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Abstract: This paper extends the work of Yuen et al. (2013), who obtained explicit results for the
discount-free Gerber–Shiu function for a compound binomial risk model in the presence of delayed
claims and a randomized dividend strategy with a zero threshold level. Specifically, we establish a
recursion method for computing the Gerber–Shiu expected discounted penalty function, which entails
a number of important quantities in ruin theory, within the framework of the compound binomial
aggregate claims with delayed by-claims and randomized dividends payable at a non-negative
threshold level.
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1. Introduction

The compound binomial risk model is a class of discrete-time and discrete-valued risk processes.
It was first introduced by Gerber (1988). The model has the form

Ut = u + t−
t

∑
i=1

ξiXi (1)

where Ut ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the surplus level at time t ∈ N0 = {0, 1, 2, . . .} with an
initial surplus level u = U0 ∈ N0; ξi is a Bernoulli random variable (r.v.) denoting the occurrence of
a claim at time i (value 1 indicating a claim); and Xi is the claim size at time i, given a claim occurs
then. We note that assuming a unit premium rate in Equation (1) makes it skip-free upwards and
simplifies the model greatly. Readers can refer to Avram and Vidmar (2017) for more information.
For discrete-time risk models with general premium rates, see, for example, Landriault (2008).

Despite the fact that discrete-time risk models are usually harder to handle than continuous-time
models, much research has been done regarding Equation (1) and its variants. Among them, Shiu (1989)
and Willmot (1993) investigated the ruin probabilities in the compound binomial model. Dickson
(1994) suggested that the compound binomial model is useful in approximating the classical
continuous-time compound Poisson model. Cheng et al. (2000) studied various ruin-related quantities
in this context. Dos Reis (2004) gave a revision on compound binomial models and studied some
interesting new problems regarding the number of claims up to ruin and the number of claims up to
recovery. Liu and Zhao (2007) analyzed joint distributions of some actuarial random vectors regarding
the model. Moreover, Lefèvre and Loisel (2008) investigated the finite-time ruin probabilities for some
classical risk models, including the compound binomial model.

It is worth mentioning that compound binomial models are special cases of random walks, which
have a long history and still find many useful applications in real life. There are a large number of
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books and papers in the literature about random walks. Among them, Spitzer (1964) is a good textbook
to refer to.

In Yuen and Guo (2001), a type of time-correlation among insurance claims was proposed by
introducing the concept of main claims and by-claims. The authors assumed that one main claim
(occurring with probability p) would induce a by-claim, which may occur simultaneously with
probability θ or be delayed to the next time period with probability 1− θ. The cases of a main claim
and its by-claim are summarized in Table 1. Main claims and by-claims tend to follow different severity
distributions. One can find various relevant examples in real-life insurance practices. For example,
multiple lines of insurance claims triggered by the same catastrophic events such as earthquakes
or bushfires can be modeled using this correlation structure. Another example arises from the long
settlement of certain types of insurance claims. It could take multiple time units to settle claims
regarding property damages, bodily injury, and so forth.

Table 1. The concept of a by-claim.

Probability Current Period Additional Impact on the Next Period

Case 1 q = 1− p No claim Nil
Case 2 pθ Main claim and by-claim Nil
Case 3 p (1− θ) Main claim By-claim

Many scholars have done research on this type of dependence structure since
then. Wu and Yuen (2004) considered delayed claims in a discrete-time interaction risk model.
Yuen et al. (2005) studied the impact of delayed claims on the ultimate ruin probabilities in a compound
Poisson risk model. Both Li and Wu (2015) and Xiao and Guo (2007) considered a compound binomial
risk model with time-correlated claims. In addition to ruin-related problems, total dividends payable
before ruin is another focus point in risk theory. There are many papers in the literature studying risk
models with deterministic dividend strategies (constant, linear, etc.). Among them, Wu and Li (2012)
studied expected total dividends until ruin in a discrete-time risk model with delayed claims and a
constant dividend barrier. Li (2008) analyzed the moments of the present value of the dividends in the
compound binomial model under a constant dividend barrier and stochastic interest rates.

Another type of dividend paying strategy is the randomized dividend strategy, under which,
when the insurance company’s surplus level is equal to or above a threshold value, dividends
are payable with a certain probability. No dividend is payable if the surplus level is below
the threshold. Tan and Yang (2006) introduced the concept of the randomized dividend strategy to
the compound binomial risk model, followed by Bao (2007) and Landriault (2008). In addition,
He and Yang (2010) considered the compound binomial model with randomly paying dividends to
shareholders and policyholders. Very recently, Yuen et al. (2017) studied the expected penalty functions
for a discrete semi-Markov risk model with randomized dividends.

In this paper, we revisit the compound binomial risk model with the above-mentioned
time-correlation and randomized dividends, which has been attempted by Yuen et al. (2013) in a
simplified case, that is, a discount-free economic environment with a zero threshold for the randomized
dividends. We intend to generalize their work on both aspects, that is, studying the Gerber–Shiu
functions with non-zero discount and with a non-negative dividend threshold. The generalization
enables us to better relate the risk model under consideration to real-life insurance problems such as
the time value of money, and positive dividend thresholds are commonly adopted in practice.

2. The Model

In this paper, we consider the following compound binomial risk model:

Ut = u + t−
t

∑
i=1

ζi1{Ui−1≥d} −
t

∑
i=1

Zi, t ∈ N0 (2)
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where Ut is the surplus level at time t, u ∈ N0 is the initial surplus, ζi, i ∈ N = {1, 2, . . .} are
independent and identically distributed (i.i.d.) Bernoulli (α) random variables (r.v.’s) denoting the
decision on dividends at time i (1 means paying dividends), 1A is an indicator function on event A,
d ∈ N0 is a constant threshold value for the randomized dividend strategy, and Zi is the total claim
amount at time i; {ζi} and {Zi} are independent of each other.

Remark 1.

• Ut is the surplus level after the claims and dividends payable at time t (at the end of period (t− 1, t]) but
before the premiums receivable at time t (at the beginning of period (t, t + 1]).

• When both dividends and claims are payable at time t, dividends are paid before claims.
• It is worth noting that dividend payments at time i are triggered by two conditions, Ui−1 ≥ d and ζi = 1.

No dividend is payable if at least one condition is voided.

Next, we further specify the total claim size Zi under the time-correlation framework:

Z1 = ξ1 (X1 + η1Y1)

Zi = ξi (Xi + ηiYi) + ξi−1 (1− ηi−1)Yi−1, for i = 2, 3, . . .

where Xi and Yi denote the main claim amount and by-claim amount at time i, respectively; ξi is a
Bernoulli (p) r.v. with value 1 referring to the occurrence of a main claim at time i; and ηi is a Bernoulli
(θ) r.v. with value 1 denoting the simultaneous occurrence of a by-claim at time i given a main claim
occurs at i. If ηi = 0, then the by-claim induced at time i will be deferred to time i + 1. We note
that in this model, one by-claim is automated by one main claim with only its timing of payment
being random, that is, at the same time as the main claim or one time period later. One example
is comprehensive car insurance policies. When a car accident occurs, the total damage to the cars
involved in the accident could be the main claim, and bodily injuries caused by the accident could be the
associated by-claim. For minor bodily injuries, the diagnoses and treatments should be straightforward,
and thus the by-claim occurs simultaneously. However, for severe bodily injuries, the treatment and
recovery sometimes could take a long time. This is when the by-claim is delayed. This situation
with late/long settlement for certain claims is associated with the incurred-but-not-reported (IBNR)
claims in insurance practices, for which the reporting delay is a r.v. Detailed discussions about claims
with a random reporting delay can be found in Wüthrich and Merz (2008), Dassios and Zhao (2013),
Ahn et al. (2018) and the references therein. In this paper, for the purpose of simplicity, we only
consider one time period of delay for by-claims.

We further assume that Xi has the probability function (p.f.) fk, k ∈ N and mean µX ; Yi has the p.f.
gk, k ∈ N and mean µY. Additionally, {Xi}, {Yi}, {ξi} and {ηi}, i ∈ N, are all i.i.d. random sequences
and are also independent of each other. They are also independent of {ζi}. In addition, we denote
X, Y, η, ζ and ξ to be the generic r.v.’s representing the above i.i.d. sequences of r.v.’s.

One can see that Equation (2) can be re-written as, for t ∈ N,

Ut = u + t−
t

∑
i=1

ζi1{Ui−1≥d} −
t−1

∑
i=1

ξi(Xi + Yi)− ξt(Xt + ηtYt) (3)

Throughout the rest of this paper, we assume that 0 ≤ α, θ ≤ 1 and 0 < p ≤ 1. The positive safety
loading condition for Equation (2) takes the form

1− α− p(µX + µY) > 0

Remark 2. Some previously considered models in the literature are special cases of Equation (2):

• If θ = 1, that is, by-claims always occur simultaneously with their main claims, then it reduces to the
model in Tan and Yang (2006).
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• If α = 0, then it reduces to the compound binomial model with time-correlation only; see, for example,
Yuen and Guo (2001).

• If both θ = 1 and α = 0, then the model becomes an original compound binomial model.

The main objective in this paper is to study the expected discounted penalty function, also known
as the Gerber–Shiu function, in the risk model defined in Equation (2). Because it was first introduced
by Gerber and Shiu (1998) in 1998, the Gerber–Shiu function has attracted a great deal of attention in
the actuarial science field, and it has been extensively studied under various risk models. Because the
function gives us a comprehensive mathematical tool to study ruin-related quantities, it remains one of
the popular topics in ruin theory. Recent references on Gerber–Shiu functions include Willmot (2007)
and Cheung and Landriault (2010).

For the risk model of Equation (2), we let the r.v. τ = min{t ∈ N : Ut < 0} be the time of ruin. Then

ψ(u) = P{τ < ∞|U0 = u}, u ∈ N0

is the ultimate ruin probability. We let ω(x, y), where x ∈ N0 and y ∈ N, be a non-negative penalty
function. With a discount factor v ∈ (0, 1], our Gerber–Shiu function has the form

mv(u; d) = E
[
vτω (Uτ−, |Uτ |) 1{τ<∞}|U0 = u

]

where the quantity ω(Uτ−, |Uτ |) can be interpreted as the penalty at the time of ruin for the surplus
immediately prior to ruin Uτ− (the surplus before claims payable at τ but after dividends at τ) and the
deficit at ruin |Uτ |. Here the dividend threshold d plays a key role in the phenomenon of ruin.

For simplicity, when v = 1, we would omit the subscript v in mv(u; d). Thus the discount-free
Gerber–Shiu function becomes

m(u; d) = E
[
ω (Uτ−, |Uτ |) 1{τ<∞}|U0 = u

]

Additionally, when d = 0, we shall omit d in mv(u; d) to give mv(u). Within the rest of this
paper, we investigate mv(u; d) in the context of Equation (2), extending the results m(u) obtained in
Yuen et al. (2013).

3. Main Results

In this section, we consider the case of d = 0 and d > 0 separately.

3.1. The Case of d = 0.

In this subsection, we focus on mv(u). To deal with the time-correlation, we adopt the approach
in Yuen and Guo (2001) and define an auxiliary surplus process:

Ũt = u + t−
t

∑
i=1

ζi1{Ũi−1≥0} −
t

∑
i=1

Zi − Ỹ1{t≥1} (4)

where Ỹ is a r.v. with p.f. gi, i ∈ N, independent of all the other r.v.’s in the model. The corresponding
Gerber–Shiu function is denoted by m̃v(u). We note that this auxiliary surplus process refers to the
case in which there is a deferred by-claim in the first time period. It enables us to set up a system of
equations and to obtain results of mv(u).

Before we present our first main result, we introduce the following conditional expected penalty
function that enables us to simplify the derivations within the rest of this paper:

WX(u) = E
[
ω(Uτ−, |Uτ |)

∣∣τ < ∞, Uτ− = u, Zτ = X
]
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where the subscript X indicates the random claim(s) causing ruin. We list some cases of X that are
considered thereafter:

• X: one main claim only with p.f. f ;
• X + Y: one main claim plus its by-claim with p.f. f ∗ g;
• Y: one by-claim only with p.f. g;
• X + Y + Ỹ: one main claim, its by-claim and a delayed by-claim with p.f. f ∗ g∗2;
• X + ηY: one main claim and an undetermined by-claim with p.f. θ( f ∗ g) + (1− θ) f ;
• ξ(X + ηY) + Ỹ: one delayed by-claim with undetermined main and by-claims with p.f.

qg + p(1− θ)( f ∗ g) + pθ( f ∗ g∗2).

For each case, there is an explicit expression for WX(u). For example, for the case of X + Y,

WX+Y(u) =
∞

∑
k=u+1

ω (u, k− u) ( f ∗ g)k

For other cases, we just replace f ∗ g with its own p.f. in the above expression.

Theorem 1. Let β = 1− α and f̂ (z) = ∑∞
i=0 zi fi be the generating function of f . Similarly, the generating

functions of other discrete functions are defined as the symbols with a hat above those functions. When d = 0,
mv(u) satisfies the following recursive formula, for u ∈ N0,

vqβmv(u + 1)

= (1− vqα)mv(u)− vα
u+1

∑
k=2

mv(u + 1− k)hk − vβ
u

∑
k=2

mv(u− k)hk

+v2 p(1− θ)

[
β2

u+2

∑
k=2

WX+ηY(u + 2− k)hk + 2αβ
u+1

∑
k=2

WX+ηY(u + 1− k)hk

+α2
u

∑
k=2

WX+ηY(u− k)hk

]
− vp[αWX+ηY(u) + βWX+ηY(u + 1)]

+v2 p(1− θ)

[
β2

u+2

∑
k=2

Wξ(X+ηY)+Ỹ(u + 2− k) fk

+2αβ
u+1

∑
k=2

Wξ(X+ηY)+Ỹ(u + 1− k) fk + α2
u

∑
k=2

Wξ(X+ηY)+Ỹ(u− k) fk

]

−v2β(1− θ)(αhu+1 + βhu+2)[mv(0) + pWX+ηY(0)]

+v2 p(1− θ)(α fu+1 + β fu+2)Wξ(X+ηY)+Ỹ(0) (5)

with an initial value

mv(0) = p
(

1 +
αz0

β

)
ŴX+ηY(z0)− pWX+ηY(0)−

p(1− θ)(β + αz0)

βA(z0)
f̂ (z0)

×
[
(β + αz0)Ŵξ(X+ηY)+Ỹ(z0) + Wξ(X+ηY)+Ỹ(0)

]
(6)

where A(z) = z − vp(1 − θ)(β + αz) f̂ (z)ĝ(z) and z0 ∈ (0, 1) is the unique solution to the equation
B(z) = z− v(β + αz)(q + p f̂ (z)ĝ(z)) = 0.

Proof. Considering the first time period of Equation (3) with d = 0, conditional on whether a main
claim occurs or not, whether its by-claim is deferred or not, and whether a dividend is payable or not,
we list all possible outcomes of the Gerber–Shiu function mv(u) at time 1 in Figure 1.
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mv (u)

no
main
claim

no
dividend

mv (u + 1)

1 − α

dividend mv (u)

α

q = 1 − p

main
claim

by claim
next period

no
dividend ∑∞

k=u+2 ω (u + 1, k − u− 1) fkruin

∑u+1
k=1

m̃v (u + 1 − k) fkno ruin
1 − α

dividend
∑∞

k=u+1 ω (u, k − u) fkruin

∑u
k=1 m̃v (u− k) fkno ruin

α

1−
θ

by claim
together

no
dividend ∑∞

k+`=u+2 ω (u + 1, k + `− u− 1) fkg`ruin

∑u+1
k+`=2

mv (u + 1 − k − `) fkg`no ruin1 − α

dividend
∑∞

k+`=u+1 ω (u, k + `− u) fkg`ruin

∑u
k+`=2mv (u− k − `) fkg`no ruin

α

θ

p

Figure 1: Scenarios of mv(u) in the first time period

Proof. Considering the first time period of model (3) with d = 0, conditional
on whether a main claim occurs or not, whether its by-claim is deferred or not,
and whether a dividend is payable or not, we list all possible outcomes of the
Gerber-Shiu function mv(u) at time 1 in Figure 1.

Based on Figure 1, we have

mv (u)

= vqβmv (u+ 1) + vqαmv (u)

+vpθ

[
β

u+1∑

k=2

mv (u+ 1− k) (f ∗ g)k + α

u∑

k=2

mv (u− k) (f ∗ g)k

]

+vpθ

[
β

∞∑

k=u+2

ω (u+ 1, k − u− 1) (f ∗ g)k + α

∞∑

k=u+1

ω (u, k − u) (f ∗ g)k

]

+vp (1− θ)
[
β

u+1∑

k=1

m̃v (u+ 1− k) fk + α

u∑

k=1

m̃v (u− k) fk

]

+vp (1− θ)
[
β

∞∑

k=u+2

ω (u+ 1, k − u− 1) fk + α

∞∑

k=u+1

ω (u, k − u) fk

]
, (7)

where (f ∗ g)u =
∑u

i=0 fu−igi is the convolution of p.f.’s fk and gk.
Making use of the conditional expected penalty function W defined above,

8

Figure 1. Scenarios of mv(u) in the first time period.

On the basis of Figure 1, we have

mv (u)

= vqβmv (u + 1) + vqαmv (u)

+vpθ

[
β

u+1

∑
k=2

mv (u + 1− k) ( f ∗ g)k + α
u

∑
k=2

mv (u− k) ( f ∗ g)k

]

+vpθ

[
β

∞

∑
k=u+2

ω (u + 1, k− u− 1) ( f ∗ g)k + α
∞

∑
k=u+1

ω (u, k− u) ( f ∗ g)k

]

+vp (1− θ)

[
β

u+1

∑
k=1

m̃v (u + 1− k) fk + α
u

∑
k=1

m̃v (u− k) fk

]

+vp (1− θ)

[
β

∞

∑
k=u+2

ω (u + 1, k− u− 1) fk + α
∞

∑
k=u+1

ω (u, k− u) fk

]
(7)

where ( f ∗ g)u = ∑u
i=0 fu−igi is the convolution of p.f.’s fk and gk.

Making use of the conditional expected penalty function W defined above, Equation (7) reduces to

(1− vqα)mv (u)− vqβmv (u + 1)

= vpθβ(mv ∗ f ∗ g)u+1 + vpθα(mv ∗ f ∗ g)u + vp (1− θ) β(m̃v ∗ f )u+1

+vp (1− θ) α(m̃v ∗ f )u + vpβWX+ηY (u + 1) + vpαWX+ηY (u) (8)
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Parallel to Equations (7) and (8) and examining the first time period of the auxillary process Ũt,
we obtain the following equation of m̃v(u):

m̃v(u)

= vqβ
u+1

∑
`=1

mv (u + 1− `) g` + vqβ
∞

∑
`=u+2

ω (u + 1, `− u− 1) g`

+vqα
u

∑
`=1

mv (u− `) g` + vqα
∞

∑
`=u+1

ω (u, `− u) g`

+vpθ

[
β

u+1

∑
k=3

mv (u + 1− k) ( f ∗ g∗2)k + α
u

∑
k=3

mv (u− k) ( f ∗ g∗2)k

]

+vpθ

[
β

∞

∑
k=u+2

ω (u + 1, k− u− 1) ( f ∗ g∗2)k + α
∞

∑
k=u+1

ω (u, k− u) ( f ∗ g∗2)k

]

+vp(1− θ)

{[
β

u+1

∑
k=2

m̃v (u + 1− k) ( f ∗ g)k + α
u

∑
k=2

m̃v (u− k) ( f ∗ g)k

]

+

[
β

∞

∑
k=u+2

ω (u + 1, k− u− 1) ( f ∗ g)k + α
∞

∑
k=u+1

ω (u, k− u) ( f ∗ g)k

]}

= vq
[

β(mv ∗ g)u+1 + α(mv ∗ g)u

]
+ vpθ

[
β(mv ∗ f ∗ g∗2)u+1 + α(mv ∗ f ∗ g∗2)u

]

+vp(1− θ)
[

β(m̃v ∗ f ∗ g)u+1 + α(m̃v ∗ f ∗ g)u

]

+v
[

βWξ(X+ηY)+Ỹ(u + 1) + αWξ(X+ηY)+Ỹ(u)
]

(9)

where g∗2x = (g ∗ g)x denotes the two-fold convolution of g.
A common result is that the generating function of f ∗ g with argument z equals the product of

the generating functions of f and g with the same argument; that is, f̂ ∗ g(z) = f̂ (z)ĝ(z). With this
result, multiplying both sides of Equations (8) and (9) by zu+1 and summing over u from 0 to ∞ gives

(1− vqα)
∞

∑
u=0

zu+1mv (u)− vqβ
∞

∑
u=0

zu+1mv (u + 1)

= vpθβ
∞

∑
u=0

zu+1(mv ∗ f ∗ g)u+1 + vpθα
∞

∑
u=0

zu+1(mv ∗ f ∗ g)u

+vp (1− θ) β
∞

∑
u=0

zu+1(m̃v ∗ f )u+1 + vp (1− θ) α
∞

∑
u=0

zu+1(m̃v ∗ f )u

+vpβ
∞

∑
u=0

zu+1WX+ηY (u + 1) + vpα
∞

∑
u=0

zu+1WX+ηY (u)

and

∞

∑
u=0

zu+1m̃v(u) = vq
∞

∑
u=0

zu+1
[

β (mv ∗ g)u+1 + α (mv ∗ g)u

]

+vpθ
∞

∑
u=0

zu+1
[

β(mv ∗ f ∗ g∗2)u+1 + α(mv ∗ f ∗ g∗2)u

]

+vp(1− θ)
∞

∑
u=0

zu+1
[

β(m̃v ∗ f ∗ g)u+1 + α(m̃v ∗ f ∗ g)u

]

+v
∞

∑
u=0

zu+1
[

βWξ(X+ηY)+Ỹ(u + 1) + αWξ(X+ηY)+Ỹ(u)
]
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The above two equations can be re-written in terms of the generating functions as

[
z− v(β + αz)(q + pθ f̂ (z)ĝ(z))

]
m̂v(z)

= vp (1− θ) (β + αz) f̂ (z) ˆ̃mv(z) + vp(β + αz)ŴX+ηY(z)

−vqβmv (0)− vpβWX+ηY (0) (10)

and

v(β + αz)ĝ(z)[q + pθ f̂ (z)ĝ(z)]m̂v(z)

=
[
z− vp (1− θ) (β + αz) f̂ (z)ĝ(z)

]
ˆ̃mv(z)− v(β + αz)Ŵξ(X+ηY)+Ỹ(z)

+vβWξ(X+ηY)+Ỹ(0) (11)

Equation (10)× ĝ(z) added to Equation (11) yields

ˆ̃mv(z) = ĝ(z)m̂v(z)−
v(β + αz)

z

[
pŴX+ηY(z)ĝ(z) + Ŵξ(X+ηY)+Ỹ(z)

]

+
vβ

z

[
qmv(0)ĝ(z) + pWX+ηY(0)ĝ(z)−Wξ(X+ηY)+Ỹ(0)

]
(12)

Substituting Equation (12) into Equation (10) gives

[
z− v(β + αz)(q + p f̂ (z)ĝ(z))

]
m̂v(z)

= vp
(

α +
β

z

)
A(z)ŴX+ηY(z)−

v2 p(1− θ)

z
(β + αz)2 f̂ (z)Ŵξ(X+ηY)+Ỹ(z)

−vβ

z
A(z)mv(0)−

vpβ

z
A(z)WX+ηY(0)

−v2 p(1− θ)

z
(β + αz) f̂ (z)Wξ(X+ηY)+Ỹ(0) (13)

where A(z) = z− vp(1− θ)(β + αz) f̂ (z)ĝ(z).
Our next task is to find the initial value of mv(u), that is, mv(0). We let B(z) = z− v(β + αz)(q +

p f̂ (z)ĝ(z)) and ĥ(z) = q + p f̂ (z)ĝ(z), which is the probability generating function (p.g.f.) of ξ(X + Y)
(with p.f. denoted by hk, k ∈ N0). Clearly, h0 = q, h1 = 0 and hk = p( f ∗ g)k for k = 2, 3, . . . When
v = 1, as given in Yuen et al. (2013), the fact that B(1) = 0 enables us to solve mv(0) directly from
Equation (13). However, for a general v ∈ (0, 1], we need to use a different approach, that is, making
use of the root of equation B(z) = 0. One can show that it has a unique positive solution z0 ∈ (0, 1)
as follows:

• Firstly, we have B(0) = −vqβ < 0 and B(1) = 1− v > 0.
• Additionally,

B′(z) = 1− vαĥ(z)− v(β + αz)ĥ′(z)

which gives B′(0) = 1− vαh0 − vβh1 = 1− vqα > 0, and for z ∈ (0, 1],

B′(z) ≥ 1− vαĥ(1)− vĥ′(1) = 1− vα− vp(µx + µY) > 0

The last inequality follows from the positive safety loading condition assumed previously.
• Therefore, B(z) is a strictly increasing function on the interval (0, 1) that suffices to prove the

existence of a unique solution z0 ∈ (0, 1) to the equation B(z) = 0.

Substituting z = z0 into Equation (13) and solving the obtained equation with respect to mv(0),
we obtain Equation (6).
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On the basis of Equations (13) and (6), the recursive formula for mv(u) can be established as
in Yuen et al. (2013). By comparing coefficients of zu+1 on both sides of Equation (13), with some
simplifications, we can obtain Equation (5). This completes the proof.

3.2. The Case of d > 0.

In this subsection, we consider a positive dividend threshold d, d ∈ N, and the Gerber–Shiu
function we consider here is mv(u; d).

We recall that the surplus process under investigation is

Ut = u + t−
t

∑
i=1

ζi1(Ui−1≥d) −
t

∑
i=1

Zi, t ∈ N0

with an auxiliary surplus process

Ũt = u + t−
t

∑
i=1

ζi1{Ũi−1≥d} −
t

∑
i=1

Zi − Ỹ1{t≥1}

Our second main result is given below:

Theorem 2. When d > 0, mv(u + 1; d) satisfies the following recursive formula, for u ≥ d,

vqβmv(u + 1; d)

= (1− vqα)mv(u; d)− vα
u+1

∑
k=2

mv(u + 1− k; d)hk − vβ
u

∑
k=2

mv(u− k; d)hk

+v2 p(1− θ)

[
β2

u+2

∑
k=2

WX+ηY(u + 2− k)hk + 2αβ
u+1

∑
k=2

WX+ηY(u + 1− k)hk

+α2
u

∑
k=2

WX+ηY(u− k)hk

]
− vp[αWX+ηY(u) + βWX+ηY(u + 1)]

+v2 p(1− θ)

[
β2

u+2

∑
k=2

Wξ(X+ηY)+Ỹ(u + 2− k) fk

+2αβ
u+1

∑
k=2

Wξ(X+ηY)+Ỹ(u + 1− k) fk + α2
u

∑
k=2

Wξ(X+ηY)+Ỹ(u− k) fk

]

−v2β(1− θ)(αhu+1 + βhu+2)[mv(0) + pWX+ηY(0)]

+v2 p(1− θ)(α fu+1 + β fu+2)Wξ(X+ηY)+Ỹ(0) (14)

where the initial values mv(u; d), u = 0, 1, . . . , d, can be determined by solving the following system of 2d + 1
equations, for u = 0, 1, . . . , d− 1:

mv (u; d) = vqmv (u + 1; d) + vpθ
u+1

∑
k=2

mv (u + 1− k; d) ( f ∗ g)k

+vp (1− θ)
u+1

∑
k=1

m̃v (u + 1− k; d) fk + vpWX+ηY(u + 1) (15)
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m̃v(u; d) = vq
u+1

∑
k=1

mv (u + 1− k; d) gk + vpθβ
u+1

∑
k=3

mv (u + 1− k; d) ( f ∗ g∗2)k

+vp(1− θ)
u+1

∑
k=2

m̃v (u + 1− k; d) ( f ∗ g)k

+vWξ(X+ηY)+Ỹ(u + 1) (16)

and

mv(d; d) =
∞

∑
ν1=0

d

∑
ν2=1

πv(ν1, ν2)mv(d− ν2; d)

+
∞

∑
ν1=0

∞

∑
ν2=d+1

πv(ν1, ν2)ω(d + ν1; ν2 − d) (17)

We note that the unknown variables in the above system of equations are mv(0; d), . . ., mv(d; d), m̃v(0; d), . . .,
and m̃v(d− 1; d), and the details of the function πv are given in the following proof.

Proof. Differently from the derivations in the previous case, our objective functions mv(u; d) and
m̃v(u; d), d ∈ N, need to be examined in the following two situations:

1. When u = 0, 1, . . . , d− 1, both surplus processes must not pay dividends in the first period.
2. When u = d, d + 1, . . ., the first period may be subject to a dividend payment.

For the case of u ≥ d, we can proceed similarly to as in Section 3.1:

mv (u; d)

= vqβmv (u + 1; d) + vqαmv (u; d)

+vpθ

[
β

u+1

∑
k=2

mv (u + 1− k; d) ( f ∗ g)k + α
u

∑
k=2

mv (u− k; d) ( f ∗ g)k

]

+vp (1− θ)

[
β

u+1

∑
k=1

m̃v (u + 1− k; d) fk + α
u

∑
k=1

m̃v (u− k; d) fk

]

+vpβWX+ηY(u + 1) + vpαWX+ηY(u) (18)

and

m̃v(u; d)

= vqβ
u+1

∑
`=1

mv (u + 1− `; d) g` + vqα
u

∑
`=1

mv (u− `; d) g`

+vpθ

[
β

u+1

∑
k=3

mv (u + 1− k; d) ( f ∗ g∗2)k + α
u

∑
k=3

mv (u− k; d) ( f ∗ g∗2)k

]

+vp(1− θ)

[
β

u+1

∑
k=2

m̃v (u + 1− k; d) ( f ∗ g)k + α
u

∑
k=2

m̃v (u− k; d) ( f ∗ g)k

]

+v
[

βWξ(X+ηY)+Ỹ(u + 1) + αWξ(X+ηY)+Ỹ(u)
]

(19)

Comparing Equations (18) and (19) with Equations (8) and (9), and making use of the generating
function method, we can verify that mv(u + 1; d), u ≥ d satisfy the recursive Equation (14), where
mv(u; d), u = 0, 1, . . . , d are initial values yet to be determined.

We let d = 0 and assume a special penalty function:

ω (x, y) = 1{x=ν1, y=ν2}, x ∈ N0, y ∈ N
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where ν1 ∈ N0 and ν2 ∈ N are two constants. Then

πv(ν1, ν2) = E
[
vτ1{Uτ−=ν1,|Uτ |=ν2}1{τ<∞}|U0 = 0

]
(20)

is the discounted joint probability mass function of Uτ− and |Uτ | for ν1 ∈ N0 and ν2 ∈ N, when
u = d = 0; or equivalently, it can be interpreted as the discounted joint probability mass function of
the surplus level just before the time, at which Ut drops below the dividend threshold level d, and
the magnitude of the drop when u = d ∈ N0. Replacing the penalty function in Equation (6) with
1{x=ν1,y=ν2} gives, for ν2 ∈ N,

πv(0, ν2) =
pαz0

β

[
θ( f ∗ g)ν2 + (1− θ) fν2

]
− p(1− θ)(β + αz0) f̂ (z0)

βA(z0)

×(1 + β + αz0)
[
qgν2 + p(1− θ)( f ∗ g)ν2 + pθ( f ∗ g∗2)ν2

]
(21)

and for ν1, ν2 ∈ N,

πv(ν1, ν2)

=
p (β + αz0) zν1

0
β

{
θ( f ∗ g)ν1+ν2 + (1− θ) fν1+ν2 −

(1− θ)(β + αz0) f̂ (z0)

A(z0)

×
[
qgν1+ν2 + p(1− θ)( f ∗ g)ν1+ν2 + pθ( f ∗ g∗2)ν1+ν2

]}
(22)

Both Equations (21) and (22) are used to determine the initial values mv(u; d), u = 0, 1, . . . , d.
For the case of 0 ≤ u < d, there must be no dividend in the first time period certainly; thus this

is equivalent to setting α = 0 in Equations (18) and (19) that gives Equations (15) and (16). Letting
u = 0, 1, . . . , d− 1 in Equations (15) and (16) gives us the first 2d equations with respect to the 2d + 1
unknown variables mv(0; d), . . ., mv(d; d), m̃v(0; d), . . ., and m̃v(d− 1; d). According to the definition
and interpretation of πv(ν1, ν2), one can see that mv(d; d) satisfies Equation (17). Thus, the initial values
mv(0; d), . . ., mv(d; d) can be solved. This completes the proof.

4. Final Remarks and Future Work

This paper extended the results given in Yuen et al. (2013) on two aspects, that is, studying the
Gerber–Shiu function with a non-zero discount and with a non-negative dividend threshold. We
remark that some of the model assumptions adopted in this study are trade-offs between practicability
and tractability. On one hand, the compound binomial aggregate claim model and the unity premium
level assumption might be criticized because of the lack of generality. On the other hand, the simple
nature of these assumptions enables us to tackle the complicated model setup, with main claims and
by-claims as well as randomized dividends, all in the same picture.

Additionally, the idea of a randomized dividend strategy might be of limited use in reality. In
certain cases, such as mutual funds, the policyholders can be treated as shareholders, and thus the
random dividends could be interpreted as a strategic premium reduction depending on the financial
status of the insurance company. Additionally, having this possibility examined enables the insurers
and regulators to better understand the relationship between ruin-related quantities and dividend
strategies and to better manage the risks embedded in the insurance industry.

Some potential future work could be revisiting the main problem of this paper by relaxing
some of the key assumptions. One example is to consider the random delay for by-claims; see, for
example, Dassios and Zhao (2013). It is worth adopting their approach in the discrete setup, and
explicit results are possibly achievable in a similar or simplified way.
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