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Abstract: During the last decades, life expectancy has risen significantly in the most developed
countries all over the world. Greece is a case in point; consequently, higher governmental financial
responsibilities occur as well as serious concerns are raised owing to population ageing. To address
this issue, an efficient forecasting method is required. Therefore, the most important stochastic models
were comparatively applied to Greek data for the first time. An analysis of their fitting behaviour
by gender was conducted and the corresponding forecasting results were evaluated. In particular,
we incorporated the Greek population data into seven stochastic mortality models under a common
age-period-cohort framework. The fitting performance of each model was thoroughly evaluated
based on information criteria values as well as the likelihood ratio test and their robustness to
period changes was investigated. In addition, parameter risk in forecasts was assessed by employing
bootstrapping techniques. For completeness, projection results for both genders were also illustrated
in pricing insurance-related products.
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1. Introduction

During the last decades, a significant increase in life expectancy worldwide has been observed.
This change is mainly due to the human race dynamics, the improvement of living conditions and the
development of medical science. Due to these factors, life expectancy in Greece has been increased
from 70.2 to 78 for males and 73.8 to 83.3 for females during the period from 1961 to 2010, almost 9 years
on average for both genders in 50 years (http://ec.europa.eu/eurostat/data/database). Consequently,
a serious demographic problem arises from the increasing number of elderly combined with low
fertility rates. Population ageing creates higher financial responsibilities for governments and annuity
providers and raises serious concerns for the future structure of the Greek social security system.

In the actuarial and demographic literature, several methods have been proposed in order to
capture the mortality trends of a population. One of the most prominent approaches to stochastic
mortality modelling is the method proposed by Lee and Carter (1992). Also, a remarkable variant of the
Lee-Carter model proposed by Cairns et al. (2006). Despite its variants and extensions, the Lee-Carter
model inspired many authors to introduce more sophisticated methods by including additional
parameters, for example those of Renshaw and Haberman (2006); Hyndman and Shahid Ullah (2007);
Plat (2009). Especially for the case of Greece, a relevant contribution under the framework of
generalized linear models was described by Hatzopoulos and Haberman (2009).

Recently, similar studies have been also conducted for various countries. Booth et al. (2006)
compared the accuracy of the forecasts obtained by five extensions of the Lee-Carter method using
data from 10 developed countries, while Shang et al. (2011) extended this accuracy comparison
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by using 10 methods and incorporating data from 14 selected countries. Cairns et al. (2009);
Haberman and Renshaw (2011) compared the fitting and forecasting performance of different
stochastic models for England and Wales and the United States mortality experience. Gaille (2012)
applied the Lee-Carter and the Heligman-Pollard models to Swiss mortality rates and compared the
financial impacts of their forecasts on future pension liabilities. Stoeldraijer et al. (2013) compared the
forecasts obtained from the Lee-Carter method and its extensions with the official forecasts obtained
from the statistical offices in Europe to evaluate the differences for the case of Netherlands, regarding
the explicit assumptions used for each method. In addition, van Berkum et al. (2016) analyzed the
impact of allowing for multiple structural changes on a large collection of mortality models fitted on
Dutch and Belgian male data and Maccheroni (2017) backtested the forecasting performance of the
Lee and Carter (1992) and the Cairns et al. (2006) models fitted on Italian data.

Hunt and Blake (2015) introduced an age-period-cohort (APC) classification scheme for existing
mortality models that was exploited by Villegas et al. (2017). Our study builds on these two papers to
investigate how the APC framework can be implemented with Greek data. A comparative analysis of
the fitting methods is performed and the corresponding forecasting results for the Greek population
are illustrated. In addition, forecasts are applied to price net premiums of insurance-related products.

The rest of this paper is organized as follows. Section 2 illustrates an overview of the stochastic
mortality models that Greek data fit. Section 3 describes fitting procedures, while Section 4 illustrates
the mortality projection results for each model, along with an application in pricing insurance-related
products. Our findings in comparison with those from the original papers are presented in Section 5.
Concluding remarks are made in Section 6.

2. Mortality Modelling

In this section, we review the most widely used mortality models in the literature that belong
to a common APC framework. According to Booth and Tickle (2008), mortality forecasting methods
have been mainly developed under three notions, the “expectation”, the “explanation” and the
“extrapolation”, each one of them having its positive and negative points. In expectation methods,
mortality forecasting is based on an expert’s opinion, which incorporates specific demographic or
other relevant knowledge, but sometimes can lead to subjectivity or bias errors. Explanatory methods
are based on structural or epidemiological models of certain causes of death involving known risk
factors and they are generally limited to short-term forecasting. Extrapolative is the most promising
and modern research method as it assumes that past mortality trends will continue in the future.

Hence, all the models that will be discussed in the following sections incorporate the extrapolative
method and they take the advantage of using time series models that give a probabilistic confidence
interval for the forecasts. Recent research activity aims to investigate the similarities among stochastic
models in order to highlight their common properties. Aro and Pennanen (2011) fitted a general
modelling framework into Finnish data that allows for multiple risk factors and guarantees that the
parameter estimates are well-defined. Later, Hunt and Blake (2015) proposed a general APC modelling
structure that encloses most of the existing mortality models. In the following, this APC framework of
stochastic mortality modelling is described and then, it is illustrated using Greek data.

2.1. The Age-Period-Cohort Framework

Let us denote the observed number of deaths at at age x and year t as dx,t and central
(at the middle of year t) population exposures as Ex,t. Initial exposures are then approximated by
E0

x,t ≈ Ex,t + (1/2)dx,t. Therefore, the one-year probability of death at age x and year t is defined by
qx,t = dx,t/E0

x,t and the death rate by mx,t = dx,t/Ex,t. According to Cairns et al. (2009), under the
assumption that force of mortality remains constant over each year of integer age and over each
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calendar year, death rate mx,t and force of mortality µx,t
1 coincide. Above conventions are adopted in

this study.
A stochastic APC model links a response variable (usually the one-year probability of death qx,t

or the force of mortality µx,t) to an appropriate predictor, dependent on age x = x1, . . . , xk, period
t = t1, . . . , xn, and cohort (year of birth) c = t1 − xk, . . . , tn − x1 for a population. This structure is
given by the following formula:

ηx,t = αx +
N

∑
i=1

β
(i)
x κ

(i)
t + β

(0)
x γt−x , (1)

where ηx,t denotes the link function, which transforms a mortality rate measure into a suitable
modelling form, αx is the static age function that expresses the general shape of mortality by age,
β
(i)
x κ

(i)
t is a set of N age-period terms, determining the mortality trends, where κ

(i)
t indicates the general

pattern of mortality through the time, while β
(i)
x shows this pattern of mortality change across ages

and β
(0)
x γt−x is the age-cohort term, where γt−x ≡ γc captures the effects of each year of birth c and

β
(0)
x modifies this effect across ages.

The choice of the response variable that is transformed by the link function ηx,t depends on the
format of mortality data. For instance, if the random variable of the number of deaths at age x and
year t, Dx,t ∼ Binomial(E0

x,t, qx,t) with E(Dx,t/E0
x,t) = qx,t, then initial exposures E0

x,t should be used.
If random variable Dx,t ∼ Poisson(Ex,tµx,t) with E(Dx,t/Ex,t) = µx,t, the central exposures Ex,t are
used. Hence, under the Binomial distribution assumption, the logit expression for the probability of
death is used and link function takes the form ηx,t = logitqx,t = log qx,t

1−qx,t
, while if a Poisson distribution

of deaths is assumed, then ηx,t = log µx,t. For details, see Hunt and Blake (2015); Villegas et al. (2017).
We note that presence of the bilinear terms βxκt classifies the APC modelling structure into the
generalised non linear family of models, discussed by Currie (2016). It has to be mentioned that models
with smoothing functions will be not considered in this study2.

Finally, we have to point out that in a mortality study, specific structural characteristics of the
dataset should affect model choice. For instance, if there is evidence for cohort effects in our data, then a
model with a cohort parameter should be selected. Moreover, if we believe that there is randomness in
mortality rates from one year to the next, then our choice lies between models that incorporate more
than one period factors.

2.2. Data and Assumptions

The observed number of deaths dx,t and the central exposures Ex,t for the Greek population
were directly obtained from the Human Mortality Database (2017) (HMD). In HMD, Greek data are
available by gender and age for the observation period of 1981 to 2013. Moreover, as suggested by
Haberman and Renshaw (2011), for consistency in model comparison, all models should be fitted
using the same distributional assumptions and results should be shown using the same mortality
measure. Therefore, we assume a Binomial distribution of deaths using link function ηx,t = logitqx,t.

For our study, only the ages from x1 = 60 to xk = 89 will be considered, as most of the models
that will be discussed in next sections have been particularly designed for higher ages. Also, in order
to obtain more reliable fitting and forecasting conclusions, only data of the historical period from
t1 = 1981 to tn = 2010 were exploited, leaving last three years3 out for backtesting reasons.

1 According to Cairns et al. (2009), the force of mortality can be viewed as the instantaneous death rate at exact time t for a
person aged exactly x at time t.

2 For instance, Hyndman and Shahid Ullah (2007) used functional data analysis and penalized regression splines in their
modelling framework.

3 Due to the limited availability of Greek data in HMD, years 2011–2013 correspond to a percentage of 10% of the whole
fitting year span.
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Furthermore, Cairns et al. (2009) point out that the reliability of the estimated cohort parameters
γt−x depends on the number of the observations for each birth year. Our analysis was repeated by
excluding cohorts with less than three to ten observations. Especially for datasets with short periods of
time, excluding more than five cohorts seems to be excessive. Nevertheless, excluding male and female
cohorts with less than eight observations (1892–1899 and 1943–1950) provides a better balance between
the fitting and forecasting behaviour of Greek data. This choice gave us almost the same fitting results
in comparison with the fact of excluding less cohorts, but led us to more reasonable forecasts, possibly
due to avoiding overfitting of the cohort effect.

2.3. Reviewing Mortality Models

One of the most popular and widely applied models was proposed by Lee and Carter (1992)
to forecast the mortality rates of the United States. In its original version, the model uses principal
component analysis in order to decompose the bilinear age-period matrix of log death rates into
a single age parameter and a time index used in forecasting. Many variants and extensions
of this model followed. Some papers related to the Lee-Carter method and its modifications
are: Lee and Miller (2001); Booth et al. (2002); De Jong and Tickle (2006). In Booth et al. (2002),
the Lee-Carter method was embedded in a Poisson regression setting to model the Belgian death rates.
The Lee-Carter model (henceforth labelled M1) predictor is given by ηx,t = αx + β

(1)
x κ

(1)
t , imposing

the following constraints ∑x β
(1)
x = 1 and ∑t κ

(1)
t = 0 to ensure identifiability of the model predictor.

Renshaw and Haberman (2006) extended the Lee-Carter model by including a cohort parameter
to ηx,t = αx + β

(1)
x κ

(1)
t + β

(0)
x γt−x . Haberman and Renshaw (2011) investigated certain complications

of this model associated with predictions efficiency and the capture of the cohort effect for both United
States and England and Wales mortality experience. These issues were resolved by using a simpler
model predictor given by ηx,t = αx + β

(1)
x κ

(1)
t + γt−x, assuming independence between the period

and cohort parameters. This model will be considered in our application (labelled M2), incorporating
the following identifiability constraints ∑x β

(1)
x = 1, ∑t κ

(1)
t = 0 and ∑c γc = 0 , where c is the set of

cohort years of birth that have been fitted in the model.
Currie (2006) presented in the actuarial literature a demographic model structure, firstly discussed

by Hobcraft et al. (1982). Its predictor is given by ηx,t = αx + κ
(1)
t + γt−x (labelled M3). We can

easily observe that this simple APC structure is a simplification of the previous model, considering
that β

(1)
x = 1. Hence, period and cohort parameter estimates can be obtained as in M2 under the

identifiability constraints ∑t κ
(1)
t = 0, ∑c γc = 0 and ∑c cγc = 0 .

After combining characteristics of other models, Plat (2009) proposed a three period factor
model ηx,t = αx + κ

(1)
t + (x − x̄)κ(2)t + (x − x̄)+κ

(3)
t + γt−x, where x̄ is the average age in the

data. Then, he compared the fitting quality with datasets from the United States, England and
Wales and Netherlands and noticed that when the age range is limited to higher ages (60 years
or older), the reduced expression of his model predictor ηx,t = αx + κ

(1)
t + (x − x̄)κ(2)t + γt−x

should be ideally used. Thus, latter model structure (labelled M4) is adopted for our application,
using ∑t κ

(1)
t = 0, ∑t κ

(2)
t = 0, ∑c γc = 0, ∑c cγc = 0 and ∑c c2γc = 0 constraints to eliminate

identifiability issues.
In order to reduce the number of free parameters, Cairns et al. (2006) proposed a parsimonious

model for the data from England and Wales, incorporating only two period factors in the absence of a
static age function and cohort terms. This model predictor is given by ηx,t = κ

(1)
t + (x− x̄)κ(2)t (labelled

M5). This structure has no identifiability issues, hence no constraints were taken into consideration.
Cairns et al. (2009) extended M5 to include a cohort effect as ηx,t = κ

(1)
t + (x − x̄)κ(2)t + γt−x

(labelled M6). Note that this model structure is a reduced version of Plat’s structure without a static
age term, using the following constraints ∑c γc = 0 and ∑c cγc = 0 .
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A more complicated structure for M6 was introduced by Cairns et al. (2009), which includes
an additional quadratic age effect with a period term. The model predictor is given by
ηx,t = κ

(1)
t + (x− x̄)κ(2)t +

(
(x− x̄)2 − σ̂2

x
)
κ
(3)
t + γt−x , where the constant σ̂2

x is the mean of (x− x̄)2.
This model (labelled M7) is identifiable under the transformations ∑c γc = 0 , ∑c cγc = 0 and
∑c c2γc = 0 .

Finally, another extension of M6 with a decreasing cohort effect was also discussed
in Cairns et al. (2009), given by ηx,t = κ

(1)
t + (x − x̄)κ(2)t + (xd − x)γt−x, where xd is a constant

parameter and its predictor is identifiable under ∑c γc = 0. Unfortunately, this model revealed
some dangers associated with its use, according to Cairns et al. (2011), where it led to very implausible
results in forecasting the United States male mortality. Hence, due to the above issues, this model
structure will not be considered in this paper4.

All the models of this section can be classified in the APC framework (1), assuming a Binomial
distribution of deaths with ηx,t = logit qx,t. The seven models M1–M7 that we used in this paper are
listed in Table 1.

Table 1. Structure overview of mortality models used in this paper.

Model Structure Original Papers

M1 logit qx,t = αx + β
(1)
x κ

(1)
t Lee and Carter (1992)

M2 logit qx,t = αx + β
(1)
x κ

(1)
t + γt−x Renshaw and Haberman (2006)

M3 logit qx,t = αx + κ
(1)
t + γt−x Currie (2006)

M4 logit qx,t = αx + κ
(1)
t + (x− x̄)κ(2)t + γt−x Plat (2009)

M5 logit qx,t = κ
(1)
t + (x− x̄)κ(2)t Cairns et al. (2006)

M6 logit qx,t = κ
(1)
t + (x− x̄)κ(2)t + γt−x Cairns et al. (2009)

M7 logit qx,t = κ
(1)
t + (x− x̄)κ(2)t + ((x− x̄)2 − σ̂2

x )κ
(3)
t + γt−x Cairns et al. (2009)

3. Model Fit

In this section, we describe the fitting methods whereby model parameters can be estimated.
Lee and Carter (1992) estimated model parameters using singular value decomposition (SVD) in the
context of least squares fitting method, while Renshaw and Haberman (2003) minimised the deviance
of their predictor structure. Following Brouhns et al. (2002), in this paper we estimate age, period and
cohort parameters by maximising model’s likelihood. Under the assumption of a Binomial distribution,
log-likelihood for models M1 - M7 is given by Villegas et al. (2017):

L(dx,t) = ∑
x,t

ωx,t

{
dx,t log

(
d̂x,t

E0
x,t

)
+ (E0

x,t − dx,t) log
(E0

x,t − d̂x,t

E0
x,t

)
+ log

(
E0

x,t
dx,t

)}
, (2)

where E0
x,t is the initial exposure, while f−1 now denotes the inverse link function of f (u) = logit u.

Then, the expected number of deaths for each model is given by:

d̂x,t = E0
x,t f−1

(
αx +

N

∑
i=1

β
(i)
x κ

(i)
t + γt−x

)
, (3)

4 As Hunt and Blake (2015) point out, in practice, M7 has proved the most popular extension of the original Cairns et al. (2006)
model, since it gives a better fit to their data than M6 and the age function for the cohort parameters in M8 may be more
complicated to fit data due to the estimation of the additional constant parameter xd.
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with N = 1 for M1–M3, N = 2 for M4–M6 and N = 3 for M7 and the prior weights ωx,t are defined as:

ωx,t =

{
0, if a (x, t) data cell is omitted,
1, if data cell is included.

(4)

For the implementation of mortality models, there are various R-packages in the literature.
In particular, the standard Lee-Carter model and some of its extensions are included in the
“demography” (Hyndman et al. 2017) package, while Butt et al. (2014) developed the “ilc” package that
contains the Renshaw-Haberman family related models. Turner and Firth (2015) provided the “gnm”
package, which facilitates the fitting procedure and the parameters estimation of generalized nonlinear
models and Villegas et al. (2017) introduced the powerful “StMoMo” package that incorporates all the
fitting algorithms that we used in this paper.

It is worth mentioning that when we firstly fitted M2 to Greek female data, κ
(1)
t showed an upward

trend compared to decreasing γt−x values. This is the result of the well-known identifiability issues
of the Renshaw-Haberman model. To overcome this issue, we considered an additional constraint
for the cohort parameter, according to Hunt and Villegas (2015, p. 185). We also note that fitting
models M1–M4 under the Poisson assumption (ηx,t = log µx,t), as they were firstly adjusted in original
papers, gave us similar parameter estimates. In addition, robustness of parameter estimates was
examined by using two different fitting periods of data: 1981–2010 and 1981–2010. Figures 1–7 illustrate
the maximum likelihood estimates under the Binomial assumption for models M1–M7 respectively,
for Greek males and females, aged 60–89. Solid lines correspond to parameter estimates for the
fitting period 1981–2010, while dotted lines for the period 1981–2000. In the following, we give some
explanatory comments on parameter estimates.

3.1. Parameter Estimates

The αx estimates (Figure 1) show an almost linear upward trend for both genders, which is similar
for models M2–M4, therefore it is omitted from Figures 2–4. The estimates for κ

(1)
t decrease in every

mortality model, indicating a general mortality improvement for both genders over the time. For each
one of the (five) models that incorporate a cohort parameter, estimates cannot be safely interpreted as
they depend on the whole model setting, including possible interactions with κ

(2)
t , κ

(3)
t parameters

and the corresponding age effects. More precisely, cohort estimates of M2 (Figure 2), M3 (Figure 3),
M6 (Figure 6) and M7 (Figure 7) show an increase until year 1915 and decreasing fluctuations for the
rest of the cohort years, while M4 cohort estimates (Figure 4) fluctuate over the entire period.

Robustness

As Cairns et al. (2009) pointed out, an important property of a model is the robustness of its
parameter estimates relative to changes in the range of fitted data. That is, parameter estimates
should not change significantly when fitting to a shorter data range. Consequently, a possible lack of
robustness for a model means that is sensitive to changes in the period of fitted data and brings into
question the appropriateness of its use for projections or other relevant applications that wholly rely
on them.

Dotted lines in Figures 1–7 indicate that none of the seven models suffers from serious robustness
issues. However, use of a fitting range with less data results to an abrupt increase of β

(1)
x female

estimates (bottom-left panel of Figure 2) and that remains unchanged even if we repeated model fit,
considering less cohorts to be excluded. On the contrary, models M5 (Figure 5) and M6 (Figure 6) seem
to be the most robust ones for both genders.
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Figure 1. M1: αx, β
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t estimated parameters for males (top panels) and females (bottom

panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 3. M3: κ
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t and γc estimated parameters for males (top panels) and females (bottom panels),

aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 5. M5: κ
(1)
t and κ

(2)
t estimated parameters for males (top panels) and females (bottom panels),

aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 6. M6: κ
(1)
t , κ

(2)
t and γc estimated parameters for males (top panels) and females (bottom

panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).



Risks 2018, 6, 44 10 of 34

Figure 7. M7: κ
(1)
t , κ

(2)
t , κ

(3)
t and γc estimated parameters for males (left panels) and females (right

panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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3.2. Goodness of Fit Diagnostics

A model’s goodness of fit is measured by the scaled residual deviance between the observed and the
fitted data, which depends on the chosen distributional assumption. As discussed in Pitacco et al. (2009),
lack of randomness in the residuals patterns indicates the inability of a model to capture specific age,
period or cohort effects. Under the Binomial distribution assumption of deaths, residual deviance for
each model is defined by (Debón et al. 2010, p. 330):

D(dx,t, d̂x,t) = ∑
x,t

dev(x, t) = ∑
x,t

2ωx,t

{
dx,t log

(
dx,t

d̂x,t

)
+ (E0

x,t − dx,t) log
(E0

x,t − dx,t

E0
x,t − d̂x,t

)}
. (5)

Then, standardised deviance is given by (Pitacco et al. 2009, p. 254):

rx,t = sign(dx,t − d̂x,t)

(
dev(x, t)

φ̂

)1/2

. (6)

The weights ωx,t in Equation (5) are defined as in (4), while φ̂ =
D(dx,t, d̂x,t)

ν
, where ν expresses the

degrees of freedom of the model (the number of the observations minus the number of the model parameters).
Figures 8–14 plot the residuals deviance against age, period (calendar year) and cohort (year of

birth) for models M1–M7, fitted for ages 60–89 of period 1981–2010 for males and females. According
to the structural features of each model, we can make some comments. The evident dispersion of
residuals in the right panels of Figures 8 and 12 reveal the inability of models M1 and M5, respectively
to capture the cohort effect. Moreover, strong patterns in left panels of Figures 12 and 13 illustrate
the weakness of models M5 and M6 respectively to capture the age effects, especially for females.
Nonetheless, all the models capture effectively period effects.
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Figure 8. Residuals deviance of M1 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.



Risks 2018, 6, 44 12 of 34

60 65 70 75 80 85 90

-3
-2

-1
0

1
2

3

age

re
si

du
al

s

1980 1985 1990 1995 2000 2005 2010

-3
-2

-1
0

1
2

3

calendar year
re

si
du

al
s

1890 1900 1910 1920 1930 1940 1950

-3
-2

-1
0

1
2

3

year of birth

re
si

du
al

s

60 65 70 75 80 85 90

-3
-2

-1
0

1
2

3

age

re
si

du
al

s

1980 1985 1990 1995 2000 2005 2010

-3
-2

-1
0

1
2

3

calendar year

re
si

du
al

s

1890 1900 1910 1920 1930 1940 1950

-3
-2

-1
0

1
2

3

year of birth

re
si

du
al

s

Figure 9. Residuals deviance of M2 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.
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Figure 10. Residuals deviance of M3 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.
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Figure 11. Residuals deviance of M4 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.
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Figure 12. Residuals deviance of M5 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.
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Figure 13. Residuals deviance of M6 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.
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Figure 14. Residuals deviance of M7 for males (top panels) and females (bottom panels) in Greece.
Period 1981–2010, ages 60–89.
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3.2.1. Information Criteria

Generally, a better fit is expected from models with more parameters. According to
Haberman and Renshaw (2011), an alternative way to address this conjecture is to penalize the model
parameters using AIC (Akaike 1974) and BIC (Schwarz 1978) information criteria for each model.
In addition, Hurvich and Tsai (1989) derived a correction of the Akaike criterion, the AIC(c), which is
more suitable for small samples. Therefore, we use AIC, AIC(c) and BIC, which are defined for model
Mi, i = 1, . . . , 7 as:

AICi(c) = AICi +
2ki(ki + 1)
n− ki − 1

, with AICi = 2ki − 2 log L̂i and

BICi = (log n)ki − 2 log L̂i ,

where L̂i is the maximum likelihood estimate, ki is the number of the effective parameters5 estimated
by Mi and n is the number of the observations. Smaller AIC, AIC(c) and BIC values indicate a better
model fitting. Table 2 presents maximum log likelihood estimates along with the number of the
effective parameters and the corresponding AIC, AIC(c) and BIC values of M1–M7 (ranking order in
brackets), for males and females.

In line with BIC male results, M6 is on top, M3 follows and M7 is third, while AIC and AIC(c)
male rankings coincide, with M7, M6, M3 being on top. Note that BIC penalizes model parameters
stronger than AIC and AIC(c), we therefore expect to rank better models containing less parameters.
For females, all information criteria coincide to M7, M4 and M2 rank order. Unsurprisingly, M1 and
M5 models hold the worst criteria ranking for both genders, indicating that cohort effect must be taken
into account in Greek male and female mortality modelling.

Table 2. The maximum log likelihood and the number of the effective parameters along with AIC(c),
AIC and BIC values (ranking order in brackets) of the mortality models for males and females.

Males

Model Maximum Effective AIC AIC(c) BICLog Likelihood Parameters

M1 −4487.643 88 9151.287(7) 9172.483(7) 9566.560(7)
M2 −4191.779 129 8641.558(4) 8689.610(4) 9250.311(4)
M3 −4218.961 100 8637.922(3) 8665.708(3) 9109.823(2)
M4 −4202.953 128 8661.907(5) 8709.151(5) 9265.940(5)
M5 −4501.146 60 9122.291(6) 9131.835(6) 9405.432(6)
M6 −4209.024 101 8620.048(2) 8648.429(2) 9096.669(1)
M7 −4160.547 130 8581.094(1) 8629.960(1) 9194.565(3)

Females

M1 −4980.632 88 10,137.265(6) 10,158.461(6) 10,552.538(6)
M2 −4254.321 129 8766.643(3) 8814.694(3) 9375.395(3)
M3 −4367.542 100 8935.085(4) 8962.870(4) 9406.986(4)
M4 −4235.015 128 8726.030(2) 8773.275(2) 9330.064(2)
M5 −5279.019 60 10,678.038(7) 10,687.581(7) 10,961.178(7)
M6 −4474.985 101 9151.969(5) 9180.349(5) 9628.590(5)
M7 −4209.487 130 8678.975(1) 8727.841(1) 9292.447(1)

5 The sum of the estimated parameters minus those that reflect each model’s constraints.
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3.2.2. Likelihood-Ratio Test

In Table 1, we can easily observe that some models are special cases of others. More specifically
models M1 and M3 are nested within M2, M3 in M4, M5 nests in M6 and M7 and finally, M6 is nested
within M7. In order to test the null hypothesis that the nested model is the correct versus the alternative
hypothesis that the more general is correct, we follow Cairns et al. (2009) in using the Likelihood Ratio
(LR) test . Six pairs of tested models and their statistics are presented for both genders in Table 3.
LR statistic is given by ψLR = 2 log L̂2

L̂1
, where L̂2 is the maximum likelihood estimate of the general

model and L̂1 of the nested model, while ψLR approximates a χ2 distribution, with n2 − n1 degrees
of freedom, where n2 are the degrees of the general model and n1 of the nested model. For each pair
of models in Table 3, null hypothesis is rejected in a significance level α, since ψLR > χ2

(n2−n1),α
or the

p-value = 1− Fχ2
(n2−n1)

(ψLR). Our testing results confirm information criteria rankings, suggesting

that models with more parameters fit on Greek data better than more parsimonious models.

Table 3. Likelihood ratio test statistics for pairs of nested models (H0) within general models (H1).

Males

H0: Nested Model H1: General Model Likelihood Ratio Degrees of Freedom p-ValueTest Statistic

M1 M2 591.730 41 <0.0001
M3 M2 54.364 29 <0.0001
M3 M4 32.015 28 <0.0001
M5 M6 584.240 41 <0.0001
M5 M7 681.200 70 <0.0001
M6 M7 96.955 29 <0.0001

Females

M1 M2 1452.600 41 <0.0001
M3 M2 226.440 29 <0.0001
M3 M4 265.050 28 <0.0001
M5 M6 1608.100 41 <0.0001
M5 M7 2139.100 70 <0.0001
M6 M7 530.990 29 <0.0001

4. Mortality Projection

In this section, we estimate future mortality rates using models M1–M7 for both genders.
Projection methods are based on the extrapolation of period and cohort parameters for each model
fitted on Greek data. Currie (2016) stated that the key point in order to obtain as accurate as possible
mortality forecasts is to select the most appropriate time series models that reflect to period and cohort
dynamics for a given population. In similar comparative studies, Cairns et al. (2011, p. 357) and
Haberman and Renshaw (2011, p. 53) modelled period indices using a multivariate random walk with
a drift and cohort indices with univariate ARIMA models.

In our case, we thoroughly selected an appropriate univariate ARIMA model for each period and
cohort index over a range of candidate models, according to KPSS (Kwiatkowski et al. 1992), ADF
(Dickey and Fuller 1979) and PP (Phillips and Perron 1988) unit root tests and the information criteria
values. More precisely, our choice was based on time series overall performance against AIC, AICc
and BIC penalized scores. Discordance issues between criteria values were addressed by preferring
simpler time series models on grounds of parsimony. Therefore, κt’s in models M2, M3, M4, M6 and
M7 are assumed to be independent of the corresponding γc’s for each mortality model, following
respectively univariate ARIMA(p,d,q) processes of the forms:

(1− φ1L− · · · − φpLp) (1− L)d κt = δ0 + (1 + θ1L + · · ·+ θqLq) et , (7)
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(1− φ
′
1L− · · · − φ

′
pLp) (1− L)d γc = δ

′
0 + (1 + θ

′
1L + · · ·+ θ

′
qLq) e

′
c , (8)

where Ld is the time lag operator that shifts data d periods back, δ0 and δ
′
0 are constant drift parameters,

φ1, · · · , φp and φ
′
1, · · · , φ

′
p are the autoregressive coefficients with φp 6= 0, φ

′
p 6= 0, while θ1, · · · , θq and

θ
′
1, · · · , θ

′
q are the moving average parameters with θq 6= 0, θ

′
q 6= 0 and et, e

′
c are white noise processes.

Tables 4 and 5 present the selected ARIMA models for period and cohort indices, respectively for males
and females. For all models period indices are assumed to be modelled independently. Also remind
that M1 and M5 do not incorporate a cohort index.

Table 4. Selected ARIMA(p,d,q) models for the period index κ
(i)
t , i = 1, 2, 3 of male and female

mortality models.

Males

Model κ
(1)
t κ

(2)
t κ

(3)
t

M1 ARIMA(0,2,2) —– —–
M2 ARIMA(0,1,1) with drift —– —–
M3 ARIMA(1,1,0) with drift —– —–
M4 ARIMA(0,2,2) ARIMA(2,1,0) with drift —–
M5 ARIMA(1,2,1) ARIMA(2,1,0) with drift —–
M6 ARIMA(0,2,2) with drift ARIMA(0,1,1) with drift —–
M7 ARIMA(1,2,1) ARIMA(2,2,0) ARIMA(0,1,1) with drift

Females

Model κ
(1)
t κ

(2)
t κ

(3)
t

M1 ARIMA(1,1,0) with drift —– —–
M2 ARIMA(3,1,0) with drift —– —–
M3 ARIMA(3,1,0) with drift —– —–
M4 ARIMA(1,1,0) with drift ARIMA(1,1,0) with drift —–
M5 ARIMA(0,2,2) ARIMA(0,1,0) with drift —–
M6 ARIMA(0,1,1) with drift ARIMA(0,1,1) with drift —–
M7 ARIMA(2,1,0) with drift ARIMA(2,2,0) ARIMA(0,1,1) with drift

Table 5. Selected ARIMA(p,d,q) models for the cohort index γc of male and female mortality models.

Model γc for Males γc for Females

M2 ARIMA(2,1,0) ARIMA(2,1,1) with drift
M3 ARIMA(0,0,1) ARIMA(4,1,1)
M4 ARIMA(0,0,2) ARIMA(4,1,1)
M6 ARIMA(0,1,3) ARIMA(3,0,2)
M7 ARIMA(0,0,1) ARIMA(4,0,1)

Time series Equations (7) and (8) were simulated to produce 1000 trajectories for future values
of the period κ̂tn+s and the cohort γ̂tn+s−x indices, where s = 1, 2, · · · , 20 denotes the years of the
forecasting horizon. Then, future simulated mortality values are extracted using:

ˆlogitqx,tn+s = αx +
N

∑
i=1

β
(i)
x κ̂

(i)
tn+s + γ̂tn+s−x ,

or

q̂x,tn+s =
exp(αx + ∑N

i=1 β
(i)
x κ̂

(i)
tn+s + γ̂tn+s−x)

1 + exp(αx + ∑N
i=1 β

(i)
x κ̂

(i)
tn+s + γ̂tn+s−x)

, (9)
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where tn = 2010 is the last year of the fitting period and ˆlogitqx,tn+s denotes the logit-transform of
future probabilities of death for each age x for models M1–M7.

Then, the predictive power of mortality models was evaluated by measuring the differences
(errors) between the observed and the forecasted values for the same period. For the first three
out-of-sample years of projection (tn = 2010, s = 1, 2, 3), in which Greek mortality data are available
in HMD, forecast accuracy of models M1–M7 can be evaluated by averaging the mean absolute error
(MAE) and the mean absolute percentage error (MAPE) values over the 3-years period for ages 60 to
89, using Equations (10) and (11), respectively.

MAEavg =
1

3× (89− 60 + 1)

3

∑
s=1

89

∑
x=60
|q̂x,2010+s − qx,2010+s| × 100 , (10)

MAPEavg =
1

3× (89− 60 + 1)

3

∑
s=1

89

∑
x=60

∣∣∣∣ q̂x,2010+s − qx,2010+s

qx,2010+s

∣∣∣∣ . (11)

Short-term male and female forecast errors of period 2011–2013 were extracted for models M1–M7,
while for the sake of comparison, extrapolation was firstly performed by using fitted jump-off rates6

and secondly by using actual rates for the year 2010 (Table 6), taken directly from HMD. Measures
show that models M2, M3, M4 and M6 produce better forecasts for both genders (ranking order in
brackets), either by using fitted or actual jump-off rates. Especially, when fitted rates are used, models
M2 and M3 distinguish for both genders, while for actual rates M4 and M3 are dominant for males and
M6 outperforms for females. In any case, both of the three error measures give the higher error values
for M1, M5 and M7, indicating the presence of cohort effects in male and female mortality indices that
cannot be captured by models M1, M5 and a possible overfitting behaviour of M7.

Table 6. Averaged values (ranking order in brackets) of the mean absolute error (MAE) and mean
absolute percentage error (MAPE) measures of the forecasting period 2011–2013 using fitted or actual
jump-off rates for males and females.

Fitted Jump-off Rates

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEavg 0.332(6) 0.251(1) 0.253(2) 0.287(3) 0.327(5) 0.295(4) 0.346(7)
MAPEavg 10.194(4) 6.496(1) 6.583(2) 9.385(3) 10.935(6) 10.559(5) 15.697(7)

Females

MAEavg 0.207(4) 0.147(1) 0.165(2) 0.219(5) 0.234(6) 0.198(3) 0.281(7)
MAPEavg 10.363(3) 6.052(1) 7.981(2) 12.239(5) 13.396(6) 11.216(4) 22.340(7)

Actual Jump-off Rates

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEavg 0.273(6) 0.213(3) 0.208(2) 0.192(1) 0.289(7) 0.237(4) 0.247(5)
MAPEavg 6.780(5) 5.222(2) 5.086(1) 5.371(3) 6.916(6) 6.020(4) 8.545(7)

Females

MAEavg 0.213(6) 0.180(3) 0.168(2) 0.196(4) 0.200(5) 0.165(1) 0.250(7)
MAPEavg 7.073(5) 5.570(2) 5.336(1) 6.225(4) 7.283(6) 5.866(3) 11.818(7)

6 The probabilities of death in the last year of the fitting period.
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Long-term mortality projections for a 20 year horizon ahead were obtained using (9) with actual
jump-off rates for the seven mortality models, incorporating 1000 simulation trajectories of the selected
period and cohort indices. The simulated one year probabilities of death (in logarithmic scale) for
models M1–M7 are illustrated for both genders in Figure 15.

Plotting results reveal the appropriateness of a mortality model for long-term forecasting.
In addition, according to Cairns et al. (2011); Villegas et al. (2017) differences in uncertainty levels of
each model indicates the significance of model risk in mortality forecasting.

Figure 15 shows that M1, M2 and M3 forecasts seem to be implausible for both genders, since fans
at age 85 are notably narrower than at age 65. Furthermore, M4 and M6 fans at age 75 show a weak,
but not significant increase for both genders, while fans at age 85 show some decreasing fluctuations.
On the other hand, parsimonious model M5 performs well in general for both genders. Finally, female
fans of model M7 are narrower age 75 and 85 than at 65 and show an unreasonable increase in older
ages. This is mainly because forecasts are linked to the estimated cohort effect of Figure 7 that exhibits
a steep, upward and linear trend between cohort years 1930 and 1940.

Animated figures of the overall evolution of death rates for each model are also given in
Figures A1–A7 of Appendix A, as an alternative, more interactive way to present our results. Animated
figures were created using the “animation” R-package (Xie 2013).

4.1. Assessing Parameter Risk

We observe that mortality projections obtained with stochastic models incorporate only the
forecast error that arises from the estimation of the period and the cohort indices, ignoring the effects
of the so called parameter risk. Especially, for countries with limited data experience such as Greece,
use of bootstrapping techniques is required to address this issue. Therefore, we exploit the advantages
of a residual bootstrapping method to assess the parameter uncertainty in mortality projections for the
seven models, described in the previous sections.

In their study, Renshaw and Haberman (2008) proposed a residual bootstrapped method to
accommodate uncertainty in estimating the parameters of the Lee-Carter model under the Poisson
assumption of deaths. In our case, we produce bootstrap samples under the Binomial distribution
assumption, following a slightly modified approach described by Debón et al. (2010, p. 330).

Simulations were carried out using “StMoMo” R-package and 1000 trajectories were generated
to compare the prediction intervals of the forecast error and the parameter estimation uncertainty of
projections. Figure 16 illustrates for both genders the 95% prediction intervals for the probabilities
of death at ages x = 65, x = 75 and x = 85 for models M1–M7, fitted to Greek data for ages 60–89 of
the period 1981–2010. Historical rates are denoted by thick dots, solid lines denote the corresponding
fitted rates and dot-dashed lines depict the 95% confidence intervals including parameter uncertainty.
For the projection period 2011–2030, dashed lines represent the central forecast values and dot lines
show the 95% prediction intervals excluding parameter uncertainty. The dot-dashed lines depict the
95% prediction intervals accounting for parameter uncertainty.

Figure 16 shows an evident parameter uncertainty in the projection period for males (left panels)
of models M2 (age 85) and M7 (ages 65 and 85). Parameter variability is also observed for females of the
same models (right panels), with an implausible upward trend for M7 at age 75 and 85, which indicates
the inappropriateness of this model to forecast female mortality at higher ages.
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Figure 15. Cont.
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Figure 15. Long-term mortality projection results at ages x = 65 (bottom lines), x = 75 (middle lines) and
x = 85 (top lines) derived from models M1–M7 fitted to males (left panels) and females (right panels)
for ages 60–89 of the period 1981–2010. The shades regions in the projection period 2011–2030 denote
the 50%, 80% and 95% prediction intervals.
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Figure 16. 95% prediction intervals for the probabilities of death at ages x = 65, x = 75 and x = 85 for
models M1–M7, fitted to males (left panels) and females (right panels) for ages 60–89 and the period
1981–2010 (thick dots). Solid lines denote the corresponding fitted rates and dot-dashed lines depict
the 95% confidence intervals including parameter uncertainty. For the projection period 2011–2030,
the central forecast values are given by dashed lines. Dashed lines and dot lines show the 95%
prediction intervals with and without parameter uncertainty, respectively.



Risks 2018, 6, 44 24 of 34

4.2. Application in Insurance-Related Products

An appropriate mortality modelling method constitutes an essential tool in pricing insurance
products. In addition, as Lovász (2011) point out, insurance-related application results reflect the
appropriateness of a model choice. In the following, we apply the cohort mortality forecasts obtained
from M1–M7 to calculate life insurance premiums, similarly as in Tsai and Lin (2016, p. 16). Let us
denote as A1

x,tn+1:K
the fully discrete life insurance premium issued to an insured aged x in year tn + 1,

payable at the end of the year of death, if it occurs within a term of K years and as A
x,tn+1:

1
K

the pure

endowment issued to an insured aged x in year tn + 1, payable at the end of K years in case of being
alive. Net premiums (NP) are given respectively by:

A1
x,tn+1:K

=
K−1

∑
k=0

k px,tn+1 . qx+k,tn+1+k . (1 + i)−(k+1) , (12)

A
x,tn+1:

1
K
= K px,tn+1 . (1 + i)−K , (13)

where k px,tn+1 denotes the k-year survival probability for age x in year tn + 1, while its estimate is given
by k p̂x,tn+1 = p̂x,tn+1. . . . .p̂x+k−1,tn+1+k−1, k = 1, . . . , K− 1 (similarly for K p̂x,tn+1), i is the interest rate
and 0 p̂x,tn+1 = 1.

Since mortality projection models are typically used for pension applications, it would also be
beneficial to see the performance of a life annuity product. Let us denote as äx,tn+1:k a discrete life
annuity-due of an insured aged x in year tn + 1, payable on an annual basis for up to K years, so long
as insured survives. Actuarial present value (APV) is given by:

äx,tn+1:K =
K−1

∑
k=0

k px,tn+1 . (1 + i)−k . (14)

Hence, we apply the estimated mortality rates obtained from M1–M7, fitted to 1981–2000 with
actual jump-off rates to calculate life insurance NPs and annuity APV for ages 60–79 with K = 10,
assuming i = 4%. As before, we use averaged MAE and MAPE to evaluate the errors between
forecasted NPs and those produced from the observed mortality rates for the years 2001–2010. For
each model, error measures for life insurance premiums are given by:

MAE(K=10)
x =

1
20

79

∑
x=60

∣∣∣∣Â1
x,2001:10

− A1
x,2001:10

∣∣∣∣× 100 , (15)

MAPE(K=10)
x =

1
20

79

∑
x=60

∣∣∣∣∣∣
Â1

x,2001:10
− A1

x,2001:10

A1
x,2001:10

∣∣∣∣∣∣ . (16)

Similarly, MAE and MAPE formulas are adjusted for pure endowment or annuity products by
replacing A1

x,tn+1:K
with A

x,tn+1:
1
K

or äx,tn+1:K in (15) and (16). Table 7 presents the averaged values of

MAE and MAPE values in ranking order for a 10 year forecasted life insurance, pure endowment and
life annuity using actual jump-off rates for males and females, aged 60–79 in 2001–2010, while Figure 17
illustrates the MAE and MAPE values against age for life insurance and annuity products, respectively
for males (left panels) and females (right panels) for the top four models in ranking.

According to MAE and MAPE values, models M2, M6 and M7 produce better insurance-related
forecasts for males, while M2, M3 and M5 are the top ranked models for females. For both genders,
measures show that M2 outperforms in aggregate. However, regarding its robustness (especially for
female data) and taking into account values of Table 7, a good insurance-related model choice should
also be M6 for males and M3 for females. This fact is also evident in Figure 17, where absolute error
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and absolute percentage error values against age for the corresponding models lie on the lower levels
for both insurance products.

Table 7. Averaged values (ranking order in brackets) of MAE and MAPE measures for 10 year forecasted
life insurance, pure endowment and life annuity values using actual jump-off rates for males and
females, aged 60–79 in 2001–2010.

Life Insurance

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEx 2.222(6) 1.242(1) 2.284(7) 2.199(5) 2.020(4) 1.456(2) 1.799(3)
MAPEx 7.651(6) 5.536(1) 8.895(7) 7.626(5) 7.412(4) 5.557(2) 6.490(3)

Females

MAEx 1.605(6) 0.870(1) 0.885(2) 1.494(5) 0.914(3) 1.016(4) 2.150(7)
MAPEx 9.264(5) 6.404(1) 6.901(3) 9.268(6) 6.426(2) 6.930(4) 11.883(7)

Pure Endowment

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEx 1.605(6) 0.927(1) 1.666(7) 1.590(5) 1.451(4) 1.039(2) 1.293(3)
MAPEx 4.114(7) 2.190(1) 4.094(6) 4.064(5) 3.619(4) 2.531(2) 3.212(3)

Females

MAEx 1.198(6) 0.623(1) 0.651(2) 1.091(5) 0.690(3) 0.738(4) 1.556(7)
MAPEx 2.615(6) 1.282(2) 1.242(1) 2.250(5) 1.408(3) 1.565(4) 3.240(7)

Life Annuity

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEx 7.711(6) 5.506(2) 8.132(7) 7.637(5) 6.781(4) 5.225(1) 5.924(3)
MAPEx 1.127(6) 0.785(2) 1.168(7) 1.112(5) 0.980(4) 0.748(1) 0.856(3)

Females

MAEx 5.484(6) 2.465(1) 2.944(2) 4.995(5) 3.254(4) 3.091(3) 6.466(7)
MAPEx 0.754(6) 0.325(1) 0.386(2) 0.673(5) 0.439(4) 0.416(3) 0.873(7)



Risks 2018, 6, 44 26 of 34

60 65 70 75 800.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Life Insurance Absolute Error

Age

M2

M3

M5

M6

60 65 70 75 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Life Insurance Absolute Percentage Error

Age

M2

M3

M5

M6

60 65 70 75 80

0.
00

0.
01

0.
02

0.
03

0.
04

Life Insurance Absolute Error

Age

M2

M5

M6

M7

60 65 70 75 80

0.
00

0.
05

0.
10

0.
15

Life Insurance Absolute Percentage Error

Age

M2

M5

M6

M7

60 65 70 75 80

0.
00

0.
01

0.
02

0.
03

Pure Endowment Absolute Error

Age

M2

M5

M6

M7

60 65 70 75 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Pure Endowment Absolute Percentage Error

Age

M2

M5

M6

M7

60 65 70 75 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Pure Endowment Absolute Error

Age

M2

M3

M5

M6

60 65 70 75 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Pure Endowment Absolute Error

Age

M2

M3

M5

M6

Figure 17. Cont.



Risks 2018, 6, 44 27 of 34

60 65 70 75 80

0.
00

0.
05

0.
10

0.
15

0.
20

Life Annuity Absolute Error

M2

M5

M6

M7

60 65 70 75 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Age

Life Annuity Absolute Percentage 

Error

Age

M2

M5

M6

M7

60 65 70 75

0.
00

0.
02

0.
04

0.
06

0.
08

Life Annuity Absolute Error

M2

M3

M5

M6

60 65 70 75

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

Age

Life Annuity Absolute Percentage 

Error

Age

M2

M3

M5

M6

80

80

Figure 17. Absolute error and absolute percentage error values of life insurance and annuity products
for the top four models in ranking for males (left panels) and females (right panels).

5. Results

In this section, we summarize the fitting and forecasting results of this analysis and our findings
are compared with the corresponding results obtained from the original papers. Our study shows that
all the models capture effectively the period effects for both genders. We can also notice that the most
parsimonious models M1 and M5 do not capture the cohort effect as it is illustrated in the right panels of
male and female scatter plots of residual deviance in Figures 8 and 12. Furthermore, models M5 and M6

seem to be inadequate to capture the age effects, especially for females (left panels in Figures 12 and 13).
AIC and AIC(c) scores coincide to the fact that models M7, M6 and M3 outperform in ordered

ranking for males, while in the BIC rankings7 M6 is on top, M3 follows and M7 is third. For females,
all measure values show that M7 comes out first, M4 second and M2 follows. For both genders, models
M1 and M5 have the worst criteria ranking for both genders, lacking a cohort term that must be taken
into account in Greek male and female mortality modelling. Likelihood ratio results confirm the
information criteria ranking, indicating that the more complicated models M2, M4, M6 and M7 are in
aggregate more suitable for modelling Greek mortality.

Mortality projections derived from the seven models are illustrated for both genders in Figure 15.
Plotting results show that long-term forecasts from model M1, M2 and M3 seem to be unreliable for
both genders, since figures at age 85 are notably narrower than at age 65. In addition, model M7 for
females shows an implausible increase of mortality rates at ages 75 and 85. However, forecast accuracy

7 Inconsistency in male ranking results is expected, since BIC criterion penalizes stronger models with more parameters.
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measures of Table 6 suggests that models M2, M3, M5 and M6 produce better short-term forecasts for
both genders.

Parameter uncertainty is evident in models M2 and M7 for both genders in higher ages (Figure 16).
Parameter variability is also observed in model M5 for females, while while the implausible upward
trend for M7 at age 75 and 85 raise some questions regarding the appropriateness of this model to
forecast Greek female mortality.

Comparison with Original Papers

Now we present the commonalities and differences between estimation results of our study and
the corresponding findings obtained from the original papers.

Lee and Carter (1992) modelled the mortality rates of the entire United States population for
grouped ages 0–85+ of years 1933–1987. The same year, Carter and Lee (1992) implemented their
model for males and females separately, using the SVD method to derive forecasts of the κ

(1)
t time

index for a full range of grouped ages 0–85+ of the years 1933–1988. Fitted values of αx and β
(1)
x for

Greek males and females of our study show similar trends with the corresponding results obtained
for both genders of the United States population data. Likewise, comparing our estimates with the
corresponding Belgian results obtained from the Poisson Lee-Carter approach of Brouhns et al. (2002),
we observed that their maximum likelihood estimates of αx, β

(1)
x and κ

(1)
t for ages 60–98 in the years

1960–1998 are in line with the Greek results, especially for males, where the estimates lie between the
same levels.

The Haberman and Renshaw (2011) model estimates obtained from fitting ages 55–89 of
years 1961–2007 for England and Wales male data. Even if estimates show similar patterns, they
cannot be directly compared with our results, since authors used different model constraints
(Haberman and Renshaw 2011, p. 37) in their analysis.

The Currie (2006) model was initially fitted to selected assured lives, aged 20–90, for the years
1947–2002. Estimates of αx are in accordance with our results for both genders. The period component
of the model shows an upward trend between 1950–1975, but after the year 1980, it complies with
Greek patterns.

Plat (2009) fitted his model to three different data sets of males for: the United states (ages 20–84,
years 1961–2005), the England and Wales (ages 20–89, years 1961–2005) and the Netherlands (ages
20–90, years 1951–2005). Estimated parameters αx and κ

(1)
t , κ

(2)
t and γt−x were illustrated only for the

United States mortality data. Although his αx and κ
(1)
t male estimates were based on a wide age range

of data fitted onto his extended model form, they totally agree with our corresponding values exported
from the reduced model form used for Greek data of ages 60–89. In the contrary, κ

(2)
t parameter

estimates have completely different trends for the entire common period, while the γt−x parameter
values show similar patterns with the Greek males between cohort years 1890–1930 (Figure 4).

Cairns et al. (2006) illustrated their model using England and Wales data of males, aged 60–90,
for the years 1961–2002. Their results show that κ

(1)
t estimated values have a steep downward trend

for the whole fitting period, while κ
(2)
t values follow an opposite upward trend for the same years.

Estimates of these two parameters are obviously similar with the corresponding Greek results, obtained
for ages 60–89 of period 1981–2010. This is more evident for κ

(2)
t parameter, where its values lie between

the same levels for both countries.
The Cairns et al. (2009) “cohort” extension of the Cairns et al. (2006) model was fitted to England

and Wales (1961–2004) and United States (1968–2003) male data for ages 60–89. κ
(1)
t and κ

(2)
t estimates

for England and Wales data are in accordance with the Greek values, showing a decreasing trend for
the first parameter and an upward trend for the second one, respectively. Cohort estimates lie between
the same levels with the Greek ones, with an exception after birth year 1935, where Greek cohort
estimates jump abruptly to higher levels. The corresponding κt results for the United States data are
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quite similar, but the γt−x parameter estimates show a steep fall around the year 1920 in comparison
with the derived Greek results.

The “quadratic” extension of the Cairns et al. (2006) model was illustrated in Cairns et al. (2009)
for the England and Wales (1961–2004) and the United States (1968–2003) male data for ages 60–89.
Although κ

(1)
t , κ

(2)
t and γt−x estimates for England and Wales and United States males take similar

values and show the same patterns with the corresponding Greek population data, some differences
are observed in the estimates κ

(3)
t , where a steep, upward trend between the years 1985–2003 is evident

for both countries in contrast with the decreasing Greek values.
For the sake of comparability, we point out that when van Berkum et al. (2016) analyzed the

impact of allowing for multiple structural changes on a large collection of mortality models for Dutch
and Belgian male data of ages 60–89 for the period 1950–2008, they reached to similar ranking results
with our findings.

6. Concluding Remarks

A comparative analysis of seven stochastic mortality models of a common APC framework was
conducted for Greek male and female data. The fitting behaviour of each model was examined using
specific criteria and the corresponding forecasting results were presented. Fitting behaviour of each
model was evaluated using AIC, AIC(c) and BIC information criteria, as well as the likelihood ratio test.
Models M3, M6 and M7 for males, as well as models M2 , M4 and M7 for females were respectively
distinguished for their fitting performance.

Although in such analyses is highly important all of the considered models should provide a
good fit to historical data, it does not imply that a model which fits better the historical data does
necessarily give the best forecasting results. That point was also underlined in similar studies that
have been conducted for other datasets in the literature (Cairns et al. 2011). Especially for the case
of Greece, a cohort effect was identified in the data that was accounted for the selection of the most
appropriate mortality model.

The accuracy of the short-term forecasts was assessed by the MAE and the MAPE error values.
Backtesting results showed that models M2, M3 and M4 for males and M2, M3 and M6 for females
provide with the most reliable short-term forecasts.

Parameter uncertainty was also identified in some cases (more evident in M2 for males and M7

for females), indicating the inappropriateness of the corresponding models for long-term forecasts.
In addition, parameter estimates for Greek data were compared with the corresponding results obtained
from the original papers, where each model was initially discussed and implemented, revealing several
commonalities in patterns.

In this paper, we examined the fitting and forecasting performance of seven stochastic mortality
models, using all the officially available Greek data. Furthermore, an application of mortality modelling
in pricing insurance-related products was also included for the sake of completeness. However, it
is highly important to point out that modelling efficiency and forecasting reliability may depend on
unexpected events and other biological or random factors that were not taken into account.

The main contribution of this paper is to be the first work in modelling comparison of Greek
mortality, with applications in pricing insurance-related products. Unfortunately, limited availability
of historical data was an additional drawback for a more effective modelling. In the future, with larger
period of data, we hope that we will be able to obtain more precise and extensive results.
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Appendix A. Animated Plots

Animated plots of the one-year probabilities of deaths in logarithmic scale for the years 1981–2030,
for males and females aged 60–89, were designed as an alternative, more interactive way to present
projection results.

Figure A1. M1 for males and females.

Figure A2. M2 for males and females.

Figure A3. M3 for males and females.
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Figure A4. M4 for males and females.

Figure A5. M5 for males and females.

Figure A6. M6 for males and females.
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Figure A7. M7 for males and females.
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