orthogonality property (A20) for this case was proved by Best and Best and Grauer (1990).

2.1. Optimal Portfolios for Special Cases

The investigated generalized measure, includes, as special cases, key measures employed in risk
management.

We now show some special cases of the generalized measure F (π) :
Special case 1: Sharpe ratio (SR). For t (x) = x, p (x) = x− R f and v(x) =

√
x, (3) becomes the

Sharpe ratio measure (2)

S(R) = F
(

π; x, x− R f ,
√

x
)
=

πT µ− R f√
πTΣπ

. (14)

Special case 2: Generalized Sharpe ratio (GSR). We introduce a generalized Sharpe ratio

Sβ(R) = F
(

π; x, x− R f , xβ
)
=

E (R)− R f

(Var (R))β
, (15)

which is a special case of (3), for which t (x) = x, p (x) = x − R f and v(x) = xβ, and found an
analytic solution of the corresponding optimization problem for β ≥ 1/2. The economic justification
for introducing this utility function can be explained by investor’s wish to allow faster decrease in the
utility when the variance increases. In this section, we show that as the investors are more risk-averse
they should consider larger value of β, the power function parameter, so β is subjective for each
investor. The β parameter can be interpreted as a new risk aversion parameter, which was absent in
the classical Sharpe ratio. This risk measure is much more flexible than the classical Sharpe ratio for
which β = 1/2. In Section 2.1.4 we explain this in more details.

Special case 3: Mean Variance (MV). In this case, t (x) = ln (x) , p (x) = ex and v(x) = eλx, λ > 0,
and the goal function (3) takes the form

F
(

π; ln (x) , ex, eλx
)
= πT µ− λπTΣπ. (16)

Special case 4: Mean Standard Deviation (MSD). In the case t (x) = ln (x) , p (x) = ex and
v(x) = eλ

√
x, λ > 0, (3) has the form

F
(

π; ln (x) , ex, eλq
√

x
)
= πT µ− β

√
πTΣπ. (17)

This functional arises in risk management and actuarial theory. For instance, the value at risk and
the expected shortfall takes the form (17) for returns having elliptical distribution (see, for example,
Landsman and Valdez (2003)).
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2.1.1. Optimal Portfolio Selection With MV Measure

This case was implicitly considered in the proof of Theorem 1. Recall that for MV t (x) = ln (x) ,
p(x) = ex and v(x) = eλx, λ > 0, and the functions u1 and u2 take the forms u1(x) = λ, u2(x) = 1.
Therefore, Equation (10) simply reduces to

w∗ =
1

2λ
.

It is clear that w∗ is positive and unique, and the point of maximum π∗ is (12) with w∗ = 1/(2λ).
Clearly, this optimal solution is only meaningful if λ is specified. Notice that the MV measure can be
also computed explicitly from the main Theorem of Landsman and Makov (2016), but, the solution
in Landsman and Makov (2016) is much more complex in its form than Theorem 1. This proposed
solution well conforms with Panjer and Boyle (1998, (8.2.7)–(8.2.9)).

2.1.2. Optimal Portfolio Selection With MSD

As was discussed in the introduction, for the MSD utility function, t (x) = ln (x) , p(x) = ex and
v(x) = eβ

√
x, β > 0 and the main functional reduces to the form

F (π) = πT µ− β
√

πTΣπ,

which has a form of a combination of linear functional and a square root of a quadratic functional.
The optimal problem with this functional was considered in details in Landsman (2008a, 2008b).
Here we only show how the solution of this problem can be obtained from Theorem 1.

We note that the functions u1 and u2 have the form

u1(x) = β
1

2
√

x
, u2(x) = 1,

and Equation (10), which reduces to

β
1

2
√

f0 + b2w2
w =

1
2

,

has the positive solution,

w∗ =

√
f0

β2 − b2 =

√
cT (BΣ−1BT) c
β2 − ∆TQ−1∆

,

iff β2 > b2 = ∆TQ−1∆.
Now, substituting w∗ into (12), we finally get the maximization solution x∗, which conforms with

Theorem 1 in Landsman (2008b). Applying Theorem 1 we can say that the optimal portfolio coincides
with mean-variance portfolio when the trade off parameter is

λ∗ =
1
2

√
β2 − ∆TQ−1∆

cT (BΣ−1BT) c
.

Note that although the optimal solution can be derived, in principle, from the mean-variance
utility function, the choice of λ remains a guess, unless calculated (λ∗) using the main theorem of
this paper.
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2.1.3. Optimal Portfolio Selection With Sharpe Ratio

Recall that the Sharpe ratio functional has the form

F (π) =
πT µ− R f√

πTΣπ
.

It is clear that for the solution of the maximization problem it is enough to consider πT µ > R f .
Then t(x) = x, v(x) = x1/2, x > 0 and p(x) = x−R f , x > R f . Consequently functions u1 and
u2 simply have the form

u1(x) =
1

2x
, x > 0, u2(x) =

1
x−R f

, x > R f

Thus Equation (10) reduces to algebraic equation of the first degree and the unique solution w∗ is

w∗ =
cT (BΣ−1BT)−1 c

µT
2 B−1

22 c + ∆T
(

Q−1 (D12Σ22 − Σ12) B−1
22 c
)
−R f

. (18)

Now since cT (BΣ−1BT)−1 c >0, it is sufficient to determine that iff

µT
2 B−1

22 c + ∆T
(

Q−1 (D12Σ22 − Σ12) B−1
22 c
)
>R f (19)

the solution of (18) is positive and then we obtain the explicit maximum solution π∗ which has the
form given in (12).

Hitherto, an optimal portfolio selection for the Sharpe ratio utility function has been unavailable.
We establish that the optimal solution is a special case of the mean-variance utility function, where,
using (18), λ∗ can now be calculated to be λ∗ = 1

2w∗ .

2.1.4. Optimal Portfolio With Generalized Sharpe Ratio

The functional of the GSR was introduced previously, as follows:

F (π) =
πT µ− R f

(πTΣπ)β
, β ≥ 1

2
.

In this functional, v(x) = xβ, where β ≥ 1
2 is a power function. Recall t(x) = x, and

p(x) = x− R f , x > R f . Now we consider the case where β > 1
2 , (the case β = 1/2 was considered in

the previous subsection). Then functions u1 and u2 take the form

u1(x) =
β

x
, x > 0, u2(x) =

1
x− R f

, x > R f ,

and Equation (10) reduces to a quadratic equation with respect to w

b2(β− 1
2
)w2 + βδw− 1

2
f0 = 0, (20)

where δ = µT
2 B−1

22 c+∆TQ−1(D12Σ22−Σ12)B−1
22 c−R f . Notice that (20) has the unique positive solution.

w∗ =
−βδ +

√
β2δ2 + 2b2 f0(β− 1

2 )

2b2(β− 1
2 )

, (21)

and when δ > 0 the maximum solution x∗ takes the form of (12).
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We now return to the economic interpretation of this functional, comparing it with Sharpe ratio.
In fact, returning to the arguments given after Theorem 1 we obtain that

∂Sβ

∂Var
= −β

ER− R f

Var(R)β+1 < −1
2

ER− R f

Var(R)3/2 =
∂Sβ=1/2

∂Var
, β > 1/2. (22)

For β > 1/2, the speed of decrease of the generalized Sharpe ratio Sβ in Var is higher than that of
decrease of the Sharpe ratio Sβ=1/2.

As for the efficient frontier, we conclude from (21) that the efficient frontier corresponding to
the generalized and classical Sharpe ratios belongs to the efficient frontier corresponding to the
mean-variance model (See proof of Corollary 1), with the following set showing the relation between
the MV risk aversion parameter, λ, and the generalized Sharpe ratio risk aversion parameter, β,

Γ = {λ|
b2(β− 1

2 )

−βδ +
√

β2δ2 + 2b2 f0(β− 1
2 )

, β ≥ 1/2} = [δ/(2 f0), ∞) ⊂ R+. (23)

Applying Theorem 1 we can say that the optimal portfolio coincides with mean-variance portfolio
when the trade-off parameter is

λ∗ =
b2(β− 1

2 )

−βδ +
√

β2δ2 + 2b2 f0(β− 1
2 )

. (24)

The following Figure shows the relation between the λ∗ and β. As we can see from Figure 1,
λ∗ increased almost proportionally when β increases.

Figure 1. The relations between λ∗ and β.

Note that acknowledging the fact that the optimal solution corresponds to a solution derived from
the mean-variance utility function is not enough since the value of the trade of λ remains unknown.
The result provided here allows us to calculate its value.

3. Numerical Illustrations

We illustrate the results of the OPS problem for the mean standard deviation utility function and
for special cases of the generalized Sharpe ratio

Sβ =
πTµ−R f

(πTΣπ)β
,

with β = 0.5, 1, 2, and free rate R f = 0.00016 for a portfolio of 10 stocks from NASDAQ: Facebook,
Intel, Frontier, Micron, Apple, Qualcomm, Sirius, Applied Materials, Cisco and Yahoo, for a three
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month period of time, from 4 January 15 to 7 January 15—daily returns (For the data, see http:
//www.nasdaq.com/). Here µ is the vector of expected returns and Σ is the covariance matrix or
returns presented in Tables 1 and 2, respectively. Furthermore, we assume the traditional linear
constraint 1Tπ = 1.

Then, using formula (24) we can calculate trade off parameters λ∗ and then obtain the vectors of
solutions, for each model, are given in Table 3.

Table 1. Expected returns.

Stock Facebook Intel Frontier Micron Apple

Mean 0.000868097 −0.000608624 −0.006684089 −0.006902419 −6.1631 × 10−5

Stock Qualcomm Sirius App. Mat. Cisco Yahoo
Mean 0.001046047 0.000763278 0.002049615 −2.57636 × 10−5 0.001925747

Table 2. Covariance matrix of the returns.

Facebook Intel Frontier Micron Apple

Facebook 0.000175 0.000038 0.000054 0.000063 −0.000014
Intel 0.000038 0.000174 0.000075 0.000213 −0.000014

Frontier 0.000054 0.000075 0.000685 0.000031 −0.000001
Micron 0.000063 0.000213 0.000031 0.001031 0.000048
Apple −0.000014 −0.000014 −0.000001 0.000048 0.000124

Qualcomm Sirius App. Mat. Cisco Yahoo

Facebook 0.000029 −0.000015 −0.000019 0.000006 0.000010
Intel 0.000030 0.000086 0.000024 0.000028 0.000047

Frontier 0.000084 −0.000014 0.000071 0.000050 0.000095
Micron 0.000027 0.000023 0.000050 −0.000002 0.000047
Apple −0.000002 0.000012 0.000015 −0.000010 0.000046

Qualcomm Sirius App. Mat. Cisco Yahoo

Qualcomm 0.000108 0.000054 0.000038 0.000054 0.000075
Sirius XM 0.000054 0.000097 0.000049 0.000044 0.000060
App. Mat. 0.000038 0.000049 0.000235 0.000046 0.000086

Cisco 0.000054 0.000044 0.000046 0.000084 0.000037
Yahoo 0.000075 0.000060 0.000086 0.000037 0.000316

Table 3. The solutions π∗ for different models: Mean standard deviation (MSD), Sharpe ratio (SR) and
generalized SR.

Utility Function λ∗ π∗1 π∗2 π∗3 π∗4 π∗5

πTµ−
√

πTΣπ 61.78 -0.282 1.938 -0.496 -0.432 0.809

πT µ−R f

(πT Σπ)0.5 47.6 −0.402 2.418 −0.627 −0.542 0.937
πT µ−R f

(πT Σπ)
128.8 −0.071 1.094 −0.264 −0.238 0.584

πT µ−R f

(πT Σπ)2 243.7 0.019 0.727 −0.163 −0.154 0.486

Utility Function π∗6 π∗7 π∗8 π∗9 π∗10

πTµ−
√

πTΣπ 1.382 −2.613 0.419 0.314 −0.0391
πT µ−R f

(πT Σπ)0.5 1.731 −3.313 0.516 0.319 −0.0377
πT µ−R f

(πT Σπ)
0.766 −1.382 0.247 0.305 −0.041

πT µ−R f

(πT Σπ)2 0.499 −0.847 0.173 0.301 −0.042

http://www.nasdaq.com/
http://www.nasdaq.com/
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In the following Figure we present the spectrum of optimal portfolios, given in Table 3.
From Figure 2 it is evident that the amplitude of the weights decreases with increasing values

of β. This well conforms with the graph of λ∗, presented in Figure 1. As a result it can be observed
that the portfolio become more robust when β increases. This agrees with the expression of portfolio
variance, given in the second formula of (A21), associated with the risk of the portfolio. According
to Figure 2, the stocks: Intel, Apple, Qualcomm, App. Mat. and Cisco should be invested in a long
position, while the other stocks should be invested in a short position. Furthermore, all of the models
are in agreement that the stocks with the largest impact on the portfolio are Intel and Sirius. Table 3,
presents the solutions π∗ for the different models: MSD, SR and GSR, and together with the graphical
illustration (Figure 2) show that all of the mean-variance-based risk measures share the same patterns
in terms of higher/lower gains, so the main difference between them is the amplitude.

Figure 2. Optimal portfolios for Mean standard deviation (MSD) and generalized Sharpe ratio,
β = 0.5, 1, 2, utility functions.

This numerical illustration shows that investors with a more risk-averse character should consider
larger values of β than the Sharpe ratio measure. Therefore, the flexibility of the generalized Sharpe
ratio is governed by the different values of β, the subjective parameter corresponding to the level
of risk aversion. The generalized Sharpe ratio shows how to implement, naturally, a risk aversion
parameter into the framework of the standard Sharpe ratio (2).

4. Conclusions

In this paper, we suggested a novel generalized optimal portfolio selection utility measure which
incorporates many popular portfolio selection utility measures as special cases. We further provided
an explicit solution to this new utility measure, thus reestablishing existing optimal solutions to
portfolio selection and offered closed-form solutions to optimal portfolio selections based on new utility
measures which hitherto have not been investigated. We note that while the optimal solution for each
of these utility functions can be obtained using the mean-variance utility function, the corresponding
λ is simply unavailable without the methodology presented here. Furthermore, we demonstrated our
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results using a portfolio consisting ten stocks from NASDAQ in a period of three months and analyzed
the results for the mean standard deviation utility function and for the generalized Sharpe ratio.
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Appendix A. Proofs

Proof of Theorem 1. We first note that since p(x) is a convex or concave function, p(µTπ) is also a
convex or concave function. We further define vector

d2 = B−1
22 c, (A1)

then, by (5) and (6) it follows that

π =
(

πT
1 , dT

2 −πT
1 D12

)T
, (A2)

and straightforwardly

πTΣπ = πT
1 Qπ1 + 2dT

2 (Σ21 − Σ22D21)π1 + dT
2 Σ22d2. (A3)

Then the objective function

F (π) = g(π1) = t

(
p
(
µT

2 d2 + ∆Tπ1
)

v
(
πT

1 Qπ1 + 2dT
2 (Σ21 − Σ22D21)π1 + dT

2 Σ22d2
)) ,

is a function of n − m variables π1 = (π1, ..., πn−m)T and the problem reduces to the problem of
finding the unconditional maximum

max
π1∈Rn−m

g(π1).

Denoting a 1× (n−m) vector of derivatives with the following notation

d
dπ1

=

(
d

dπ1
,

d
dπ2

, ...,
d

dπn−m

)T
,

we clearly seek, taking into account (8) and (9), that

d
dπ1

g(π1) =
d

dπ1
(t(

p
v
)) = t′ · p · v−1 · [∆u2(µ

T
2 d2 + ∆Tπ1)

− 2(Qπ1 + (Σ12 − D12Σ22) d2)u1(π
T
1 Qπ1

+ 2dT
2 (Σ21 − Σ22D21)π1 + dT

2 Σ22d2)]

= 01.

Using (8), it is clear that this system of equations can be rewritten in the form

1
2

∆u2(µ
T
2 d2 + ∆Tπ1) = u1(π

T
1 Qπ1 + 2dT

2 (Σ21 − Σ22D21)π1 + dT
2 Σ22d2) · (Qπ1 + (Σ12 − D12Σ22) d2), (A4)
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and we denote the solution of (A4) as π∗1 . In Landsman (2008b) it was shown that as a solution of the
quadratic programming problem

π0 = arg min
Bπ=c

πTΣπ =Σ−1BT(BΣ−1BT)−1c.

Then from (A2) we can represent π0 as a partition

π0 =
(

π0T
1 , dT

2 −π0T
1 D12

)T

As vector π0 is a point of minimum of quadratic functional πTΣπ, from (A3) it follows
immediately that π0

1 is the solution of the following equation

Qπ0
1 + (Σ12 − D12Σ22) d2 = 01. (A5)

We will now seek π∗1 in the form π∗1 = π0
1 + y∗, where y∗ = (y∗1 , ..., y∗n−m)

T is (n − m)−
dimensional vector. Then, taking into account (A5), we straightforwardly obtain from (A4),

u1(π
∗T
1 Qπ∗1 + 2dT

2 (Σ21 − Σ22D21)π∗1 + dT
2 Σ22d2)y∗

=
1
2

Q−1∆u2(µ
T
2 d2 + ∆T

(
π0

1 + y∗
)
).

(A6)

We represent a (n−m)× (n−m) matrix Q−1 as follows:

Q−1 =

(
Q−1

1
Q−1

2

)
, (A7)

where Q−1
1 is the first row of Q−1 and Q−1

2 consists of the remaining (n−m− 1) rows of Q−1. As matrix
Q is positive definite, Q−1 is also positive definite, so there exists a raw r of matrix Q−1 such that
Q−1

r ∆ 6= 0, r ∈ {1, ..., n−m}. Suppose, without loss of generalization, that Q−1
1 ∆ 6= 0. Then from (A6)

follows the system of n−m equations

u1(π
∗T
1 Qπ∗1 + 2dT

2 (Σ21 − Σ22D21)π∗1 + dT
2 Σ22d2)y∗1

= 1
2 Q−1

1 ∆u2(µ
T
2 d2 + ∆T (x0

1 + y∗
)
),

u1(π
∗T
1 Qπ∗1 + 2dT

2 (Σ21 − Σ22D21)π∗1 + dT
2 Σ22d2)y∗−1

= 1
2 Q−1

2 ∆u2(µ
T
2 d2 + ∆T (π0

1 + y∗
)
),

(A8)

where y∗1 is the first element of vector y∗, and y∗−1 = (y2, ..., yn−m)T is the vector of the last n−m− 1
elements of y∗. After dividing the last (n−m− 1) equations of (A8) by its first equation we immediately
get that

y∗ = y∗1(1, kT)T , (A9)

where

k =
Q−1

2 ∆

Q−1
1 ∆

, (A10)

and Q−1
1 and Q−1

2 take the form (A7). Taking into account (7), (A3) and (A5), we simplify the first
equation of (A8) for element y∗1 as follows

u1(π
∗T
1 Qπ∗1 + 2dT

2 (Σ21 − Σ22D21)π∗1 + dT
2 Σ22d2)y∗1

= u1( f0 + y∗21 (1, kT)Q(1, kT)T)y∗1

=
1
2

Q−1
1 ∆u2(µ

T
2 d2 + ∆T

(
x0

1 + y∗1(1, kT)T
)
).

(A11)
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In Landsman (2008a) (eq. 29) it was shown that

(1, kT)Q(1, kT)T =
1(

Q−1
1 ∆

)2 ∆TQ−1∆, (A12)

which we substitute into (A11) to obtain the one-dimensional equation

u1( f0 + y∗21
1(

Q−1
1 ∆

)2 ∆TQ−1∆)
y∗1

Q−1
1 ∆

=
1
2

u2(µ
T
2 d2 + ∆T

(
x0

1 + y∗1(1, kT)T
)
). (A13)

From (A13) and from the positivity of u1 and u2 it follows that w∗,

w∗ =
y∗1

Q−1
1 ∆

> 0,

should satisfy the following equation

u1( f0 + b2w2)w =
1
2

u2(µ
T
2 d2 + ∆T

(
x0

1 + wQ−1
1 ∆(1, kT)T

)
). (A14)

Furthermore, notice that

Q−1
1 ∆(1, kT)T = Q−1

1 ∆(1,
(Q−1

2 ∆)T

Q−1
1 ∆

)T = (Q−1
1 ∆, (Q−1

2 ∆)T)T = Q−1∆, (A15)

and taking into account (A5), Equation (A14) is straightforwardly reduced to Equation (10).
Suppose w∗ is the positive solution of (A14). Then from (A9) and (A15) follows that

y∗ = w∗Q−1∆. (A16)

Now, since the ratio functional

q(π) =
p
(
πTµ

)
v (πTΣπ)

is the ratio of a convex or concave function and a convex function, our problem is in the field of
fractional programming as described in Schaible and Ibaraki (1983). Therefore, since in the theory of
fractional programming is known that a local maximum is global and unique, so does our solution of
the maximization problem. Recall that w∗ is a unique positive solution of Equation (A14). Taking into
account (A2), we finally conclude from (A16) that the maximizing vector of weights has the form

π∗ =

((
π0

1 + y∗
)T

,
(

d2 − D21π0
1 − D21y∗

)T
)T

= π0+w∗z,

(A17)

where the vector z has the following partition

z =(∆TQ−1,−∆TQ−1D12)
T . (A18)

Now let us return to the original maximization problem (11) subject to (5). We have shown that the
unique solution of this problem can be written in the form (A17), where neither π0 nor z depend on the
functional F(π) but both depend only on the covariance matrix Σ, matrix B and vectors µ and c.

Consider the special case of functional F (π), when t(x) = ln x, p(x) = ex and v(x) = eλx, λ > 0.
In this case, using (8) and (9), the functions u1 and u2 simply take the forms
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u1(x) = λ, u2(x) = 1.

and therefore, Equation (10) reduces to

w∗ =
1

2λ
.

Note that this optimization problem takes the form

π∗ = arg inf
Bπ=c

(−µTπ + λ(πTΣπ)).

From the solution of the well known quadratic programming problem (see, for example,
Luenberger (1984), chp. 14.1, eq. (9)) we can immediately conclude that

z =Σ−1 µ− Σ−1BT(BΣ−1BT)−1BΣ−1µ. (A19)

Proof of Corollary 1. We show that the random vectors π0TX and zTX are orthogonal in the
sense that

cov(π0TX, zTX) =π0TΣz = 0. (A20)

In fact,

π0TΣz = cT(BΣ−1BT)−1BΣ−1Σ(Σ−1 µ− Σ−1BT(BΣ−1BT)−1BΣ−1µ)

= cT(BΣ−1BT)−1BΣ−1µ − cT(BΣ−1BT)−1BΣ−1BT(BΣ−1BT)−1BΣ−1µ

= 0.

Then from (12) it follows that{
µ∗ = E(π∗TX) = µ0 + wµz

σ∗2 = cov(π∗TX) = σ2
0 + w2σ2

z
, (A21)

where

µ0 = µTπ0 = µTΣ−1BT(BΣ−1BT)−1c,

µz = µTz = µTΣ−1 µ− (BΣ−1µ)T(BΣ−1BT)−1(BΣ−1µ),

σ2
0 = π0TΣπ0 = cT(BΣ−1BT)−1c = f0 (A22)

σ2
z = zTΣz = µTΣ−1 µ− (BΣ−1µ)T(BΣ−1BT)−1BΣ−1 µ = µz.

Excluding w from the system (A21) we obtain the parabolic (µ∗, σ∗2) − efficient frontier

µ∗ = µ0 +
µz

σz

√
σ∗2 − σ2

0 = µ0 +
√

µz

√
σ∗2 − σ2

0 , σ∗ ≥ σz. (A23)

Now let us notice that any specific members of utility (3) would contain the risk parameter, say γ,
that reflects to trade-off between expected return and risk, and there is one-to-one map between the set
of possible meanings of this parameter, Γ, and subset of the positive part of real line, R+. If some utility
has no such parameter explicitly we say that Γ contains only one value. For classical mean-variance
portfolio γ = 1

2λ and subset Γ = R+. If Γ ⊂ R+, the corresponding efficient portfolio belongs to that
given for classical efficient portfolio.
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