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Abstract: The paper addresses three objectives: the first is a presentation and overview of some important
developments in quantile times series approaches relevant to demographic applications—secondly,
development of a general framework to represent quantile regression models in a unifying manner,
which can further enhance practical extensions and assist in formation of connections between existing
models for practitioners. In this regard, the core theme of the paper is to provide perspectives to a
general audience of core components that go into construction of a quantile time series model. The third
objective is to compare and discuss the application of the different quantile time series models on several
sets of interesting demographic and mortality related time series data sets. This has relevance to life
insurance analysis and the resulting exploration undertaken includes applications in mortality, fertility,
births and morbidity data for several countries, with a more detailed analysis of regional data in England,
Wales and Scotland.
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1. Introduction

The theme of this tutorial is not to develop an analysis of all possible variants of quantile time series
model: their model properties and relevant estimation approaches. Hence, the paper is not addressing
the concerns of estimation of these models, as there is existing literature on these aspects in many cases.
We provide references to relevant works on these aspects in several classes of models presented.

Instead, the focus is rather to provide a unified framework to construct such models for
practitioners. Therefore, the emphasis of the paper is on the properties of the models and links between
such models from a constructive perspective. As such, the tutorial takes a considered perspective
on popular classes of quantile time series model structure that have been developed in the literature.
It first introduces the key papers in the literature that have led to developments in some important
classes of models. The second aspect of this paper is to provide an overview of various different model
components that one can consider when developing a quantile times series models. This is the novelty
introduced in this paper, where existing models are viewed from a different perspective and core
components of relevance to general quantile time series modelling are decomposed and represented in
components that allow development of new models and extensions of existing models.

In this regard, the theme of the overview is to decompose quantile time series modelling into a
few core model components and then to go into detail on choices developed in the literature relating
to these particular components. In viewing quantile time series modelling from this perspective,
we are able to easily introduce new aspects to the modelling such as modifications to the quantile
error function as well as nonlinear transformations of relevance to broader classes of quantile time
series model.

In particular, in this paper, we consider classes of univariate quantile regression models developed
in the context of time series modelling. We begin by providing a brief overview of different classes

Risks 2018, 6, 97; doi:10.3390/risks6030097 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
http://www.mdpi.com/2227-9091/6/3/97?type=check_update&version=1
http://dx.doi.org/10.3390/risks6030097
http://www.mdpi.com/journal/risks


Risks 2018, 6, 97 2 of 47

of parametric quantile time series regression models. Quantile valued time series models can be of
many different types with regard to their regression structure: function on scalar or vector regressions;
function on function regressions; and scalar on function regressions.

We then explore novel applications of quantile time series modelling in applications of relevance
to life insurance contexts. In particular, we explore a range of mortality and demographic data sets
via quantile time series regressions. The purpose of this is to illustrate for actuarial practitioners
how one may utilise such time series modelling techniques to explore relevant demographic and
mortality related time series data sets. The outputs of this analysis can be directly useful in insurance
applications for instance in life insurance applications in annuities pricing and risk management as
well as pension policy development. We do not go into detail on these particular areas of application;
instead, we focus on modelling and comparison of different quantile time series models on these real
mortality and demographic data sets obtained for England, Wales, Scotland and Northern Ireland.

In general, when studying such data sets, we note that one can separate such data sets typically
into four categories1:

• Demographic data: which includes factors such as age, sex, migration patterns, ethnicity and
marital status in populations. Typically, this comes from census type data sets.

• Health event data: this involves recordings of health events affecting individuals or populations
which can include births, deaths, health conditions, primary care interactions, secondary care
interactions and health hazards;

• Circumstantial data: focuses on aspects of individuals’ and populations’ circumstances that may
affect the wider determinants of health, including socio-economic, lifestyle, and environmental
data. Such data in this type of category can include education data; employment data; housing
data and environmental data;

• National reference data: which includes data not collected for the sole purpose of health analysis;
however, it can be used in connection with health data.

In this manuscript, we will focus on data reflecting demographic data and health event data.
In Section 9, we provide a detailed overview of which data sets are considered. This will then be
followed by the analysis of numerous quantile time series models, both linear and nonlinear, applied
to these data sets. At each stage, a detailed description of the fitted model properties is provided in
order to act as a guide for practitioners unfamiliar with such modelling approaches in demography
and insurance.

Before we go into specific literature and background on quantile times series modelling, it would
be remiss of us not to briefly mention some core developments of quantile regression contexts.
The growth in general quantile regression modelling goes back to influential works by Koenker
and Bassett 1978; Koenker 2005; Gilchrist 2000; Buchinsky 1998; Koenker 2004; Yu and Jones 1998 and
in Bayesian modelling settings in Yu and Moyeed 2001; Thompson et al. 2010; Yu et al. 2003.

In addition, more recently, in Bernardi et al. (2016a), they extended the Bayesian family
of Asymmetric Laplace distribution (ALD) quantile regression models to the family of Skewed
Exponential Power (SEP) models. Their intention was to account for application settings in which the
assumptions and model properties that standard ALD models impose was extended, allowing for
greater skewness and kurtosis ranges to be feasibly expressed. In similar context, with the perspective
of generalizing the distributional properties of the resulting quantile regression and its distributional
tail properties, in Lancaster and Jae Jun (2010), they study applications of Bayesian exponentially tilted
empirical likelihood to make inference about quantile regressions.

From the perspective of covariate selection and shrinkage in Bayesian quantile regressions, there is
also a sequence of papers on regularization methods for quantile regressions, such as Li et al. (2010).

1 https://www.healthknowledge.org.uk/public-health-textbook/health-information.
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In such works, the authors demonstrate that regularization methods such as lasso are effective in
Bayesian quantile regression contexts. For a good overview of the past 40 years of quantile regression
modelling over a wide spectrum of quantile models and modelling domains, see the discussions in
Koenker (2017).

Quantile regression has also begun to be explored in more general regression settings such as
for panel data applications, where bootstrap procedures are developed in such quantile regression
contexts (see Galvao and Montes-Rojas (2015) and references therein).

The application of quantile regression models in financial risk and insurance has also recently begun
to develop in works such as (Dong et al. 2015; Peters et al. 2016) and discussions in Operational risk
contexts in (Cruz et al. 2015; Peters and Shevchenko 2015). Furthermore, there are Bayesian applications
in econometrics. For instance, Hu et al. (2013) develop a Bayesian partially collapsed Gibbs sampler
approach to fitting single-index models for conditional quantile regressions. In Bernardi et al. (2016b),
they consider the challenge of model combining or model averaging in dynamic quantile regression
settings, which they termed the general dynamic model averaging framework.

We now shift the focus from general quantile regression background to a particular focus on time
series contexts. Specification of quantile function time series and regression can be decomposed into
three main components:

1. The conditional distribution of the regression time series model. This defines a conditional
quantile function of the dependent variable, given the explanatory variables, primarily comprised
in our case of time series past observations of the process. However, in general, the conditioning
arguments may also include additional exogenous covariates perhaps with distributed lags;

2. The structural component of the regression model. This component includes specification of the
choice of link function and functional form expressing how covariates enter to the regression
structure. The link function connected the linear or nonlinear predictor regression structure to the
moments or parameters of the conditional quantile function;

3. The actual choice of independent variables (regressors), that is, the covariates in the regression
model and possible lagged and transformed structures. This could include distributed lags,
projections, feature extraction as well as basis function transformations of the covariates.

1.1. Outline and Contributions

In Section 2, we overview important developments in the context of quantile regression modelling
with a particular focus on quantile times series models.

In Sections 3–5, we present a general modelling framework for developing a wide class of quantile
time series models that is detailed in a constructive manner involving four key ingredients. The first is
the structural form of the quantile regression or time series model (linear or nonlinear maps), the second
is the choice of quantile error function, the third is the choice of lag structure for the endogenous
variables that characterize the quantile time series structure and the fourth is the choice of endogenous
covariates and their lag structures. Then, we introduce examples in the case of non-parametric and
parametric linear and nonlinear quantile time series models.

In Section 6, we characterize the class of quantile error function families in categories of
location-scale, shape-scale and some special heavy tailed families of quantile functions. We conclude
this section with discussion on truncated quantile error models for time series constructions with
restricted supports.

In Sections 7 and 8, we detail how to develop transformation of these basic families of parametric
quantile error models to other significantly more flexible families of quantile error models based
on two classes of mappings: the Tukey Elongation Maps and secondly the Rank Transmutation Map
framework. We note that these general transformations may also be used to construct other aspects of
the quantile time series model, not just the quantile error function.

In Section 9, we will explore applications of the general quantile time series model constructions on
a range of demographic and mortality data. The focus will be to explore with applications the properties
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of some of the models discussed in the tutorial overview and to explore their application relevance for
future developments in new insurance domains such as life-insurance modelling. We then conclude.

1.2. Notation

In this section, we briefly introduce some core notation used throughout the manuscript.
We denote random variables by upper script and their realization by lower script. We denote vectors by
bold and scalars by non-bold. Furthermore, we use the notation QYt to refer to the quantile function of a
random variable Yt obtained as the t-th time instance of a time series {Y1, . . . , Yt, . . .}. We will typically
refer to the quantile level by variable u ∈ [0, 1]. The generic notation used for static model parameters
in any of the introduced time series models will be denoted by vector θ unless otherwise discussed.
Furthermore, we will utilize the notation Ft to denote the natural sigma-algebra of the observed time
series given by Ft = σ(Y1, . . . , Yt). We will therefore denote by QYt (u|Ft−1; θ) the conditional quantile
function of random variable Yt condition on the information set Ft−1, i.e., the observations of the time
series until time t− 1 given by {y0, y1, . . . , yt−1} and the static model parameters generically denoted
by θ ∈ Rd.

Furthermore, we will in general denote functional coefficients of the quantile time series structure
by functions αi(u) which will multiply lagged values of the time series. We will impose additional
structure on these functions αi(u) as required. When we consider the coefficients of lagged covariates,
for a given quantile level u, we will also denote them by notations αu = (α0,u, . . . , αp,u) and
βu = (β0,u, . . . , βq,u) for u-th quantile coefficients. These could, for instance, be coefficients for the
endogenous autoregressive (AR) structures and exogenous distributed lag structures, respectively,
or for trend and volatility terms. In addition, we will denote by Qε (u; γ) the quantile error function,
which represents white noise sequence εt with distributional static parameters generically denoted by
γ ∈ Rd′ . Additional notation used in the paper is introduced and defined where required.

2. Developments of Quantile Time Series Models

In its earliest form, quantile regression as introduced by Koenker and Bassett (1978) generalizes
the notion of sample quantiles to linear and nonlinear regression models including the least absolute
deviation estimation as its special case. In developing such a regression framework, one is able
to develop estimation methods for conditional quantile functions at any (or all) probability levels.
Such conditional quantile regression structures are now increasingly studied as they have been shown
to present new information, compared to classical generalized linear model (GLM) regressions or
linear mean regressions (see discussions in Koenker (2000)).

In (Koenker and Xiao 2006; Koenker 2017), the background of time series developments in quantile
models is discussed for the class of quantile Autoregressive (QAR) models. Such QAR models are
characterized by a parametric form, in the univariate time series {Yt} setting, by:

QYt (u|Ft−1; θ) =
p

∑
i=1

αi(u)Yt−i + Qε (u; γ) (1)

with notation as defined in Section 1.2.
To understand how to go from a time series model to a quantile time series model, consider the

following relationship detailed in Example 1. This example illustrates the relationship between a
functional, random coefficient AR time series model and its equivalent form expressed as a quantile
time series model. Of course, any time series model, even without a structure of random functional
coefficients can also admit a quantile time series model. However, in general the direct link between
such a model and the coefficients of each model, the underlying time series model and the quantile
time series model may not be easy to obtain in an explicit closed-form.
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Example 1 (Relating Functional time series with Random Coefficients to Quantile time series).
Consider a functional time series model with random coefficients in an AR structure given by

yt =
p

∑
i=1

αi(Ut)yt−i + α0(Ut)

=
p

∑
i=1

αi(Ut)yt−i + εt

(2)

with Ut ∼ U[0, 1] for all t and where αi : [0, 1] 7→ R. We need only then assume that

p

∑
i=1

αi(Ut)yt−i + α0(Ut)

is a monotone increasing function of Ut.
Note: one way to construct such a solution is to consider a positive valued time series, such that Yt ∈ R+,

then if each coefficient αi(u) : [0, 1] 7→ R+ is specified as a quantile function which is scale invariant, one has
that the resulting linear combination ∑

p
i=1 αi(Ut)yt−i is a quantile function. Furthermore, one can write the

equivalent conditional quantile function time series model as follows:

QYt (u|Ft−1; θ) =
p

∑
i=1

αi(u)yt−i + εt, (3)

which is obtained by use of the following general rule for any monotone increasing function g and standard
uniform random variable U:

Qg(U) (u) = g (QU(u)) = g(u), (4)

where we use the fact that for a uniform random variable the distribution and quantile function satisfy the linear
relationship, such that FU(u) = QU(u) = u.

Such an example was illustrated in Koenker and Xiao (2006) where they point out that one can
also consider, from a regression perspective, an alternative formulation of such functional regressions
with scalar or vector on function regression. In particular, one can define a scalar (vector) on function
regression version of the QAR model, with co-monotonic random functional coefficients, denoted as
the random coefficients by

Yt =
p

∑
i=1

αi (Ut)Yt−i + Qε (Ut; γ) (5)

for i.i.d. Ut ∼ U(0, 1). Such QAR models, in which the autoregressive coefficients are expressed as
monotone functions of a single, scalar random variable are interesting as they allow one to capture

“systematic influences of conditioning variables on the location, scale and shape of the
conditional distribution of the response, and therefore constitute a significant extension of
classical constant coefficient linear time series models in which the effect of conditioning is
confined to a location shift.”

(Koenker and Xiao 2006)

Furthermore, such quantile time series models can also be more robust to outliers and heavy
tailed noise (see discussions in Fitzenberger et al. (2013)).

In the time series context, recent studies have also begun to develop properties specifically for
QAR models, such as the notion of the quantile correlation (QACF) and quantile partial correlation
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(QPACF), defined in Li et al. (2015). These are natural quantile extensions of autocovariance and
autocorrelation given by:

QACVFu {Yt, Yt−τ} = E [(u− I [Yt −QYt(u)]) (Yt−τ −E [Yt−τ ])] , (6)

QACFu {Yt, Yt−τ} =
QACVFu {Yt, Yt−τ}√

Var (u− I [Yt −QYt(u)])Var (Yt−τ)
. (7)

In addition, an analogous QPACF can be obtained from the quantile based correlation and is given
according to the expression in (Li et al. 2015, Equation (2.2)). Multivariate extensions have also been
considered in Han et al. (2016) where they consider multiple QAR time series models, and develop
the notion of cross-quantilogram. This provides a way to measure the quantile dependence between
multiple quantile time series.

Variants of non-stationary QAR models have also been explored in Aue et al. (2017). This involves
developing locally stationary QAR models through piece-wise, local in time constructions,

QYt (u|Ft−1; θ) =
pk

∑
i=1

αk,i(u)Yt−i + Qεk (u; γ) , (8)

and they extend the standard QAR model to have a definition specific to each of the k segments.
A detailed discussion of model selection and segmentation approaches is provided that performs local
segmentation of the space and model selection per quantile level.

In the above discussion, we have not mentioned specific choices for the base quantile function
Qε (u; γ), this is a topic we will discuss in detail in later sections of this manuscript. However, we note
that there are many ways to construct and decide upon such a reference quantile function.
Recent developments in this context include the flexible class of non-parametric estimators proposed in
Stephanou et al. (2017). In this work, they propose a simple non-parametric L-estimator class of kernel
representations of the error quantile, based on the class of Hermite Askey-orthogonal polynomials.
This builds on earlier works by (Cai 2002; Cai and Xu 2008) where non-parametric quantile time series
modelling was studied via the inverse of weighted Nadaraya–Watson estimators of the conditional
distribution function.

In addition to classes of QAR model, quantile time series regressions have been studied
in both linear and nonlinear autoregressive settings in (Bloomfield and Steiger 1984; Cai 2010b;
Cai et al. 2013; Weiss 1991; Davis and Dunsmuir 1997). The development of autoregressive conditional
heteroscedasticity ARCH and GARCH models in quantile time series settings has also been undertaken
by (Koenker and Zhao 1996; Lee and Noh 2013). Although the focus in this paper does not concern
statistical estimation of quantile regression models, we believe it is still useful to mention that in
frequentist estimation techniques for AR-ARCH type quantile models, identification in parameter
estimation can be a challenge (see discussion in Noh and Lee (2015)). These authors demonstrate how
a simple AR(1)-ARCH(1) model parametrized as follows:

Yt = α0 + α1Yt−1 + εt,

εt = σtηt, σ2
t = ω + βε2

t−1 for t ∈ Z,
(9)

with {ηt} i.i.d. random variables satisfying E [ηt] = 0 and E
[
η2

t
]
= 1, when re-expressed as a quantile

regression form will have parameter identification issues. To see this, consider the reformulated
AR(1)-ARCH(1) model represented as a quantile regression time series form as follows

QYt(u|Ft−1; θ) = α0 + α1Yt−1 + Qε (u; γ)
(

ω + β (Yt−1 − α0 − α1Yt−2)
2
)1/2

, (10)
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where Qε (u; γ) = inf{x : P(ε1 ≤ x; γ) ≥ u}. One may observe that since the u-th quantile of ηt is
unknown, then the parameters in Equation (10) are not identifiable. Fortunately, this issue can be
overcome with appropriate re-parametrization of the model (see discussion in Lee and Noh (2013)).

The re-parametrized form, which is identifiable, is obtained by setting εt = htut, h2
t = 1 + γε2

t−1
with h2

t = σ2
t /ω, ut =

√
ωηt and γ = β/ω. In such a re-parametrization, one has re-expressed

the ARCH model as a conditional scale model with no scale constraints on the i.i.d. innovations.
The resulting conditional quantile time series model is then given by

QYt(u|Ft−1; θ) = α0 + α1Yt−1 + Qε(u; γ)
(

1 + γ (Yt−1 − α0 − α1Yt−2)
2
)1/2

. (11)

General results for parametrizations that extend beyond the AR-ARCH models to
ARMA-AGARCH models which are identifiable are also developed in Noh and Lee (2015).

These developments were then presented in a general framework that is widely utilized, known
as the Conditional Autoregressive VaR model (CAViaR) of Engle and Manganelli (2004). This model
class has been extended to study explicitly models which have both conditional location and scale
components (see Noh and Lee (2015)).

In Cai (2016) and then later in Noh and Lee (2015), the authors developed general classes of
conditional location-scale quantile time series models based on time series models of the generic form:

Yt = µt(α) + σt(α)εt for t ∈ Z, (12)

where µt(α) and σt(α) were functions they used to denote µ(Yt−1, Yt−2, . . . ; α) and σ(Yt−1, Yt−2, . . . ; α)

for some measurable functions µ, σ : R∞×Θ1 → R; α denotes the true model parameter; Θ1 is a model
parameter space; {εt} are i.i.d. random variables with an unknown common distribution function Fε.

In fact, such ideas for quantile regression were previously well developed and explained in the
location and scale class of quantile regression models in Gilchrist (2000). The equivalent quantile time
series models may be presented according to the general location-scale generalized form given by

QYt (u|Ft−1, θ) = µ
(
Yt−1:t−p, α

)
+ σ

(
Yt−1:t−q, β

)
Qε (u; γ) , (13)

where model parameters θ = (α, β, γ) with α =
(
α0, α1, . . . , αp

)
, β =

(
β0, β1, . . . , βq

)
and generic

quantile error function denoted by Qε (u|γ).
Special cases of such models had previously also been considered in works such as Cai et al. (2013)

who developed the quantile time series version of the double AR(p) models of Ling (2007) given by

Yt = α0 + α1Yt + · · ·+ αpYt−p + εt

√
β0 + β1Y2

t−1 + · · ·+ βqY2
t−q, (14)

where βi > 0 for i ∈ {0, . . . , q}, εt
i.i.d.∼ N(0, 1) and Yt is independent of εt for all t.

As noted in Cai et al. (2013), this is a special case of the ARMA-ARCH models proposed by
Weiss (1984); however, it is structurally distinct from the ARCH models proposed by Engle (1982) when
one considers settings in which αi 6= 0. A further extension developed includes the Double-QAR(p,q)
model of Cai et al. (2013) given by

QYt (u|Ft−1, θ) = α0 + α1Yt + · · ·+ αpYt−p +
√

β0 + β1Y2
t−1 + · · ·+ βqY2

t−qQε (u; γ) , (15)

where model parameters θ = (α, β, γ) with α =
(
α0, α1, . . . , αp

)
and β =

(
β0, β1, . . . , βq

)
. In this

particular study, the quantile error distribution was selected as a flexible quantile sub-family of the
generalized lambda family of distributions developed in Freimer et al. (1988).

Other forms of nonlinear quantile time series models have been explored, such as the class of
quantile self-exciting threshold autoregressive time series models proposed in Cai and Stander (2008).
Such models are the quantile time series extension of self-exciting threshold autoregressive time series
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(SETAR) models, often referred to as the class of QSETAR models. These are generally characterized
by the QAR model extension given by:

QYt (u|Ft) =
m+1

∑
i=1

[(
p

∑
j=1

αi,j(u)Yt−j

)
+ Qεi,t(u)

]
I {yt−d ∈ (yi−1, yi]} , (16)

where we consider the following state-space threshold partitions −∞ = y0 < y1 < · · · < ym+1 = ∞
and denote by I {·} the indicator function taking value one, when the arguments condition is satisfied
and zero otherwise.

Other classes of nonlinear quantile time series models developed include those studied in
(Peters et al. 2016; Dong et al. 2015; Chen et al. 2017) where they proposed nonlinear quantile models
of the form

QYt(u|Ft−1, X; θ) = T (Ft,Gt, Qε(u; γ)) , (17)

which characterize the class of quantile models equivalent to distributed lag ARDL models with
exogenous covariates. Furthermore, these models were also extended in Chen et al. (2017) to quantile
state-space models (QSSM) that they termed the AQUA class. In Peters et al. (2016), several classes of
transform function T(·) were explored based on the Tukey class of elongation transforms, including
popular sub-classes of g-and-h, G-and-K, G-and-J, G-G, and H-H transforms. An efficient R-package
for estimation and description of its functionality is provided by Prangle (2017).

In terms of forecasting of quantile time series models, there are multiple approaches one can
adopt (see discussions in Cai (2010a)). Furthermore, there is a branch of quantile time series models
relating to extreme value theory (see a detailed discussion in McNeil and Frey (2000)). To complete
this section, we make the following example to illustrate a general mapping from a time series model
to a quantile time series model.

Example 2 (Relating General Nonlinear Stochastic Volatility Time Series Models to Quantile Time
Series Models). Consider a functional time series model characterized by the general structural form

Yt = µ
(
Yt−p, . . . , Yt−1; θ

)
+

q

∑
j=1

θjσ
(
Yt−s−q, . . . , Yt−1−q, t; γ

)
α0(Ut−q) + σ (Yt−s, . . . , Yt−1, t) α0(Ut)

= µ
(
Yt−p, . . . , Yt−1

)
+

q

∑
j=1

θjσ
(
Yt−s−q, . . . , Yt−1−q, t

)
εt−q + σ (Yt−s, . . . , Yt−1, t) εt

(18)

for time t and where Ut is an i.i.d. sequence of uniform random variables Ut ∼ U[0, 1] and where α0 : [0, 1] 7→ R,
which we assume satisfies that α0(u) is a monotone increasing function in Ut.

Furthermore, we assume a general parametric linear or nonlinear map µ
(
Yt−p, . . . , Yt−1, t; θ

)
of lagged

values of the process Yt and time t for the trend such that µ : Rp × R+ 7→ R parametrized by model
parameters generically denoted by θ and a nonlinear stochastic volatility structure given by functional form
σ (Yt−s, . . . , Yt−1; γ) such that σ : Rs 7→ R+ with generic model parameters γ. Then, in this case, one has the
general equivalent conditional quantile function time series model can be obtained, under the restrictions that
θi ≥ 0 for i ∈ {1, . . . , q}, given by

QYt (u|Ft−1; θ) = µ
(
Yt−p, . . . , Yt−1

)
+

q

∑
j=1

θjσ
(
Yt−s−q, . . . , Yt−1−q, t

)
Qεt−q(u) + σ (Yt−s, . . . , Yt−1, t) Qεt(u)

= µ
(
Yt−p, . . . , Yt−1

)
+ Qε̃t

(
u|Ft−1; θ1:q,

)
.

(19)

To obtain this representation, we use the fact that a positive scaling of a quantile function is a quantile
function, such that for all t, s, q on has that θjσ

(
Yt−s−q, . . . , Yt−1−q, t

)
Qεt−q(u) is a quantile function.

Furthermore, any linear combination of quantile functions is also a quantile function and we apply the rule that
a linear translation of a quantile is a quantile function. Finally, we are back to the condition that we may then
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apply again the following general rule for any monotone increasing function g and standard uniform random
variable U:

Qg(U) (u) = g (QU(u)) = g(u), (20)

where we use the fact that for a uniform random variable the distribution and quantile function satisfy the linear
relationship such that FU(u) = QU(u) = u.

Remark 1. The above example is intended to be illustrative of the general approach one can adopt to moving
from time series models to the equivalent relationship in a quantile time series model. However, one must
in general still be cautious to consider such general model structures from the perspective of estimation and
appropriate identification considerations.

3. General Construction of Quantile Time Series Regression Models

In the literature, it is common to develop quantile time series models dependent only on
endogenous variables in the regression structure. In other words, the vast majority of time series
quantile regression models discussed are constructed from conditional distributions which are based
on information filtration, denoted Ft = σ (Y0, . . . , Yt) , which is constructed from the sigma-algebra
naturally generated by the time series signal under consideration.

However, in many practical settings, it will be of interest to extend the class of quantile time series
models such as the QAR models to include lagged endogenous covariates of different forms. A first
natural extension would be to begin by developing the conditional quantile function forming the time
series to also be dependent explicitly on a second filtration of observed exogenous covariates, which
will be denoted by Gt = σ (X0, . . . , Xt), where Xt ∈ Rd.

In such cases, one can construct a range of extensions of the QAR model, for instance, such as the
two illustrative examples below:

QYt (u|Ft−1,Gt; θ) =
p

∑
i=1

αi(u)Yt−i +
d

∑
j=1

k

∑
i=1

β j,iXj,t−i + Qε (u; γ) ,

QYt (u|Ft−1,Gt; θ) =
p

∑
i=1

αi(u)Yt−i +
d

∑
j=1

k

∑
i=1

β j,iQXj,t−i |Xj,1:t−i
(u) + Qε (u; γ) ,

(21)

where in the second case one may wish to impose that β j,i > 0 for all i, j to ensure the resulting
conditional quantile function is well defined. These illustrative models are based on linear relationships
in the quantile time series regressions. However, we will also consider the general class of nonlinear
and linear cases generically presented by the following parametric conditional quantile relationship

QYt (u|Ft−1,Gt; θ) = T (Ft,Gt, Qε(u)) , (22)

which involves some form of quantile preserving map defined in detail in the following sections.
We will overview several classes of such mappings from the literature, including classical approaches
based on location-scale, shape-scale maps as well as more advanced approaches such as the Rank
Transmutation Maps (RTM) and the Elongation transforms of Tukey.

Remark 2 (Characterizing Generalized Quantile time series Models). To characterize this general class of
quantile time series models, we will consider defining six attributes:

1. choice of mapping function T(·) which can be linear or nonlinear on the quantile error function or on the
quantile function time series “trend” structure;

2. the choice of quantile error function Qε(u)—if in the parametric model context;
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3. the inclusion or not of lagged observations of the time series of interest (Yt)t≥0, obtained by the natural
filtration generated by the realization of the process (denoted Ft), which enter in the model in either the
location or the scale or both;

4. the inclusion or not of lagged exogenous covariates generically denoted by set of vectors xt = (x1,t, . . . , xd,t),
obtained by the natural filtration generated by the realization of the process (denoted Gt), which enter in the
model in either the location or the scale or both;

5. the choice of parametric vs. non-parametric model, through either an explicit specification of a quantile
error function Qε(u) for the model, or a non-parametric approach when no quantile function is
explicitly considered;

6. function on function regressions, when one models the entire quantile function by considering all quantile
levels u ∈ [0, 1] or some sub-set of this range, versus individual quantile regressions for a specific target
quantile level u.

In the following sub-sections, we discuss each of these components in turn, starting with the
distributional aspects of the quantile regression models we consider. In this regard, the models of
particular focus in this tutorial are the following classes of quantile model:

1. the Asymmetric Laplace (AL) distribution;
2. the regularly varying and heavy tailed classes of power-law distributions, which may for instance

be characterized by models whose hazard rate r(y) given by

r(y) =
fY(y)
FY(y)

, (23)

satisfies the condition for instance in the right tail that

lim
y→∞

r(y) = 0; (24)

3. one, two, three and four parameter parametric distributional models often occurring as
sub-members of the Pearson family and the Exponential family and is dispersion extensions.

4. the Rank Transmutation composite quantile function maps
5. the Tukey g-and-h elongation transform family,

which we extend to classes of quantile time series models.
We begin with an overview of some core examples of non-parametric quantile time series models

and how these relate to the Asymmetric Laplace parametric model. We then proceed with more
detailed illustrations of parametric modelling of quantile time series.

4. Nonparametric Quantile Time Series Models

In this case, we will consider the sub-class of regression quantile time series models given by

QYt(u) = T (Ft,Gt) , (25)

where we drop from the transformation T(·) the component corresponding to the quantile error
distribution specification Qε(u), hence making the model non-parametric in nature.

4.1. Examples of Linear Nonparametric Quantile Time Series Models

In a non-parametric quantile regression time series approach, one seeks to estimate regression
coefficients without the need to make any assumptions on the distribution of the response,
or equivalently the residuals. To understand this, we will first introduce a simple quantile AR process.
We will focus on the family of models to begin with that have a linear transformation i.e., where the
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mapping T(·) is considered to be a simple linear function of the coefficients. Furthermore, we will
consider a specific target quantile level u in the initial set-up below, not a functional regression structure.

Definition 1 (Non-Parametric Quantile Autoregressive QAR(p) Time Series). Consider the time series
(Yt)t≥0; then, the quantile time series model is defined according to the conditional quantile functions as follows:

QYt(u|Ft) = α0,u +
p

∑
k=1

αk,u yt−k. (26)

One may consider Ft to be the natural filtration generated by the observed time series (Yt)t≥0 up to the
current time point, or it may contain additional structure such as lagged covariates. The location of the u-th
quantile level is determined by coefficient scaled lagged previous values of the time series, where the coefficients
can be quantile level specific. The coefficients are characterized as the solution to the system of equations, for all
s ∈ {1, . . . , t, . . .} given by:

Pr

[
ys ≤ α0,u +

p

∑
k=1

αk,u ys−k|Fs

]
= u, (27)

when such a solution exists.

Remark 3. Note, in this non-parametric specification, no distributional assumption is being made regarding
the conditional distribution for Yt|Ft, so, at this stage, one may wonder how can the coefficients αu be estimated.
The answer involves reformulating the coefficients as the solution of a loss function minimization, which does
not require any distributional assumptions to be made on the time series marginal or conditional distributions.

This reformulation is given by the quantile loss function. Hence, we may analogously obtain estimates of
the quantile model parameters, non-parametrically by solving the following loss function minimization:

min
α0,u ,...,αp,u

∑
t

ρu(εt) = ∑
t

εt[u− I(εt < 0)] (28)

and εt = yt − α0,u −
p
∑

k=1
αk,u yt−k.

Furthermore, it has been shown in (Koenker and Hallock 2001; Koenker and Machado 1999;
Yu and Moyeed 2001) that under this loss function ρu for quantile regression, the parameter estimates
of αu, which may be obtained by minimizing the loss function in (28) will be equivalent to the maximum
likelihood estimates of αu when the conditional distribution of Yt|Ft follows the Asymmetric Laplace
proxy distribution given in Definition 2.

Definition 2 (Asymmetric Laplace Distribution). A random variable X ∼ AL(µ, σ, p) has an Asymmetric
Laplace (AL) law if it has the following distribution and density

F(x; µ, σ, p) =


σ

p+1/p exp
[

σ
p (x− µ)

]
if x < µ,

σ
p+1/p exp [−σp(x− µ)] if x ≥ µ,

f (x; µ, σ, p) =
(

σ

p + 1/p

)
exp [−(x− µ)σsps] ,

(29)
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where s = sgn(x− µ), µ ∈ R is the location; σ > 0 is the scale parameter; and p is the asymmetry parameter.
The mean, variance, skewness and kurtosis of this model are given by:

E [X] = µ +
σ(1− 2p)
p(1− p)

, Var[X] =
σ2(1− 2p + 2p2)

(1− p)2 p2 , (30)

S[X] =
2[(1− p)3 − p3]

((1− p)2 + p2)3/2 , K[X] =
9p4 + 6p2(1− p)2 + 9(1− p)4

(1− 2p + 2p2)2 . (31)

Note, when p = 1, we have that the AL distribution simplifies to the well known Laplace
distribution. Hence, we may now observe that this family of distributions contains, embedded in the
exponential argument, exactly the component required for minimization in the quantile regression loss
function. This allows us to write the problem of solving for the coefficients of the model in Definition 1
given by:

f (yt|Ft; µt, σ2, p) =
p(1− p)

σ
exp

(
− (yt − µt)

σ
[p− I(yt ≤ µt)]

)
(32)

for the location parameter or mode µt, the scale parameter σ > 0 and the skewness parameter p ∈ (0, 1)
equals to the quantile level u. Since the pdf (32) contains the loss function (28), it is clear that parameter
estimates that maximize Equation (32) will minimize Equation (28).

In this formulation, the AL distribution represents the conditional distribution of the observed
dependent variables (responses) given the covariates. More precisely, the location parameter µt of
the AL distribution links the coefficient vector αu and associated covariates in the linear time series
regression model to the location of the AL distribution.

4.2. Examples of Nonlinear Nonparametric Quantile Time Series Models

A natural extension of the QAR(p) class of quantile time series models is to consider the nonlinear
class of non-parametric models. Here, we are treating the mapping T(·) as comprised of a combination
of nonlinear and potentially also linear components.

Under the representation presented for the QAR(p) model, and its embedding within the AL
family for estimation convenience, it is straightforward to extend the quantile regression model to
allow for heteroscedasticity in the response, which may vary as a function of the quantile level u under
study. To achieve this, one can simply add a regression structure linked to the scale parameter σt in the
same manner as was done for the location parameter.

This would correspond to what we will call the Dynamic Volatility QAR(p) time series model
given in the following definition.

Definition 3 (Examples of Non-Parametric Dynamic Volatility Quantile Autoregressive DV-QAR(p,q)
Time Series). Consider the time series (Yt)t≥0; then, the DV-QAR(p) quantile time series model is defined
according to the conditional quantile functions as follows:

QYt(u|Ft) = α0,u +
p

∑
k=1

αk,u yt−k (33)

with

Var [Yt|Ft] =
1 + u4

σ2
t u2

=
1 + u4

u2

(
β0,u +

q

∑
k=1

βk,u yt−k

)−2

, (34)

where Ft denotes information set or filtration that defines the time series dynamic. For instance, Ft may be the
natural filtration generated by the observed time series (Yt)t≥0 up to the current time point, or it may contain
additional structure such as lagged covariates. The notation, u ∈ (0, 1), corresponds to the quantile level,
and location of the u-th quantile level is dictated by coefficient lagged previous values of the time series, where
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the coefficients can be quantile level specific. The coefficients are characterized as the solution to the system of
equations, for all s ∈ {1, . . . , t, . . .} given by:

Pr

[
ys ≤ α0,u +

p

∑
k=1

αk,u ys−k|Fs

]
= u, (35)

subject to the constraint for the filtration Ft given by

1
t− 1

t

∑
s=1

{
ys −

[
α0,u +

p

∑
k=1

αk,u ys−k +
1− u2

u

(
β0,u +

q

∑
k=1

βk,u yt−k

)]}2

=
1 + u4

u2

(
β0,u +

q

∑
k=1

βk,u yt−k

)−2
(36)

when such a solution exists.

Remark 4. This second constraint in the above definition of the DV-QAR(p) process imposes the restriction that
the time series process will admit a representation in which the original time series (Yt)t≥0 will be heteroskedastic
with a volatility given by the functional specification:

Var [Yt|Ft] =
1 + u4

σ2
t u2

=
1 + u4

u2

(
β0,u +

q

∑
k=1

βk,u yt−k

)−2

. (37)

In terms of fitting such a DV-QAR(p) model, it will be convenient to observe the following
relationship between this non-parametric model and its embedding withing a parametric AL
distributional model.

Remark 5 (Embedding of the non-parametric DV-QAR(p) within Scale-Location Varying Asymmetric
Laplace Model). Equivalently, we assume that Yt|Ft conditionally follows an AL distribution denoted by
Yt|Ft ∼ AL(µt, σ2

t , u). Then,
Yt = µt + εtσt, (38)

where εt ∼ AL(0, 1, u), the location and scale dynamic functions are given by

µt = α0,u +
p

∑
k=1

αk,u yt−k,

σ2
t = exp(β0,u +

q

∑
k=1

βk,u yt−k).

(39)

Discussion on the parametric regression model, in particular, the choice of link function and structure of
regression terms will be undertaken in later sections.

Note: this representation has the following advantages:

• the parameters can be estimated by maximum-likelihood under the AL distribution family; and
• importantly, it links the quantile process to a linear (when σt = σ) AR process with a driving noise

sequence given by an AL error with appropriately chosen asymmetry parameter for p = u corresponding to
the target quantile level.

Other examples of nonlinear time series models have been proposed in the literature such as the
double-AR time series structures of Cai et al. (2013), which we modify below to the non-parametric
specification, embedded within an AL distribution estimation framework as noted in the DV-QAR(p,q)
models above.
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Definition 4 (Non-Parametric Dynamic Volatility Quantile Double Autoregressive DV-QDAR(p,q)
Time Series). Consider the time series (Yt)t≥0; then, the DV-QDAR(p) quantile time series model is defined
according to the conditional quantile functions as follows:

QYt(u|Ft) = α0,u +
p

∑
k=1

αk,u yt−k (40)

with

Var [Yt|Ft] =
1 + u4

σ2
t u2

=
1 + u4

u2

(
β0,u +

q

∑
k=1

βk,u y2
t−k

)−1

, (41)

where Ft denotes information set or filtration that defines the time series dynamic. For instance, Ft may be the
natural filtration generated by the observed time series (Yt)t≥0 up to the current time point, or it may contain
additional structure such as lagged covariates. The location of the u-th quantile level is influenced by coefficient
lagged previous values of the time series, where the coefficients can be quantile level specific, and in this example,
we consider βk,u > 0 for all k ∈ {0, 1, . . . , q}.

As in the previous examples, the coefficients of the DV-QDAR(p,q) model are again characterized
as solutions to the following system of equations, for all s ∈ {1, . . . , t, . . .} given by:

Pr

[
ys ≤ α0,u +

p

∑
k=1

αk,u ys−k|Fs

]
= u, (42)

subject to the constraint for the filtration Ft given by

1
t− 1

t

∑
s=1

{
ys −

[
α0,u +

p

∑
k=1

αk,u ys−k +
1− u2

u

(
β0,u +

q

∑
k=1

βk,u yt−k

)]}2

=
1 + u4

u2

(
β0,u +

q

∑
k=1

βk,u y2
t−k

)−1
(43)

when such a solution exists.
As demonstrated previously, the scale or volatility function has been specifically written in a

form that naturally admits its embedding within an AL distribution family. This can greatly assist in
developing the estimation, as one can directly avoid the estimation under the complicated nonlinear
coupled and constrained system of equations above, replacing this with standard maximum likelihood
of the AL distribution family for two of its parameters µ and σ.

5. Parametric Quantile Time Series Models

In this case, we will consider the sub-class of regression quantile time series models given by

QYt (u|Ft−1,Gt; θ) = T (Ft,Gt, Qε(u)) , (44)

where we now include, explicitly, in the transformation T(·), the component corresponding to the
quantile error distribution specification Qε(u), hence making the model parametric in nature.

5.1. Examples of Linear Parametric Quantile Time Series Models

In this section, we discuss some core examples of different choices of parametric quantile time
series models. Then, in future sections, we will jointly describe very general choices for functions
T(·) and quantile error function classes Qε(u) that will jointly transform the parametric quantile error
family into a conditional quantile function for Yt. In terms of T(·) maps, the most common choice of
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transform classes that will be applicable will be the classes of linear additive, nonlinear multiplicative
and nonlinear Q-transform rules (see discussions in Gilchrist (2000)).

To illustrate an example of the class of parametric quantile time series models, we consider
the generalized linear quantile seasonal autoregressive integrated model framework as specified in
Definition 5. This class of models already includes many models proposed previously in the literature,
and corresponds to a simple linear form for the transform function T(·) in lags of the observed
time series.

Definition 5 (Generalized Linear Quantile SARI (GL-QSARI) time series). We define the class of
generalized linear quantile seasonal autoregressive integrated SARI models (GL-QSARI(p,d,P,D)) by the
following transformation function T(·)

QYt (u|Ft−1; θ) = T (Ft, Qε(u))

= φ(B, u)Φ(B, u)∇d∇D
s Yt−1 + Qε (u; γ)

(45)

with u ∈ [0, 1] and where QYt (u|Ft; θ) denotes the conditional quantile function of random variable Yt and the
generalized operators for the quantile function setting given by:

φ(x, u) = 1 + φ1(u)x + φ2(u)x2 + . . . + φp(u)xp,

Φ(x, u) = 1 + Φ1(u)xs + Φ2(u)x2s + . . . + ΦP(u)xPs,

where φi(u) and Φi(u) each denote the i-th lagged functional coefficient of the AR and SAR time series model
components with θ denoting generically the vector of all model parameters. Furthermore, we denote Qε (u; γ) as
the time series white noise i.i.d. error εt quantile function with parameters γ.

Remark 6. Note that the above defined model will of course be a well-defined quantile time series model so long
as φ(B, u)Φ(B, u)∇d∇D

s Yt−1 is a monotone increasing function of u.

In the following, we outline some examples of sub-models and model restrictions of the GL-QSARI
framework that will produce a valid conditional quantile function.

Example 3. There are multiple ways that one can achieve a valid conditional quantile function of the GL-QSARI
model (QYt (u|Ft−1; θ)) such as outlined below in different sub-model constructions:

1. Model example one can be constructed by assuming that each φi(u) and Φi(u) are monotone increasing
functions of u ∈ [0, 1] and each coefficient function is a positive function such that φi(u) : [0, 1] 7→ R+

and Φi(u) : [0, 1] 7→ R+;
2. Model example two can be constructed by assuming that each φi(u) are monotone increasing functions of

u ∈ [0, 1] and each coefficient function Φi(u) is a constant function;
3. Model example three can be constructed by assuming that each Φi(u) are monotone increasing functions of

u ∈ [0, 1] and each coefficient function φi(u) is a constant function.

Remark 7. It is interesting to note that the above model can be specified in a quantile time series context,
without ever having to specify explicitly the time series model underlying the random variable sequence Yt.
Furthermore, the estimation of such a model can be done independently of the estimation of the model parameters
in the corresponding equivalent time series model for Yt.
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5.2. Examples of Linear Parametric Quantile Time Series with Distributed Lags

Next, one can readily extend this model to the class of distributed lag GL-QSARIDL models,
where it is possible to incorporate a set of exogenous lagged observable covariates into the model
structure.

Definition 6 (Generalized Linear Quantile SARI Distributed Lag (GL-QSARIDL) time series). We define
the class of generalized linear quantile seasonal autoregressive integrated SARI models (GL-QSARI(p,d,r,P,D))
by the following transformation function T(·)

QYt (u|Ft−1; θ) = T (Ft,Gt, Qε(u))

= φ(B, u)Φ(B, u)∇d∇D
s Yt−1 + φ̃(B, u)Xt + Qε (u; γ)

(46)

with u ∈ [0, 1] and where QYt (u|Ft,Gt; θ) denotes the conditional quantile function of random variable Yt,
and the generalized operators for the quantile function setting given by:

φ(x, u) = 1 + φ1(u)x + φ2(u)x2 + . . . + φp(u)xp,

φ̃(x, u) = 1 + φ1(u)x + φ2(u)x2 + . . . + φr(u)xr,

Φ(x, u) = 1 + Φ1(u)xs + Φ2(u)x2s + . . . + ΦP(u)xPs.

Furthermore, we denote Qε (u; γ) as the time series white noise i.i.d. error εt quantile function with
parameters γ.

Remark 8. Note that this model will of course be a well-defined quantile time series model so long as
φ(B, u)Φ(B, u)∇d∇D

s Yt−1 and φ̃(B, u)Xt are each monotone increasing functions of u.

In future sections, we will discuss other classes of models for which the mapping function T(·)
is no longer selected as a linear map, but the resulting conditional function QYt (u|Ft,Gt; θ) will still
represent a well-defined conditional quantile function of random variable Yt. In general, we will also
spend time explaining different families of quantile error function Qε (u; γ) that can be considered.

We note that, in this context of quantile transformations, special attention is paid to classes of
model that satisfy the condition that Gilchrist (2000) refers to for the class of nonlinear transforms,
as the P-Class. Special cases of such P-Class will be discussed including the family of Tukey
Elongation transforms (see further details in (Peters et al. 2016; Peters and Sisson 2006; Cruz et al. 2015;
Peters and Shevchenko 2015)). In addition, the class of Rank Transmutation Maps (RTMs) discussed
in Shaw and Buckley (2009) will also be discussed, where one considers the special sub-set of models
defined by

v = G
[

F−1(u)
]

, (47)

where F and G are cumulative distribution functions (CDFs). In addition, there are numerous authors
who have studied the generalized properties of quantile-based functionals of asymmetry and kurtosis
see (Balanda and MacGillivray 1990; Rayner and MacGillivray 2002).

6. Parametric Quantile Time Series Models: Error Quantile Functions

In this section, we will introduce a key component of the the generic parametric quantile time
series model framework we propose based on representation:

QYt (u|Ft−1,Gt; θ) = T (Ft,Gt, Qε(u)) , (48)

which focuses on the modelling choices of the quantile error function Qε(u).
We begin by first exploring below the choice of quantile error functions Qε (u; γ) that are

closed-form and flexible enough to be used in a range of parametric quantile time series modelling
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contexts. Following from these specifications, we then discuss different examples of transformations
to obtain conditional quantile functions.

In explaining different families of models for Qε(u), we will also introduce two highly flexible
choices of mapping function T(·) that can either be applied to known parametric quantile error
functions to obtain more flexible families of error quantile function or they can be applied to the
quantile time series relationship T (Ft,Gt, Qε(u)) to produce nonlinear quantile time series models.

It is also important to talk about families of quantile functions that admit parametric
representations, as can be expected in many cases a random variable Y may have a well-defined
and closed form expression for its distribution function FY(y; θ); however, its quantile function given
by QY(u; θ) = F−1

Y (y; θ) may not be easily obtainable as a function in closed form. However, there
are several important and practical cases for different classes of parametric models for which one
can obtain both functions in closed form, these are discussed below and presented in the context of
quantile error models. This is the analog in time series settings of thinking about the quantile function
of εt the generic notation for the driving noise in the time series.

We will separate the quantile error models into three categories:

• Location and Scale families of quantile function;
• Shape and Scale families of quantile function; and
• Heavy tailed families of quantile function.

6.1. Location and Scale Quantile Error Families

In this section, we discuss a few examples of quantile error model that practitioners can consider
in the class of location scale models. We will present four core models which represent a range of light
and heavy tailed structure as well as asymmetric structures around the mode of the error distribution.

Definition 7 (Gaussian Quantile Function). The quantile function for a Gaussian random variable
ε ∼ N(µ, σ) is given by

Qε(u) = µ + σ
√

2erf−1(2u− 1), (49)

where the error function is given by

erf (u) =
1√
π

∫ x

−x
e−t2

dt

=
2√
π

∫ x

0
e−t2

dt.
(50)

Such a model is of relevance if a practitioner believes that there are no extreme observations in the
time series that is being considered for fitting. In addition, this model has a symmetric consideration
in the tails.

Definition 8 (Cauchy Quantile Function). The quantile function for a Cauchy random variable
ε ∼ Cauchy(µ, σ) is given by

Qε(u) = µ + σ tan
[

π

(
u− 1

2

)]
. (51)

Unlike the Gaussian case, here we consider a heavy tailed error quantile function. Such a model
is of relevance if a practitioners believes there is likely to be extreme observations in the time series
that is being considered for fitting. In addition, this model has a symmetric consideration in the tails.
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Definition 9 (Asymmetric Laplace Quantile Function). The quantile function for a Asymmetric Laplace
random variable ε ∼ AL(µ, σ, p) is given by

Qε(u) =

{
µ + σ

1−p log( u
p ), if 0 ≤ u ≤ p,

µ− σ
p log( 1−u

1−p ), if p < u ≤ 1.
(52)

Note that the shape parameter p of the AL distribution gives the magnitude and direction of skewness.
AL distribution is skewed to left when p > 0.5 and skewed to right when p < 0.5 and hence it can model the left
skewness of most log transformed loss data directly through this shape parameter p.

This model is a compromise between the two previous models. The ALD is popular in practice
due to it convenient parametric structure for quantile loss functions; however, from the perspective
of distributional properties, it allows for a light to intermediate tail behaviour. In addition, it allows
for asymmetric distributional properties in the left and right tails of the error distribution. It does not
however allow for heavy tailed features and often it may be beneficial to consider heavy tails as well
as asymmetry. One way to achieve this was studied extensively in Zhu and Zinde-Walsh (2009) where
they discuss the relationship between popular families of models the Exponential Power distributions
(EPD), the Skewed Exponential Power distributions (SEPD) and the Asymmetric Exponential Power
distributions (AEPD). Other models developed to achieve such features include the skewed exponential
power (SEP) distribution of Bernardi et al. (2016a). The SEP model has found wide application uptake
in volatility modelling contexts (see examples in (Marín and Sucarrat 2012; DiCiccio and Monti 2004)
and references therein).

Definition 10 (Skewed Exponential Power Quantile Function). If the error random variable is considered
distributed according to a Skewed Exponential Power distribution, ε ∼ SEP(µ, σ, α, τ), then its density is
given by

fSEP (ε; µ, σ, α, τ) =


1
σ κEP (α) exp

[
− 1

α

(
µ−ε
2τσ

)α]
, if ε ≤ µ,

1
σ κEP (α) exp

[
− 1

α

(
ε−µ

2(1−τ)σ

)α]
, if ε > µ,

(53)

with µ ∈ R the location parameter, σ ∈ R+ and α ∈ (0, ∞) the scale and shape parameters, respectively.
In addition, the parameter τ ∈ (0, 1) controls the skewness of the distribution. Furthermore, we denote by κEP
the function

κEP =

[
2α

1
α Γ
(

1 +
1
α

)]−1
,

where Γ(·) is the complete gamma function. When represented in this density form, one can observe that the
location parameter µ will directly correspond to the τ level quantile. One can also express the quantile function
in the following form where it can be obtained from the more general family AEPD quantile function, given by

Qε (u; α, p1, p2) =

−2α∗
[

p1G−1
(

1− ν
α ; 1

p1

)]1/p1
, if ν ≤ α,

2(1− α∗)
[

p2G−1
(

1− 1−ν
1−α ; 1

p2

)]1/p2
, if ν > α,

(54)

where ν ∈ [0, 1] and

G(ε; η) =
1

Γ(η)

∫ ε

0
zη−1 exp (−z) dz.

To obtain the SEP distribution from the AEP, one selects p1 = p2 = p and α∗ = α.

Practitioners can gain an intuition for this model by recognizing that it is related directly to
sub-families of the skewed Laplace distribution and the skewed normal distributions.
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6.2. Shape and Scale Quantile Error Families

This section will introduce light tailed through to ultra-heavy tailed models. The advantage of
such heavy tailed models is that they may provide the ability to capture extreme observations in the
observed time series more accurately. Another perspective on such models is that they may allow for a
robustification to outliers of quantile time series modelling.

A flexible and popular choice of shape scale families that admits a parametric quantile function is
the Weibull example.

Definition 11 (Weibull Quantile Function). The quantile function for a Weibull random variable
ε ∼Weibull(α, β) with shape α > 0 and scale β > 0 is given by

Qε(u; α, β) =

{
β [− ln (1− u)]

1
α , u ≥ F(0),

0, u < F(0).
(55)

As a second case of shape-scale family of models is the well known transform of the location-scale
Gaussian case, given by the Log-Normal model quantile error function.

Definition 12 (Log-Normal Quantile Function). The quantile function for a Log-Normal random variable
ε ∼ LogNormal(µ, σ) with µ > R and σ > 0 is given by

Qε(u; µ, σ) = exp
(

µ + σ
√

2erf−1(2u− 1)
)

. (56)

The next example of shape scale family of models involves variations of a power law error quantile
function, given by modifications of the Pareto quantile function.

Definition 13 (Pareto Quantile Function). The quantile function for a Pareto random variable
ε ∼ Pareto(xm, α) with distribution given by

Fε(ε; xm, α) =

{
1−

( xm
ε

)α , ε ≥ xm,

0, ε < xm,
(57)

is given by

Qε(u; xm, α) =

{
(1− u)−

1
α xm, u ≥ Fε(xm),

0, u < Fε(xm).
(58)

This general class of quantile error function has been previously extended to multi-parameter
versions, for instance those studied in the works of (Cai 2010b; Dong et al. 2015). Below, we present a
simple example of such quantile models that one may adopt for a quantile error function given by the
polynomial power-Pareto (PP) quantile error function model.

Definition 14 (Polynomial Power Pareto Quantile Error Function). Consider the following distribution
function for a random variable ε ∼ PP(γ1, γ2) with density given by

fε(εi|µ, σ, γ1, γ2) =
u1−γ1

i (1− ui)
γ2+1

σ[γ2ui + γ1(1− ui)]
, (59)

where ui is an implicit function of the following structure which can be obtained by solving the system of
equations defined for each observation

εi = µ + uγ1
i (1− ui)

−γ2 σ. (60)
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The resulting quantile distribution of this model is the combination of a power distribution with a Pareto
distribution, which enables us to model both the main body and the tails of a distribution. In considering the PP
model, the quantile function of is comprised of two components:

• component 1: a power distribution F1(ε) = ε
1

γ1 , where ε ∈ [0, 1] and γ1 > 0 with a corresponding
quantile function, then given by Q1 (u; γ1) = uγ1 for u ∈ [0, 1]; and

• component 2: a Pareto distribution function F2(ε) = 1 − ε
− 1

γ2 where ε ≥ 1 and γ2 > 0 with a
corresponding quantile function then given by Q2 (u; γ2) = (1− u)−γ2 .

One may use the fact that the product of the two quantile functions will remain a strictly valid quantile
function, thereby producing the new quantile function family known as the Polynomial-Power Pareto model.
The resulting structural form given by the inverse cdf of the Pareto distribution with an additional polynomial
power term:

Qε(u) := F−1
ε (u|γ1, γ2) = uγ1(1− u)−γ2 . (61)

The type two generalized beta distribution (GB2) has attractive features for modelling, as it has a
positive supportR+ and nests a number of important distributions as its special cases. The GB2 distribution
has four parameters, which allows it to be expressed in various flexible densities. For instance, this family
contains sub-families of models given by the Generalized Gamma (GG) family and the standard shape
scale family of the Gamma distribution. See discussions in Dong and Chan (2013) for a more detailed
description of GB2 distribution including its pdf and distribution family.

Definition 15 (Type 2 Generalized Beta Quantile Error Function). If ε ∈ R+ follows a GB2 distribution,
then it can be characterized by the density given by

fε(ε|a, b, p, q) =
a
b (

ε
b )

ap−1

B(p, q)[1 + ( ε
b )

a]p+q , for ε ≥ 0, (62)

where a, p and q are shape parameters and b is the scale parameter. We may rewrite the GB2 model as a
generalized Beta distribution with pdf

fB(ε̃|p, q) =
1

B(p, q)
ε̃p−1(1− ε̃)p+q (63)

via the transformation ε̃ =
( ε

b )
a

1 + ( ε
b )

a . The GB2 is directly relevant for quantile regression models since one may

also find its quantile function in closed form according to the following expression:

Qε(u) =
exp (µ) B(p, q)

B(p + 1/a, q− 1/a)

(
F−1

B (u|p, q)

1− F−1
B (u|p, q)

) 1
a

, (64)

where µ = E[ε].

We note that, in general, when we know the mean function of the model as well as the
quantile function, we may either perform a mean regression to estimate the parameters or a quantile
regression—these two different approaches will in general produce different results for the resulting
parameter estimates of the model, except in symmetric distribution settings when the median is
considered. In this case, one would obtain a more robust regression (less sensitive to outliers) than
obtained from the mean regression. In all other cases, these results will differ, however, having fit
either the quantile model, or the mean regression model, we may reverse back to get the quantile
model from a mean fit or the mean implied by the quantile regression fit and compare their differences,
as indicated for the GB2 model below.
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Remark 9 (Link Between GB2 Quantile Error Function and Mean Regressions). In mean regression,
b can be linked to the mean µ of the distribution as follows:

b =
µB(p, q)

B(p + 1/a, q− 1/a)
, (65)

where µ is for instance a log-link to a linear function of covariates µ in (66) according to the relationship:

E [Yi|xi] = µi = exp

(
α0 +

m

∑
k=1

αk xi,k

)
. (66)

Then, the variance is given by:

Var [Yi|xi] = µ2
i

{
B(p, q)B(p + 2/a, q− 2/a)
[B(p + 1/a, q− 1/a)]2

− 1
}

. (67)

We would argue that, from a parsimony perspective, practitioners would be best suited to first try
the simple two parameter families to assess the quality of their fitted quantile time series models, if the
resulting model fit is adequate then these would suffice. If, however, the fit is not adequate, then one
may generalize to the three and four parameter families that also admit heavy tailed features and
general skewness structure.

6.3. Truncated Error Quantile Functions

It will often in practice be beneficial to work with models for which the random variable of interest
Yt will be restricted to one of the possible domains Y ∈ [L, ∞), Y ∈ (−∞, U] or Y ∈ [L, U]. In this
case, the model constructed will require the quantile error function Qεt(u) to also be restricted to this
domain. This is easily achieved in many cases and we will illustrate this below with examples of
truncated quantile error families.

To proceed, we consider a standard distribution F(y) (such as LogNormal, Gamma, etc.) with
a corresponding density function f (y). However, one may be interested in modeling a time series
restricted above some threshold L ∈ R only. Then, one can consider a distribution truncated below L
formally defined as

Ftr(y) =
F(y)− F(L)

1− F(L)
Iy≥ L (68)

with a corresponding truncated density function

f tr(y) =
f (y)

1− F(L)
Iy≥ L. (69)

Note that this truncated density is a proper density function, that is,
∞∫
0

f tr(y)dy = 1.

In principle, assuming the mapping T(·) is restricted in its range to the interval Yt ∈ [L, ∞),
this would not necessarily require explicitly that Qεt(u) be restricted to the same interval; however,
in practice, it would be natural to consider such cases. Therefore, we briefly outline how this is easily
achieved in parametric quantile error models generically as follows, for u ∈ [0, 1] as follows:

Ftr(ε) =
F(ε)− F(L)

1− F(L)
Iε≥ L,

⇒ F(ε)Iε≥ L = u (1− F(L)) + F(L),

⇒ F−1(ε)Iε≥ L = Qε(ũ)Iũ≥ F(L),

(70)
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where ũ = u (1− F(L)) + F(L) and Qε(·) is the same functional form as the inverse of F← with the
appropriate restriction from the indicator and adjustment to quantile level from the normalization
from the truncation.

Similarly, one can model below L using a distribution truncated above L:

Ftr(y) =
F(y)
F(L)

Iy≤ L, f tr(y) =
f (y)
F(L)

Iy≤ L. (71)

As above, we can easily tackle this case also in parametric quantile error models generically as
follows, for u ∈ [0, 1] as follows:

Ftr(ε) =
F(ε)
F(L)

Iε≤ L

⇒ F(ε)Iε≤ L = uF(L)

⇒ F−1(ε)Iε≤ L = Qε(ũ)Iũ≤ F(L),

(72)

where ũ = uF(L).
If there is a need to model in a specific range [L, U], one can use distribution F(y) truncated below

L and above U:

Ftr(y) =
F(y)− F(L)
F(U)− F(L)

IL≤ y≤U , f tr(y) =
f (y)

F(U)− F(L)
IL≤ y≤U . (73)

The truncated quantile error model can be obtained as follows:

Ftr(ε) =
F(ε)− F(L)
F(U)− F(L)

IL≤ ε≤U

⇒ F(ε)IL≤ ε≤U = u (F(U)− F(L)) + F(L)

⇒ F−1(ε)IL≤ ε≤U = Qε(ũ)IF(L)≤ũ≤ F(U),

(74)

where ũ = u (F(U)− F(L)) + F(L) and Qε(·) is the same functional form as the inverse of F← with
the appropriate restriction from the indicator and adjustment to quantile level from the normalization
from the truncation.

7. Generalized Elongation Deformation Quantile Error Families

In this section, we discuss the family of quantile deformation models generally known in statistics
as the family of Tukey elongation transforms (see detailed overview of such models in (Peters et al. 2016;
Peters and Sisson 2006)). This family of models can be considered to be a generalization of the family of Rank
Transmutation Maps (RTMs) discussed in Shaw and Buckley (2009). Others who have addressed similar
issues to do with distortion transforms to map quantile functions of a base distribution to another class of
distributions include the early work of De Helguero (1908). Other related works on distortion of density
functions (as opposed to directly the quantile) were developed by (Vicari and Kotz 2005; Azzalini 2005;
Genton 2005).

Here, we discuss several distributional families relevant to modelling that can only be specified
via the transformation of another standard random variable, for example a Gaussian. Examples of
such models which are typically defined through their quantile functions include the Johnson family,
with base distribution given by Gaussian or logisitic, and the Tukey family with base distribution
typically given by a Gaussian or logistic.

The concept of constructing skewed and heavy-tailed distributions through the use of a
transformation of a Gaussian random variable was originally proposed in the work of Tukey (1977)
and is therefore aptly named the family of Tukey distributions. This family of distributions was then
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extended by (Hoaglin 2006; Jorge and Boris 1984; Azzalini 1985; Fischer et al. 2007). The multivariate
versions of these models have been discussed by Field and Genton (2012).

Within this family of distributions, two particular subfamilies have received the most
attention in the literature; these correspond to the g-and-h and the g-and-k distributions.
The first of these families the g-and-h has been studied in several contexts (see, for instance,
the developments in the areas of risk and insurance modelling in (Dutta and Perry 2006;
Peters and Sisson 2006; Degen et al. 2007; Jiménez and Arunachalam 2011) and the detailed
discussion in (Cruz et al. 2015, chp. 9)). The second family of g-and-k models has been looked
at in works such as (Haynes et al. 1997; Hossain and Hossain 2009).

The advantage of models such as the g-and-h family for modelling is the fact that they provide a
very flexible range of skew, kurtosis, and heavy-tailed features while also being specified as a rather
simple transformation of standard Gaussian random variates, making simulation under such models
efficient and simple.

7.1. Tukey Class of Elongation Maps

Tukey suggested several nonlinear transformations of a reference random variable, typically
considered to be symmetric and often selected to be a standard normal random variable in practical
model applications, which will be denoted below by W ∼ Normal(0, 1). There are then several
sub-families of elongation transform that each produce different transformations of the reference
quantile function of random variable W that induce specific skew and kurtosis features, relative to the
base model.

One of the most well known of these classes of transformation is the g-and-h transformations
which involve a skewness transformation of type g and a kurtosis transformation of type h. If one
replaces the kurtosis transformation of the type h with the type k, one obtains the g-and-k family of
distributions discussed by Rayner and MacGillivray (2002). If the type h transformation is replaced by
the type j transformation, one obtains the g-and-j transformations of Fischer and Klein (2004).

The generic specification of the Tukey transformation is provided in Definition 16. These types of
transformations were labeled elongation transformations, where the notion of elongation was noted
to be closely related to tail properties such as heavy-tailedness (see discussions in Hoaglin (2006)).
In considering such a class of elongation transformations to obtain a distribution, one is comparing the
tail strength of the new distribution with that of the base distribution (such as a Gaussian or logistic).
In this regard, one can think of tail strength or heavy-tailedness as an absolute concept, whereas the
notion of elongation strength is a relative concept. In the following, we will first consider relative
elongation compared to a base distribution for a generic random variable W. It should be clear that
such a measure of relative tail behavior is independent of location and scale.

Remark 10 (Desirable Properties of Quantile Elongation Transformation). An elongation transformation
T(·) should also satisfy the following properties:

1. Preservation of Symmetry: it is desirable that should one wish equi-probable tails on the left and right,
then the mapping should be able to preserve symmetry, say around the mode, such that T(w) = T(−w)

will hold under certain parameter settings;
2. Deformation Around the Mode Controlled: the base distribution for the random variable’s quantile

function being transformed should not be significantly transformed/deformed in the center, such that
T(w) = w + O(w2) for w around the mode;

3. Additional Relative Skewness and Relative Kurtosis: to increase the heaviness of the tails of the resulting
distribution relative to the base distribution, it is important to assume that T(·) is a strictly monotonically
increasing transform that is convex, that is, one has the transform satisfying for w > 0 that T′(w) > 0
and T′′(w) > 0.

One such transformation family satisfying these properties is the Tukey transformations.
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Definition 16 (Tukey transformations). Consider a Gaussian random variable W∼Normal(0, 1) and
transformation X = r(W) then the resultant transformed error variable ε will be from a Tukey law if the
corresponding transformation r(W) is given by

r(W) = WT(W)θ , (75)

for a parameter θ ∈ R. Under this transformation, we also have directly in closed form the quantile function of
the error random variable ε in terms of the quantile function of the base random variable W as follows:

Qε(u) = a + bQW(u)T(QW(u))θ (76)

with translation and scaling constants a, b for quantile levels u ∈ [0, 1].

In application, it may often be desirable to enforce a constraint that the tails of the resulting
distribution, after transformation, are heavier than the Gaussian distribution. In this case, one should
consider a transformation T(w), which is positive, symmetric, and strictly monotonically increasing
for positive values of w ≥ 0. In addition, it will be desirable to obtain this property of heavy tails
relative to the Gaussian to also consider setting the parameter θ ≥ 0. As discussed, a series of kurtosis
transformations is proposed in the literature. The Tukey transformations of types h, k, and j are
provided in Definition 17.

Definition 17 (Tukey’s kurtosis transformations of types h, k and j). The h-type transformation, denoted
by Th(w), is given by

Th(w) = exp
(

w2
)

. (77)

The k-type transformation, denoted by Tk(w), is given by

Tk(w) = 1 + w2. (78)

The j-type transformation, denoted by Tj(w), is given by

Tj(w) =
1
2
[exp(w) + exp(−w)] . (79)

In addition to the kurtosis transformations, there are skewness transformations that have been
developed in the Tukey family, such as the g-type transformation.

Definition 18 (Tukey’s skewness transformation). The g-type transformation, denoted by Tg(w), is given by

Tg(w) =
exp(w)− 1

w
. (80)

The generalized g-type transformation, denoted by T∗g (w), is given by

T∗g (w) =

[
1 + c

1− exp (−gW)

1 + exp (−gW)

]
. (81)

To nest all these transformations within one class of transformations, the work of Fischer (2010)
proposed a power series representation denoted by the subscript a given in Equation (82).
This suggestion, though it nested the other families of distributions, is not practical for use as it
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involves the requirement of estimating a very large (infinite) number of parameters ai to obtain the
data-generating mechanism:

Ta(w) =
∞

∑
i=0

aiw2i. (82)

It was further observed in Fischer (2010) that this nesting structure may be replaced with a
different form, given by the general transformation taking the form given in Equation (83):

Thjk(w; α, β, γ) =

(
1 +

(
w2 + γ

)α − γα

β

)β

, α > 0, β ≥ 1, γ > 0. (83)

Then, it is clear that the original h-, k-, and j-type transformations are recovered with
Th(w) = Thjk(w; 1, ∞, γ), Tk(w) = Thjk(w; 1, 1, γ), and Tj(w) ≈ Thjk(w; 0.5, ∞, 0.5). Further details
of these transformations is provided in future sections where these classes of transformation are also
applied to develop conditional quantile time series models.

7.1.1. Properties of the g-and-h Quantile Error Family

One can obtain the moments of Tukey family of distributions, with generically denoted Tukey
quantile transform given by r(W) = WT(W)θ , as the solution to the following integrals, where the
n-th moment is given with respect to the transformed moments of the base density as follows:

E [εn] = E [r(W)n] =

∞∫
−∞

r(w)n fW(w)dw. (84)

From such a result, one may now express the moments of the g-and-h distributed random variable
according to the result in Proposition 1.

Proposition 1 (Moments of the g-and-h density). Consider the g-and-h distributed random variable
ε ∼ GH(a = 0, b = 1, g, h) with constant parameters g and h > 0. The n-th integer moment is given with
respect to the standard Normal distribution and the n-th power of the transformed quantile function given by

r(W) = a + b
exp (gW)− 1

g
exp

(
hW2

2

)
(85)

to produce moments according to the relationship

E [εn] = E [r(W)n] , (86)

which will exist if h ∈
[
0, 1

n

)
. One can also observe more generally that, under the g-and-h transform,

the following identity holds with regard to powers of the standard Gaussian, W ∼ Normal(0, 1), such that

εn = r(W)n = Tg,h(W; a, b, g, h)n

=
(

a + bTg,h(W; a = 0, b = 1, g, h)
)n

=
n

∑
i=0

n!
(n− i)!i!

an−ibiTg,h(W; a = 0, b = 1, g, h)i,

(87)
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which will produce moments given by

E [εn] = E
[(

a + bTg,h(W; a = 0, b = 1, g, h)
)n]

=
n

∑
i=0

n!
(n− i)!i!

an−ibiE
[

Tg,h(W; a = 0, b = 1, g, h)i
]

.
(88)

Furthermore, it was shown by Dutta and Babbel (2002) that, when it exists, one can obtain the general expression

E
[

Tg,h(W; a = 0, b = 1, g, h)i
]
=

∑i
r=0(−1)r i!

(i−r)!r! exp
(
(i−r)2g2

2(1−ih)

)
√
(1− ih)gi

. (89)

Proof. This result follows from direct application of the binomial series expansion result for polynomial
integer powers, followed by the moment of the i-th integer order integration result derived in
Dutta and Babbel (2002).

Remark 11. We note the following properties of moments for the g (h = 0) and the h (g = 0) distributions,
respectively. In the case of g distribution, since the g-distribution is a horizontally shifted LogNormal
distribution, then the moments of the g-distribution take the same form as those of a LogNormal model
with appropriate adjustment for the translation. The h-distributional family is symmetric (except the double
h-h family); consequently, all odd-order moments for the h-subfamily are zero (see further discussion in
Dutta and Babbel (2002)).

Furthermore, using these moment identities, one can easily then find the skew, kurtosis,
and coefficient of variations for model families such as the g-and-h, the g-distributions and
h-distributions. In addition to these simple population summaries of the g-and-h model, one could
also consider other generalized properties of quantile-based functionals of asymmetry and kurtosis
(see Balanda and MacGillivray 1990; Rayner and MacGillivray 2002; Balanda and MacGillivray 1988).

7.1.2. Tail Behaviour of the g-and-h Quantile Error Family

In terms of the tail behavior of the g-and-h family of distributions, the properties of such
severity models have been studied by numerous authors such as (Morgenthaler and Tukey 2000;
Degen et al. 2007). In particular, the tail property (index of regular variation) for the g-and-h family of
distributions was first studied for the h-distribution by Morgenthaler and Tukey (2000) and later for
the g-and-h distribution by (Degen et al. 2007, see Proposition 2). In addition, the second-order regular
variation properties of the g-and-h family of distributions were studied by Degen et al. (2007).

In order to study the properties of regular variation of the g-and-h family of loss distribution
models, it is first important to recall some basic definitions. First, we note that a positive measurable
function f (·) is regularly varying if it satisfies the conditions in Definition 19 (see discussion in
Karatzas and Shreve (1991)).

Definition 19 (Regularly varying function). A positive measurable function f (·) is regularly varying
(at infinity) with an index α ∈ R if it satisfies:

• It is defined on some neighborhood [x0, ∞) of infinity; and
• it satisfies the following limiting relationship

lim
x→∞

f (λx)
f (x)

= λα, ∀λ > 0. (90)
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We note that, when α = 0, then the function f (·) is said to be slowly varying (at infinity). From this
definition, one can show that a random variable has a regularly varying distribution if it satisfies the
condition in Definition 20.

Definition 20 (Regularly varying random variable). A loss random variable X with distribution FX(x)
taking positive support is said to be regularly varying with index α ≥ 0 if the right tail distribution
FX(x) = 1− FX(x) is regularly varying with index −α.

The following important features can be noted about regularly varying distributions as shown in
Theorem 1 (see detailed discussion in Bingham et al. (1989)).

Theorem 1 (Properties of regularly varying distributions). Given a loss distribution FX(x) satisfying
FX(x) < 1 for all x ≥ 0, the following conditions on FX(x) can be used to verify that it is regularly varying
such that FX(x) ∈ RVα:

• If FX(x) is absolutely continuous with density fX(x) such that, for some α > 0, one has the limit

lim
x→∞

x fX(x)
FX(x)

= α. (91)

Then, fX(x) is regularly varying with index −(1 + α) and consequently FX(x) is regularly varying with
index −α.

• If the density fX(x) for loss distribution FX(x) is assumed to be regularly varying with index −(1 + α)

for some α > 0, then the following limit,

lim
x→∞

x fX(x)
FX(x)

= α, (92)

will also be satisfied if FX(x) is regularly varying with index −α for some α > 0 and the density fX(x)
will be ultimately monotone.

Proof. These results are derived in Bingham et al. (1989).

Many additional properties are described for such heavy tailed distribution and density functions.
Here, we will utilize the above stated conditions to assess the regular variation properties of the right
tail of the g-and-h family of loss models. In particular, we will see if a single distributional parameter
characterizes the heavy tailed feature as captured by the notion of regular variation index, or if the
relationship is more complex.

Proposition 2 (Index of regular variation of g-and-h distribution). Consider the random variable
W ∼ Normal(0, 1) and a random variable ε, which has severity distribution given by the g-and-h distribution
with parameters a, b, g, h ∈ R, denoted ε ∼ GH(a, b, g, h), with h > 0 and density (distribution) f (x)
(and F(x)). Then, the index of regular variation is obtained by considering the following limit:

lim
x→∞

x f (x)
F(x)

= lim
x→∞

φ(u) (exp(gu)− 1)
(1−Φ(u)) (g exp(gu) + hu(exp(gu)− 1))

=
1
h

(93)
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for u = k−1(x) where the function k(x) is given by

k(x) =
exp (gx)− 1

g
exp

(
hx2

2

)
. (94)

Hence, one can state that Fε ∈ RV− 1
h
.

Proposition 3. The proof of this result is contained in (Peters et al. 2016; Degen et al. 2007).

The asymptotic tail behavior of the h-family of Tukey distributions was studied by
Morgenthaler and Tukey (2000) and is given in Proposition 4.

Proposition 4 (h-type tail behaviour). Consider the h-type transformation, where W ∼ Normal(0, 1)
is a standard Gaussian random variable and the random variable ε has severity distribution given by the
h-distribution with parameters a, b, h ∈ R, denoted ε ∼ H(a, b, h) according to

ε = Th (W; a, b, h) := a + bW exp
(

hW2

2

)
. (95)

Then, the asymptotic tail index of the h-type distribution is then given by 1/h. This is equivalent to the
g-and-h family for g 6= 0.

Proof. The proof of this result is found in Morgenthaler and Tukey (2000).

This shows that the h-type family has a Pareto heavy-tailed property, hence the restriction that
moments will only exist on the order of less than 1/h. The g-family of distributions can be shown to
be sub-exponential in the tail behavior but not regularly varying. It was shown (Degen et al. 2007,
Theorem 2.2) that one can obtain an explicit form for the function of slow variation in the g-and-h
family as detailed in Theorem 2.

Theorem 2 (Slow variation representation of g-and-h severity models). Consider the random variable
W ∼ Normal(0, 1) and a random variable ε, which has distribution given by the g-and-h with parameters
a, b, g, h ∈ R, denoted ε ∼ GH(a, b, g, h), with g > 0 and h > 0 and density (distribution) f (x) (and F(x)).
Then, F(x) = x−1/hL(x) for some slowly varying function L(x) given as x→ ∞ by

L(x) =
h√

2πg1/h

[
exp

(
g
h

√
g2 + 2h ln(gx)− g2

h

)
− 1
]1/h

√
g2 + 2h ln(gx)− g

(
1 + O

(
1

ln x

))
. (96)

Proof. This was proven in Degen et al. (2007).

From this explicit Karamata representation developed by Degen et al. (2007), it was also shown
that one can obtain the second-order regular variation properties of the g-and-h family.

The implications of these findings are that the g-and-h distribution, under the parameter
restrictions g > 0 and h > 0, belongs to the domain of attraction of an Extreme Value
Distribution, such that ε ∼ GH(a, b, g, h) with distribution F satisfying F ∈ MDA (Hγ) where
γ = h > 0. As a consequence, by the Pickands–Balkema–de Haan Theorem, discussed in detail
in Embrechts et al. (2013) and recently in Cruz et al. (2015), one can state that there exists an Extreme
Value Index (EVI) constant γ and a positive measurable function β(·) such that the following result
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between the excess distribution of the g-and-h (denoted by Fε,u(x) = Pr (ε− u ≤ x|ε > u) and the
generalized Pareto distribution (GPD) is satisfied in the tails

lim
u↑∞

sup
x∈(0,∞)

∣∣∣Fε,u(x)− Gγ,β(u)(x)
∣∣∣ = 0. (97)

For discussion on the rate of convergence in the tails, see Raoult and Worms (2003) and the
application of this theorem to the g-and-h case by Degen et al. (2007), where it is shown that the order
of convergence is given by O

(
A exp

(
V−1(u)

))
for functions

V(x) := F−1
(exp(−x)) ,

A(x) :=
V′′(ln x)
V′(ln x)

− γ.
(98)

Hence, the conclusion from this analysis regarding the tail convergence of the excess distribution
of the g-and-h family toward the GPD Gγ,β(u)(x) is given explicitly by

ln L(x)
ln x

∼
√

2
g

h
3
2

1√
ln(x)

= O

(
1√

ln (k−1(x))

)
, x → ∞. (99)

Remark 12. The implications of this slow rate of convergence are that, when data are obtained from a process,
if a goodness-of-fit test suggests that one may not reject the null hypothesis that these data came from a g-and-h
distribution, then one should avoid performing estimation of the extreme quantiles, such as those used to measure
the capital via the Value-at-Risk, via methods based on Peaks Over Threshold (POT) or Extreme Value Theory
(EVT) based penultimate approximations.

Proposition 5 (Index of regular variation of the generalized g-and-h distribution). Consider the random
variable W ∼ Normal(0, 1) and a random variable ε, which has distribution given by the generalized g-and-h
distribution with parameters a, b, g, h, c ∈ R, denoted ε ∼ Generalized−GH(a, b, g, h, c), with g > 0 and
density (distribution) f (x) (and F(x)). Recall that we have, for the generalized g-and-h loss model, the function
r(x) with a = 0 and b = 1 given by

r(x) =
[

1 + c
1− exp (−gx)
1 + exp (−gx)

]
x exp

(
hx2

2

)
. (100)

Using this, we can then find the index of regular variation at x → ∞ given as follows:

lim
x→∞

x f (x)
F(x)

= lim
x→∞

xφ
(
r−1(x)

)
r′ (r−1(x)) [1−Φ (r−1(x))]

=
1
h

. (101)

Proof. Proof of this result is obtained in Peters et al. (2016).

We note that this result is not unexpected since the g transform in each case drives the skewness
and not the kurtosis. We can also obtain this analysis for the g-and-k model, this yields that the
g-and-k does not admit a finite limit in either sign of the parameter g, showing that such a model
is not regularly varying, as we see in the case of the g-and-h models. However, even though this is
the case, we can still assess the relative heavy tailedness of the g-and-k models compared to the base
distribution under the Tukey k-transform.

8. Alternative General Quantile Error Models: Rank Transmutation

In this section, we discuss the ideas presented in Shaw and Buckley (2009) where they discuss
alternative approaches to deformation maps of base random variables to obtain valid quantile functions.
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Again, as in previous discussions, these maps can be considered as applicable to constructing flexible
families of error quantile function or treated as nonlinear maps for the conditional quantile time series
relationship specification.

Alternative Maps That Induce Relative Skewness and Kurtosis

In this section, we introduce an alternative class of mapping functions, compared to the Tukey
family of transformations, that can also create relative skewness and kurtosis in the resulting
transformed quantile function. These will be known as Rank Transmutation Maps (RTMs) as discussed
in Shaw and Buckley (2009).

Definition 21 (Rank Transmutation Maps). Consider two distribution functions with a common support
(domain or values of the random variable that have non-zero probability associated with their outcome), denoted
by F1, F2. Then, one can define the following pair of general RTMs as follows:

GR12(u) = F2(F−1
1 (u)),

GR21(u) = F1(F−1
2 (u)).

(102)

Remark 13. It is clear that these mappings are also transformations in the same manner as described in the
class of Tukey-Elongation transforms. However, they correspond to mappings given by distribution functions
instead of the general Tukey class. In general, to relate them, consider the mapping for a base random variable
W ∼ F1(w); then, one would have

εt = T(W) = GR12(U) = F2

(
F−1

1 (U)
)

(103)

for U ∼ U[0, 1]. Furthermore, one can see that composite mappings GR12(u) and GR21(u), under suitable
assumptions, will form mutual inverses with the properties that they satisfy:

GRi j(0) = 0,

GRi j(1) = 1.
(104)

If the resulting distributions F1 and F2 are continuous or, in other words, the RTM maps GR12 and GR21

are continuously differentiable; then, the law of the resulting mapped distribution is a continuous function.

One can see that RTMs derive their name from the fact that the inner functional mapping of a
random variable creates a random variable in [0, 1], which is a rank statistic.

One can then define different families of RTM mappings which correspond to different classes of
quantile distortion. The ones outlined in Shaw and Buckley (2009) correspond to classes:

1. Quadratic class of Rank Transmutation Maps;
2. Skew-Uniform class of Rank Transmutation Maps;
3. Skew-Exponential class of Rank Transmutation Maps;
4. Symmetric-cubic class of Rank Transmutation Maps; and the
5. Skew-kurtotic class of Rank Transmutation Maps;
6. General Class of Rank Transmutation Maps.

We will outline briefly the definition of each class of maps below.

Definition 22. The following functional transformations form a range of RTM function mappings for a random
variable U ∼ U[0, 1] to obtain εt = T(U) (analogously Qεt(u) = T(QU(u)). The classes of RTM maps are
given by:
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1. Family of Quadratic RTM’s can be defined by a single parameter λ map given by

TQ(U) = GR12(u) = u + λu(1− u), for |λ| ≤ 1. (105)

This RTM map TQ has the effect of introducing skew to a base distribution when it is symmetric (analog of
the g-transform in the Tukey elongation transforms). If the base distribution is symmetric around the origin
i.e., F1 satisfies that F1(x) = 1− F1(−x), then one has that the distribution of the square of the transmuted
random variable is identical to that of the distribution of the square of the original random variable.

2. Family of Skew-Uniform RTMs can be defined by a single parameter λ map given by

TSU(U) = GR12(u) = F2

(
F−1

1 (U)
)

, for |λ| ≤ 1, (106)

such that

F1(x) = x,

F2(x) =


0, x < 0,

(1 + λ) x− λx2, 0 ≤ x ≤ 1,
1, x > 1.

(107)

Alternatively, for any λ ∈ R, one could also consider the mapping:

GR12(u) = min[max[u + λu(1− u), 0], 1]. (108)

3. Family of Skew-Exponential RTMs can be defined by two parameters λ, β map given by

TSE(U) = GR12(u) = F2

(
F−1

1 (U)
)

, for |λ| ≤ 1, &β > 0, (109)

such that

F(x; λ) =

{
1− e−λx x ≥ 0,

0, x < 0,
F2(x) =


0, x < 0,

(1 + λ) x− λx2 0 ≤ x ≤ 1,
1, x > 1.

(110)

4. Family of Skew-Normal RTMs can be defined by two parameters λ, β map given by

TSN(U) = GR12(U) = F2

(
F−1

1 (U)
)

, for |λ| ≤ 1, & β > 0, (111)

such that

F1(x) = Φ(x) :=
1
2

(
1 + erf(

z√
2
)

)
, (112)

F2(x) =


0, x < 0,

(1 + λ) x− λx2, 0 ≤ x ≤ 1,
1, x > 1.

(113)

5. Family of General RTMs can be defined by a map given by

TG(U) = GR12(U) = U + U(1−U)P(U), (114)

where P is a polynomial with various parameters. One could consider different order of polynomials and
different parameter restrictions to generate a general family of RTMs.
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Remark 14. If one considers the class of TG RTMs, then a useful illustrative example can be obtained by setting:

P(u) = γ.(u− 1
2
), γ ∈ R. (115)

Such a choice would produce the practical property that GR12(1− u) = 1− GR12(u).

With all these flexible model components and the general framework provided in this manuscript,
practitioners should be able to understand and construct a large variety of quantile models.

9. Illustrations of Quantile Time Series Models for Mortality and Demographic
Actuarial Applications

In this section, we explore a range of mortality and demographic data sets via quantile time series
regressions. The outputs of this analysis can be directly useful in insurance applications for instance
in life insurance applications in annuities pricing and risk management as well as pension policy
development. We do not go into detail on these particular areas of application in this manuscript;
instead, we focus on modelling and comparison of different quantile time series models on real
mortality and demographic data sets obtained for England, Wales, Scotland and Northern Ireland.

The intention of these application illustrations is not to be exhaustive on all the different models
explored in previous sections; instead, we focus on providing examples of illustrations of these
new regression techniques to show actuaries and practitioners how they may be readily applied
in practical settings to explain some of the properties of the linear vs. nonlinear parametric and
non-parametric models.

In this manuscript, we will focus on data reflecting Demographic data and health event data.
In particular, the data we consider includes several different time series data sets from the following
sources with the following attributes:

• the Human Mortality Database2, which provides records of annual data for aggregated births,
aggregated deaths by age group with yearly stratification and population sizes. We took a specific
focus on England, Wales, Scotland and Norther Ireland.

• the United Kingdom Office of National Statistics data3, where we obtained weekly mortality
records from 2010 to 2017. Furthermore, we also obtained decompositions of the annual death
counts for England and Wales between 2001 and 2013 for avoidable mortality events and alcohol
related deaths.

• the National Archives also provide the number of deaths annually by sex, age group and
underlying cause from periods of 1901 to 20174.

• the National Records of Scotland data5, where we obtained weekly birth and death recordings
for Scotland as well as the weekly recorded deaths due to respiratory disease, from 2004 to
2017. In addition, the monthly recorded births and deaths by geographical area in Scotland was
obtained from 1990 to 2017.

• the National Records of Scotland data6, where we obtained weekly death recordings as well as
monthly death records from 2006 to 2017 for Northern Ireland. Furthermore, alcohol related
deaths were also obtained monthly from 2006 to 2017 for Norther Ireland.

2 http://www.mortality.org/
3 https://www.ons.gov.uk/
4 http://webarchive.nationalarchives.gov.uk/20160111174808/http://www.ons.gov.uk/ons/publications/re-reference-

tables.html?edition=tcm%3A77-215593
5 https://www.nrscotland.gov.uk
6 https://www.nisra.gov.uk/publications/weekly-deaths

http://www.mortality.org/
https://www.ons.gov.uk/
http://webarchive.nationalarchives.gov.uk/20160111174808/http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-215593
http://webarchive.nationalarchives.gov.uk/20160111174808/http://www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-215593
https://www.nrscotland.gov.uk
https://www.nisra.gov.uk/publications/weekly-deaths
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The illustrations of quantile time series modelling on these data sets will be undertaken by data
type and regions. Since this manuscript is intentionally not focused on aspects of estimation of quantile
time series models, we will utilise existing R packages to perform estimation of the models explored in
this section. All of the model illustrations performed in the following sections were estimated with
standard quantile regression and time series packages in R based on ‘rq’ and ‘nlrq’ function outputs.

9.1. Annual Births for Males and Females: England and Wales, Scotland and Northern Ireland

We begin with analysis of the Human Mortality Data Base data sets of annual births by year.
The data is presented in Figure 1.
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Figure 1. Births of Males and Females per year. Top Panel: England and Wales; Middle Panel:
Scotland; Bottom Panel: Northern Ireland.

9.1.1. Examples of Linear Parametric QAR Modelling

We first select the order of the time series regression based on AIC criterion considering one to
five lags. In Table 1, we present the results for the AIC vs. lag for Male and Female births over time.

We see that, for all cases, both male and female time series prefer lag structure, according to
AIC assessment, of order 5 with the exception of Northern Ireland male births where a lag of 4 was
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selected. Therefore, we first proceed with a linear quantile time series analysis to assess the lag 5 linear
QAR model. We present the fitted quantile time series results in Figure 2. We note that the results
are presented for males only as the female results in this case are very similar. The plots show the
estimated AR(5) model quantile residuals for decile values u ∈ {0.1, 0.2, . . . , 0.9}. First, we show the
lag 1 to lag 5 estimated quantile regression coefficients versus the quantile level in Figure 2.

Table 1. Model selection results.

England and Wales Male Births

AIC 1 Lag AIC 2 Lag AIC 3 Lag AIC 4 Lag AIC 5 Lag
3945.396 3925.935 3906.828 3886.021 3866.022

England and Wales Female Births

AIC 1 Lag AIC 2 Lag AIC 3 Lag AIC 4 Lag AIC 5 Lag
3945.396 3925.935 3906.828 3886.021 3866.022

Scotland Male Births

AIC 1 Lag AIC 2 Lag AIC 3 Lag AIC 4 Lag AIC 5 Lag
3309.565 3294.536 3279.546 3261.000 3245.277

Scotland Female Births

AIC 1 Lag AIC 2 Lag AIC 3 Lag AIC 4 Lag AIC 5 Lag
3309.565 3294.536 3279.546 3261.000 3245.277

Northern Ireland Male Births

AIC 1 Lag AIC 2 Lag AIC 3 Lag AIC 4 Lag AIC 5 Lag
1398.028 1381.626 1369.940 1359.550 1360.158

Northern Ireland Female Births

AIC 1 Lag AIC 2 Lag AIC 3 Lag AIC 4 Lag AIC 5 Lag
1398.028 1381.626 1369.940 1360.550 1360.158
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Figure 2. Plot of the estimated coefficients in the QAR(5) model versus quantile level. Top Panel:
England and Wales; Middle Panel: Scotland; Bottom Panel: Northern Ireland.

We can also assess the statistical significance of the fitted coefficients to see if they are statistically
different from zero, even though AIC has suggested a model order of 5. For instance, as an illustration,
we will consider the case of the model for u = 0.1 and u = 0.2 the first and second deciles.

For the QAR(5) model u = 0.1, the coefficients corresponding to lag 2 and lag 3 are basically on
the border of being statistically significant according to the upper bound of a 95% confidence interval
of the coefficient including 0. However, lags 4 and 5 are clearly not statistically significant as their
95% confidence intervals of the estimated coefficients clearly contain zero. In this case, one could
consider including a comparison of a QAR(3) model. Furthermore, it is evident from the estimated
coefficient for the lag one coefficient that the model is very close to the boundary of a random walk
type behaviour for these low quantiles. Actually, this type of behaviour is seen throughout the entire
range of decile fits in this data. In the case of the model for u = 0.2, one sees that all coefficients on lags
2 to 5 are clearly not statistically significant when one looks at whether their 95% confidence intervals
on the coefficient estimates contain 0.

In addition, in order to assess the quality of the fitted QAR(5) quantile models at each quantile
level, we also plot the studentised residuals of each model fit as a function of the quantile level in
Figure 3.
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Figure 3. Top Panel: England and Wales; Middle Panel: Scotland; Bottom Panel: Northern Ireland.

We see from these plots that the fitted QAR(5) models for each of the deciles u = 0.1 through to
u = 0.9 have studentized residuals that are very well behaved. This indicates that the fitted models
are doing a reasonable job at capturing the quantile time series dynamics of the births data. To finish
this aspect of the illustrations, we will also fit the England and Wales data with a QAR(1) model to
see how it performs relative to the QAR(5), since we found that the coefficients for lags 2 to 5 were
not statistically significant. We show the fitting results for the QAR(1) model for the male births from
England and Wales in Figure 4.

The top subplot in Figure 4 again confirms that the fitted model is very close to a random walk
type behaviour across all decile levels, except for very low quantile levels. In this QAR(1) model
analysis, the bottom subplot shows the fitted lines are superimposed in gray. In this case, we see in the
top subplot that AR coefficients are basically very close to constant across quantiles and one would
then expect fitted lines that are parallel to each other as the only change is the quantile level fitted.
There is a slight fanning happening for quantile levels around the median, but this is very close to
uniform behaviour across all quantiles.

We learn from this analysis that there has been a steady decline in the birth rates of males in
Scotland, which is more pronounced in the last few decades than the declines seen in Northern Ireland.
We will therefore focus further on the Scottish case study.
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Figure 4. Top Panel: fitted AR(1) coefficient across the quantile level; Bottom Panel: Observation vs.
Lag and fitted values.

9.1.2. Examples of Nonlinear Non-Parametric QAR Modelling

We proceed next with an illustration of nonlinear quantile time series models for the total weekly
births for Scotland from 2004 to 2018. We consider fitting both linear and nonlinear quantile regression
models to this weekly data. We will use a QAR(1) linear model as a comparative reference, which was
suitable for the yearly aggregate data. In Figure 5, we see the fitted QAR(1) coefficients for the first lag
as a function of quantile level are significantly different when looking at weekly observation patterns
compared to the annual aggregate data.
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Figure 5. Scottish weekly total births from 2004 to 2017 fitted with family of QAR(1) linear models.
Top Subplot: fitted coefficients vs. quantile level; Bottom Subplot: observations versus lag and fitted
QAR(1) models.

In particular, we now see a pronounced deviation away from the random walk type behaviour
observed in the annual counts models. Furthermore, we see that strength of the serial dependence
present in the quantile time series of births is diminishing in strength as we move from low to high
quantile levels, as reflected by the estimated magnitude of the first lag coefficient. Furthermore, we see
that this change in coefficient of the lag one QAR models as a function of quantile level results in the
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fitted regressions fanning out much more than at the annual aggregate level where we saw almost
parallel line relationships with the quantile level.

We will now demonstrate how to improve such a fit with nonlinear non-parametric quantile
regression modelling in R using the nlrq package and the lprq local polynomial quantile regression
function where we explore the effect of the bandwidth parameter h. In this case, we use the weekly
time as the input covariate, constructing a model with local nonlinear polynomial transforms for T(·)
and distributed lags for Gt of week index for the regression variable.

We see that the fit of the median regression is reasonable; however, a stronger bandwidth is
required to ensure that certain points don’t have too great a leverage effect on the local polynomial
median quantile regression.

Next, we plot in Figures 6 and 7 the fitted quantile regressions for a range of quantile levels
u ∈ {0.1, 0.25, 0.5, 0.75, 0.9}with bandwidth h = 4 and we only consider the temporal weekly covariate
in the nonlinear non-parametric quantile regression.
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Figure 6. Nonlinear local polynomial spline median regression of Scottish weekly total births from
2004 to 2017, study of the bandwidth parameter in the local polynomial regression.
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Figure 7. Nonlinear local polynomial spline median regression of Scottish weekly total births from
2004 to 2017.
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9.2. Annual Deaths for England and Wales, Scotland and Northern Ireland

Next, we analyse the Human Mortality Data Base data sets of annual deaths by year and by age
group. The data is presented in Figure 8 where we explore particular age groups x ∈ {20, 65, 75}.
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Figure 8. Deaths of Males per year for age groups x ∈ {20, 65, 75}. The top subplot corresponds to
annual deaths and the second subplot corresponds to a difference in annual deaths for each region of
the UK. Top Panels: England and Wales; Middle Panels: Scotland; Bottom Panels: Northern Ireland.

Examples of Linear vs. Nonlinear Parametric QAR Modelling

In this section, we undertake a study of the first differences of the annual deaths for a range of
ages for England and Wales, Scotland and Northern Ireland. We will consider a range of parametric
nonlinear models of the following forms:

• Linear QARI(1,1) model (reference).
• A version of Double-QAR(1,1) model in Equation (15), which we selected according to the equation:

T(x) = a + bx + c
√

1 + x2.
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• General Nonlinear QAR model as specified in Equation (22). We consider as an illustration the
lagged Tukey G skewness Quantile Regression: T(x) = a + b ∗ (exp(gx)− 1) /g. The filtration
Ft will be the natural filtration generated by the data and we will consider a single covariate of
lag 1 from the observed series. Qε(u) will be selected to be standard Normal.

We present the results below for England and Wales as similar results were obtained for Scotland
and Northern Ireland. The results for the fitted QARI(1,1) model are presented in Figure 9 annual
deaths for ages 20, 65 and 75 years old males. We also show the fitted quantile time series models for
0.1, 0.5 and 0.9 quantiles for an age group of 20 years in Figure 10.
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Figure 9. QARI(1,1) linear regressions at quantile levels u ∈ {0.1, 0.25, 0.5, 0.75, 0.9} of English and
Welsh male annual deaths.
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Figure 10. Fits of QARI(1,1) linear regressions at quantile levels u ∈ {0.1, 0.5, 0.9} of English and Welsh
male annual deaths.

The fits of the QAR(1,1) model for the 0.1 and 0.9 quantile models are clearly having difficulty in
the fit quality of the interval where the deaths suddenly declined in the great war periods between
1910–1940. There is also an evident asymmetry in the volatility of the fitted QARI(1,1) model for the
u = 0.9 compared to the case of u = 0.1. We also observe that both of the extreme quantile time series
models struggle to differentiate the change that occurred in the deaths after the great wars and the
behaviour before. We will therefore explore some examples of nonlinear quantile regression models.
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Next, we explore in Figure 11 the nonlinear parametric Double QARI model described above,
where we select values of b ∈ {0.1, 0.5, 0.85} and we compare this model fit to the linear QAR(1) model
for the median u = 0.5. We see that, when the coefficient b is small, the model for the median time
series regression is significantly skewed; however, as b increases, it becomes less skewed and produces
a more reactive fit to the periods of large death count change relative to the results obtained from the
linear QAR(1) median time series model. One would need to be careful to assess the model output in
this case to ensure that over fitting was not a problem. This can be achieved by looking at the residuals
of the regression fits and standard model selection criterion.
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Figure 11. Comparisons between QARI(1,1) model and the Double QARI models for different
parameter settings on the nonlinear volatility parameter for differenced annual deaths.

Next, we illustrate the difference between the QARI(1,1) linear model to the Tukey G transform
model explained in Definition 18. We note that the behaviour of the median regression performance of
this model for values of g has a highly nonlinear relationship with the parameter g and the degree
of responsivity that the median regression has produced when fit to the data. For instance, we plot
in Figure 12 the choices of g = 0.001 and g = 0.00705, where we see that, for smaller values of g,
one effectively recovers a model almost identical to the QARI(1,1) linear time series model with a slight
deviation around 1920. However, for g = 0.00705, we see that the model is skewed in the median
response and can be significantly more responsive to individual death yearly fluctuations than the
QARI(1,1) model.
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Figure 12. Comparisons between QARI(1,1) model and the Tukey g-and-h models for different
parameter settings on the G skewness parameter for differenced annual deaths.
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We note that the simple Tukey G model as presented can only be skewed in one direction; hence,
we see that the values below the median have little influence on the result compared to the samples
above the median. In these examples, we have seen the behaviours of nonlinear quantile regression
models versus simple linear regressions.

9.3. Alcohol Related Age-Standardised Death Rates per 100,000 Population of the UK

In this example, we study the time series for alcohol related deaths in the UK for males and
females between the period 1994 to 2016 (see Figure 13). In this set of examples, we study a model
that may be interpreted according to the class of nonlinear quantile time series models for the Rank
Transmutation Maps (RTMs), which we demonstrate on the two real data sets. The particular example
considered is a Weibul model growth curve model given by

f (x) = xl − (xl − xu) exp
(
−(kx)δ

)
,

where xl and xu are the lower and upper asymptotes of the curve, k is the growth rate and δ controls
the x coordinate for the point of inflection.
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Figure 13. Alcohol related age-standardised death rates per 100,000 population of the UK.

We then consider the fitted results for male and female alcohol annual related deaths over
time under the Weibul growth curve quantile regression model, for 0.1, 0.5 and 0.9 quantile levels.
The results of the nonlinear quantile regression are provided in Figure 14. In both cases, the Weibull
RTM quantile model provides a reliable fit at the quantile levels studied.
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Figure 14. Alcohol related age-standardised death rates per 100,000 population of the UK. Top Panel:
Male deaths; Bottom Panel: Female deaths.

9.4. Male Population Size 65–69: England and Wales

As a further illustration of the quantile time series models discussed in this tutorial, we will also
consider fitting quantile time series models for the official recorded annual population size for males
in age groups 65–69 between 1911 and the year 2000.

In this illustration, a nonlinear quantile regression based on a logistic growth model is considered.
This is a form of RTM model with a logistic distribution. In its most basic form, it is a logistic growth
curve often termed the “S” shaped sigmoid curve, with equation:

f (x) =
L

1 + e−k(x−x0)
,

where x0 is the x-value of the sigmoid’s midpoint, L is the curve’s maximum value, and k is the
steepness of the curve. In this model, we utilised it for the nonlinear quantile regression function.
The results of the fit are presented in Figure 15 for each of the three age groups.
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Figure 15. Quantile regressions for the male population in England and Wales in the age group 65–69.

10. Conclusions

This manuscript has provided a detailed overview of the different strands of quantile time series
regression modelling. Unifying the different approaches in a general modelling framework allows
one to treat each key component of a quantile time series model individually. In addition, several
properties of special classes of quantile time series model are described and constructed in detail.
The paper then concludes with detailed descriptions of different classes of quantile error family and
quantile transformation maps that allow for construction of a vast array of flexible quantile time series
models. The treatment of estimation is generally not addressed, as the main focus of this overview
paper is to address considerations of model construction and the properties of the resulting models.

The illustration of each of the main classes of quantile time series and regression structures
explained in the tutorial is then performed in important mortality and demographic data sets for
actuarial applications.
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