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Abstract: In this paper, the risk model with constant interest based on an entrance process is
investigated. Under the assumptions that the entrance process is a renewal process and the claims
sizes satisfy a certain dependence structure, which belong to the different heavy-tailed distribution
classes, the finite-time asymptotic estimate of the bidimensional risk model with constant interest
force is obtained. Particularly, when inter-arrival times also satisfy a certain dependence structure,
these formulas still hold.
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1. Introduction

In this paper, we investigate a bidimensional risk model based on entrance processes, in which
an insurance company operates two kinds of business. Suppose that the initial insurance fund for
i-th class is xi and S(i)

j is entry time of the j-th policy with 0 < S(i)
1 < S(i)

2 < · · · and S(i)
j = ∑

j
k=1 θ

(i)
k ,

θ
(i)
1 = S(i)

1 , i = 1, 2. The corresponding renewal process, up to the time t, is

Ni(t) =
∞

∑
j=1

I
{S(i)

j ≤t}
.

where I{·} is the indicator function.

Denote renewal function by mi(t) = E(Ni(t)) = ∑∞
j=1 P(S(i)

j ≤ t), t ≥ 0 and suppose the
mi(t) < ∞ for all 0 < t < ∞ and mi(0) = 0, i = 1, 2. Let the validity time of the j-th policy
be {C(i)

j , j = 1, 2, · · · } with probability P(C(i)
j = α`) = p`, ` = 1, 2, · · · , K, and α1 < α2 < · · · < αK,

where they are independent and identically distributed. The premium is fi(C
(i)
j ) and fi(·) is a strictly

increasing function. D(i)
j is claim time of the j-th policy and independent and identically distributed

function Hi(·). Y(i)
j is the j-th claim size and identically distributed function Fi(·). Suppose that D(i)

j ,

Y(i)
j and C(i)

j have the same distributions with random variables Di, Yi and Ci, respectively.
Assume that an insurance company invests risk free market with force of interest δ > 0, then up

to time t, the surplus process of the insurance company is written as:
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(
R1(t)
R2(t)

)
=

(
x1eδt

x2eδt

)
+

 ∑
N1(t)
j=1 f1(C

(1)
j )eδ(t−S(1)

j )

∑
N2(t)
j=1 f2(C

(2)
j )eδ(t−S(2)

j )


−

 ∑
N1(t)
j=1 Y(1)

j eδ(t−S(1)
j −D(1)

j ) I
{S(1)

j +D(1)
j ≤t,D(1)

j ≤C(1)
j }

∑
N2(t)
j=1 Y(2)

j eδ(t−S(2)
j −D(2)

j ) I
{S(2)

j +D(2)
j ≤t,D(2)

j ≤C(2)
j }

 .

(1)

Now the following two types of ruin times for a bidimensional risk model based on entrance
processes are considered. we define the first time when both R1(t) and R2(t) become negative by

τmax(x1, x2) = inf{t : max{R1(t), R2(t)} < 0|Ri(0) = xi, i = 1, 2},

the first time when both R1(t) or R2(t) become negative by

τmin(x1, x2) = inf{t : min{R1(t), R2(t)} < 0|Ri(0) = xi, i = 1, 2}.

Then we define the corresponding ruin probabilities with the finite time t > 0 respectively by

ψmax(x1, x2, T) = P(τmax(x1, x2) ≤ T) = P(
2⋂

i=1

{Ri(s) < 0} for some 0 ≤ s ≤ T), (2)

and

ψmin(x1, x2, T) = P(τmin(x1, x2) ≤ T) = P(
2⋃

i=1

{Ri(s) < 0} for some 0 ≤ s ≤ T). (3)

We know that Li et al. (2005) put forward into a new model (LIG model) based on an entrance
process and discussed asymptotic normality of the risk process. Furthermore, Some scholars got some
conclusions through the study of the LIG model. Li and Kong (2007) discussed the weak convergence
properties of the model. Xiao et al. (2008) studied some limit properties of the model under constant
interest. Xiao and Tang (2009) studied the infinite ruin probability with constant interest within Poisson
process and class R−α. Xiao et al. (2013) discussed the ruin probability of LIG model. It is clear that
the above literatures are improved and investigated for one-dimensional risk model based on entrance
processes. Recently, people have been interested in two-dimensional risk model, see, for example,
Chan et al. (2003); Li et al. (2007); Zhang and Wang (2012) and so on. It is well known that these
literatures are investigated in the classical model, and the risk model based on entrance processes is
more important and actual. Therefore, on the basis of above literatures, we consider a bidimensional
risk model based on entrance processes.

Because Theorem 1 of Xiao and Tang (2009) is obtained under the Poisson process and the regular
variation class, we know that this is far from the actual. Hence, in this paper, we consider the LIG model
and obtain the finite-time ruin probability under the class L ∩D with constant interest when claim
sizes satisfy a certain dependence under the renewal process. The conclusion also extend the above
Theorem 1 and Theorem 3.1 of Xiao et al. (2013). At the same time, it indicates that tail characteristics of
claim distribution determine the ruin probability of insurance company, which is of great significance
to the safe operation and the risk assessment of insurance company.

This paper is organized as follows: The second Section introduces the preliminary knowledge.
The third Section presents the main results of this paper. The fourth Section gives some lemmas.
Finally, the fifth Section gives the proofs of main Theorems.
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2. Some Preliminaries

Firstly, we give some markers. All limit relationships of this paper are for x → ∞ unless stated
otherwise. For the two positive function f (·) and g(·), if lim sup f (x)

g(x) < ∞, write f (x) = O(g(x));

if lim f (x)
g(x) = 0, write f (x) = o(g(x)); if lim sup f (x)

g(x) ≤ 1, write f (x) . g(x); if lim inf f (x)
g(x) ≥ 1,

write f (x) & g(x); if lim f (x)
g(x) = 1, write f (x) ∼ g(x); if f (x) = O(g(x)), g(x) = O( f (x)),

write f (x) � g(x).
Here are some important concepts of heavy-tailed distributions.

Definition 1. Say a distribution F belongs to the class L, if F satisfies for any y > 0 (or equivalent for y = 1)

lim
x→∞

F(x + y)
F(x)

= 1.

Say a distribution F belongs to the class D, if F satisfies for any 0 < y < 1 (or equivalent for y = 1
2 )

lim sup
x→∞

F(xy)
F(x)

< ∞.

Say a distribution F belongs to the class C, if F satisfies

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= 1.

where their relationship is as follows:
C ⊂ L ∩D ⊂ L.

For more properties and applications of the heavy-tailed distribution, we can refer to
Bingham et al. (1987) and Embrechts et al. (1997).

There are an important relationship between heavy-tailed distribution and Matuszewska index
of the distribution, which is defined by

J+F = − lim
x→∞

log F∗(x)
log x

, J−F = − lim
x→∞

log F∗(x)
log x

,

where

F∗(y) = lim inf
x→∞

F(xy)
F(x)

, F∗(y) = lim sup
x→∞

F(xy)
F(x)

.

Furthermore, other indices of the distribution F can be defined by

LF = lim
y↓1

F∗(y).

As for any y > 0, there is F∗(y) = 1/F∗(y), hence

LF = lim
y↓1

F∗(y) = 1/ lim
y↑1

F∗(y).

Particularly, if F ∈ C , then LF = 1.
For more properties and applications of the heavy tailed distribution, we can refer to

Tang and Tsitsiashvili (2003) and Yang and Wang (2010).
Here we introduce some concepts and properties of dependence.
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Definition 2. If there exists the finite real sequence {gU(n), n ≥ 1} for xi ∈ (−∞, ∞), 1 ≤ i ≤ n such that

P(
n⋂

i=1

{ξi > xi}) ≤ gU(n)
n

∏
i=1

P(ξi > xi),

then we say random variable sequence {ξn, n ≥ 1} are widely upper orthant dependent (WUOD).
If there exists the finite real sequence {gL(n), n ≥ 1} for xi ∈ (−∞, ∞), 1 ≤ i ≤ n such that

P(
n⋂

i=1

{ξi ≤ xi}) ≤ gL(n)
n

∏
i=1

P(ξi ≤ xi),

then we say random variable sequence {ξn, n ≥ 1} are widely lower orthant dependent (WLOD).
Furthermore, if {ξn, n ≥ 1} satisfy WUOD and WLOD at the same time, then we say random

variables {ξn, n ≥ 1} are widely orthant dependent (WOD).

For more detailed information, we can refer to Wang et al. (2013); Ghosh (1981) and Block et al. (1982).

Definition 3. If real valued random variables Xi, i ≥ 1 with distribution functions Fi, i ≥ 1 satisfy for any
i 6= j

lim
x→∞

P(|Xi| ∧ Xj > x|Xi ∨ Xj > x) = 0,

or, equivalently

lim
x→∞

P(Xi > x, Xj > x) + P(Xi < −x, Xj > x)

Fi(x) + Fj(x)
= 0,

then we say random variable variables Xi, i ≥ 1 are pairwise quasi-asymptotically independent (PQAI).
If real valued random variables Xi, i ≥ 1 with distribution functions Fi, i ≥ 1 satisfy for any i 6= j

lim
xi∧xj→∞

P(|Xi| > x|Xj > x) = 0,

or, equivalently

lim
xi∧xj→∞

P(Xi > x, Xj > x) + P(Xi < −x, Xj > x)

Fj(x)
= 0,

then we say random variable variables Xi, i ≥ 1 are pairwise strong quasi-asymptotically independent (PSQAI).

Remark 1. If random variables Xi, i ≥ 1 are PSQAI, then they are PQAI.

For more detailed information, we can refer to Li (2013) and Liu et al. (2012).
The first lemma comes from Theorem 2.1 of Li (2013).

Lemma 1. Assume that {Xj, 1 ≤ j ≤ n} are n real-valued random variables with functions of distribution
Fj, 1 ≤ j ≤ n. Then

P(
n

∑
j=1

cjXj > x) ∼
n

∑
j=1

P(cjXj > x).

holds if either (i) {Xj} are PSQAI and Fj ∈ L ∩D for 1 ≤ j ≤ n and (c1, · · · , cn) ∈ [a, b]n, or (ii) {Xj} are
PQAI and Fj ∈ C for 1 ≤ j ≤ n and (c1, · · · , cn) ∈ [a, b]n.

The following lemma comes from Proposition 2.2.1 of Bingham et al. (1987).
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Lemma 2. Let F ∈ D. For any 0 < α′ < α < β < β′, there exist positive constants Ai and Bi, i = 1, 2
satisfying the following inequality

F(y)
F(x)

≥ A1(x/y)α′ , (4)

for any x ≥ y ≥ B1, and the inequality

F(y)
F(x)

≤ A2(x/y)β′ . (5)

for any x ≥ y ≥ B2.

The following lemma comes from Theorem 3.3 of Cline and Samorodnitsky (1994), Lemma 3.4 of
Liu and Wang (2016) and Lemma 3.5 of Tang and Tsitsiashvili (2003).

Lemma 3. Let X be a random variable with distribution F and Y be a random variable independent of X.
Suppose that H is the distribution of XY. If EYp < ∞ for any 0 < J+F ≤ β < β′ and some p > J+F , then there
exist the following conclusions:

(i) If F ∈ D, then F(x) � H(x) and x−β′ = o(F(x));

(ii) If F ∈ C, H ∈ C.

The following lemma can be proved in Appendix A.

Lemma 4. (1) Under the conditions of Theorem 1 (or Theorem 2), for all T ≥ T0, then we have

P(∑∞
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

∼ ∑∞
j=1 P(Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi).

(6)

(2) Suppose the conditions of Theorem 2 are true and the inter-arrival times {θi
j, j ≥ 1} are WLOD

random variables satisfying (16) for some εi0 > 0, depending on Fi and Gi, i = 1, 2. Then, for all T ≥ T0,
the relation (6) still holds uniformly.

3. Main Results

In this paper, we make the following assumptions:
A1 Assume that the i-th class of random variables {C(i)

j , j ≥ 1}, {D(i)
j , j ≥ 1}, {Y(i)

j , j ≥ 1},

{S(i)
j , j ≥ 1}, i = 1, 2, are independent mutually.

A2 Assume that E(Ni(t))p+1 < ∞ for any fixed t > 0 and some p > J+Fi
, i = 1, 2.

Theorem 1. Consider the bidimensional risk model (1) under the assumptions A1 − A2.
Let p0 = P(S(i)

1 < T0) > 0 for some 0 < T0 < ∞. Assume that claim sizes, {Y(i)
j , j ≥ 1} be PSQAI random

variables with common distribution Fi ∈ L ∩ D, i = 1, 2 such that J−Fi
> 0, respectively. Then for T ≥ T0,

we have

ψmax(x1, x2, T) ∼
2

∏
i=1

(
K

∑
`=1

p`
∫ T

0

∫ α`∧(T−s)

0
Fi(eδ(s+y)xi)dHi(y)dmi(s)). (7)
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and

ψmin(x1, x2, T) ∼
2

∑
i=1

K

∑
`=1

p`
∫ T

0

∫ α`∧(T−s)

0
Fi(eδ(s+y)xi)dHi(y)dmi(s). (8)

where a ∧ b = min{a, b}.

Proof. (i) Firstly, we deal with the relation (7). Write Ui(t) = ∑
Ni(t)
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j )

I
{S(i)

j +D(i)
j ≤t,D(i)

j ≤C(i)
j }

. Due to (1) and (2), we know that for all T ≥ T0,

ψmax(x1, x2, T) = P(
2⋂

i=1

{Ui(s)−
Ni(t)

∑
j=1

fi(C
(i)
j )e−δS(i)

j > xi} for some 0 ≤ s ≤ T). (9)

By (9), we know for all T ≥ T0,

P(
2⋂

i=1

{Ui(T)−
Ni(T)

∑
j=1

fi(C
(i)
j )e−δS(i)

j > xi}) ≤ ψmax(x1, x2, T) ≤ P(
2⋂

i=1

{Ui(T) > xi}). (10)

Because Lemma 4 (1) and random variables {C(i)
j , j ≥ 1}, {D(i)

j , j ≥ 1}, {Y(i)
j , j ≥ 1}, {S(i)

j , j ≥ 1},
i = 1, 2, are independent mutually, it is clear that

ψmax(x1, x2, T) ≤ ∏2
i=1 P(Ui(T) > xi)

∼ ∏2
i=1 P(∑∞

j=1 Y(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

∼ ∏2
i=1(∑

K
`=1 p`

∫ T
0

∫ α`∧(T−s)
0 Fi(eδ(s+y)xi)dHi(y)dmi(s)).

(11)

holds uniformly for all T ≥ T0.
Because fi(C

(i)
j ), j = 1, · · ·, K are bounded and {Y(i)

j , j ≥ 1} are PSQAI random variables

with distributions Fi ∈ L ∩ D, i = 1, 2, respectively, it is easy to prove that {Y(i)
j + fi(C

(i)
j ), j ≥ 1}

are PSQAI random variables, whose distributions belong to the class L ∩ D, i = 1, 2, respectively.
Hence, by Lemma 4 (1), we know

ψmax(x1, x2, T) ≥ P(
⋂2

i=1{Ui(T)−∑
Ni(T)
j=1 fi(C

(i)
j )e−δS(i)

j > xi})

= ∏2
i=1 P({Ui(T)−∑

Ni(T)
j=1 fi(C

(i)
j )e−δS(i)

j > xi})

= ∏2
i=1 P(∑Ni(t)

j=1 (Y(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤t,D(i)

j ≤C(i)
j }
− fi(C

(i)
j )e−δS(i)

j ) > xi)

∼ ∏2
i=1 P(∑∞

j=1 Y(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤t,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤t}
> xi)

∼ ∏2
i=1(∑

K
`=1 p`

∫ T
0

∫ α`∧(T−s)
0 Fi(eδ(s+y)xi)dHi(y)dmi(s)).

(12)

Combining (11) with (12), we obtain that (7) holds uniformly for all T ≥ T0.
Next, we handle (8). By (3), we know that

ψmin(x1, x2, T) = P(τ1(x1 ≤ T)) + P(τ2(x2 ≤ T))− ψmax(x1, x2, T). (13)

where (τi(xi) = inf{t : Ri(t) < 0|Ri(0) = xi}, i = 1, 2. Then by (7) with its one-dimensional case, it is
clear that

P(τi(xi) ≤ T) ∼
K

∑
`=1

p`
∫ T

0

∫ α`∧(T−s)

0
Fi(eδ(s+y)xi)dHi(y)dmi(s), i = 1, 2. (14)
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holds uniformly for all T ≥ T0.
Again by (7) and Fi ∈ L ∩D ⊂ D, i = 1, 2, we have that

lim supx1∧x2→∞ supT∈Λ∩[T0,∞)

ψmax(x1, x2, T)

∑2
i=1 ∑K

`=1 p`
∫ T

0

∫ α`∧(T−s)
0 Fi(eδ(s+y)xi)dHi(y)dmis

≤ lim supx1∧x2→∞ supT∈Λ∩[T0,∞)

F1(x1)m1(T)F2(x2)m2(T)(∑K
`=1 p`Hi(α` ∧ (T − s)))2

F1(x1eδT)m1(T0)(∑K
`=1 p`Hi(α` ∧ (T0 − s)))

= 0.

(15)

Hence, by (13)–(15), we prove that (8) holds uniformly for all T ≥ T0.

Theorem 2. Consider the bidimensional risk model (1) under the assumption A1 − A2. Let p0 = P(S(i)1 <

T0) > 0 for some 0 < T0 < ∞. Assume that claim sizes, {Yi, i ≥ 1} be PQAI random variables with common
distribution Fi ∈ C, i = 1, 2 such that J−Fi

> 0, respectively. Then the relations (7) and (8) hold uniformly for T ≥ T0.

Proof. Similarly, when fi(C
(i)
j ), j = 1, · · ·, K are bounded and{Y(i)

j , j ≥ 1} are PQAI random variables

with distributions Fi ∈ C, i = 1, 2, respectively, it is easy to prove that {Y(i)
j + fi(C

(i)
j ), j ≥ 1} are PQAI

random variables, whose distributions belong to the class C, i = 1, 2, respectively. Hence, applying the
same method of proof of Theorem 1, we know that (7) and (8) still hold uniformly for all T ≥ T0.

Theorem 3. Under the conditions of Theorem 2, suppose that entry inter-arrival times, {θ(i)k , k ≥ 1} are
WLOD random variables with common distribution Gi satisfying

lim
n→∞

gLi (n)e
−εi0n = 0. (16)

holds for some εi0 > 0, depending on Fi and Gi, i = 1, 2. Then, the relations (7) and (8) still hold uniformly for
all T ≥ T0.

Proof. By the Lemma 4 (2), Theorem 2 and similar proof of Theorem 1, the relations (7) and (8) still
hold uniformly for all T ≥ T0.

Corollary 1. Consider one-dimensional risk model satisfying the same conditions as those in Theorem 1, and
denote ruin time by τ(x) = inf{t : R(t) < 0|R(0) = x}, where

R(t) = xeδt +
N(t)

∑
j=1

f (Cj)e
δ(t−Sj) −

N(t)

∑
j=1

Yje
δ(t−Sj−Dj) I{Sj+Dj≤t,Dj≤Cj},

then, we have

ψ(x, T) = P(τ(x) ≤ T) ∼
K

∑
`=1

p`
∫ T

0

∫ α`∧(T−s)

0
F(eδ(s+y)x)dH(y)dm(s).

It is easy to prove Corollary 1 from the proof of relation (7) of Theorem 1.

Remark 2. Corollary 1 is a partial extension for the results of Theorem 3.1 of Xiao et al. (2013), Theorem 1 of
Xiao and Tang (2009), and Theorem 3.1 of Xiao and Xie (2018).

4. Conclusions

In summary, this paper studies the two-dimensional independent risk model based on entrance
processes with constant interest rate. Under the assumptions that the entry process of policies of two
kinds of business of insurance companies have different renewal processes, the claims sizes of two
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kinds of business are independent of each other, and the claims sizes of the same kind of business are
pairwise strong quasi-asymptotically independent, which belong to the class L ∩D, the maximum
finite-time ruin probability and the minimum finite-time ruin probability are obtained, respectively.
If intervals of entry time of the policy satisfy the wide lower quadrant dependence, The finite-time
maximum ruin probability and the finite-time minimum ruin probability are also obtained.

Author Contributions: L.X. completed the article preliminarily, and the Professor H.X. perfected it.

Funding: This research was funded by Natural Scientific Funds of China (71261023).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Proof of Lemma 4

Proof. (1) Firstly, we deal with the upper bound of (6). Along with the method of proof of
Theorem 2.1 of Hao and Tang (2008), for any positive integer N, we have

P(∑∞
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

= P(∑Ni(T)
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi)

= (∑N
n=1 +∑∞

n=N+1)P(∑n
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi, Ni(T) = n)

= I1(xi, t, N) + I2(xi, t, N).

(A1)

For I2(xi, t, N). Because of the Lemma 2, there exist positive constants β, A1 and B1 for any h > 0
and xi

n ≥ B1. Hence, we have

I2(xi, t, N) ≤
∞

∑
n=N+1

P(
n

∑
j=1

Y(i)
j e−δ(S(i)

1 +D(i)
j ) I
{S(i)

1 +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi, S(i)
n ≤ T ≤ S(i)

n+1)

=
∞

∑
n=N+1

∫ T

0
P(

n

∑
j=1

Y(i)
j e−δ(s+D(i)

j ) I
{s+D(i)

j ≤T,D(i)
j ≤C(i)

j }
> xi, S(i)

n − S(i)
1 ≤ T − s ≤ S(i)

n+1 − S(i)
1 )

· P(S(i)
1 ∈ ds)

≤
∞

∑
n=N+1

∫ T

0
P(

n+1

∑
j=1

Y(i)
j e−δ(s+D(i)

j ) I
{s+D(i)

j ≤T,D(i)
j ≤C(i)

j }
> xi) · P(Ni(T − s) = n)P(S(i)

1 ∈ ds)

= ∑
N≤n≤xi/B1

∫ T

0
P(

n+1

∑
j=1

Y(i)
j e−δ(s+D(i)

j ) I
{s+D(i)

j ≤T,D(i)
j ≤C(i)

j }
> xi)P(Ni(T − s) = n)dmi(s)

+ ∑
n>xi/B1

∫ T

0
P(

n+1

∑
j=1

Y(i)
j e−δ(s+D(i)

j ) I
{s+D(i)

j ≤T,D(i)
j ≤C(i)

j }
> xi)P(Ni(T − s) = n)dmi(s)

≤ ∑
N≤n≤xi/B1

∫ T

0
(n + 1)P(Y(i)

j e−δ(s+D(i)
j ) I
{s+D(i)

j ≤T,D(i)
j ≤C(i)

j }
> xi/(n + 1))P(Ni(T − s) = n)

· dmi(s) + ∑
n>xi/B1

∫ T

0
P(Ni(T − s) = n)dmi(s)

≤ ∑
N≤n≤xi/B1

∫ T

0
C1P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)(n + 1)β+1P(Ni(T − s) = n)dmi(s)

+
∫ T

0
P(Ni(T − s) > xi/B1)dmi(s)
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≤ A1

∫ T

0
P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)E(Ni(T − s) + 1)β+1 I{N≤N0(T−s)≤xi/B1}dmi(s)

+ P(Ni(T − s) > xi/B1)mi(T)

≤ A1E(Ni(T − s) + 1)β+1 I{N≤N0(T−s)≤xi/B1}

∫ T

0
P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)dmi(s)

+ e−h(xi/B1)E(ehNi(T))mi(T).

If N → ∞, then we have

E(Ni(T − s) + 1)β+1 I{N≤Ni(T−s)≤xi/B1} → 0,

Because of the Lemma 3.2 of Hao and Tang (2008), we know

e−h(xi/B1)E(ehNi(T))→ 0.

Hence, for xi > 0, we have

limN→∞ supt∈(0,T]
I2(xi, t, N)∫ T

0 P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)dmi(s)

= limN→∞ supt∈(0,T]
I2(xi, t, N)

∑K
`=1 p`

∫ T
0

∫ α`∧(T−s)
0 F(eδ(s+y)xi)dHi(y)dmi(s)

= 0.

(A2)

For I1(xi, t, N). Because of the Lemma 1, for t ∈ (0, T], we have

I1(xi, t, N) ∼ ∑N
n=1 ∑n

i=1 P(Y(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi, Ni(T) = n)

∼ (∑∞
n=1 ∑n

j=1−∑∞
n=N+1 ∑n

j=1)P(Y(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi, Ni(T) = n)

= J1(xi, t, N) + J2(xi, t, N).

(A3)

For J1(xi, t, N), we obtain

J1(xi, t, N) = ∑∞
j=1 P(Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi, Ni(T) ≥ j)

=
∫ T

0 P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)dmi(s)

= ∑K
`=1 p`

∫ T
0

∫ α`∧(T−s)
0 F(eδ(s+y)xi)dHi(y)dmi(s).

(A4)

For J2(xi, t, N). Applying the similar method of dealing with I2(xi, t, N), we have

J2(xi, t, N) ≤
∞

∑
n=N+1

n

∑
j=1

P(Y(i)
j e−δ(S(i)

1 +D(i)
j ) I
{S(i)

1 +D(i)
j ≤T,D(i)

j ≤C(i)
j }

> xi, Ni(T) = n)

≤
∞

∑
n=N

n+1

∑
j=1

P(Y(i)
j e−δ(s+D(i)

j ) I
{s+D(i)

j ≤T,D(i)
j ≤C(i)

j }
> xi) · P(Ni(T − s) = n)dmi(s)

≤
∫ T

0
P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)dmi(s) ·

∞

∑
n=N

(n + 1)P(Ni(T) ≥ n).
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Hence, for xi > 0,

limN→∞ supt∈(0,T]
J2(xi, t, N)∫ T

0 P(Yie−δ(s+Di) I{s+Di≤T,Di≤Ci} > xi)dmi(s)

= limN→∞ supt∈(0,T]
J2(xi, t, N)

∑K
`=1 p`

∫ T
0

∫ α`∧(T−s)
0 Fi(eδ(s+y)xi)dHi(y)dmi(s)

= 0.

(A5)

By the relations (A1)–(A5), we obtain

P(∑∞
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

. ∑K
`=1 p`

∫ T
0

∫ α`∧(T−s)
0 Fi(eδ(s+y)xi)dHi(y)dmi(s).

(A6)

Next, we cope with the lower bound of (6).

For m = 0, 1, 2, · · · , we write ∆m = ∑∞
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
.

According to the similar method of Tang and Tsitsiashvili (2004), for all integer m such
that ∑∞

j=m+1 j−2 < 1, we have

P(∆m > xi) ≤ P(∑∞
j=m+1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> ∑∞

j=m+1
xi
n2 )

≤ P(
⋃∞

j=m+1(Y
(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi

n2 ))

≤ ∑∞
j=m+1 P(Y(i)

j e−δ(S(i)
j +D(i)

j )
> xi

n2 ).

(A7)

Because of the Lemma 2, there exist 0 < α < J−F ≤ J+F < ∞, Ai and Bi, i = 1, 2 satisfying

the relations (4) and (5). The events are written as A1(j, xi) = (j−2eδ(S(i)
j +D(i)

j ) ≤ B2/xi),

A2(j, xi) = (B2/xi < j−2eδ(S(i)
j +D(i)

j ) ≤ 1) and A3(j, xi) = (j−2eδ(S(i)
j +D(i)

j )
> 1). Hence, the relation

(A7) is written as

P(∆m > xi) ≤
∞

∑
j=m+1

P(Y(i)
j e−δ(S(i)

j +D(i)
j )

>
xi
n2 )

=
3

∑
k=1

∞

∑
j=m+1

P(Y(i)
j e−δ(S(i)

j +D(i)
j )

>
xi
n2 , Ak(j, xi))

=
3

∑
k=1

Ik(m, xi).

By Chebyshev’s inequality and the Lemma 3 (i), we have

I1(m, xi) ≤ ∑∞
j=m+1 P(A1(j, xi)) ≤ ( xi

B2
)−β′ ∑∞

j=1 j2β′(E(e−δβ′S(i)
1 ))j

= o(F(xi)).
(A8)

Because of the relations (4) and (5), for all xi ≥ max{B1, B2}, we can obtain

I2(m, xi) ≤ A2F(xi)∑∞
j=m+1 E(j2β′ e−δβ′S(i)

j IA2(j,xi)
)

≤ A2F(xi)∑∞
j=m+1 j2β′(E(e−δβ′S(i)

1 ))j.
(A9)
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and

I3(m, xi) ≤ F(xi)
A1

∑∞
j=m+1 E(j2α′ e−δα′S(i)

j IA3(j,xi)
)

≤ F(xi)
A1

∑∞
j=m+1 j2α′(E(e−δα′S(i)

1 ))j.
(A10)

Because of F ∈ D and p0 > 0, there exists a positive number M > 0 satisfying for T ≥ T0,

Y(i)
1 e−δ(S(i)

1 +D(i)
1 ) I
{S(i)

1 +D(i)
1 ≤T,D(i)

1 ≤C(i)
1 }

I
{S(i)

1 ≤T}

≥ P(Y(i)
1 e−δ(S(i)

1 +D(i)
1 ) I
{S(i)

1 +D(i)
1 ≤T,D(i)

1 ≤C(i)
1 }

I
{S(i)

1 ≤T}
, S(i)

1 ≤ T0)

≥ p0P(Y(i)
1 e−δ(T0+D(i)

1 ) I
{S(i)

1 +D(i)
1 ≤T,D(i)

1 ≤C(i)
1 }

I
{S(i)

1 ≤T}
)

≥ MF(xi).

(A11)

By the relations (A8)–(A10), we have

limm→∞ lim supxi→∞
P(∆m > xi)

F(xi)

= limm→∞ lim supxi→∞ ∑∞
j=m+1

P(Y(i)
j e
−δ(S(i)j +D(i)

j )
>

xi
n2 )

F(xi)
= 0.

(A12)

For ε > 0, by the relations (A11) and (A12), there exist integer n0 > 0 and enough large number xi.
Then we have

P(∑∞
j=n0+1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

≤ ∑∞
j=n0+1 P(Y(i)

j e−δ(S(i)
j +D(i)

j )
> xi

n2 )

≤ εF(xi) ≤ εP(Y(i)
1 e−δ(S(i)

1 +D(i)
1 ) I
{S(i)

1 +D(i)
1 ≤T,D(i)

1 ≤C(i)
1 }

I
{S(i)

1 ≤T}
).

(A13)

Let the above number n0 be fixed. Because of the Lemma 1, the relation (A13), we know

P(∑∞
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

≥ P(∑n0
j=1 Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

∼ (∑∞
j=1−∑∞

j=n0+1)P(Y(i)
j e−δ(S(i)

j +D(i)
j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi)

≥ (1− ε)∑∞
j=1 P(Y(i)

j e−δ(S(i)
j +D(i)

j ) I
{S(i)

j +D(i)
j ≤T,D(i)

j ≤C(i)
j }

I
{S(i)

j ≤T}
> xi).

(A14)

Combining (A6) with (A14) and arbitrariness of ε, we prove the Lemma 4 (1).
(2) Because the inter-arrival times {θ(i)j , j ≥ 1} are WLOD random variables satisfying (9) for

some εi0 > 0, depending on Fi and Gi, i = 1, 2, by (11) and (12) of Block et al. (1982), it is clear that

Ee−δβ
′
S(i)

n ≤ (Ee−δβ
′
S(i)

1 )n.

holds for any β
′
> 0 and n ≥ 1. Hence, we know the relations (A8)–(A10) still hold. Along with the

similar proof of Lemma 4 (1), it is easy to prove Lemma 4 (2).
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