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Abstract: Most of the models leading to an analytical expression for option prices are based on
the assumption that underlying asset returns evolve according to a Brownian motion with drift.
For some asset classes like commodities, a Brownian model does not fit empirical covariance and
autocorrelation structures. This failure to replicate the covariance introduces a bias in the valuation
of calendar spread exchange options. As the payoff of these options depends on two asset values
at different times, particular care must be taken for the modeling of covariance and autocorrelation.
This article proposes a simple alternative model for asset prices with sub-exponential, exponential
and hyper-exponential autocovariance structures. In the proposed approach, price processes are seen
as conditional Gaussian fields indexed by the time. In general, this process is not a semi-martingale,
and therefore, we cannot rely on stochastic differential calculus to evaluate options. However, option
prices are still calculable by the technique of the change of numeraire. A numerical illustration
confirms the important influence of the covariance structure in the valuation of calendar spread
exchange options for Brent against WTI crude oil and for gold against silver.
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1. Introduction

Gaussian fields have been used for several decades in the analysis of spatial statistics. One of
the key features in spatial statistics is the autocorrelation of data. The observations at locations in
close spatial proximity often tend to be more similar than observations at locations far apart. We
refer the interested reader to the books of Cressie (1993), Adler (1981) or Matern (1986) for a detailed
presentation of spatial statistics and the theory of Gaussian fields. An introduction to Gaussian
processes on general parameter spaces may be found in Adler and Taylor (2009).

We also find applications of Gaussian fields in the financial literature, e.g., Goldstein (2000)
generalized the work of Kennedy (1994) and proposed a model for interest rates based on a
two-dimensional random field. In this model, increments along time are independent, but the
correlation structure between bond yields of different maturities can be arbitrarily chosen. The work in
Kimmel (2004) introduced a state-dependent volatility in this model. Albeverio et al. (2004) extended
previous models for yield curves with Lévy fields. The work in Ozkan and Schmidt (2009) used similar
fields to model the yield curve in the presence of credit risk.

Gaussian fields are also used for actuarial modeling. The work in Biffis and Millossovich (2006)
modeled the intensity of mortality as a random field, in order to capture cross-generation (risk class)
effects induced by the on-going management of portfolios of policies. Based on this framework,
Biagini et al. (2017) studied the pricing and hedging of life insurance liabilities. The work in Wu (2016)
developed Gaussian process regression methods for mortality forecasting.
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The pricing of exotic options with a payoff involving asset prices at different times requires
a model able to replicate the covariance of underlying securities. Assuming that asset returns are
ruled by a Brownian motion with drift is convenient for mathematical developments. However,
this model does not replicate the time dependence observed for some asset classes as underlined
by Willinger et al. (1999). On the other hand, option prices usually do not admit any closed form
expressions for models with stronger econometric foundations. These points motivate this research that
has a two-fold objective. Firstly, we propose a Gaussian model that is analytically tractable, with three
possible covariance structure for asset prices. Secondly, we aim to emphasize the importance of the
covariance in the valuation of exotic derivatives. For this purpose, we derive closed form expressions
for calendar exchange spread and Asian calendar exchange spread options. Next, we evaluate in
numerical applications the bias induced by a misspecification of the covariance structure.

In our approach, asset prices are seen as Gaussian fields indexed by time. These fields are
conditional in the sense that their initial value is known. We work with homogeneous fields:
the covariance only depends on the length of the time interval between considered prices. We study
three covariance structures with sub-exponential, exponential and hyper-exponential autocorrelation
functions. After a presentation of model features, we propose a method to simulate conditional
Gaussian fields based on the spectral decomposition of the covariance function. Within this approach,
a simulated sample path is known continuously at all times. This characteristic is particularly useful
for pricing path-dependent options.

In order to emphasize the role played by the correlation on option prices, we evaluate two exotic
derivatives with a payoff depending on asset prices at different times. The first one is the calendar
spread exchange option. This option pays the positive difference between two asset prices observed at
different times. The second derivative is an Asian calendar spread exchange option with geometric
averages. This product pays the positive difference between the geometric average returns of two
assets, calculated over different time intervals. Asian options with arithmetic averages are not studied
as their price does not admit any closed form expression. In the numerical illustration, we calibrate our
models to two pairs of assets (Brent-West Texas Intermediate (WTI) crude oil, silver-gold) and evaluate
exchange options. Our results confirm that the misspecification of the autocorrelation function has a
strong impact on the prices of calendar spread exchange options.

2. Conditional Gaussian Fields

We consider a probability space (Ω,F , Q) endowed with the filtration (Ft)t≥0 on which is defined
a random field Xt indexed by time. Before detailing the features of asset prices, we recall in this section
the main properties of Gaussian random fields. A real valued random field is a family of random
variables Xt indexed by t ∈ R+ with a collection of distribution functions of the form Ft1,...,tn :

Ft1,...,tn(b1, . . . , bn) = P (Xt1 ≤ b1, . . . , Xtn ≤ bn) ,

where b1, ..., bn ∈ R. In this article, we consider Gaussian random fields for which the distribution
Ft1,...,tn(.) is a multivariate normal distribution with a zero mean, E [Xt] = 0. This distribution is fully
characterized by its covariance matrix. The covariance between Xt and Xs is denoted by C(t, s). This is
a non-negative definite function on (R+ ×R+). Given that the mean of the Gaussian field is null,
the covariance function is equal to its cross expectation:

C (t, s) = C [Xt, Xs] = E [XtXs] .

If the covariance function is equal to C(t, s) = t ∧ s, the Gaussian field is a pure Brownian motion
with independent increments. However, a Gaussian field does not have in general independent
increments and is not a Markov process. On the other hand, a Gaussian field is not systematically a
semi-martingale. If the Gaussian field is not a semi-martingale, we cannot rely on stochastic differential
calculus for evaluating options. In counterpart, working with Gaussian fields allows us to reproduce
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with accuracy the autocovariance function of asset prices compared to processes with independent
increments. We will see later that this feature is particularly important for pricing calendar options.
In this article, we consider continuous and differentiable covariance functions, C(t, s) ∈ C∞, and focus
on the homogeneous Gaussian random field. A random field is homogeneous or stationary if E

[
X2

t
]

is
finite for all t and:

1. E [Xt] is constant and independent of t ∈ R+,
2. C (t, s) solely depends on the difference |s− t|.

When the Gaussian field is homogeneous, the covariance function may be rewritten as a function
g : R→ R+,

g(h) = C(t, t + h) ,

= C [Xt+h , Xt] .

The construction of the function g(.) is detailed in the next section. For homogeneous fields,
increments in the t direction are correlated. For t, h ∈ R+, the time covariance is equal to:

C [Xt+u − Xt, Xt] = C [Xt+u, Xt]−C [Xt, Xt] ,

= g (u)− g(0) .

This is a clear difference from the Brownian motion, which has independent increments.
Furthermore, the conditional expectation of Xs with respect to the filtration Ft depends on the whole
sample path of the process and not exclusively on Xt. In general, Xt is then not a Markov process1.

In financial applications, X0 is known at Time 0 and will determine the asset prices. Therefore,
we must determine the conditional distribution of Xt with respect to X0. Given that (Xt, X0)

> is a
bivariate Gaussian distribution:(

Xt

X0

)
d∼ N

((
0
0

)
,

(
g(0) g(t)
g(t) g(0)

))
,

The random variable Zt := Xt|X0 = x is Gaussian d∼ N
(

µt|x , σ2
t|x

)
with a mean and variance

given by:

µt|x = 0 +
g(t)
g(0)

(x− 0) ,

σ2
t|x = g(0)− g(t)2

g(0)
.

Using the properties of the multivariate normal distribution, we directly infer the covariance
between Zt and Zs in the next proposition that is used in later developments.

Proposition 1. The joint distribution of Zt = Xt|X0 = x and Zs = Xs|X0 = x for 0 ≤ t ≤ s is a bivariate
normal random variable with a mean and covariance matrix given by:(

Zs

Zt

)
d∼ N

 g(s)
g(0) x
g(t)
g(0) x

 ,

 g(0)− g(s)2

g(0) g(s− t)− g(s)g(t)
g(0)

g(s− t)− g(s)g(t)
g(0) g(0)− g(t)2

g(0)

 .

1 Excepting the Ornstein Uhlenbeck process, that is a Markov process that may be reformulated as an homogeneous Gaussian
field. However, in general, a time Gaussian field is not a Markov process.
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In the next section, we consider covariance functions of homogeneous fields that are decreasing
functions of h such that limh→∞ g(h) = 0. From the previous proposition, we infer the asymptotic
variance and covariance of Zt:

lim
s→∞

V [Zs|F0] = g(0) (1)

and:

lim
s→∞

C [Zt, Zs|F0] = 0 .

The variance being bounded by a constant, the process Zt reverts around its mean.
If Xt is a Brownian field, the covariance between Xt and Xs for 0 ≤ t ≤ s is equal to C [Xt, Xs] =

s ∧ t = t. Conditional to X0, Zt = Xt|X0 = x and Zs = Xs|X0 = x are distributed according to a

bivariate normal distribution with a mean (x, x)> and a covariance matrix

(
s t
t t

)
. In this particular

case, when t→ ∞, the variance tends to infinity, and the covariance is equal to t:

lim
s→∞

V [Zs|F0] = ∞ (2)

lim
s→∞

C [Zt, Zs|F0] = t .

Therefore, homogeneous fields have a very different behavior from the Brownian motion.
As their variance is asymptotically constant, homogeneous fields revert to their mean and are not
adapted to model stock prices, which usually have a variance increasing with the time horizon. This
property makes them more suitable for the modeling of interest rates or any assets with a mean
reverting yield. The proposed approach is also appropriate for commodities; mainly because their
value reverts to a long run equilibrium level with a constant asymptotic variance as illustrated in
Bessembinder et al. (1995). Gibson and Schwartz (1990); Cortazar and Schwartz (1994); Schwartz
(1997) or Hainaut (2017) modeled commodities with an Ornstein–Uhlenbeck (OU) process presenting
the same features as those of Equation (1).

3. Market Model

The filtration (Ft)t≥0 is generated by d independent continuous and homogeneous random

fields X(k)
t for k = 1 to d. They have a null mean, and the covariance function of X(k)

t is denoted by

gk(h) := Ck(t, t + h) where gk : R→ R+ and gk(h) = gk(−h). The processes X(k)
t are homogeneous

in time, but increments of the random field in the t direction are correlated: for t, h ∈ R+, we have
that C

[
X(k)

t+u − X(k)
t , X(k)

t

]
= gk (u)− gk(0). Furthermore, gk(0) = 1 and X(k)

0 = 0. The probability
measure Q is here the probability measure under which the pricing of financial derivatives is done.
As in the previous section, we denote by Z(k)

t the expectation of X(k)
t conditional to X(k)

0 = 0:

Z(k)
t := X(k)

t |X
(k)
0 = 0 k = 1, ..., d .

The risk-free rate is assumed constant and is denoted r. We assume that the financial market
counts two securities, S(1)

t and S(2)
t , with a homogeneous covariance structure. The yields2 of these

assets are denoted by y(1)t and y(2)t . The relation between yields and prices is S(j)
t = S(j)

0 exp
(

y(j)
t

)
for

2 The yield y(j)
t is here defined by the cumulative return up to time t of the jth asset.
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j = 1, 2. We denote the vector of conditional Gaussian fields by Zt =
(

Z(1)
t , . . . , Z(d)

t

)>
. In our model,

the yields are linear functions of Gaussian fields:(
y(1)t

y(2)t

)
=

(
(r + c1) t− α1(t)
(r + c2) t− α2(t)

)
+

(
σ11 σ12 . . . σ1d
σ21 σ22 . . . σ2d

)
︸ ︷︷ ︸

Σ

Zt ,

where αj(t) for j = 1, 2 are functions from R+ to R+ equal to:

αj(t) :=
1
2

d

∑
k=1

(
σjk

)2 (
1− gk(t)2

)
. (3)

Σ is a 2 × d real matrix3. c1 and c2 are adjustments of the drift for non-financial assets like
commodities. Under the risk-neutral measure, commodities earn on average the risk-free rate plus
the cost of carry and less the convenience yield. If S(1)

t and S(2)
t are financial assets, these factors are

null: c1 = c2 = 0. According to the usual financial theory, discounted financial security prices must be
martingale processes under the pricing measure Q. More precisely if Σj,. is the jth line of Σ, discounted

prices are such that E
[
e−rTS(j)

T |Ft

]
= S(j)

0 E
[
e−αj(T)+Σj,.ZT |Ft

]
for any times t ≤ T. Except in the case

of the Brownian motion, a time Gaussian field depends in general on its sample path in a complex
manner, and the process is not Markovian. Therefore, the expectation E

[
eΣj,.ZT |Ft

]
does not admit a

closed form solution, and the drift αj(T) that ensures that discounted prices are always martingale

is unknown4. However, at time t = 0, the martingale condition E
[
e−rTS(j)

T |F0

]
= S(j)

0 is fulfilled if

αj(t) are defined by Equation (3). If S(1)
t and S(2)

t are non-financial assets, their future price is equal to

E
[
S(j)

T |F0

]
= S(j)

0 e(r+cj)T for j = 1, 2, and this relation holds only if αj(t) are defined by Equation (3).

If we remember Proposition 1 and given that gk(0) = 1, the autocovariance of y(j)
t is:

C
[
y(j)

t , y(j)
s |F0

]
=

d

∑
k=1

σ2
jk (gk(s− t)− gk(s)gk(t)) f or j = 1, 2,

whereas the covariance of y(1)t and y(2)s is equal to:

C
[
y(1)t , y(2)s |F0

]
= E

[
y(1)t y(2)s |F0

]
−E

[
y(1)t |F0

]
E
[
y(2)s |F0

]
,

=
d

∑
k=1

σ1kσ2k (gk(s− t)− gk(s)gk(t)) .

We remark that this is an important difference with existing models using Gaussian fields,
e.g., Goldstein (2000) or Kennedy (1994) developed a model for interest rates in which time increments
are independent. In this particular case, the Gaussian field is a semi-martingale, and we can use the
Itô’s calculus to deduce the main properties of asset dynamics.

3 WE remark that Σ may eventually be replaced by a time-dependent matrix Σ(t) in order to replicate seasonality effects in
the covariance. In this framework, the pricing by simulations would still be possible.

4 Notice that the same problem arises for models based on fractional Brownian motions, which are not arbitrage free (see,
e.g., Cheridito (2003) and Bender et al. (2006).
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4. Choice of Autocovariance Functions

In this article, we consider three types of autocovariance functions that are built with Bochner’s
theorem. A function g(h) is eligible to be an autocovariance function if it is positive definite. The work
in Bochner (1993) showed that positive definite functions may be defined by their spectral measure.

Theorem 1. (Bochner) A continuous function g(h) from R+ to the complex plane C is positive definite if and
only if it may be represented as the Fourier transform of a measure ν(.) on R:

g(h) =
∫
R

eihuν(du) ,

where ν(.) is a bounded, real valued function such that
∫

A ν(du) ≥ 0 for all A ⊂ R.

The function ν(.) is called the spectral distribution function for g. An alternative representation is:

g(h) =
∫
R
(cos (hu) + i sin (hu)) ν(du) .

Then, if Zt is R-valued, g(h) is also R-valued, and the imaginary part in this last equation is null:∫
R sin (hu) ν(du) = 0. This implies that the spectral distribution is symmetric around the origin. If ν(.)

is continuous, we then have ν(du) = ν(−du) and:

g(h) =
∫
R

cos (hu) ν(du) ,

= 2
∫ ∞

0
cos (|h|u) ν(du) .

In this work, we consider three spectral distributions ν(.): a double exponential, an inverse
quadratic and a double quadratic exponential measure. The next paragraphs detail each one.

(1) The first measure considered is the double exponential measure. Let λ ∈ R+ be constant.
A symmetric exponential measure is defined by the following relation:

ν(du) =
1
2

(
λe−λu1{u≥0} + λeλu1{u≤0}

)
du . (4)

If we use this function as the spectral distribution of the covariance, we obtain the following
function g(h):

g(h) =
1
2

[∫
R+

λeihue−λudu +
∫
R−

λeihueλudu
]

=
λ2

λ2 + h2 ,

which is a sub-exponential function (in the sense that it decays at a lower pace than an exponential
function). In order to define autocovariance functions of Gaussian fields Z(k)

t involved in the dynamics
of the financial market, we consider d spectral density functions (4) parameterized by a vector λ =

{λ1, . . . , λd} ∈ Rd+. The corresponding autocovariance functions are in this case denoted gsub
k (.) and

defined by:

gsub
k (h) :=

(λk)
2

(λk)
2 + h2

k = 0, 1, ..., d . (5)
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(2) The second type of spectral measure that we study is the inverse quadratic one:

ν(du) =
1
π

λ

λ2 + u2 du , (6)

where λ ∈ R+. By construction, this measure is symmetric, and the function g(h) is an exponential
decreasing function:

g(h) =
2λ

π

∫
R+

cos (|h|u)
λ2 + u2 du

= e−λ|h| .

It may be shown that this autocovariance function is closely related to the one of an
Ornstein–Uhlenbeck process. Details are provided in Appendix A. In later developments, we consider
d exponential autocovariance functions for Z(k)

t parameterized by λ = {λ1, . . . , λd} ∈ Rd,+ and
denoted by:

gexp
k (h) := e−λk |h| k = 0, 1, ..., d . (7)

(3) The last category of covariance functions is generated with what we call an exponential
quadratic spectral measure:

ν(du) =

√
λ

π
e−λu2

du .

Given that
∫
R+ e−λu2

cos (hu) du = 1
2

√
π
λ e−

h2
4λ , the autocovariance function is in this case equal to:

g(h) = 2

√
λ

π

∫
R+

e−λu2
cos (|h|u) du

= e−
h2
4λ .

We abusively call this covariance function the exponential quadratic covariance. This function
decays at a faster pace than an exponential one and is in this sense hyper-exponential decreasing.
In the following sections, we consider d exponential quadratic covariance functions for Z(k)

t
parameterized by λ = {λ1, . . . , λd} ∈ Rd,+ and denoted as:

gqua
k (h) = e

− h2
4λk k = 0, 1, ..., d . (8)

We will price calendar spread exchange options using these three autocovariance functions gsub
k (h),

gexp
k (h) and gqua

k (h). As autocovariance functions gsub
k (h) and gqua

k (h) decrease respectively at a lower
and at a faster pace than gexp

k (h), our approach covers a wide spectrum of autocorrelation structures.
Options are priced under the risk-neutral measure, and autocovariance functions should therefore

duplicate option market prices. However, if the option market is not liquid enough, an alternative
solution to calibrate gk(.) consists of assuming that covariances under the pricing and real measures
are similar (eventually adjusted by a risk premium). Under this assumption, the functions gk(.) ∈
{gsub

k (.), gexp
k (.), gqua

k (.)} can easily be calibrated with the method of moments matching. In this
case, we minimize the quadratic spread between marginal and empirical covariances denoted by
Ĉ [X. , X.+∆h]:
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{Σ, λ} = arg min
H

∑
h=0

(
d

∑
k=1

σ2
1kgk(h∆)− Ĉ

[
y(1). , y(1).+h∆

])2

+
H

∑
h=0

(
d

∑
k=1

σ2
2kgk(h∆)− Ĉ

[
y(2). , y(2).+h∆

])2

(9)

+
H

∑
h=0

(
d

∑
k=1

σ1kσ2kgk(h∆)− Ĉ
[
y(1). , y(2).+h∆

])2

,

where ∆ is the time interval between two successive observations. This approach is applied in
numerical illustrations in order to determine which covariance function is the most suitable for some
commodity prices (silver, gold, Brent and WTI crude oil).

5. Simulation of a Conditional Field by Spectral Decomposition

In this section, we propose a method to simulate sample paths of asset prices. As increments of
Gaussian fields involved in the dynamics of S(1)

t and S(2)
t are not independent, the simulation of these

processes requires particular care. A natural approach consists of simulating the asset dynamics with
a multivariate normal distribution conditioned by X0 = 0, on a discrete time grid. However, there
exists an elegant alternative based on a discretization in the space of frequencies. With this approach,
the sample path of S(1)

t and S(2)
t is known at all times t and not only at discrete times. This feature is

particularly interesting for the pricing of path-dependent options. Let us first recall that the covariance
function of a homogeneous Gaussian field is defined by a measure ν(.). In the developments of
Section 4, we have considered a (probability) measure5 ν(.) of R. For any Borel subset A ⊂ R, we note
ν(A) =

∫
A ν(du). We define a complex noise W based on the measure ν, or ν-noise, as a random

process defined on Borel subsets of R, such that for all A, B ∈ B with ν(A) and ν(B) finite, we have:

E [W(A)] = 0, E
[
W(A)W(A)

]
= ν(A) ,

A ∩ B = ∅⇒W(A ∪ B) = W(A) + W(B) a.s. ,

A ∩ B = ∅, E
[
W(A)W(B)

]
= 0 .

When the measure ν(.) is the Lebesgue measure and W(A)
d∼ N (0, ν(A)), W is a white noise

and more precisely a Brownian motion. Having defined complex ν-noises, we build the integral with
respect to W, of a function ϕ(t) : R→ C such that

∫
ϕ(x)2ν(dx) < ∞. By analogy with the Riemann

integral, the integral of ϕ(t) over an interval R with respect to W is defined as the limit of a sum over a
partition Πn = ([tk, tk+1])k=0,...,n−1 of [0, Tn]:

W(ϕ) :=
∫
R

ϕ(u)W(du) := lim
Tn , n→∞

n−1

∑
k=0

W([tk , tk+1])ϕ (tk) .

By construction,
∫
R ϕ(u)W(du) is a random variable that has zero mean and variance given by∫

R ϕ (t)2 ν(dt). On the other hand, given that E
[
W(A)W(B)

]
= 0 if A ∩ B = ∅, we have that:

E
[
W(ϕ)W(ψ)

]
=
∫
R

ϕ(t)ψ(t)ν(dt) .

This construction allows us to state a useful representation theorem:

5 Notice that ν(.) can be any measure on R, of probability or not (e.g., Lebesgue measure).
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Theorem 2. (Spectral representation theorem) Let ν be a finite measure on R and W complex ν-noises. Then,
the complex valued random field:

Xt =
∫
R

ei(tu)W(du) , (10)

has a covariance function:

C(t, s) = g(s− t) =
∫
R

ei((s−t)u)ν(du) . (11)

If W is Gaussian, then so is Xt. Furthermore, to every mean-square centered (Gaussian) stationary random
field on R, with covariance function C and spectral measure, there corresponds a complex (Gaussian) ν−noise W
on R such that Equation (10) holds in the mean square for each t ∈ RN . In both cases, W is called the spectral
process corresponding to Xt.

In one direction, the proof of this theorem is immediate. It is a consequence of the construction of
the stochastic integral W(ϕ) that Xt defined by Equation (10) has covariance function (11). The other
direction is less direct, and we refer to the book of Adler and Taylor (2007) for a proof (Theorem 2).

In this article, we consider a real Gaussian field Xt with a symmetric spectral measure. Then,
its covariance function can be rewritten as follows:

C(t, s) =
∫
R cos ((s− t)u) ν(du)

=
∫
R+ cos ((s− t)u) µ(du)

(12)

where we have defined a positive measure µ(A) = 2ν(A) for all A ⊂ R+. In Section 4, we have
introduced three symmetric measures leading to three types of covariance. The measure µ(.) for each
of these cases is given by:

µsub(du) = λe−λudu ,

µexp(du) =
2
π

λ

λ2 + u2 du ,

µqua(du) = 2

√
λ

π
e−λu2

du .

The next proposition shows that we can reformulate the Gaussian field as integrals with respect
to µ-noises:

Proposition 2. A Gaussian field Xt with a covariance function (12) can be rewritten as the sum of two integrals
with respect to independent real (Gaussian) valued µ−noises W1 and W2 such that:

Xt =
∫
R+

cos (ut)W1(du) +
∫
R+

sin (ut)W2(du) (13)

The proof is reported in Appendix B. In practice, we use Equation (13) to approximate the sample
path of X(k)

t over a partition {u0, u1, ..., un} of R+ (with u0 = 0) as follows:

X(k)
t ≈

n

∑
j=0

(
cos

(
t uj
)

W(k)
1 ([uj, uj+1)) + sin

(
t uj
)

W(k)
2 ([uj, uj+1))

)
. (14)

where W(k)
1 (.) and W(k)

2 (.) are normal random variables:

W(k)
1 ([uj, uj+1))

d∼ N
(

0 , µ(k) ([uj, uj+1)
))

,

W(k)
2 ([uj, uj+1))

d∼ N
(

0 , µ(k) ([uj, uj+1)
))

.
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If the measure is double-exponential (and the function g is sub-exponential), then the measure of
a time interval is equal to:

µ(k) ([uj, uj+1)
)
=
∫ uj+1

uj

λke−λkudu

= e−λkuj − e−λkuj+1 .

If the measure is inverse quadratic (and the function g is exponential), then the measure of a time
interval is equal to:

µ(k) ([uj, uj+1)
)
=

2
π

∫ uj+1

uj

λ

λ2 + u2 du

=
2
π

(
arctan

(uj+1

λ

)
− arctan

(uj

λ

))
.

If the function g is exponential quadratic, then:

µ(k) ([uj, uj+1)
)
=
∫ uj+1

uj

2

√
λ

π
e−λu2

du

= erf
(√

λ uj+1

)
− erf

(√
λ uj

)
.

The number of intervals n and un is chosen such that the variance e−λkuj − e−λkuj+1 , of W(k)
1 and

W(k)
2 , is close to zero. Equation (14) allows us to simulate a Gaussian field Xt that is not conditioned

by its initial value X0. In order to simulate Z(k)
t := X(k)

t |X
(k)
0 = 0 for k = 1, ..., d, we need to take into

account the constraint X(k)
0 = 0. With regards to Equation (14), X(k)

0 = 0 if and only if the following
random variable is null:

H :=
n

∑
j=0

W(k)
1 ([uj, uj+1)) = 0 .

By construction, the random vector W̄(k)
1 =

(
W(k)

1 ([uj, uj+1))
)

j=0,...,n
is a multivariate normal

N (0n+1 ; Σk), where 0n+1 is a null vector of dimension n + 1 and Σk is a (n + 1)× (n + 1) matrix
of covariance:

Σk := diag
(

µ(k) ([u0, u1)) , . . . , µ(k) ([uj, uj+1)
)

, . . . , µ(k) ([un−1, un))
)

.

Therefore, the covariance between W(k)
1 ([uj, uj+1)) and H is equal to µ(k) ([uj, uj+1)

)
. The variance

of H is equal to 1>n+1Σk1n+1 where 1n+1 is an n + 1 vector of ones. The vector
(

W̄(k)
1 , H

)>
is a

multivariate normal distribution with the following mean and covariance:(
W̄(k)

1
H

)
d∼ N

(
0n+2 ;

(
Σk Σk1n+1

1>n+1Σ>k 1>n+1Σk1n+1

))
.

Using the properties of the conditional Gaussian multivariate distribution, we have that B̄(k) :=(
W̄(k)

1 |H = 0
)

is also a multivariate normal N
(

0n+1 ; Σ
W̄(k)

1 |H=0

)
with a covariance matrix:

Σ
W̄(k)

1 |H=0
:= Σk −

(Σk1n+1)
(

1>n+1Σ>k
)

1>n+1Σk1n+1
,
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and where 1>n+1Σ>k Σk1n+1 is a n + 1× n + 1 matrix:

(Σk1n+1)
(

1>n+1Σ>k
)

=


µ(k) ([u0, u1))

2 . . . µ(k) ([u0, u1)) µ(k) ([un−1, un))
...

. . .
...

µ(k) ([u0, u1)) µ(k) ([un−1, un)) . . . µ(k) ([un−1, un))
2

 .

In numerical illustrations, the sample path of Z(k)
t over a partition {u0, u1, ..., un} of R+ (with

u0 = 0) is then simulated with the following relation:

Z(k)
t ≈

n

∑
j=0

(
cos

(
t uj
)

B(k)([uj, uj+1)) + sin
(
t uj
)

W(k)
2 ([uj, uj+1))

)
. (15)

where B̄(k) d∼ N
(

0n+1 ; Σ
W̄(k)

1 |H=0

)
and W(k)

2 (.) are normal random variables:

W(k)
2 ([uj, uj+1))

d∼ N
(

0 , µ(k) ([uj, uj+1)
))

.

This technique allows for simulating the sample path of Zt, which are known for all times t ∈ R+.
This method is particularly helpful for the pricing of path-dependent options.

6. Calendar Spread Exchange Options Pricing

One objective of this article is to emphasize the importance of the autocorrelation in the valuation
of exotic derivatives. For this purpose, we derive closed form expressions for calendar spread exchange
options and for Asian options of the same type in the next section. Next, we will assess numerically
the bias induced by a misspecified covariance structure. A calendar spread exchange European
option is a financial derivative delivering a payoff equal to the positive difference between β1S(1)

T

and β2S(2)
t , at expiry T. The price of this option is equal to the expected discounted payoff under the

risk-neutral measure:

E
[
e−rT(β1S(1)

T − β2S(2)
t )+ | F0

]
.

Gaussian fields Z(k)
t have sub-exponential, exponential or exponential quadratic autocovariance

functions: gk ∈ {gsub
k (.), gexp

k (.), gqua
k (.)} for k = 1, ..., d. In order to obtain a closed form expression for

the option price, we introduce a new probability measure, denoted by QS2 . This measure uses S(2)
t as

numeraire. The change of measure from Q to QS2 is defined by the following random variable:

dQS2
dQ =

S(2)
t

S(2)
0

1
e(r+c2)t

,

= exp (−α2(t) + Σ2,.Zt)

(16)

where α2(t) = 1
2 ∑d

k=1 (σ2k)
2 (1− gk(t)2) and Σ2,. is the second line of the matrix Σ. This approach was

used by Margrabe (1978) so as to evaluate the exchange option in a Brownian setting. By definition,
dQS2
dQ is a strictly positive, Ft-measurable random variable such that E

[
dQS2
dQ |F0

]
= 1. Conditional to

F0, it defines then an equivalent measure QS2 to Q. For any FT-adapted random variable NT , we have
the following relation:
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EQS2

[
NT

S(2)
t

| F0

]
=

E
[

dQS2
dQ

NT

S(2)
t

| F0

]
E
[

dQS2
dQ | F0

] ,

=
(

S(2)
0 e(r+c2)t

)−1
E [NT | F0] .

We immediately infer from this last expression that the expectation of NT under Q is also equal to:

E [NT | F0] = S(2)
0 e(r+c2)tEQS2

[
NT

S(2)
t

| F0

]
.

This result allows us to rewrite the calendar spread exchange option as follows:

e−rTE
[
(β1S(1)

T − β2S(2)
t )+ | F0

]
= β2S(2)

0 e−r(T−t)+c2t EQS2

( β1

β2

S(1)
T

S(2)
t

− 1

)
+

| F0

 . (17)

The next step consists of determining the statistical distribution of S(1)
T

S(2)
t

under the measure QS2 .

By construction, the ratio of asset prices is given by:

S(1)
T

S(2)
t

=
S(1)

0

S(2)
0

exp (r (T − t) + c1T − c2t− (α1(T)− α2(t)) + Σ1,.ZT − Σ2,.Zt) ,

where Σ1,. and Σ2,. point out the first and second line of the matrix Σ. Let us denote the logarithm of
this ratio by:

Rt,T = ln S(1)
T S(2)

0

S(2)
t S(1)

0

= r (T − t) + c1T − c2t− (α1(T)− α2(t)) + Σ1,.ZT − Σ2,.Zt .

The statistical distribution of Rt,T under the measure QS2 is Gaussian, as detailed in the next
proposition proven in Appendix B :

Proposition 3. Rt,T under the measure QS2 is a normal random variable with a mean µR(t, T) and a variance
σR(t, T)2 equal to:

µR(t, T) = r (T − t) + c1T − c2t− α1(T)− α2(t) +
d

∑
k=1

σ1kσ2k (gk(T − t)− gk(T)gk(t)) ,

σ2
R(t, T) = 2

(
α1(T) + α2(t)−

d

∑
k=1

σ1kσ2k (gk(T − t)− gk(T)gk(t))

)
.

The exchange option price as reformulated in Equation (17) is a call option on a lognormal
underlying asset. As stated in the next proposition, the option price admits then a closed form
expression similar to the Black and Scholes equation, and this result holds whichever the covariance
function gk ∈ {gsub

k (.), gexp
k (.), gqua

k (.)}.

Proposition 4. Let Φ (x) be the cumulative distribution function of a standard normal random variable.
The price of a calendar spread exchange option price is given by the following expression:

e−rTE
[
(β1S(1)

T − β2S(2)
t )+ | F0

]
= β1S(1)

0 ec1TΦ (−d1(t, T))− β2S(2)
0 e−r(T−t)+c2tΦ (−d2(t, T)) , (18)
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where d1(t, T) and d2(t, T) are defined as follows:

d2(t, T) =

ln
(

β2
β1

S(2)
0

S(1)
0

)
− µR(t, T)

σR(t, T)
, (19)

and:

d1(t, T) = d2(t, T)− σR(t, T) . (20)

In Section 8, we evaluate calendar spread exchange options for Brent against WTI crude oil and
for silver against gold.

7. Asian Calendar Spread Exchange Options, with the Geometric Average

Our approach presents the same level of tractability as a Brownian motion. To illustrate this point
and to emphasize the role of the covariance structure on Asian options, we price another type of exotic
derivative that depends on the whole sample path of asset prices. We focus on Asian calendar spread
options with a payoff related to geometric average returns of assets S(1)

t and S(2)
t . Let us denote by

G(1)
T and G(2)

t the geometric average returns of
(

S(1)
s

)
s=0:T

and
(

S(2)
s

)
s=0:t

with t ≤ T and defined as:

G(1)
T := e

1
T
∫ T

0 ln

(
S(1)s
S1

0

)
ds

,

G(2)
t := e

1
t
∫ t

0 ln

(
S(2)s
S(2)0

)
ds

.

An Asian calendar spread exchange option pays the positive difference between β1G(1)
T and β2G(2)

t ,
at expiry T. The price of this option is the expected discounted payoff under the risk-neutral measure:

E
[
e−rT(β1G(1)

T − β2G(2)
t )+ | F0

]
.

By definition, the log-return of assets is equal to:

ln

(
S(j)

s

S(j)
0

)
= (r + cj) s− αj(s) + Σj,.Zs j = 1, 2 .

Therefore, the integral of this log-return over the interval [0, t], which is equal to ln
(

G(j)
t

)
, is:

ln
(

G(j)
t

)
=

1
t
∫ t

0 ln

(
S(j)

s

S(j)
0

)
ds

= 1
2
(
r + cj

)
t− 1

t
∫ t

0 αj(s)ds + 1
t Σj,.

∫ t
0 Zsds j = 1, 2 .

(21)

Before any further developments, we present the properties of the integral of Z(k)
s . This integral

over [0, T] is defined as the limit of a sum over a partition Πn =
(
[tj, tj+1]

)
j=0,...,n−1 of [0, T]:

∫ T

0
Z(k)

u du := lim
n→∞

n−1

∑
j=0

Z(k)
tj

(
tj+1 − tj

)
.
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Given that Z(k)
tj

is a Gaussian random variable, this integral is distributed as a normal random

variable of a null mean under the condition that its variance exists. The variance of
∫ T

0 Z(k)
u du is

obtained by considering the limit of the product of integrals over the partition Πn:

∫ T

0
Z(k)

u du
∫ T

0
Z(k)

u du = lim
n→∞

n−1

∑
i=0

n−1

∑
j=0

Z(k)
ti

Z(k)
tj

(ti+1 − ti)
(
tj+1 − tj

)
.

As E
[

Z(k)
t |F0

]
= 0 and Z(k)

t for k = 1, ..., d are independent processes, the expectation of this

product with respect to F0 is equal to the variance of
∫ T

0 Z(k)
u du:

V
[∫ T

0
Z(k)

u du
∫ T

0
Z(k)

u du|F0

]
= lim

n→∞

n−1

∑
i=0

n−1

∑
j=0

C
[

Z(k)
ti

Z(k)
tj
|F0

]
(ti+1 − ti)

(
tj+1 − tj

)
. (22)

=
∫ T

0

∫ T

0
(gk(u− v)− gk(u)gk(v)) dudv .

This last double integral is bounded by T2g(0) for the three covariance functions that are
considered in this article, and the integral

∫ T
0 Z(k)

u du is a normal random variable. The next propositions

proven in Appendix B details the integrals involved in the expression (22) of the variance of
∫ T

0 Z(k)
u du

for the three autocovariance functions {gsub
k (.), gexp

k (.), gqua
k (.)}.

Proposition 5. Let ω ∈ C−. If gk(h) = gsub
k (h), then the double integral

∫ t
0

∫ T
0 gk(u− v)dvdu is equal to:

∫ t

0

∫ T

0
gk(u− v)dvdu = tλk tan−1

(
t

λk

)
− 1

2
λ2

k ln

(
1 +

t2

(λk)
2

)

+

(
λk (T − t) tan−1

(
t− T

λk

)
+

1
2

λ2
k ln

(
1 +

(
t− T

λk

)2
))

(23)

−
(

λkT tan−1
(
−T
λk

)
+

1
2

λ2
k ln

(
1 +

(
T
λk

)2
))

,

whereas the double integral
∫ t

0

∫ T
0 gk(u)gk(v)dvdu is given by:

∫ t

0

∫ T

0
gk(u)gk(v)dvdu = λ2

k tan−1
(

t
λk

)
tan−1

(
T
λk

)
. (24)

From the definition (21) of ln G(j)
t , the variance of G(j)

t is equal to 1
t2 V

[
Σj,.
∫ t

0 Zsds|F0

]
.

(
σln Gj(t)

)2
:=

1
t2V

[
Σj,.

∫ t

0
Zsds|F0

]
.

From Equation (22) and Proposition 5, we immediately infer the next corollary:
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Proposition 6. If covariance functions are sub-exponential, gk(h) = gsub
k (h), the variance of ln G(j)

t , denoted

by
(

σln Gj(t)
)2

, is equal to:

(
σln Gj(t)

)2
:=

1
t2

d

∑
k=1

σ2
jk

(
2tλk tan−1

(
t

λk

)
− (λk)

2 ln

(
1 +

t2

(λk)
2

)
(25)

−
(

λk tan−1
(

t
λk

))2
)

,

for j = 1, 2.

The drift of ln G(j)
t depends on the integral of αj(.). The next proposition proven in Appendix B

provides the analytical integral of this function when the covariance is sub-exponential.

Proposition 7. If covariance functions are sub-exponential, gk(h) = gsub
k (h), then the integral of function

αj(.) is given by:

1
t

∫ t

0
αj(s)ds =

1
2

d

∑
k=1

(
σjk

)2
(

1− λk
2 t

tan−1
(

t
λk

)
−

λ2
k

2
(
t2 + λ2

k
)) ,

for j = 1, 2.

If the covariance function is exponential, then the double integrals needed to evaluate the variance
of
∫ t

0 Zsds in Equation (22) are given by the following proposition detailed in Appendix B.

Proposition 8. Let ω ∈ C−. If gk(h) = gexp
k (h), then the double integral

∫ t
0

∫ T
0 gk(u− v)dvdu is equal to:

∫ t

0

∫ T

0
gk(u− v)dvdu =

2t
λk
− 1

λ2
k

(
1− e−λkt

)
+

1
λ2

k

(
e−λkT − eλk(t−T)

)
; (26)

whereas the double integral
∫ t

0

∫ T
0 gk(u)gk(v)dvdu is given by:

∫ t

0

∫ T

0
gk(u)gk(v)dvdu =

1
λ2

k

(
1− e−λkt

) (
1− e−λkT

)
. (27)

A direct corollary of this proposition is that the variances of ln G(j)
t for j = 1, 2 admit a closed

form expression:

Proposition 9. If autocovariance functions are exponential gk(h) = gexp(h), the variance of ln G(j)
t , denoted

by
(

σln Gj(t)
)2

, is equal to:

(
σln Gj(t)

)2
:=

1
t2

d

∑
k=1

σ2
jk

[
2

(
t

λk
− 1

λ2
k

(
1− e−λkt

))
− 1

λ2
k

(
1− e−λkt

)2
]

, (28)

for j = 1, 2.

The drift of ln G(j)
t depends on the integral of αj(.) which is provided in the next proposition,

proven in Appendix B.
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Proposition 10. If autocovariance functions are exponential, gk(h) = e−λkh, then:

1
t

∫ t

0
αj(s)ds =

1
2

1
t

d

∑
k=1

(
σjk

)2
(

t− 1
2λk

(
1− e−2λkt

))
,

for j = 1, 2.

When covariance functions are exponential quadratic, the integrals involved in the variance of
ln G(j)

t are given in the following proposition:

Proposition 11. Let ω ∈ C− and erf(x) = 2√
π

∫ x
0 e−t2

dt be the error function. If gk(h) = gquad
k (h), then:

∫ t

0

∫ T

0
gk(u− v)dvdu =

√
πλkt erf

(
t

2
√

λk

)
− 2λk

(
1− e

− t2
4λk

)
−
√

πλk(T − t)erf
(

T − t
2
√

λk

)
+
√

πλkT erf
(

T
2
√

λk

)
(29)

−2λk

(
e
− (t−T)2

4λk − e
− T2

4λk

)
,

and: ∫ t

0

∫ T

0
gk(u)gk(v)dvdu = πλkerf

(
t

2
√

λk

)
erf
(

T
2
√

λk

)
. (30)

When the covariance functions are quadratic exponential, the variance of ln G(j)
t for j = 1, 2 is

given by the next proposition:

Proposition 12. If the autocovariance functions gk(h) are defined by Equation (8), then the variance of ln G(j)
t ,

denoted by
(

σln Gj(t)
)2

is equal to:

(
σln Gj(t)

)2
:=

1
t2 ∑d

k=1 σ2
jk

[
2
√

λkπt erf
(

t
2
√

λk

)
− 4λk

(
1− e

− t2
4λk

)
−
(√

λkπerf
(

t
2
√

λk

))2
]

,
(31)

for j = 1, 2.

The drift of ln G(j)
t depends on the integral of αj(.). The next proposition proven in Appendix B

provides the analytical integral of this function when the covariance is quadratic exponential.

Proposition 13. If autocovariance functions are defined by Equation (8), gk(h) = e
− h2

4λk , then:

1
t

∫ t

0
αj(s)ds =

1
2

1
t

d

∑
k=1

(
σjk

)2
(

t−
√

πλk√
2

erf
(

t√
2λk

))
,

for j = 1, 2.

In order to price the Asian calendar spread exchange option, we introduce a new probability
measure, denoted by QG2 . The change of the measure from Q to QG2 is defined by the following
random variable:
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dQG2

dQ
=

G(2)
t

E
[

G(2)
t |F0

]
= exp

(
−1

2

(
σln G2(t)

)2
+

1
t

Σ2,.
∫ t

0 Zsds
)

.

(32)

By definition, dQG2

dQ is a strictly positive random variable,Ft-adapted and such that E
(

dQG2
dQ |F0

)
= 1.

It defines then an equivalent measure QG2 to Q. For anyFT-adapted random variable NT , the following
relation holds:

EQG2

[
NT

G(2)
t

| F0

]
= E

 G(2)
t

E
[

G(2)
t |F0

] NT

G(2)
t

| F0


=

(
E
[

G(2)
t |F0

])−1
E [NT | F0] .

The expectation of NT under the risk-neutral measure is then equal to:

E [NT | F0] = E
[

G(2)
t |F0

]
EQG2

[
NT

G(2)
t

| F0

]
.

where E
[

G(2)
t |F0

]
= exp

(
1
2 (r + c2) t− 1

t
∫ t

0 α2(s)ds + 1
2

(
σln G2(t)

)2
)

given that G(2)
t is a lognormal

random variable. Using this change of measure allows us to develop the option price as follows:

e−rTE
[
(β1G(1)

T − β2G(2)
t )+ | F0

]
= β2e−rT exp

(
1
2
(r + c2) t− 1

t

∫ t

0
α2(s)ds +

1
2

(
σln G2(t)

)2
)

×EQG2

( β1

β2

G(1)
T

G(2)
t

− 1

)
+

| F0

 .

Next, we study the moment generating function of the ratio G(1)
T

G(2)
t

. If we remember the definitions

of G(1)
T and G(2)

t , this ratio may be developed as follows:

G(1)
T

G(2)
t

= exp

(
1
T

∫ T

0
ln

(
S(1)

s

S(1)
0

)
ds− 1

t

∫ t

0
ln

(
S(2)

s

S(2)
0

)
ds

)
= exp (At,T) ,

where the exponent in this last expression is a random variable denoted by At,T and defined as follows:

At,T :=
1
2

r (T − t) +
1
2
(c1T − c2t)− 1

T
∫ T

0 α1(s)ds +
1
t
∫ t

0 α2(s)ds

+
1
T

Σ1,.
∫ T

0 Zsds− 1
t

Σ2,.
∫ t

0 Zsds .
(33)

The next result proven in Appendix B states that At,T is a normal random variable under QG2 .

Proposition 14. The random variable At,T defined in Equation (33) is a normal random variable with a mean
and variance respectively equal to:
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µA(t, T) =
1
2

r (T − t) +
1
2
(c1T − c2t)− 1

T
∫ T

0 α1(s)ds +
1
t
∫ t

0 α2(s)ds−
(

σln G2(t)
)2

+
1

T t ∑d
k=1 σ1kσ2k

∫ t
0

∫ T
0 gk(u− v)− gk(u)gk(v) dvdu ,

(34)

and:
σ2

A(t, T) =
(

σln G1(T)
)2

+
(

σln G2(t)
)2

− 2
T t
×∑d

k=1 σ1kσ2k
∫ t

0

∫ T
0 gk(u− v)− gk(u)gk(v) dvdu .

(35)

Finally, we infer a closed form expression for the Asian exchange calendar option. The proof is
detailed in Appendix B.

Proposition 15. Let Φ (x) be the cumulative distribution function of a standard normal random variable.
The value of an Asian exchange calendar option is given by the following expression:

e−rTE
[
(β1G(1)

T − β2G(2)
t )+ | F0

]
= β2e−rT exp

(
1
2
(r + c2) t− 1

t

∫ t

0
α2(s)ds +

1
2

(
σln G2(t)

)2
)
× (36)(

β1

β2
exp

(
µA(t, T) +

1
2

σ2
A(t, T)

)
Φ (−d1(t, T))−Φ (−d2(t, T))

)
,

where:

d2(t, T) =
ln
(

β2
β1

)
− µA(t, T)

σA(t, T)
, (37)

and:

d1(t, T) = d2(t, T)− σA(t, T) . (38)

In the next section, we compare Asian option values obtained with the different covariance
structures fitted to some metals and oil prices.

8. Numerical Illustration

The market of exotic options lacks liquidity, and the absence of data prevents us from estimating
models by replicating market prices. An alternative solution for calibrating functions gk(.) consists of
assuming that the covariance structures under the pricing and real measures are similar (eventually
adjusted by a risk premium). We adopt this approach and calibrate models by minimizing the quadratic
spread between marginal and empirical covariances. The model is fitted to two pairs of commodities6:
Brent vs. WTI oil and silver vs. gold. The dataset contains daily log-returns from 11 April 2008–11
April 2018 (2522 observations). The number of lags considered in the optimized objective (9) is set
to 150 days. The square roots of the quadratic error between empirical and model covariances are
reported in Tables 1 and 2 for different numbers of homogeneous fields. We draw two conclusions
from these figures. Firstly, increasing the number of fields reduces the error whatever the covariance

6 As mentioned in Section 2, homogeneous fields have constant asymptotic variance. This feature makes them more suitable
for the modeling of commodities or interest rates.
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structure. Secondly, the best fit is obtained with sub-exponential covariance functions. Tables 3 and 4
contain parameter estimates with d = 3 fields.

Table 1. Square root errors: Brent vs. WTI oil. Number of lags: 150 days.

d gk(h) = λ2
k

λ2
k+h2 gk(h) = e−λk|h| gk(h) = e−λkh2

1 0.0669 0.0567 0.0943
2 0.0094 0.0455 0.0137
3 0.0085 0.0451 0.0121
4 0.0051 0.0450 0.0101

Table 2. Square root errors: silver vs. gold. Number of lags: 150 days.

d gk(h) = λ2
k

λ2
k+h2 gk(h) = e−λk|h| gk(h) = e−λkh2

1 0.0537 0.0483 0.0540
2 0.0189 0.0154 0.0268
3 0.0067 0.0134 0.0211
4 0.0046 0.0133 0.0205

Table 3. Model parameters: Brent vs. WTI oil. Number of lags: 150 days and d = 3.

Sub-Exponential

k λk σ1,k σ2,k

1 0.1887 0.1546 0.1778
2 0.3614 0.2502 0.2477
3 2.2482 0.2132 0.1626

Exponential

k λk σ1,k σ2,k

1 0.100 0.1428 0.08124
2 1.454 0.2130 0.18387
3 2.146 0.2749 0.29315

Quadratic Exponential

k λk σ1,k σ2,k

1 1.844 0.31737 0.2776
2 17.102 0.09077 0.1352
3 30.638 0.15033 0.1542

Recall that the field with an exponential covariance corresponds to an Ornstein–Uhlenbeck (OU)
process. Modeling commodity prices with this mean reverting process as in Cortazar and Schwartz
(1994) is mathematically convenient; mainly because we can rely on stochastic calculus to price options.
However, our results clearly suggest that these processes do not replicate the empirical covariance as
well as sub-exponential Gaussian fields. This is confirmed by Figure 1, which compares the covariance
structures of fitted models with d = 3 homogeneous fields to empirical covariances. The observed
autocovariances are concave decreasing functions, and the exponential model fails to replicate this
concavity, particularly in the short term.
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Table 4. Model parameters: silver vs. gold. Number of lags: 150 days and d = 3.

Sub-Exponential

k λk σ1,k σ2,k

1 0.2091 0.1486 0.0374
2 0.2636 0.0021 0.0784
3 0.9922 0.2819 0.1705

Exponential

k λk σ1,k σ2,k

1 0.2131 0.0804 0.0560
2 0.7088 0.2772 0.1840
3 1.8922 0.1475 0.0005

Quadratic Exponential

k λk σ1,k σ2,k

1 0.8151 0.2569 0.1793
2 4.0357 0.1654 0.0198
3 40.6157 0.0855 0.0615
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Figure 1. Plot of the autocovariance functions (ACF) of Brent and WTI oil log-returns. Time lags
are expressed in days. “Observed”: empirical covariances. “Sub Exp”, “Exp” and “Exp quad”: sub
exponental, exponential and quadratric exponential modeled covariances.
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Tables 5 and 6 report calendar spread option prices7 written on the pairs Brent-WTI crude oil and
silver-gold. These figures emphasize the impact of a misspecified autocovariance function on the value
of calendar spread options. Assuming an OU dynamics for Brent and WTI oil leads to overestimating
option values by 5–37% compared to those computed with a sub-exponential covariance. The gap
between option prices computed with quadratic exponential and sub-exponential covariances is much
smaller and ranges from −1.55–2.95%. For silver against gold, the conclusions are similar: the bias
caused by the wrong choice of covariance structure can be significant (up to 6.2% with an OU model
and −19.6% with a quadratic exponential covariance). Table 7 presents calendar spread option prices
computed by Monte Carlo simulations with different levels of discretization in the space of frequencies.
As expected, increasing un and decreasing the size of the step of discretization reduce the gap between
values obtained analytically, as well as the numerical estimates.

Table 5. S(1)
t : Brent, S(2)

t : WTI. d = 3. Option payoff: (β1S(1)
T − β2S(2)

t )+ where T = 1 year and t

ranges from 0.3–0.9 years. β1 and β2 are such that β1S(1)
0 = β2S(2)

0 = 1.

Calendar Spread Exchange Options

t Sub Exp Relative Error (%) Exp Quad Relative Error (%)
Exp Exp vs. Sub Exp Exp Quad vs. Sub Exp

0.3 0.16476 0.17342 5.251 0.1660 0.7250
0.4 0.16184 0.16881 4.303 0.1604 −0.9173
0.5 0.15502 0.16116 3.955 0.1526 −1.5519
0.6 0.14417 0.15035 4.283 0.1422 −1.3608
0.7 0.12776 0.13569 6.212 0.1265 −0.9992
0.8 0.10243 0.11556 12.810 0.1023 −0.1369
0.9 0.06236 0.08564 37.344 0.0642 2.9498

Table 6. S(1)
t : Silver, S(2)

t : gold. d = 3. Option payoff: (β1S(1)
T − β2S(2)

t )+ where T = 1 year and t

ranges from 0.3–0.9 years. β1 and β2 are such that β1S(1)
0 = β2S(2)

0 = 1.

Calendar Spread Exchange Options

t Sub Exp Relative Error (%) Exp Quad Relative Error (%)
Exp Exp vs. Sub Exp Exp Quad vs. Sub Exp

0.3 0.12271 0.12251 −0.163 0.12494 1.821
0.4 0.11613 0.11670 0.492 0.11633 0.170
0.5 0.10874 0.11035 1.483 0.10661 −1.957
0.6 0.10067 0.10339 2.693 0.09570 −4.942
0.7 0.09202 0.09571 4.011 0.08357 −9.178
0.8 0.08274 0.08718 5.368 0.07065 −14.614
0.9 0.07305 0.07758 6.200 0.05875 −19.574

To understand the influence of autocorrelation parameters λk on option values, we perform
a sensitivity analysis for the sub-exponential model driven by d = 2 conditional Gaussian fields.
Table 8 reports the parameters of this model fitted to Brent and WTI crude oil. We appraise calendar
spread exchange options with three sets of autocovariance parameters: (λ1, λ2),

(
λ1
2 , λ2

)
and

(
λ1, λ2

2

)
.

Figure 2 emphasizes the impact of these modifications on autocovariance functions g1(t) and g2(t).
We observe that reducing λ1 or λ2 decreases the level of autocorrelation of Z(1)

t and Z(2)
t . Table 9

underlines the important role played by λ1 or λ2 on option prices. The relative spread between prices
computed with (λ1, λ2) and

(
λ1
2 , λ2

)
ranges from 5% up to 55%; whereas, the spread between prices

7 The discount rate is set to r = 5% and c1 = c2 = 0.
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obtained with (λ1, λ2) and
(

λ1, λ2
2

)
varies from 7.5–11%. These results confirm the importance of the

autocorrelation in the valuation of exotic derivatives like calendar spread exchange options.

Table 7. S(1)
t : Brent, S(2)

t : WTI. d = 3. Option payoff: (β1S(1)
T − β2S(2)

t )+ where T = 1 year and t equals

0.4 years. β1 and β2 are such that β1S(1)
0 = β2S(2)

0 = 1. Prices are obtained with 10,000 simulations.

Monte-Carlo Simulations

un uj+1− uj Sub Exp Exp Exp Quad

40

0.30 0.1554 0.1563 0.1585
0.25 0.1619 0.1606 0.1582
0.20 0.1598 0.1630 0.1594
0.15 0.1617 0.1621 0.1616
0.10 0.1597 0.1654 0.1596
0.05 0.1603 0.1651 0.1618

50

0.30 0.1537 0.1643 0.1610
0.25 0.1588 0.1628 0.1577
0.20 0.1638 0.1679 0.1584
0.15 0.1590 0.1627 0.1569
0.10 0.1631 0.1673 0.1556
0.05 0.1629 0.1683 0.1578

Analytical price 0.1618 0.1688 0.1604

Table 8. Model parameters: Brent vs. WTI oil. Number of lags: 150 days and d = 2. The last columns
contain values of λk used to test the sensitivity of option prices to autocovariance parameters.

Sub-Exponential Parameters for the Sensitivity Analysis

k σ1,k σ2,k (λ1, λ2)
(

λ1
2 , λ2

) (
λ1, λ2

2

)
1 0.2475 0.2655 0.2451 0.1226 0.2451
2 0.2701 0.2149 0.9393 0.9393 0.4696
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Figure 2. Plot of sub-exponential covariance functions g1(t) and g2(t) for the model fitted to Brent and
WTI oil log-returns with d = 2. Parameters λ1 and λ2 are reported in Table 8.
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Table 9. S(1)
t : Brent, S(2)

t : WTI. d = 2. Option payoff: (β1S(1)
T − β2S(2)

t )+ where T = 1 year and t

ranges from 0.3–0.9 years. β1 and β2 are such that β1S(1)
0 = β2S(2)

0 = 1.

Sensitivity of Calendar Spread Exchange Options to Autocovariance Parameters

t Price Price Relative Spread (%) Price Relative Spread (%)
(λ1, λ2)

(
λ1
2 , λ2

) (
λ1
2 , λ2

)
vs. (λ1, λ2)

(
λ1, λ2

2

) (
λ1, λ2

2

)
vs. (λ1, λ2)

0.3 0.16828 0.17708 5.227 0.18335 8.956
0.5 0.15547 0.16553 6.473 0.17268 11.072
0.7 0.12814 0.14851 15.895 0.14165 10.540
0.9 0.06316 0.09783 54.905 0.06793 7.564

Tables 10 and 11 report Asian calendar spread option prices on Brent vs. WTI crude oil and silver
vs. gold. The spreads between prices obtained with sub-exponential and exponential covariance
structures are smaller than those of calendar options. However, they remain significant: from
−1.84–3.48% for Brent vs. WTI and from −1.74–1.54%. Prices obtained with an exponential quadratic
covariance model deviate more widely from those computed with a sub-exponential covariance (from
7.16–20.6%).

Table 10. S(1)
t : Brent, S(2)

t : WTI. d = 3. Option payoff: (β1G(1)
T − G2S(2)

t )+ where T = 1 year and t
ranges from 0.3–0.9 years. β1 = β2 = 1.

Asian Calendar Spread Exchange Options

t Sub Exp Exp Relative Error (%) Exp Quad Relative Error (%)
Exp vs. Sub Exp Exp Quad vs. Sub Exp

0.3 0.06406 0.06629 3.477 0.06865 7.162
0.4 0.05797 0.05863 1.143 0.06224 7.368
0.5 0.05059 0.05039 −0.392 0.05440 7.530
0.6 0.04228 0.04170 −1.377 0.04565 7.960
0.7 0.03331 0.03270 −1.845 0.03637 9.188
0.8 0.02393 0.02360 −1.384 0.02687 12.314
0.9 0.01470 0.01504 2.306 0.01773 20.600

Table 11. S(1)
t : Silver, S(2)

t : gold. d = 3. Option payoff: (β1G(1)
T − G2S(2)

t )+ where T = 1 year and t
ranges from 0.3–0.9 years. β1 = β2 = 1.

Asian Calendar Spread Exchange Options

t Sub Exp Exp Relative Error (%) Exp Quad Relative Error (%)
Exp vs. Sub Exp Exp Quad vs. Sub Exp

0.3 0.06044 0.05984 −0.984 0.06408 6.024
0.4 0.05628 0.05537 −1.605 0.05787 2.828
0.5 0.05207 0.05116 −1.743 0.05175 −0.607
0.6 0.04796 0.04726 −1.447 0.04586 −4.376
0.7 0.04409 0.04376 −0.761 0.04036 −8.474
0.8 0.04062 0.04073 0.264 0.03547 −12.687
0.9 0.03768 0.03826 1.540 0.03146 −16.505

To understand the influence of autocovariance parameters λk on Asian options, we perform
a sensitivity analysis for the sub-exponential model driven by d = 2 conditional Gaussian fields.
We appraise Asian calendar spread exchange options with the sets of autocovariance parameters,

(λ1, λ2),
(

λ1
2 , λ2

)
and

(
λ1, λ2

2

)
, presented in Table 9. Table 12 reveals that the relative spread between

prices computed with (λ1, λ2) and
(

λ1
2 , λ2

)
ranges from 0.75–4.3%, whereas the spread between prices
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obtained with (λ1, λ2) and
(

λ1, λ2
2

)
varies from 0.6–5.5%. The impact of the autocorrelation on Asian

option prices is still significant, but less important than for exchange options due to the smoothing
induced by the definition of the payoff.

Table 12. S(1)
t : Brent, S(2)

t : WTI. d = 2. Option payoff: (β1G(1)
T − G2S(2)

t )+ where T = 1 year and t
ranges from 0.3–0.9 years. β1 = β2 = 1.

Sensitivity of Asian Calendar Spread Exchange Options to Autocovariance Parameters

t Price Price Relative Spread (%) Price Relative Spread (%)
(λ1, λ2)

(
λ1
2 , λ2

) (
λ1
2 , λ2

)
vs. (λ1, λ2)

(
λ1, λ2

2

) (
λ1, λ2

2

)
vs. (λ1, λ2)

0.3 0.06781 0.06995 3.147 0.07124 5.0538
0.5 0.05369 0.05410 0.754 0.05613 4.5379
0.7 0.03607 0.03669 1.714 0.03712 2.9144
0.9 0.01798 0.01876 4.375 0.01809 0.6626

9. Conclusions

This article has two objectives. Firstly, it proposes a simple alternative to models based on
Brownian motions that allows for an accurate modeling of covariance and autocorrelation structures.
In our approach, price processes are seen as conditional homogeneous Gaussian fields indexed by
time. As this field is in general not a semi-martingale, we cannot rely anymore on stochastic calculus to
evaluate options. However, a conditional Gaussian field inherits all the properties of the multivariate
normal random variable. This guarantees its high analytical tractability.

Homogeneous Gaussian fields indexed by time have a covariance function depending on the
lag between two realizations of this field. They include Ornstein–Uhlenbeck processes, and their
asymptotic variance and autocovariance are respectively constant and null. The variance of these fields
being bounded by a constant, asset yields revert around their mean. This property makes the proposed
approach more suitable for the modeling of interest rates or any assets with a mean reverting yield,
like commodities.

We study three types of covariance structures with sub-exponential, exponential and hyper-
exponential decreasing autocorrelations. We also propose a procedure of simulation based on the
spectral decomposition of the covariance matrix. Within this approach, the sample path of simulated
prices is known in continuous time. This feature is particularly interesting for the numerical pricing of
path-dependent options.

Secondly, we aim to emphasize the importance of the covariance structure in the valuation of
calendar spread derivatives. We derive closed form expressions for Asian and non-Asian calendar
spread exchange options. Analytical formulas are obtained by the technique of the change of numeraire.
Next, we fit models to two pairs of commodities: Brent vs. WTI oil and silver vs. gold. The numerical
analysis reveals that these assets exhibit concave decreasing autocovariances that the exponential
model fails to replicate. For these asset classes, the best fit is obtained with sub-exponential covariance
functions. We observe that covariance misspecification introduces a bias of several percent for the
prices of calendar spread exchange options. The numerical illustration emphasizes that assuming
an OU dynamics for Brent and WTI oil leads to overestimating option values by 5–37% compared to
those computed with a sub-exponential covariance structure. For gold-silver exchange options, the
bias introduced by the wrong choice of covariance structure can be significant (up to 6.2% with an OU
model and −19.6% with a quadratic exponential covariance). An analysis of the sensitivity of options
to a reduction by a half of the autocorrelation factors reveals that prices deviate by 5–55% from their
initial values. These results confirm the importance of the autocorrelation in the valuation of calendar
exchange options. For Asian options, the spreads between prices obtained with sub-exponential
and exponential covariance structures are smaller than those of calendar options. However, they
remain significant and range from −1.84–3.48% for Brent vs. WTI and from −1.74–1.54% for gold vs.
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silver. Prices obtained with an exponential quadratic covariance model deviate more widely from
these computed with a sub-exponential covariance (from 7.16–20.6%). An analysis of the sensitivity
of options to a reduction by a half of the autocorrelation factors reveals that option values diverge
by 0.6–5.5% from their initial price. The impact of the autocorrelation on Asian option prices is
still significant, but less important than for exchange options due to the smoothing induced by the
definition of the payoff.

There are several interesting topics for future research. For example, it would be interesting to
replace constant coefficients in Σ by a time-dependent matrix in order to model the seasonality in
dependence modeling. Another improvement could be to model the risk-free rate and/or convenience
yield with other Gaussian fields.
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Appendix A

Proposition A1. If the autocovariance functions of X(k)
t are exponential, C

[
X(k)

t , X(k)
t+h

]
= e−λk |h| and if

X(k)
0 are N (0, 1) random variables, then X(k)

t are Ornstein–Uhlenbeck (OU) processes that obey the following
dynamics:

dX(k)
t = −λkX(k)

t dt +
√

2λkdW(k)
t k = 1, ..., d , (A1)

where W(k)
t are d independent Brownian motions.

Proof. Let us consider OU processes that are ruled by Equation (A1). We apply Itô’s lemma to the
process Ut = −eλktX(k)

t , then:

dUt = −λkeλktX(k)
t dt− eλktdX(k)

t

= −eλkt
√

2λkdW(k)
t ,

and:

Us = Ut −
√

2λk

∫ s

t
eλkudW(k)

u .

Therefore, we infer that:

X(k)
s = e−λk(s−t)X(k)

t +
√

2λk

∫ s

t
e−λk(s−u)dW(k)

u ,

and X(k)
0 is distributed according to a Gaussian law, with mean zero and variance equal to one. We

have that
√

2λk
∫ t

0 e−λkudW(k)
u is a normal random of the null mean with variance equal to:

2λk

∫ t

0
e−2λkudu = 1− e−2λkt ,

and e−λktX(k)
0 has a variance equal to e−2λkt. The variance of X(k)

t is then e−2λkt + 1 − e−2λkt = 1;

whereas the covariance between X(k)
s and X(k)

t is equal to:
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C
[

X(k)
s , X(k)

t

]
= 2λkE

[∫ s

0
e−λk(s−u)dW(k)

u

∫ t

0
e−λk(t−u)dW(k)

u

]
+ e−λk(t+s)

= 2λke−λk(s+t)E
[(∫ s∧t

0
eλkudW(k)

u

)2
|F0

]
+ e−λk(t+s)

= 2λke−λk(s+t) 1
2λk

(
e2λk(s∧t) − 1

)
+ e−λk(t+s)

=
(

e−λk |s−t|
)

.

Notice that in this article, we set X(k)
0 = 0 and define the Gaussian field by its conditional

covariance to F0. The covariance between Z(k)
t = X(k)

t |X
(k)
0 = 0 and Z(k)

s = X(k)
s |X

(k)
0 = 0 is then:

C
[

Z(k)
t , Z(k)

t+h

]
= gk(s− t)− gk(s)gk(t)

= e−λk |s−t| − e−λk(s+t) .

Appendix B. Detailed Proofs

Proof of Proposition 2. Given that W1 and W2 are independent and that the expectation of the integral
with respect to a µ−noise is null, we have the following relation:

E [XsXt] = E
[(∫

R+
cos (us)W1(du) +

∫
R+

sin (us)W2(du)
)

×
(∫

R+
cos (ut)W1(du) +

∫
R+

sin (ut)W2(du)
)]

= E
[(∫

R+
cos (us)W1(du)

)(∫
R+

cos (ut)W1(du)
)]

+E
[(∫

R+
sin (us)W2(du)

)(∫
R+

sin (ut)W2(du)
)]

.

As E
[
Wk(ϕ)Wk(ψ)

]
=
∫
R ϕ(t)ψ(t)µ(dt), for k = 1, 2, we infer that:

E [XsXt] =
∫
R+

(cos (us) cos (ut) + sin (us) sin (ut)) µ(du)

=
∫
R+

(cos (us) cos (−ut)− sin (us) sin (−ut)) µ(du)

=
∫
R+

cos (u(s− t)) µ(du) .

Proof of Proposition 3. For all ω ∈ C−, if we remember the definition (16) of the change of the
measure from Q to QS2 , we can develop the moment generating function as follows:

EQS2 [eωRt,T | F0
]

= e(ω(r(T−t)+c1T−c2t)−ωα1(T)+(ω−1)α2(t) )

×
E
[
e(ωΣ1,.ZT−(ω−1)Σ2,.Zt ) | F0

]
E
[
e(−α2(t)+Σ2,:Zt) | F0

] .
(A2)



Risks 2018, 6, 77 27 of 33

By construction, the expectation in the denominator is equal to one. The variance of Σ1,.ZT and
Σ2,.Zt is respectively equal to ∑d

k=1 σ2
1k
(
1− gk(T)2) and ∑d

k=1 σ2
2k
(
1− gk(t)2). Their covariance is

equal to:

C [Σ1,.ZT , Σ2,.Zt | F0] =
d

∑
k=1

σ1kσ2k (gk(T − t)− gk(T)gk(t)) .

Then, the difference ωΣ1,.ZT − (ω− 1)Σ2,.Zt is a normal random variable with a null mean and
a variance equal to:

(v(ω, t, T))2 = ω2
d

∑
k=1

σ2
1k

(
1− gk(T)2

)
+ (ω− 1)2

d

∑
k=1

σ2
2k

(
1− gk(t)2

)
− 2ω (ω− 1)

d

∑
k=1

σ1kσ2k (gk(T − t)− gk(T)gk(t)) .

After simplification, we get that:

(v(ω, t, T))2 = 2ω2α1(T) + 2 (ω− 1)2 α2(t)

− 2ω (ω− 1)
d

∑
k=1

σ1kσ2k (gk(T − t)− gk(T)gk(t)) .

The expectation in the numerator of Equation (A2) is the expectation of a lognormal random
variable, and the moment generating function (mgf) of Rt,T is then equal to:

EQS2
[
eωRt,T | F0

]
= exp

(
(ω (r (T − t) + c1T − c2t)−ωα1(T) + (ω− 1) α2(t) ) +

1
2
(v(ω, t, T))2

)
. (A3)

From this last equation, we infer that Rt,T is a normal random variable of parameters µR(t, T) and
σR(t, T).

Proof of Proposition 4. If we rewrite the option price as an expectation under the measure QS2 , we
obtain that:

EQS2

( β1

β2

S(1)
0

S(2)
0

eRt,T − 1

)
+

| F0

 =
β1

β2

S(1)
0

S(2)
0

∫ +∞

umin

eu fRt,T (u)du−
∫ +∞

umin

fRt,T (u)du . (A4)

where umin = ln
(

β2
β1

S(2)
0

S(1)
0

)
. According to the definition (19) of d2, the integral in the first term is

equal to:

∫ +∞

umin

fRt,T (u)du = Φ (−d2(t, T)) ; (A5)

whereas the second integral of Equation (A4) is developed as follows:

∫ +∞

umin

eu fRt,T (u)du =
1√

2πσR

∫ +∞

umin

exp

(
−1

2
u2 − 2u

(
µR + σ2

R
)
+ µ2

R
σ2

R

)
du .

If we define a new variable v = µR + σ2
R, we develop this last equation as:
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∫ +∞
umin

eu fRt,T (u)du =
exp(µR+

1
2 σ2

R)√
2πσR

∫ +∞
umin

exp
(
− 1

2
(u−v)2

σ2
R

)
du

= exp
(

µR + 1
2 σ2

R

)
Φ (−d1(t, T)) .

(A6)

Finally, combining Equations (A4)–(A6) leads to the following result:

EQS2

( β1

β2

S(1)
T

S(2)
t

− 1

)
+

| F0

 =
β1

β2

S(1)
0

S(2)
0

exp
(

µR +
1
2

σ2
R

)
Φ (−d1(t, T))−Φ (−d2(t, T)) .

Given that µR(t, T)− r(T − t) + c2t + 1
2 (σR(t, T))2 = c1T, we can conclude the proof.

Proof of Proposition 5. For a sub-exponential covariance function, the double integral
∫ t

0

∫ T
0 gk(u−

v)dvdu is equal to
∫ t

0

∫ T
0

λ2
k

λ2
k+(u−v)2 dudv. On the other hand, the first integral is equal to:

∫ T

0

λ2
k

λ2
k + (u− v)2

du = λk tan−1
(

v
λk

)
− λk tan−1

(
v− T

λk

)
.

The integral of the arctangent function is given by:∫
tan−1(x)dx = x tan−1(x)− 1

2
ln(1 + x2) + C .

Therefore, we infer the following result:

∫ t

0

∫ T

0
gr(u− v)dudv = λk

∫ t

0
tan−1

(
v

λk

)
dv− λk

∫ t

0
tan−1

(
v− T

λk

)
dv

= λ2
k

∫ t
λk

0
tan−1 (s) ds− λ2

k

∫ t−T
λk
−T
λk

tan−1 (s) ds .

Furthermore, we also have that:

λ2
k

∫ t
λk

0
tan−1 (s) ds = tλk tan−1

(
t

λk

)
− 1

2
λ2

k ln

(
1 +

t2

(λk)
2

)

and:

λ2
k

∫ t−T
λk
−T
λk

tan−1 (s) ds = λ2
k

[
x tan−1(x)− 1

2
ln(1 + x2)

]x= t−T
λk

x=−T
λk

,

from which we obtain the expression (23). On the other hand, by direct integration, we can
show that: ∫ t

0

∫ T

0
gk(u)gk(v)dvdu =

∫ t

0

λ2
k

λ2
k + v2

dv
∫ T

0

λ2
k

λ2
k + u2

du

= λ2
k arctan

(
t

λk

)
arctan

(
T
λk

)
.



Risks 2018, 6, 77 29 of 33

Proof of Proposition 7. By the definition of αj(t), we have that:

1
t

∫ t

0
αj(s)ds =

1
2

1
t

d

∑
k=1

(
σjk

)2
(

t−
∫ t

0
gk(s)2ds

)
and: ∫ t

0
gk(s)2ds =

∫ t

0

(λk)
4(

(λk)
2 + s2

)2 ds

=
λk
2

tan−1
(

t
λk

)
+

λ2
kt

2
(
t2 + λ2

k
) .

Therefore, we can conclude the proof.

Proof of Proposition 8. The double integral
∫ t

0

∫ T
0 gk(u− v)dvdu is developed as follows:∫ t

0

∫ T
0 gk(u− v)dvdu =

∫ t
0

∫ T
0 e−λk |u−v|dvdu

=
∫ t

0

∫ t
0 e−λk |u−v|dvdu +

∫ t
0

∫ T
t e−λk |u−v|dvdu .

(A7)

On the other hand, the first integral is equal to:

∫ t

0

∫ t

0
e−λk |u−v|dvdu = 2

(
t
λ
− 1

λ2

(
1− e−λt

))
, (A8)

and the second integral is equal to:∫ t
0

∫ T
t e−λk |u−v|dvdu =

∫ t
0

∫ T
t eλk(u−v)dvdu

= 1
λ2

k

(
1− e−λkt − eλk(t−T) + e−λkT

)
.

(A9)

Combining Equations (A7)–(A9) allows us to obtain Equation (26). Furthermore, we deduce by
direct integration that:

∫ t

0

∫ T

0
gk(u)gk(v)dvdu =

∫ t

0
e−λkvdv

∫ T

0
e−λkudu

=
1

λ2
k

(
1− e−λkt

) (
1− e−λkT

)
.

Proof of Proposition 11. The double integral
∫ t

0

∫ T
0 gk(u− v)dvdu is equal to:

∫ t

0

∫ T

0
gk(u− v)dvdu =

∫ t

0

∫ T

0
e
− 1

4λk
(u−v)2

dvdu .

We may check that the inner integral is given by:

∫ T

0
e
− 1

4λk
(u−v)2

dv =
√

πλk

(
erf
(

u
2
√

λk

)
− erf

(
u− T
2
√

λk

))
. (A10)

Furthermore, the integral of the first error function in this last equation is equal to:

∫ t

0
erf
(

u
2
√

λk

)
du = t erf

(
t

2
√

λk

)
− 2
√

λk√
π

(
1− e

− t2
4λk

)
. (A11)
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The second integral present in Equation (A10) is equal to:

∫ t
0 erf

(
u− T
2
√

λk

)
dx = (T − t)erf

(
T − t
2
√

λk

)
− T erf

(
T

2
√

λk

)

+

√
λk√
π

2

e
−
(t− T)2

4λk − e
−

T2

4λk

 .
(A12)

Combining Equations (A10)–(A12) allows us to obtain Equation (29). As we have that:

∫ t

0

∫ T

0
gk(u)gk(v)dvdu =

∫ t

0
e
− v2

4λk dv
∫ T

0
e
− u2

4λk du

= πλkerf
(

t
2
√

λk

)
erf
(

T
2
√

λk

)
,

we can conclude the proof.

Proof of Proposition 13. By the definition of αj(s), we have that:

1
t

∫ t

0
αj(s)ds =

1
2

1
t

d

∑
k=1

(
σjk

)2
(

t−
∫ t

0
e
− h2

2λk ds
)

.

Given that: ∫ t

0
e
− h2

2λk ds =

√
πλk√

2
erf
(

t√
2λk

)
,

we can conclude the proof.

Proof of Proposition 14. Let ω ∈ C−. By the definition of the change of measure (16), the moment

generating function (mgf) of G(1)
T

G(2)
t

is developed as follows:

EQG2 [eωAt,T | F0
]

= e
(

ω 1
2 r (T−t)+ω 1

2 (c1T−c2t)− ω
T
∫ T

0 α1(s)ds+ ω
t
∫ t

0 α2(s)ds
)
×

EQG2

[
eω
(

1
T Σ1,.

∫ T
0 Zsds− 1

t Σ2,.
∫ t

0 Zsds
)
| F0

]
= e

(
ω 1

2 r (T−t)+ω 1
2 (c1T−c2t)− ω

T
∫ T

0 α1(s)ds+ ω
t
∫ t

0 α2(s)ds− 1
2 (σln G2 (t))

2)
×

E
[

e
(

ω 1
T Σ1,.

∫ T
0 Zsds−(ω−1) 1

t Σ2,.
∫ t

0 Zsds
)
| F0

]
.

(A13)

The variances of 1
T Σ1,.

∫ T
0 Zsds and 1

t Σ2,.
∫ t

0 Zsds are respectively
(

σln G1(T)
)2

and
(

σln G2(t)
)2

,
as defined by Equation (25). The weighted sum of random field integrals has a covariance equal to:

C
[

1
T

Σ1,.

∫ T

0
Zsds ,

1
t

Σ2,.

∫ t

0
Zsds | F0

]
=

1
T t

C
[

Σ1,.

∫ T

0
Zsds , Σ2,.

∫ t

0
Zsds | F0

]
=

1
T t

d

∑
k=1

σ1kσ2k

∫ t

0

∫ T

0
(gk(u− v)− gk(u)gk(v)) dvdu .
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The random variable ω 1
T Σ1,.

∫ T
0 Zsds − (ω− 1) 1

t Σ2,.
∫ t

0 Zsds is then normal, with a null mean
and a variance equal to:

(v(ω))2 = ω2
(

σln G1(T)
)2

+ (ω− 1)2
(

σln G2(t)
)2
− 2ω (ω− 1)

T t
×

d

∑
k=1

σ1kσ2k

∫ t

0

∫ T

0
gk(u− v)− gk(u)gk(v) dvdu

and we can conclude that the mgf of At,T with t ≤ T under the measure QG2 is:

EQG2
[
eωAt,T | F0

]
= exp

(
ω

1
2

r (T − t) + ω
1
2
(c1T − c2t)− ω

T

∫ T

0
α1(s)ds +

ω

t

∫ t

0
α2(s)ds

)
(A14)

× exp
(
−1

2

(
σln G2 (t)

)2
+

1
2
(v(ω))2

)
.

After simplification, we obtain Equations (34) and (35).

Proof of Proposition 15. Using a change of numeraire allows us to rewrite the option price as follows:

e−rTE
[
(β1G(1)

T − β2G(2)
t )+ | F0

]
= β2e−rT exp

(
1
2
(r + c2) t− 1

t

∫ t

0
α2(s)ds +

1
2

(
σln G2(t)

)2
)

×EQG2

( β1

β2

G(1)
T

G(2)
t

− 1

)
+

| F0

 .

If fA(u) denotes the density of At,T under the measure QG2 , the expectation in this last equation
is given by:

EQG2

( β1

β2

G(1)
T

G(2)
t

− 1

)
+

| F0

 =
∫ ∞

ln
(

β2
β1

) ( β1

β2
eu − 1

)
fA(u)du . (A15)

As At,T is normal and by the definition of d2(t, T), the second integral is equal to:∫ ∞

ln
(

β2
β1

) fA(u)du = Φ (−d2(t, T)) , (A16)

whereas the first integral is rewritten after a change of variable as follows:

β1

β2

∫ ∞

ln
(

β2
β1

) eu fA(u)du . =
β1

β2
exp

(
µA +

1
2

σ2
A

)
Φ (−d1(t, T)) . (A17)

Finally:

EQG2
[(

β1

β2
eAt,T − 1

)
+

| F0

]
=

β1

β2
exp

(
µA +

1
2

σ2
A

)
Φ (−d1(t, T))−Φ (−d2(t, T)) .
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Combining Equations (A15)–(A16) leads to the following expression for the Asian exchange
calendar option:

e−rTE
[
(β1G(1)

T − β2G(2)
t )+ | F0

]
= β2e−rT exp

(
1
2
(r + c2) t− 1

t

∫ t

0
α2(s)ds +

1
2

(
σln G2(t)

)2
)

×
(

β1

β2
exp

(
µA +

1
2

σ2
A

)
Φ (−d1(t, T))−Φ (−d2(t, T))

)
.
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