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Abstract: The aim of this paper is to carry out a closed tool to estimate the one-year volatility of the
claims reserve, calculated through the generalized linear models (GLM), notably the overdispersed-
Poisson model. Up to now, this one-year volatility has been estimated through the well-known
bootstrap methodology that demands the use of the Monte Carlo method with a re-reserving
technique. Nonetheless, this method is time consuming under the calculation point of view; therefore,
approximation techniques are often used in practice, such as an emergence pattern based on the
link between the one-year volatility—resulting from the Merz–Wüthrich method—and the ultimate
volatility—resulting from the Mack method.

Keywords: claims reserving; prediction error; claims development result; one year view

1. Introduction

About 10 years ago, in Italy, the use of the generalized linear model (GLM)—to estimate the
claims reserve began to spread out both in the academic world and in the insurance market; in 2006,
some excellent specialized series of lectures on this subject were sponsored by the Concentric Company
and held by Richard Verrall of the London Cass Business School, one of the main developers of this
implementation—at the stock-exchange offices in Milan. One obstacle, as to the ability to acquire such
models in the Italian actuarial practice, was the need to include information about the claim number in
this kind of estimate, as we had already done for years with deterministic methodologies.

Today, rather than a higher flexibility in order to better these models inherent predicting ability,
a general development of derivative models mostly featuring a different theoretical background and
explained in a series of papers issued in later years—can be observed. These models, which have tried
to overcome GLM’s own limits, can be classified into four categories:

(a) GLMs including families different from exponential class without distribution restrictions GLZ
Venter (2007);

(b) Antonio and Beirlant (2008) GLMM (generalized linear mixed model) that allow for overcoming
the hypothesis of independence among payments of claims occurring in the same generation but
in different years—processed with stochastic simulation techniques;

(c) Bjökwall et al. (2011) GLMs with smoothing effects;
(d) Hudecovà and Pešta (2013) GEE (generalized estimating equations) implementation, where the

connection among payments of the same accident year is made through a closed tool.

However, up to now, their use has remained confined to the academic environment for different
reasons: GLZ mainly improves the historical data fitting; the GLMMs—based on a semiparametric
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regression model—could present heavy computational cost in a professional environment; the GLMs
with a smoothing effect always pose the risk to distort the information included in companies data;
GEEs are possibly among the most interesting ones. Nevertheless, experts who have studied them
have formulated neither an exact theory about the starting correlation estimates to be given to the
algorithm of optimisation of the parameters input—which is strictly dependent on them—nor an
exhaustive definition of the error prediction formulae.

Back to the GLMs, however, it is important to remark that, in 2016, the Casualty Actuarial Society
has issued a substantial monograph Taylor and McGuire (2016) about these models, focused on the
diagnostics and modification of the regression patterns. This work, on the contrary, is aimed at deriving
the volatility of a particular GLM with Over Dispersed Poisson (ODP) distribution through a closed tool,
in a one-year horizon framework. This volatility is particularly relevant to calculate the requirement
for the reserve risk capital of the internal models, which so far has been calculated through simulation
techniques such as the bootstrapping used in two phases—the so called re-reserving. The authors
have drawn inspiration from an essay of Merz and Wüthrich (2015), where the volatility estimate for
the overall accident years is calculated in the ODP cross-classified model, through the propagation
error in physics. This result has been adapted to the GLM model, this way getting a one-year volatility
formulae both for each and for the total of the accident years. The evidence we have talked about will
be introduced by a description of the GLM application to the loss-reserving problem, with the addition
of useful numerical examples.

On a general basis, the claim reimbursements that have not yet been paid at the end of the
financial year imply the claims reserve. The nature of such a balance-sheet item estimate is a major
risk source for non-life undertakings, due to the problems that its potential underestimation can bring
about. In order to get a proper quantification, actuarial methodologies have already been an integral
part of the specific estimation process for a long time. This is often due to the lacking of the case by case
assessment of each claim file adopted by companies to calculate the ultimate cost representation for
the long tail branches. Despite, in comparison with the traditional methods, stochastic methodologies
are less ready-to-use, they have several advantages: they are based on explicit and coherent statistical
hypothesis; they get the ad hoc adjustments and discretionary estimates to the minimum; beyond the
very accurate best estimate of reserve, they provide confidence intervals of the reserve itself in line
with fixed probability levels. Notably, through these methodologies, it is always possible to get to
an estimate of the first order-moments mean and the second-order moments variance of the reserve
distribution. Of course, also the overall probability distribution can be deducted, either through
analytical methods—if further appropriate hypothesis are adopted—or through simulation techniques.
The use of stochastic methods has been consolidated through the Solvency II project, by reaching a
co-ordinated target in a probabilistic key (best estimate added to risk margin) as a prescribed requisite
to estimate the claims reserve and the reserve risk capital. Indeed, in such a framework, an exact
definition of best estimate, risk margin and reserve risk capital can only be provided by the application
of a stochastic model of estimate to the historical time-series of the claims. Here, the risk margin is
additional and aimed at clearly quantifying the risk capital yield according to the uncertainty level of
the cash flows to come.

In stochastic estimates—beyond the financial kind of uncertainty, linked to the investments yields
and to the legal aspects connected with the paying-off delay—three kinds of risk must be taken into
account: model risk, estimation risk, and process risk. Model risk means the risk that an unfitting
model could be used to represent the phenomenon; the estimation risk is linked to the volatility of the
estimator used in order to infer on the model parameters; the process risk is linked to the variance of
the phenomenon under scrutiny.

In order to create a connection with the previous practice, many of the stochastic models for
the reserving have been built by widening the traditional deterministic techniques, particularly
the well-known chain ladder methodology, based on the development of the cumulative payments.
Keeping this in mind, we need to emphasise that some of the most used stochastic methods—Mack and
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ODP just allow to make automatic estimates of the reserve and only apply when the basic chain ladder
hypothesis are met. The claims reserving working party of 2002 British actuaries has spotted nothing
short of 26 qualitative factors to be taken into account in the claims reserving. Nonetheless, this limit is
more neglectable in determining the capital requisite because it is function of a volatility quantification.
As to the estimate of cash flows of future payments which have already happened, and to estimate
the different kinds of risk that have to be taken into account in the risk margin assessment, this work
uses the stochastic models evolution included in the GLM class. It is known that such models allow
for using different distributions for the response variable and the explicative variable’s parameters
which are estimated to be linked to the response variable. Therefore, different traditional methods to
estimate the claims reserve can be reviewed under this light; as we have already said, claims reserve
estimates resulting from particular generalized linear methods indeed match with the ones resulting
from deterministic methods to estimate the claims reserve, such as the chain ladder and the separation
methods. Some works about the implementation of GLM to estimate the claims reserve are quoted in
our bibliography Despeyroux et al. (2003); Englad and Verral (2001); Englad and Verral (2002); Gigante
and Sigalotti (2004); Renshaw and Verrall (1998); and Taylor and McGuire (2004). As a general rule,
in order to confine the model risk, as a first step, a wide range of models must be considered to pick
the one that better fits data, according to a proper good adaptation quantification. In the reference
framework—as a measure of goodness of fit to compare the different models—the log-likelihood is
estimated in the case of distributions belonging to the exponential family of random variables—for
instance gamma, poisson and inverse-Gaussian distribution. The extended quasi-likelihood function
introduced by Nelder and Pregibon (1987) is used instead in the semi-parametric case where just the
relation between the variance and the mathematical expectation of the response variable is specified.

Once the model has been chosen, the second step consists of approaching data by modifying the
regression structure, for example by adding a particular explicative variable to point out an outlier,
keeping as a target an optimal figure of the scaled deviance function (over degrees of freedom).

In Section 1, an overview about the use of the generalized linear models to estimate the claims
reserve and all the themes connected to it, also with reference to the framework Solvency II, is provided.
In Section 2, data organization in the run-off triangle is illustrated, short hints about the widely-used
chain ladder method are provided and the notion of claims development result is introduced.
In Section 3, the GLM model to estimate the claims reserve is illustrated. In Section 4, the relation to
estimate the ultimate volatility through the GLM method is described. Section 5 is the main focus of
this paper and explains how to get the algorithm that allows to estimate the one-year volatility through
a closed tool in the GLM framework. Finally, in Section 6, a practical case is presented by using an
Italian insurance company disguised run-off triangle.

2. Claims Reserve Estimation

In non-life undertakings, in order to estimate the claims reserve for accidents still to be paid
generated by an insured risk portfolio at the end of the financial year, we generally make reference to
the historical payments triangle, updated at the estimate date.

Notably, we assume that the observations concerning payments already made are connected to
accidents happened in a limited previous time-framework; thus, sums paid for accidents happened or
generated in previous years are available in this kind of diagram.

For each accident year, data are divided into development years, a variable which quantifies the
claim payment year.

2.1. Data Organization

Given Yij as the paid sum, with j as the delay in payment for accidents happened in the i-th year,
usually called incremental payment. These payments are usually represented in the so-called run-off
triangle (see Table 1).
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Table 1. Run-off triangle of cumulative payment.

i / j 0 1 · · · j · · · J

1 Y10 Y11 · · · Y1j · · · Y1J
2 Y20 Y21 · · ·
...

...
i Yi0 Yij
...

...
I YI0

Given instead Ci,j =
j

∑
k=0

Yik as the cumulative payment, i.e., the sum paid-off for the i generation

within the first J development years, the recursive relation Ci,j = Ci,j−1 + Yij with j > 0 is effective.
The ratio Fi,j−1 = Ci,j/Ci,j−1, named link ratio, is the factor connecting the cumulative payment
between two close development years—the j− 1 and the j- for the same i generation. Assuming that
the payment process of each generation will be surely over within J years, the overall cost of the i

generation will be: Ci,J =
J

∑
k=0

Yik; writing again the overall cost in the sum of the two addends will

make things clearer:

C(t)
i,J =

t−i

∑
k=0

Yik︸ ︷︷ ︸
deterministic

+
J

∑
k=t−i+1

Yik︸ ︷︷ ︸
stochastic

, (1)

since in the t balance-sheet year the first addend is known for sure, while the second is subjected
to randomness. Therefore, the claims reserve estimate for the i generation for the t balance-sheet

year, concerns the random component of C(t)
i,J , that is to say, we have: R(t)

i =
J

∑
k=t−i+1

Yik = C(t)
t−j,J −

Ct−j,j. We will instead name R̂(t)
i =

J
∑

k=t−i+1
Ŷik the claims reserve estimate, made at the t time,

and R̂(t) = ∑
i+j>t

Ŷij the overall claims reserve for all generations. In the following passages, we will

use t to make reference to the current date of estimate.

2.2. Chain Ladder Method: Basic Concept

The idea underlying the chain ladder method is that there is a proportion between the cumulative
payments of two close development years, except for an erratic component with a null mean:

C(t)
i,j+1 = Ci,j f (t)j + εij i = 1, . . . , I − j− 1, (2)

looking at Equation (2), we conclude that, in the chain ladder model, the cumulative payment are
showed by a line through the origin for each j development year. If we assume the residuals variance
is Var(εij) = σ2Ci,j, the least square solution for the f (t)j estimate is:

f̂ (t)j =

t−j−1
∑

k=1
Ck,j+1

t−j−1
∑

k=1
Ck,j

=

t−j−1
∑

k=1
Ck,jFk,j

t−j−1
∑

k=1
Ck,j

j = 0, 1, . . . , J − 1, (3)

which is the weighted average of all link ratios observed. This approach implies that the cumulative
payments Ci1,j and Ci2,j for i1 6= i2 are independent; each ratio j, beyond being independent from the i
generation, must also have equal first two moments with a fixed j, thus the process of claim settlement
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must not have undergone structural changes in time. The ultimate cost Ĉ(t)
i,J estimate is calculated

through the use of the factors f̂ (t)j :

Ĉ(t)
i,J = Ci,t−i

J−1

∏
j=t−i

f̂ (t)j , (4)

thus the claims reserve estimate is:
R̂(t)

i = Ĉ(t)
i,J − Ci,t−i. (5)

2.3. The Claims Development Result

The CDR is the technical result of the evolution of the claim settlement process. In other
words, it calculates if the claims reserve R(t)

i —set aside in the generic t balance-sheet year, for the
i generation—is enough to pay the claims Yi,t−i+1, between t and t + 1 and to set aside the new claims

reserve R(t+1)
i in t + 1 formally:

CDRi,t+1 = R(t)
i −

(
Yi,t−i+1 + R(t+1)

i

)
= C(t)

i,J − C(t+1)
i,J (6)

is a random variable if the observation moment is t, while it is a deterministic value if the observation
moment is t + 1. In the risk estimate and solvency capital calculation framework, we are interested in t
observation random variable, while, in the balance-sheet analysis framework, we are interested in the
deterministic aspect observed in t + 1. Particularly, we have a loss if CDRi,t+1 < 0, while we have a
gain with a positive result.

3. Generalized Linear Models to Estimate the Claims Reserve

The GLM are a generally wide range of models in which it is possible to define and maximize
the likelihood function while estimating the parameters. Assuming that for this function regularity
conditions are respected, the parameter estimated through the maximum likelihood function method
have got many properties, such as: consistency, asymptotic correctness and asymptotic normality.
These properties allow for getting additional information about parameters and calculations about
the goodness of fit. Furthermore, the same reserving estimates calculated through the traditional
estimation methods can be replicated by using particular kinds of GLM. In our following calculations,
with reference to a generic parameter α, we will use α̂ to make reference to its estimate and the α̃

symbol to make reference to its corresponding estimator.

3.1. GLM Models Structure

In GLM models, the response variable is typically represented by observed payments Yij to
estimate the claims reserve, while the accident year and the development year are used for the
explicative variables. Notably, the explicative variables are used as qualitative factors and therefore
coded through the dummy variables. For GLM models, the following properties are valid:

1. the Yij are stochastically independent;
2. the density (or probability) function is in exponential family:

f (y; θij, φ) = exp
{

ωij

φ

[
yθij − b(θij)

]}
c(y; θij, φ), (7)

where ωij is an indicated weight, θij is the prescribed parameter, φ is the dispersion parameter
independent from i, and j, and b(.) and c(.) are functions which identify the particular
exponential family;
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3. the moments can be generalized as follows:

E
[
Yij
]
= g−1

(
x>ij β

)
= b

′ (
θij
)

and Var
[
Yij
]
=

φ

ωij
b
′′ (

θij
)
=

φ

ωij
V(µij), (8)

where xij is the column vector of the explicative variables, β is the parameters vector and
g is a continuous and invertible function which is called link function. In our following
calculations, we will use h to make reference to the reverse of the link function, i.e., h = g−1,
while V(µij) = b

′′
(b
′−1(µij)) is the so-called variance function.

We have indicated with X the design matrix, where the generic row is the vector which
indicates the explicative variables for the matching response variable calculation, while η = Xβ

is the linear predictor. Therefore, g(.) is the function that links each element of the ηij = x>ij β linear
predictor with E

[
Yij
]
= h(ηij), i.e., with the mathematical expectation. For the regression parameters

vector β =
(
c, a1, . . . , aI , b0, . . . , bJ

)>, the c parameter indicates a feature in common with all the
observations—model intercept—, the a1, a2, . . . , aI parameters are linked to the accident year, while the
b0, b1, . . . , bJ parameters are connected to the payment development year. The model we have created
this way will be over-parametrized, and, above all, defined unless an additive constant. To correct
this problem, we will assume the link a1 = b0 = 0; indeed, such parameters are not included in the X
matrix, thus the generic parameter ai and bj indicates the difference from the c intercept.

In GLM models, the β parameters estimate is calculated through the maximum likelihood
method; this approach allows for calculating the maximum likelihood mathematical expectation
estimates given µ̂ij = h(ηij) with i + j > t. The dispersion φ parameter estimate when it is not
known can itself be calculated either through the maximum likelihood method or through consistent
estimators—for instance, through the one based on Pearson estimator:

φ̂ =
1

n− p ∑
i+j≥t

ωij

(
yij − µ̂ij

)2

V(µ̂ij)
, (9)

where n− p is the number of the model freedom degrees n is the number of the observed data, p is the
number of parameters to be estimated particularly; in this case, we have n = I(I+1)

2 , p = I + J = 2I − 1
and thus n− p = I2−3I+2

2 .

Remark 1. The regression structure can be altered by inserting other parameters linked to further explicative
variables. We can pick them through preliminary analysis based on data and through inferential analysis to
compare models based on adjustment to data validity indicators and on residuals analysis. Notably, a new
parameter can be inserted as well, to observe particular interactions between the two variables’ accident year and
development year, therefore corresponding to particular data.

3.2. Semi-Parametrical Models

As we have already said, to define the likelihood function, it is necessary to specify the analytic
form of distribution of the response variable, while it is possible to define the quasi-likelihood by
specifying only the relation between mean and variance as described by Wedderburn (1974)1:

K(y; β, φ) = ∑
i+j≤t

ωij

∫ µij

yij

yij − s
φV(s)

ds. (10)

1 Robert W. M. Wedderburn (1947–1975) could have become one of the most distinguished statistics experts of his time due to
his early works in this field, but he died at the young age of 28 because of an anaphylactic shock caused by a wasp bite.
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This relation can be used to estimate the β parameters. The quasi-likelihood function includes
properties that are similar to the likelihood function, therefore also the parameters we can get by
maximizing the (10). In the over-dispersed Poisson model with logarithmic link-function instead,
the ratio between mean and variance is the following:

E
[
Yij
]
= µij = ec+ai+bj and Var

[
Yij
]
= φV(µij) = φµij. (11)

By inserting Equations (11) into (10), we can get the expression of the quasi-likelihood function
for the over-dispersed Poisson model:

K(y; β, φ) = ∑
i+j≤t

ωij

φ

[
yij log

µij

yij
− µij + yij

]
, (12)

the β̂ estimate is calculated by searching for the β values that maximise Equation (12). The optimization
problem can be solved through the Gauss–Newton method.

3.3. Elements for the Observed Data Goodness of Fit

One method often used to estimate the observed data model goodness of fit is to analyse the
generalized Pearson residuals. Through them, it is possible to analyse the presence of anomalous data
or trends. The calculation formula of these residuals is:

rij =
yij − µ̂ij√
V(µ̂ij)/ωij

. (13)

Usually, under the hypothesis of residual normality, it may happen that they are included in the
critical values ±1.96. In the ODP case, with ωij = 1, the residuals become:

rij =
yij − µ̂ij√

φ̂µ̂ij

. (14)

In order to calculate the overall discrepancy between empirical and theoretical data, as a rule, we

use Pearson statistics χ2 = ∑i+j≤t ωij
(yij−µ̂ij)

2

V(µ̂ij)
and the deviance:

D (µ̂; y) = −2 ∑
i+j≤t

ωij

[
yij(θ̂ij − θ∗ij)− (b(θ̂ij)− b(θ∗ij))

]
, (15)

with θ̂ij = b
′−1(µ̂ij) and θ∗ij = b

′−1(yij). In the quasi-likelihood case, the deviance (15) becomes:
D (µ̂; y) = −2φ̂K(y; β, φ).

4. The Claims Reserve Mean Square Error of Prediction

4.1. The General Case

A stochastic model for the claims reserving is a prediction method in which payments to come
are modeled through the estimators that are a function of the observed data. Therefore, beyond the
variability typical of any random variable—process variance—we also need to take into account the
variability inherent in the model parameters estimate—estimation or parameter variance.

First of all, we take into account the random R variable, which indicates the claims reserve.
By using a proper model for R, we define an R̃ estimator carefully modeled on the observed data and
we call mean square error prediction (MSEP)—the following quantity:
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MSEP
(

R̃
)
= E

[(
R− R̃

)2
]

, (16)

if R̃ is a correct estimator for the R mean—i.e., E (R) = E
(

R̃
)
—it will be possible to get the following

decomposition:
MSEP

(
R̃
)

= E
[(

R− E (R) + E (R)− R̃
)2
]

≈ E
[
(R− E (R))2

]
+ E

[(
R̃− E (R)

)2
]

= Var(R)︸ ︷︷ ︸
process

+ Var(R̃)︸ ︷︷ ︸
parameter

.
(17)

During Equation (17) differentiation, the covariance term is canceled out because of the hypothesis
of independence between past observations and future predictions.

4.2. GLMs Implementation in Claims Reserving

In Section 4.1, we have talked about the estimate of historical data distribution parameters.
Of course, in order to assess future cash-flows, we need to make predictions and to take into account
the prediction errors for the random elements of the lower triangle. To this end, we will assume
that the observed data are the result of random variables being stochastically independent and with
probability distributions belonging to the same parameters family. This being the hypothesis, on the
basis of the estimates and the estimators that we have obtained from run-off data parameters, we can
also calculate estimates of distribution and estimators for the random variables of the lower triangle.

Let’s assume β̂ =
(

ĉ, â1, . . . , âI , b̂0, . . . , b̂J

)>
to be the estimate and β̃ =

(
c̃, ã1, . . . , ãI , b̃0, . . . , b̃J

)>
to be the estimator of the maximum likelihood, and φ̂ to be the estimate of the dispersion parameter.
For the random variable Yij with i + j > t, we can estimate the mathematical expectation and the
variance through:

Ê
[
Yij
]
= µ̂ij = h

(
η̂ij
)
= h

(
ĉ + âi + b̂j

)
(18)

and V̂ar
[
Yij
]
= φ̂V

(
µ̂ij
)

. (19)

Let’s assume instead Yij as the transform of the linear predictor Ỹij = h
(
η̃ij
)
= h

(
c̃ + ãi + b̃j

)
.

In the ODP model with a logarithmic link function case, we have:

Ê
[
Yij
]

= µ̂ij = e(ĉ+âi+b̂j)

and V̂ar
[
Yij
]

= φ̂µ̂ij.
(20)

We can get the estimate of mathematical expectations of the claims reserve—under the hypothesis
of stochastic independence—as sums of the previous ones including the whole group of indexes
defining different quantities. We can apply the same to the estimators sums. We have:

Ê [Ri] =
J

∑
j=t−i+1

µ̂ij, Ê [R] = ∑
i+j>t

µ̂ij, Ẽ [Ri] =
J

∑
j=t−i+1

µ̃ij and Ẽ [R] = ∑
i+j>t

µ̃ij. (21)

Predictions are given by the estimators observed values and they match with the mathematical
expectations written above. To calculate the prediction errors instead, we make reference to some
asymptotic results about the maximum likelihood estimators of parameters in GLMs. Notably, if φ

is known and if the regularity conditions of the likelihood function are respected, the maximum
likelihood estimators satisfy the properties of consistency and asymptotic normality. Therefore,
the mathematical expectation of the distribution can be approximated through the β̂ estimate, while
the variance–covariance matrix can be estimated through the inverse of the Fisher information matrix:
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I
(

β̂
)
= −E

 ∂2 l̃
∂βh∂β j

∣∣∣∣∣
β=β̂

 , (22)

where l̃ is the r.v. we get by replacing the observations yij—that are the results of the r.v. Yij—in the
expression of the log-likelihood function l. If φ is not known, previous results will be valid all the same

if we replace with its own consistent estimate; thus, the estimator β̃ =
(
c̃, ã1, . . . , ãI , b̃0, . . . , b̃J

)> will
be generally consistent and asymptotically normal: β̃ ∼ N

(
β̂, I−1 (β̂)), where I−1 (β̂) is indeed the

estimate of the variance–covariance matrix of the β̃ estimator, particularly:

V̂ar
(

β̂
)
=



ˆVar(ĉ) . . . ˆCov(ĉ, âi) . . . ˆCov(ĉ, b̂j) . . .
...

...
...

ˆCov(âi, ĉ) . . . ˆVar(âi) . . . ˆCov(âi, b̂j) . . .
...

...
...

ˆCov(b̂j, ĉ) . . . ˆCov(b̂j, âi) . . . ˆVar(b̂j) . . .
...

...
...


= I−1 (β̂) . (23)

When the mean of a random variable and the one of the estimator match, the MSEP is the sum of the
process variance and the parameter variance (see Equation (17)). In the GLM model case, the two
predicted values match only in the case of the identity link function, while in the unspecified case we
can use the following Taylor first-order approximation:

E
[
Ỹij
]
= E

[
h(η̃ij)

]
≈ h(ηij) + h

′
(ηij)E

[
η̃ij − ηij

]
(24)

as the estimator η̃ij is asymptomatically correct, η̃ij → ηij, we can conclude that E
[
Ỹij
]
≈ E

[
Yij
]
;

therefore, as for the (MSEP), we get:

MSEP(Ỹij) = Var(Yij) + E
[(

Ỹij − E
(
Yij
))2
]
≈ Var(Yij) + Var(Ỹij), (25)

with a similar procedure; as for variance, we get:

Var(Ỹij) = Var
[
h(η̃ij)

]
≈
[

h
′
(η̂ij)

]2
Var(η̃ij), (26)

the linear predictor variance estimate η̃ij can be calculated through the variance–covariance matrix (23),
and, in particular, we have:

V̂ar(η̃ij) = V̂ar(c̃) + V̂ar(ãi) + V̂ar(b̃j) + 2
[
Ĉov(c̃, ãi) + Ĉov(ãi, b̃j) + Ĉov(c̃, b̃j)

]
(27)

or in its compact form:
V̂ar(η̃ij) = x>ij V̂ar(β̃ij)xij, (28)

where xij is the dummy variables vector, variables used to code accident and development year.
Finally, as for the MSEP, we get the following formula:

M̂SEP(Ỹij) = φ̂µ̂ij +
[

h
′
(η̂ij)

]2
V̂ar(η̂ij). (29)

By following a similar procedure, we can calculate the MSEP of the claims reserve for the i
accident year, i.e., R̃i = ∑J

j=t−i+1 Ỹij, that, on the basis of Equation (17), is calculated as the process
variance Var(Ri) plus the parameter variance Var(R̃i) sum, i.e.,:
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MSEP(R̃i) = Var(Ri) + Var(R̃i). (30)

As for the process variance estimate, we have:

V̂ar(Ri) =
J

∑
j=t−i+1

V̂ar(Yij) = φ̂
J

∑
j=t−i+1

µ̂ij, (31)

while as for the parameter variance estimate:

V̂ar(R̃i) =
J

∑
j=t−i+1

V̂ar(Ỹij) +
J

∑
j1,j2=t−i+1

j1 6=j2

Ĉov
(
Ỹi,j1 , Ỹi,j2

)
, (32)

where the estimate of the covariances among incremental payments can be calculated in the
following way:

Ĉov
(
Ỹi,j1 , Ỹi,j2

)
= h

′
(η̂i,j1) · h

′
(η̂i,j2) · Ĉov

(
η̃i,j1 , η̃i,j2

)
, (33)

while for linear predictor the covariance estimation is:

Ĉov
(
η̃i,j1 , η̃i,j2

)
= x>i,j1 V̂ar(β̃ij)xi,j2 . (34)

By inserting (26) and (33) in (32), we get:

V̂ar(R̃i) =
J

∑
j=t−i+1

[
h
′
(η̂ij)

]2
Var(η̃ij) +

J

∑
j1,j2=t−i+1

j1 6=j2

h
′
(η̂i,j1) · h

′
(η̂i,j2) · Ĉov

(
η̃i,j1 , η̃i,j2

)
, (35)

in the case of the logarithmic link function, Equation (35) can be written in the following way:

V̂ar(R̃i) =
J

∑
j=t−i+1

µ̂2
ijVar(η̃ij) +

J

∑
j1,j2=t−i+1

j1 6=j2

µ̂i,j1 µ̂i,j2 Ĉov
(
η̃i,j1 , η̃i,j2

)
. (36)

For the claims reserve total amount, we have instead M̂SEP(R̃) = V̂ar(R) + V̂ar(R̃) where:

V̂ar(R) = ∑
i+j>t

V̂ar(Yij) (37)

and
V̂ar(R̃) = ∑

i+j>t
h
′
(η̂ij)

2V̂ar(η̃ij) + ∑
i1+j1>t
i2+j2>t

(i1,j1) 6=(i2,j2)

h
′
(η̂i1,j1) · h

′
(η̂i2,j2) · Ĉov

(
η̃i1,j1 , η̃i2,j2

)
, (38)

and in the case of the logarithmic link function:

V̂ar(R̃) = ∑
i+j>t

µ̂2
ijV̂ar(η̃ij) + ∑

i1+j1>t
i2+j2>t

(i1,j1) 6=(i2,j2)

µ̂i1,j1 µ̂i2,j2 Ĉov
(
η̃i1,j1 , η̃i2,j2

)
. (39)
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Finally, for the ODP,2 it is possible to re-write the formulae to calculate the MSEP in the following
more compact forms:

M̂SEP(R̃i) = φ̂ ∑J
j=t−i+1 µ̂ij

+ ∑J
j=t−i+1 µ̂2

ijx
>
ij V̂ar(β̃)xij + ∑J

j1,j2=t−i+1
j1 6=j2

µ̂ij1 µ̂ij2 x>i1,j1
V̂ar(β̃)xi2,j2

(40)

and
M̂SEP(R̃) = φ̂ ∑i+j>t µ̂ij

+ ∑i+j>t µ̂2
ijx
>
ij V̂ar(β̃)xij + ∑ i1+j1>t

i2+j2>t
(i1,j1) 6=(i2,j2)

µ̂ij1 µ̂ij2 x>i1,j1
V̂ar(β̃)xi2,j2 . (41)

5. One-Year Volatility for the Claims Development Results

5.1. Overall Accident Years Estimate

In order to get to a formula that allows for estimating the one-year volatility—i.e., the standard
deviation from the CDR random variable as illustrated in Equation (6)—we have used the error
propagation technique, as suggested by Röhr (2016), a technique which allows for calculating at
the same time the uncertainty both about the parameters estimate and about the random process
underlying the data. As we have already described in Section 2.3, the CDR is the technical result of
the claims reserve development in a one-year time-framework. Given Equation (6) and the link ratios
illustrated in Section 2.2, in the chain ladder framework, the CDRi,t+1 is written in the following way:

ĈDRi,t+1 = Ĉ(t)
i,J − Ĉ(t+1)

i,J = Ci,t−i · f̂ (t)t−i︸ ︷︷ ︸
Ĉ(t)

i,t−i+1

· f̂ (t)t−i+1 · . . . · f̂ (t)J−1 − Ci,t−i+1 · f̂ (t+1)
t−i+1 · . . . · f̂ (t+1)

J−1 . (42)

It is therefore necessary to estimate the ultimate cost Ĉ(t+1)
i,J at the t + 1 time, but, as we have obtained

the observations up to the t time, we can use the f̂ (t+1)
j estimates made on the basis of the observations

in t. To this purpose, the best approach is to write (42) in the following way:

ĈDRi,t+1 = Ci,t−i

(
J−1

∏
j=t−i

f̂ (t)j

)1− Ci,t−i+1/Ci,t−i

f̂ (t)t−i

J−1

∏
j=t−i+1

f̂ (t+1)
j

f̂ (t)j

 . (43)

In a priori absence of data, the ratio between two link ratios linked to the same j development
year and estimated in a two-years-in-a-raw balance sheet can be calculated through the credibility
factor (see Merz and Wüthrich 2015):

f̂ (t+1)
j

f̂ (t)j

= α
(t)
j

Ct−j,j+1/Ct−j,j

f̂ (t)j

+
(

1− α
(t)
j

)
, (44)

where α
(t)
j =

Ct−j,j

∑
t−j
i=1 Cij

is the credibility coefficient.

2 A useful reference about backtesting in relation to the use of the ultimate volatility of predictions is in Leong et al. (2014),
winner of the Variance Prize.
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By using (44) for the link ratios, the CDR estimate (43) can be also written in the following way:

CDRi,t+1 = Ĉ(t)
i,J︸︷︷︸

ultimate cost in t

− Ĉ(t)
i,J

Ci,t−i+1/Ci,t−i

f̂ (t)t−i

J−1

∏
j=t−i+1

α
(t)
j

Ct−j,j+1/Ct−j,j

f̂ (t)j

+
(

1− α
(t)
j

)
︸ ︷︷ ︸

ultimate cost in t+1, Ĉ(t+1)
i,J

. (45)

As shown by Renshaw and Verrall (1998), between the link ratios, we have calculated through
the chain ladder method and the parameters calculated through the GLM method there is the
following ratio:

f̂ (t)j = 1 +
eb̂j+1

∑
j
k=0 eb̂k

=
∑

j+1
k=0 eb̂k

∑
j
k=0 eb̂k

j = 0, . . . , J − 1, (46)

on the (46) basis, as for the link ratios product, we have ∏J−1
j=t−i f̂ (t)j =

∑J
k=0 eb̂k

∑t−i
k=0 eb̂k

, thus the ultimate cost

estimate can be defined as:

Ĉ(t)
t−j,J = Ct−j,j

∑J
k=0 eb̂k

∑
j
k=0 eb̂k

j = 0, . . . , J − 1. (47)

If we make reference to the cumulative payment Ct−j,j+1 instead—that in t is a r.v.—we have:

Ct−j,j+1 = Ct−j,j + Yt−j,j+1

= Ĉ(t)
t−j,J

∑
j
k=0 eb̂k

∑J
k=0 eb̂k

+ Yt−j,j+1

= Ĉ(t)
t−j,J

∑
j+1
k=0 eb̂k

∑J
k=0 eb̂k

+ Yt−j,j+1 − Ĉ(t)
t−j,J

eb̂j+1

∑J
k=0 eb̂k

= Ĉ(t)
t−j,J

∑
j+1
k=0 eb̂k

∑J
k=0 eb̂k

+ Yt−j,j+1 − eĉ+ât−j+b̂j+1 .

(48)

In calculating the last derivative, we have taken into account that Ĉ(t)
t−j,J = ∑J

k=0 Ŷt−j,k =

eĉ+ât−j ∑J
k=0 eb̂k . By adding and subtracting the hypothetical value ec+at−j+bj+1 to (48), we get:

Ct−j,j+1 = Ĉ(t)
t−j,J

∑
j+1
k=0 eb̂k

∑J
k=0 eb̂k

+ Yt−j,j+1 − ec+at−j+bj+1︸ ︷︷ ︸
ξt−j,j+1

+ ec+at−j+bj+1 − eĉ+ât−j+b̂j+1︸ ︷︷ ︸
ζt−j,j+1

. (49)

The cumulative paid sums Ct−j,j+1 of the following year can be broken up—as suggested in
Röhr (2016)—through the ξt−j,j+1 residual linked to the process variance and the ζt−j,j+1 residual
linked to the parameter variance.

Keeping in mind (46), (47) and (49), it is possible to get the following ratio:

Ct−j,j+1/Ct−j,j

f̂ (t)j

=
Ĉ(t)

t−j,J

Ct−j,j

∑
j+1
k=0 eb̂k

∑J
k=0 eb̂k

∑
j
k=0 eb̂k

∑
j+1
k=0 eb̂k︸ ︷︷ ︸

=1

+
(
ξt−j,j+1 + ζt−j,j+1

) 1
Ct−j,j

∑
j
k=0 eb̂k

∑
j+1
k=0 eb̂k

= 1 +
(
ξt−j,j+1 + ζt−j,j+1

) 1
Ĉ(t)

t−j,j+1

.

(50)
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Therefore, the ultimate cost in (t + 1) for the i accident year—that is the second addend of
Equation (45)—can also be written in the following way:

Ĉ(t+1)
i,J = Ĉ(t)

i,J

1 +
ξi,t−i+1 + ζi,t−i+1

Ĉ(t)
i,t−i+1

 J−1

∏
j=t−i+1

1 + α
(t)
j

ξt−j,j+1 + ζt−j,j+1

Ĉ(t)
t−j,j+1

 . (51)

As a consequence, the cost of the total of all generations, can be calculated by adding the cost of all the
accident years:

I

∑
i=t−J+1

Ĉ(t+1)
i,J =

I

∑
i=t−J+1

Ĉ(t)
i,J

1 +
ξi,t−i+1 + ζi,t−i+1

Ĉ(t)
i,t−i+1

 J−1

∏
j=t−i+1

1 + α
(t)
j

ξt−j,j+1 + ζt−j,j+1

Ĉ(t)
t−j,j+1

 . (52)

Therefore, it is possible to consider the ultimate cost prediction in t + 1 as a fluctuation of the
prediction in the t time, where the ξt−j,j+1 and ζt−j,j+1 residuals represent the process innovation.
A simulation approach would demand the ξt−j,j+1 simulation and the ζt−j,j+1 estimate through the
bootstrap method.

Notice that the two residuals are independent as to the model basic assumptions. To determine
a closed tool, we will use a different approach by taking into account Taylor’s expansion of such a
fluctuation. As Step 1, we consider the fluctuation linked to the process variance, we calculate the
derivatives3—making reference to the first residual—and we estimate them in 0—for every ξ and
ζ—thus getting the following weights:

q(t)k+1 = ∂log Yt−k,k+1
log
(

∑I
i=t−J+1 Ĉ(t+1)

i,J

)∣∣∣
0

=
∂log Yt−k,k+1 ∑I

i=t−J+1 Ĉ(t+1)
i,J

∑I
i=t−J+1 Ĉ(t+1)

i,J

∣∣∣∣∣
0

=
∂log Yt−k,k+1 ∑I

i=t−k Ĉ(t+1)
i,J

∑I
i=t−J+1 Ĉ(t+1)

i,J

∣∣∣∣∣
0

, t− I ≤ k ≤ J − 1.
(53)

To make this calculation easier, we initially consider the first addend of the numerator of
Equation (53) derivative development:

∂log Yt−k,k+1
Ĉ(t+1)

t−k,J

∣∣∣
0

= ∂log Yt−k,k+1
Ĉ(t)

t−k,J

(
1 + ξt−k,k+1+ζt−k,k+1

Ĉ(t)
t−k,k+1

)
∏J−1

j=k+1

(
1 + α

(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)
t−j,j+1

)∣∣∣∣∣
0

= Ĉ(t)
t−k,J

(
∂log Yt−k,k+1

ξt−k,k+1

Ĉ(t)
t−k,k+1

)
∏J−1

j=k+1

(
1 + α

(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)
t−j,j+1

)∣∣∣∣∣
0

= Ĉ(t)
t−k,J

(
∂log Yt−k,k+1

Yt−k,k+1

Ĉ(t)
t−k,k+1

)
∏J−1

j=k+1

(
1 + α

(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)
t−j,j+1

)∣∣∣∣∣
0

= Ĉ(t)
t−k,J

Yt−k,k+1

Ĉ(t)
t−k,k+1

∏J−1
j=k+1

(
1 + α

(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)
t−j,j+1

)∣∣∣∣∣
0

= Ĉ(t)
t−k,J

ec+at−k+bk+1

Ĉ(t)
t−k,k+1

f or t− I ≤ k ≤ J − 2,

(54)

3 The key to understanding how we have calculated these derivatives is that these residuals fluctuate around zero, the first
exactly on average and the second only with the condition of a potential bias in the maximum likelihood estimate. Thus,
the replacement of the empirical and the estimated figure with the hypothetical unknown value—respectively for ξ and for
ζ—is possible.
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and

∂log Yt−J+1,J Ĉ(t+1)
t−J+1,J

∣∣∣
0

= ∂log Yt−J+1,J Ĉ
(t)
t−J+1,J

(
1 + ξt−J+1,J+ζt−J+1,J

Ĉ(t)
t−J+1,J

)∣∣∣∣∣
0

= Ĉ(t)
t−J+1,J

(
∂log Yt−J+1,J

ξt−J+1,J

Ĉ(t)
t−J+1,J

)∣∣∣∣∣
0

= ∂log Yt−J+1,J Yt−J+1,J

∣∣∣
0

= ec+at−J+1+bJ f or k = J − 1.

(55)

By applying the same calculation also to the other addends, we get:

q(t)k+1 =

ec+at−k+bk+1

Ĉ(t)
t−k,k+1

(
Ĉ(t)

t−k,J + α
(t)
k ∑I

i=t−k+1 Ĉ(t)
i,J

)
∑I

i=t−J+1 Ĉ(t)
i,J

, t− I ≤ k ≤ J − 1. (56)

In calculating this derivative, we have kept in mind that ∂log x f (x) = x ∂
∂x f (x).

Considering that ∂log x log ( f (x)) = x
f (x)

∂
∂x f (x) instead, it is possible to write:

∂Yt−k,k+1

I

∑
i=t−J+1

Ĉ(t+1)
i,J

∣∣∣∣∣
0

=
q(t)k+1

ec+at−k+bk+1

I

∑
i=t−J+1

Ĉ(t)
i,J . (57)

As for the ζ reminder, linked to the parameter error, we initially consider the derivative in relation
to the estimate of the intercept parameter c:

∂ĉk+1 ζt−k,k+1 = ∂ĉk+1

(
ec+at−k+bk+1 − eĉ+ât−k+b̂k+1

)
= −eĉ+ât−k+b̂k+1 . (58)

Thus, deriving the ultimate cost ∑I
i=t−k Ĉ(t+1)

i,J with reference to ĉ, and estimating the derivative in
0—for each ξ and ζ, for the latter, we also consider the equality for every parameter (component-wise
equality)—similarly to what we had already done to calculate Equations (53) and (57), we get:

∂ĉk+1

I

∑
i=t−k

Ĉ(t+1)
i,J

∣∣∣∣∣
0

= − ec+at−k+bk+1

Ĉ(t)
t−k,k+1

(
Ĉ(t)

t−k,J + α
(t)
j

I

∑
i=t−k+1

Ĉ(t)
i,J

)
= −q(t)k+1

I

∑
i=t−J+1

Ĉ(t)
i,J (59)

and, in a very similar way, we get the derivative in comparison with the parameters ât−k and b̂k+1:

∂ât−k ∑I
i=t−k Ĉ(t+1)

i,J

∣∣∣
0

= −q(t)k+1 ∑I
i=t−J+1 Ĉ(t)

i,J ,

∂b̂k+1
∑I

i=t−k Ĉ(t+1)
i,J

∣∣∣
0

= −q(t)k+1 ∑I
i=t−J+1 Ĉ(t)

i,J .
(60)

By using the above-written derivatives, as to the ratio between the ultimate cost estimated in
t + 1—which in t is random—and, in t, we get to the Taylor’s first-order approximation, which is:

∑I
i=t−J+1 Ĉ(t+1)

i,J

∑I
i=t−J+1 Ĉ(t)

i,J

=

∑I
i=t−J+1 Ĉ(t)

i,J

1+
ξi,t−i+1+ζi,t−i+1

Ĉ(t)i,t−i+1

∏J−1
j=t−i+1

1+α
(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)t−j,j+1


∑I

i=t−J+1 Ĉ(t)
i,J

≈ 1 + ∑J−1
k=t−I

q(t)k+1

ec+at−k+bk+1
ξt−j,j+1 −∑J−1

k=t−I q(t)k+1(c− ĉ + at−k − ât−k + bk+1 − b̂k+1)

= 1 + ∑J−1
k=t−I

q(t)k+1
µt−k,k+1

ξt−j,j+1 −∑J−1
k=t−I q(t)k+1(ηt−k,k+1 − η̂t−k,k+1)

= 1 + ∑J−1
k=t−I

q(t)k+1
µt−k,k+1

ξt−j,j+1 −∑J−1
k=t−I q(t)k+1x>t−k,k+1(β− β̂).

(61)
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Through using Formulae (45) and (61), taking the denominator—after changing its sign—from the
first to the second member and by exploiting the assumption of independence among the incremental
payments, for the square sum of the CDR, we get to the following first-order approximation:

(
∑I

i=t−J+1 ĈDRi,t+1

)2
≈

(
∑I

i=t−J+1 Ĉ(t)
i,J

)2
[

∑J−1
k=t−I

(
q(t)k+1

)2

µ2
t−k,k+1

ξ2
t−j,j+1

+ ∑J−1
k1=t−I ∑J−1

k2=t−I q(t)k1+1q(t)k2+1 · x
>
t−k,k+1(β− β̂)(β− β̂)Txt−k,k+1

]
=

(
∑I

i=t−J+1 Ĉ(t)
i,J

)2
[

∑J−1
k=t−I

(
q(t)k+1

)2

µ2
t−k,k+1

Var(Yt−k,k+1)

+ ∑J−1
k1=t−I ∑J−1

k2=t−I q(t)k1+1q(t)k2+1 · x
>
t−k,k+1Var(β)xt−k,k+1

]
.

(62)

In Equation (62), we have omitted the products between the ξ and ζ residuals because, as they are
independent, they will cancel out in Equation (63).

By replacing the parameters estimates with the corresponding unknown values, we can get the
MSEP of the the CDR—i.e., of the one-year loss—for the total of generations:

M̂SEP
(

∑I
i=t−J+1 ĈDRi,t+1

)
=

(
∑I

i=t−J+1 ∑J
j=0 µ̂ij

)2

×

φ̂
J−1

∑
k=t−I

q̂2
k+1

µ̂t−k,k+1︸ ︷︷ ︸
process

+ q̂>X(t+1)V̂ar(β̂)X>(t+1) q̂︸ ︷︷ ︸
parameter

 ,
(63)

where X(t+1)—hat matrix—is the matrix that codes the accident and development years linked to the

incremental payments of t + 1 year through the dummy variables, while q̂ = {q̂k+1}J−1
k=t−I is the vector

of the qk+1 weights estimate calculated in (56) and better specified by using the GLM language:

q̂k+1 =

eĉ+ât−k+b̂k+1

∑k+1
j=0 eĉ+ât−k+b̂j

(
∑J

j=0 eĉ+ât−k+b̂j + α
(t)
k ∑I

i=t−k+1 ∑J
j=0 eĉ+âi+b̂j

)
∑I

i=t−J+1 ∑J
j=0 eĉ+âi+b̂j

. (64)

Notice that, for k = 0, we have t− k + 1 > I; under this circumstance, the summation is null.
Simplifying, (64) can also be written in an easier way, as explained in (65):

q̂k+1 =

eb̂k+1

∑k+1
j=0 eb̂j

(
eât−k + α

(t)
k ∑I

i=t−k+1 eâi
)

∑I
i=t−J+1 eâi

. (65)

5.2. One-Year Volatility for Accident Year

In this section, we will illustrate the calculation of the one-year volatility for an i∗ fixed accident
year. Starting from Equation (51), that we write again just for convenience,

Ĉ(t+1)
i∗ ,J = Ĉ(t)

i∗ ,J

1 +
ξi∗ ,t−i∗+1 + ζi∗ ,t−i∗+1

Ĉ(t)
i∗ ,t−i∗+1

 J−1

∏
j=t−i∗+1

1 + α
(t)
j

ξt−j,j+1 + ζt−j,j+1

Ĉ(t)
t−j,j+1

 (66)

and we proceed to get an approximation through a Taylor residuals expansion in series. Similarly to
what we have done in the previous section, we calculate the partial derivative, at the point ξ, ζ = 0, of
the ultimate cost estimated in (t + 1):
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si∗ ,k+1 = ∂log Xt−k,k+1
log
(

C(t+1)
i∗ ,J

)∣∣∣
0
=

∂log Yt−k,k+1
C(t+1)

i∗ ,J

C(t+1)
i∗ ,J

∣∣∣∣∣∣
0

, (67)

by considering first of all the case i∗ = t− k, we get:

∂log Yt−k,k+1
C(t+1)

i∗ ,J

∣∣∣
0

= Ĉ(t)
i∗ ,J

Yi∗ ,t−i∗+1

Ĉ(t)
i∗ ,t−i∗+1

∏J−1
j=t−i∗+1

(
1 + α

(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)
t−j,j+1

)∣∣∣∣∣
0

= Ĉ(t)
i∗ ,J

ec+ai∗+bt−i∗+1

Ĉ(t)
i∗ ,t−i∗+1︸ ︷︷ ︸
r(t)t−i∗+1

= Ĉ(t)
i∗ ,Jr

(t)
t−i∗+1 i∗ = t− k, (68)

while, for i∗ = 2:

∂log Y2,J C(t+1)
2,J

∣∣∣
0

= Ĉ(t)
2,J

Y2,J

Ĉ(t)
2,J

∣∣∣∣∣
0

= ec+a2+bJ

= Ĉ(t)
2,J r(t)J i∗ = 2;

(69)

therefore, in the particular case i∗ = t− k, we have that s(t)t−i∗+1 = r(t)t−i∗+1, while for i∗ > t− k the
logarithmic (67) becomes:

∂log Yt−k,k+1
C(t+1)

i∗ ,J

∣∣∣
0

= Ĉ(t)
i∗ ,J

(
1 + ξit−i∗+1+ζit−i∗+1

Ĉ(t)
it−i∗+1

)
α
(t)
k

Yt−k,k+1

Ĉ(t)
t−k,k+1

∏J−1
j=t−i∗+1

j 6=k

(
1 + α

(t)
j

ξt−j,j+1+ζt−j,j+1

Ĉ(t)
t−j,j+1

)∣∣∣∣∣∣
0

= Ĉ(t)
i∗ ,Jα

(t)
k

ec+at−k+bk+1

Ĉ(t)
t−k,k+1

= Ĉ(t)
i∗ ,J α

(t)
k r(t)k+1︸ ︷︷ ︸
s(t)i∗ ,k+1

i∗ > t− k
(70)

and we have s(t)i∗ ,k+1 = α
(t)
k r(t)k+1. In the particular case of the GLM estimate model, with logarithmic

link function and ODP distribution, we get the following simplified form for the r(t)k+1 ratio:

r(t)k+1 =
ebk+1

∑k+1
j=0 ebj

= 1− 1

f (t)k

k = 0, . . . , J − 1, (71)

similarly to (57), keeping in mind that ∂log x log ( f (x)) = x
f (x)

∂
∂x f (x), we get:

∂Yt−k,k+1 Ĉ(t+1)
i∗ ,J

∣∣∣
0
=


Ĉ(t)

i∗ ,Jr(t)t−i∗+1

ec+ai∗+bt−i∗+1
, i∗ = t− k,

Ĉ(t)
i∗ ,J α

(t)
k r(t)k+1

ec+at−k+bk+1
, i∗ > t− k,

(72)

equally, by taking the partial derivatives of the ζ residuals in comparison with the GLM model
parameters written in Equations (58) and (59), we get the partial derivatives—at the ξ, ζ = 0 point—of
the ultimate cost Ĉ(t+1)

i∗ ,J , for example in comparison with b̂k+1:

∂b̂k+1
Ĉ(t+1)

i∗ ,J

∣∣∣
0
=


−Ĉ(t)

i∗ ,J
ec+ai∗+bt−i∗+1

Ĉ(t)
i∗ ,t−i∗+1

, = −Ĉ(t)
i∗ ,Jr

(t)
t−i∗+1 i∗ = t− k,

−Ĉ(t)
i∗ ,J

ec+at−k+bk+1

Ĉ(t)
t−k,k+1

α
(t)
k , = −Ĉ(t)

i∗ ,Jα
(t)
k r(t)k+1 i∗ > t− k.

(73)
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By using previous results, for the i∗ generation, we get the following Taylor approximation for
the ratio between the ultimate cost estimate done in t + 1 and the one done in t:

Ĉ(t+1)
i∗ ,J

Ĉ(t)
i∗ ,J

≈ 1 + ∑J−1
k=t−i∗

s(t)i∗ ,k+1
µt−k,k+1

ξt−k,k+1 −∑J−1
k=t−i∗ s(t)i∗ ,k+1 (ηt−k,k+1 − η̂t−k,k+1)

= 1 + ∑J−1
k=t−i∗

s(t)i∗ ,k+1
µt−k,k+1

ξt−k,k+1 −∑J−1
k=t−i∗ s(t)i∗ ,k+1x>t−k,k+1

(
β− β̂

)
.

(74)

Therefore, in a way very similar to Equation (62), for the square claims’ development ratio, we get
the following Taylor’s first-order expansion:

ĈDR
2
i∗ ,t+1 ≈

(
Ĉ(t)

i∗ ,J

)2

∑J−1
k=t−i∗

(
s(t)i∗ ,k+1

µt−k,k+1
ξt−k,k+1

)2

+ ∑J−1
k1=t−i∗ ∑J−1

k2=t−i∗ s(t)i∗ ,k1+1s(t)i∗ ,k2+1x>t−k1,k1+1
(

β− β̂
) (

β− β̂
)> xt−k2,k2+1

}
=

(
Ĉ(t)

i∗ ,J

)2

∑J−1
k=t−i∗

(
s(t)i∗ ,k+1

µt−k,k+1

)2

Var(Yt−k,k+1)

+ ∑J−1
k1=t−i∗ ∑J−1

k2=t−i∗ s(t)i∗ ,k1+1s(t)i∗ ,k2+1x>t−k1,k1+1Var(β)xt−k2,k2+1

}
.

(75)

Finally, as for the MSEP estimate, we have the following expression:

M̂SEP
(

ĈDRi∗ ,t+1

)
=

(
∑J

j=0 eĉ+âi∗+b̂j
)2

×
(

φ̂ ∑J−1
k=t−i∗

ŝ2
i∗ ,k+1

µ̂t−k,k+1
+ ŝ>(i∗)Xi∗ ,(t+1)V̂ar(β̂)X>i∗ ,(t+1) ŝ(i∗)

)
,

(76)

where ŝ(i∗) is a length i∗ − 1 vector whose elements are:

ŝi∗ ,k+1 =

{
r̂t−i∗+1 t− k = i∗

r̂k+1α
(t)
k 2 ≤ t− k < i∗

k = t− i∗, . . . , J − 1, (77)

while Xi∗ ,(t+1) is the projection matrix —hat matrix— that encodes the incremental payments of the
t + 1 following year for the i∗ generations and the previous ones.

6. Numerical Investigation

In this section, we introduce a numerical application which compares the closed tool
method (CT)—illustrated in this paper—with the well-known bootstrapping (BS) method—with
re-reserving—whose results are found through Monte Carlo simulation. The triangle used for the
comparison is the one represented in Table 2; they are the third party liability segment payments of an
Italian company, for obvious privacy reasons, data have been disguised. In Table 3, we have copied the
parameters and their standard error estimate calculated by applying the quasi-likelihood (12), while
applying (9), we get φ̂ = 410.8964. In Tables 4 and 5, there are the α̂k, q̂k+1, µ̂t−k,k+1, r̂k+1 and ŝi∗ values
resulting from the GLM model and it is necessary to apply Equations (63) and (76) formulae linked to
the MSEP and CDR one-year closed tool estimate that is written on the CT column of Table 6. As we
can see from results of Table 6, the proposed formulae to estimate the MSEP produce results similar to
the ones calculated with simulation techniques—re-reserving—, bearing in mind that these results
include the simulation error.

The ratio between one year and ultimate volatility makes evident the long tail nature of this
general liability’s triangle. With regard to the new estimated parameters α’s, q’s, r’s and s’s, we can
provide some interpretations:
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• the coefficients of credibility alpha’s quantify the weight, in terms of influence, of the accident
year in the next development factor calculation (decreasing for the more recent accident year);

• the q’s indicate the contribution to the overall volatility from the first development year to the
latest development year and form a typical u-shape due to the level of the payment in the first
year and to the small uncertainty for the oldest years for which residual payments relative to the
still open claims over the ultimate cost are low;

• the r’s stand for the weight of the k-th development year parameter above the first k parameters
decreasing with the increase of development year;

• the s’s involved directly in the accident year volatility is a function based on r interesting the next
year development for this accident year plus the subsequent development year with credibility
decreasing coefficients.

All of the results shown in this section are obtained by using R software; the code is reported in
vignettes 1, 2 and 3. The package ChainLadder is requested and must be previously installed because
it is not included in the default configuration. In order to replicate results in Table 3, Code 1 has to
be run after the run-off triangle showed in Table 2 is uploaded and named Incremetal.Paid. Code 2
computes the outcome of Table 7 and the R Code 3 gives as outcome Tables 4–6.

Table 2. Incremental payment used in the empirical application (,000).

i/j 0 1 2 3 4 5 6 7 8 9 10 11 12

1 22,603 39,938 35,073 25,549 20,031 17,593 14,930 15,004 10,319 8240 8104 6020 19,145
2 22,382 41,502 26,508 19,734 18,715 13,983 12,885 16,371 7921 7204 4428 12,897
3 25,355 45,707 33,062 24,232 16,765 13,180 11,639 8864 9994 6044 3954
4 26,830 52,347 37,324 23,590 18,248 13,895 13,142 11,119 9429 5057
5 26,868 62,313 33,772 22,925 16,341 12,419 12,646 9459 6658
6 28,470 56,097 41,672 24,843 22,818 18,787 16,947 14,942
7 26,170 55,362 39,026 26,817 22,881 19,663 19,395
8 24,101 58,520 38,749 22,449 16,008 12,506
9 22,714 48,707 28,970 18,798 13,369

10 19,973 38,262 23,298 14,819
11 17,252 36,994 24,361
12 17,591 30,074
13 16,907

Table 3. Estimation of GLM parameter using the data in Table 2.

Parameter Estimate Std. Error Parameter Estimate Std. Error

ĉ 10.1263 0.0572
â2 −0.0883 0.0620 b̂1 0.7024 0.0468
â3 −0.0715 0.0629 b̂2 0.3132 0.0513
â4 0.0155 0.0620 b̂3 −0.0972 0.0579
â5 0.0126 0.0628 b̂4 −0.3241 0.0635
â6 0.1579 0.0614 b̂5 −0.5254 0.0703
â7 0.1551 0.0627 b̂6 −0.5737 0.0753
â8 0.0425 0.0662 b̂7 −0.6904 0.0843
â9 −0.1261 0.0716 b̂8 −1.0112 0.1051
â10 −0.3171 0.0795 b̂9 −1.2910 0.1317
â11 −0.3326 0.0858 b̂10 −1.4622 0.1643
â12 −0.4592 0.1044 b̂11 −-0.9285 0.1553
â13 −0.3909 0.1660 b̂12 −0.2665 0.1573
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Listing 1. Code for Table 3: Estimation GLM parameters.

Incremetal.Paid # Triangle of incremental paid in Table 2, it must be imported in R

claims <- as.vector(Incremetal.Paid) # Incremental paid as vector
n.origin <- nrow(Incremetal.Paid)
n.dev <- ncol(Incremetal.Paid)
origin <- factor(row <- rep(1:n.origin, n.dev)) # accident year as vector
dev <- factor(col <- rep(1:n.dev, each=n.origin)) # development year as vector
W <- data.frame(claims=claims, origin=origin, dev=dev)

model <- glm(claims ~ origin + dev, family = quasipoisson(), subset=!is.na(claims),
data=W)
Model.Summary <- summary(model) # summary of glm model

Table.3 <- Model.Summary$coefficients[,c(’Estimate’,’Std. Error’)]
rownames(Table.3) <- c(’c’,paste(’a’,2:n.origin,sep=""),paste(’b’,1:(n.origin-1),sep=""))
colnames(Table.3) <- c(’Estimate’,’Std. Error’)
Table.3

Table 4. Estimation of α, q and µ.

k 13 − k α̂
(13)
k q̂k+1 µ̂t−k,k+1 r̂(13)

k+1

0 13 0.0569 0.0415 34127.94 0.6687
1 12 0.0563 0.0192 21598.78 0.3118
2 11 0.0677 0.0127 16260.70 0.1714
3 10 0.0738 0.0097 13162.94 0.1202
4 9 0.0965 0.0094 13026.95 0.0895
5 8 0.1264 0.0108 14693.99 0.0786
6 7 0.1619 0.0115 14633.21 0.0653
7 6 0.1937 0.0096 10647.17 0.0453
8 5 0.2077 0.0075 6959.96 0.0331
9 4 0.2630 0.0078 5882.08 0.0271
10 3 0.3271 0.0158 9194.30 0.0442
11 2 0.4779 0.0412 17527.56 0.0789

Table 5. Estimation s(i∗).

ŝ2 ŝ3 ŝ4 ŝ5 ŝ6 ŝ7 ŝ8 ŝ9 ŝ10 ŝ11 ŝ12 ŝ13

0.0789 0.0442 0.0271 0.0331 0.0453 0.0653 0.0786 0.0895 0.1202 0.1714 0.3118 0.6687
0.0377 0.0145 0.0071 0.0069 0.0088 0.0106 0.0099 0.0086 0.0089 0.0116 0.0176

0.0377 0.0145 0.0071 0.0069 0.0088 0.0106 0.0099 0.0086 0.0089 0.0116
0.0377 0.0145 0.0071 0.0069 0.0088 0.0106 0.0099 0.0086 0.0089

0.0377 0.0145 0.0071 0.0069 0.0088 0.0106 0.0099 0.0086
0.0377 0.0145 0.0071 0.0069 0.0088 0.0106 0.0099

0.0377 0.0145 0.0071 0.0069 0.0088 0.0106
0.0377 0.0145 0.0071 0.0069 0.0088

0.0377 0.0145 0.0071 0.0069
0.0377 0.0145 0.0071

0.0377 0.0145
0.0377
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Listing 2. Code for Table 7: Estimation rMSEP ultimate.

#The Code 1 must be runned before this.

library(ChainLadder)

Cumulative.Paid <- incr2cum(Incremetal.Paid)

set.seed(15870)
BS <- BootChainLadder(Cumulative.Paid,R=100000, process.distr=c("od.pois"))
CDR.BS <- CDR(BS)

indexes <- which(as.numeric(origin)+as.numeric(dev)>n.origin+1)
origin.hat <- as.numeric(origin[indexes])
dev.hat <- as.numeric(dev[indexes])

X.hat <- matrix(0, nrow=length(indexes), ncol=n.origin+n.dev-1)
X.hat[,1] <- 1

for(i in 1:length(indexes)){
X.hat[i,origin.hat[i]] <- 1
X.hat[i,n.origin-1+dev.hat[i]] <- 1
}

Estimate.Parameters <- Model.Summary$coefficients[,’Estimate’]
Linear.Predictor <- X.hat%*%Estimate.Parameters
Estimate.Reserve <- exp(Linear.Predictor)

R.i.hat <- tapply(Estimate.Reserve,origin.hat,sum)

phi <- Model.Summary$dispersion
Process.Variance.R.i <- phi*tapply(Estimate.Reserve,origin.hat,sum) # Eq. 31

Var.beta <-Model.Summary$cov.scaled
Var.eta <- X.hat%*%Var.beta%*%t(X.hat) # Eq. 28
Parameters.Variance.R.i <- c() # Eq. 36
for(i in 2:n.origin){
indexes <- which(origin.hat==i)
Parameters.Variance.R.i[i-1] <-
t(Estimate.Reserve[indexes])%*%Var.eta[indexes,indexes]%*%Estimate.Reserve[indexes]
}

MSEP.R.i <- Process.Variance.R.i + Parameters.Variance.R.i # Eq. 30
rMSEP.R.i <- sqrt(MSEP.R.i)

MSEP.R <- sum(Process.Variance.R.i) + t(Estimate.Reserve)%*%Var.eta%*%Estimate.Reserve # Eq. 39
rMSEP.R <- sqrt(MSEP.R)

Table.4 <- matrix(0, nrow=n.origin+1, ncol= 6)
colnames(Table.4) <- c(’R.BS’,’R.CT’,’delta.R’,’rMSEP.BS’,’rMSEP.CT’,’delta.rMSEP’)

Table.4[,’R.BS’] <- CDR.BS[,’IBNR’]
Table.4[,’R.CT’] <- c(0,R.i.hat,sum(R.i.hat))
Table.4[,’delta.R’] <- Table.4[,’R.CT’]/Table.4[,’R.BS’]-1
Table.4[,’rMSEP.BS’] <- CDR.BS[,’IBNR.S.E’]
Table.4[,’rMSEP.CT’] <- c(0,rMSEP.R.i,rMSEP.R)
Table.4[,’delta.rMSEP’] <- Table.4[,’rMSEP.CT’]/Table.4[,’rMSEP.BS’]-1
Table.4
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Table 6. Estimation of rMSEP one-year: bootstrapping vs. closed tool.

a.y.
̂rMSEP(CDRi∗ ,t+1)

∆%
σ%

∆

̂rMSEP(CDRi∗ ,t+1)̂rMSEP(R̂i)

BS CT BS CT BS CT

1 0 0 - - - - - -
2 3888 3870 −0.46% 22.12% 22.08% −0.04% 100.00% 100.00%
3 3238 3234 −0.12% 11.96% 11.97% 0.01% 68.54% 68.52%
4 3083 3073 −0.32% 8.70% 8.69% −0.01% 56.59% 56.47%
5 3242 3233 −0.28% 7.67% 7.66% −0.01% 54.97% 54.98%
6 3980 3969 −0.28% 6.68% 6.67% −0.01% 55.91% 55.72%
7 4477 4473 −0.09% 6.05% 6.05% 0.00% 56.53% 56.43%
8 4494 4490 −0.09% 5.56% 5.56% 0.00% 54.46% 54.53%
9 4319 4333 0.32% 5.31% 5.33% 0.02% 52.08% 52.24%
10 4535 4538 0.07% 5.64% 5.65% 0.01% 53.53% 53.50%
11 5705 5691 −0.25% 5.98% 5.97% −0.01% 57.11% 56.98%
12 8364 8341 −0.27% 7.91% 7.90% −0.01% 67.22% 67.34%
13 21,651 21,616 −0.16% 14.69% 14.69% 0.00% 86.09% 86.17%
Tot 38,603 38,578 −0.06% 4.56% 4.56% 0.00% 73.09% 73.18%

Table 7. Estimation of rMSEP ultimate: bootstrapping vs. closed tool.

a.y. R̂i ∆%
̂rMSEP(R̂i) ∆%

BS CT BS CT

1 0 0 0 0 - -
2 17,573 17,528 −0.26% 3888 3870 −0.46%
3 27,068 27,018 −0.18% 4724 4720 −0.08%
4 35,429 35,356 −0.21% 5448 5442 −0.11%
5 42,295 42,212 −0.20% 5898 5880 −0.31%
6 59,560 59,463 −0.16% 7118 7123 0.07%
7 74,021 73,930 −0.12% 7920 7926 0.08%
8 80,879 80,752 −0.16% 8252 8234 −0.22%
9 81,354 81,245 −0.13% 8293 8295 0.02%

10 80,401 80,285 −0.14% 8472 8483 0.13%
11 95,412 95,309 −0.11% 9989 9988 −0.01%
12 105,715 105,579 −0.13% 12,443 12,386 −0.46%
13 147,336 147,172 −0.11% 25,149 25,085 −0.25%
Tot 847,041 845,851 −0.14% 52,813 52,714 −0.19%

Listing 3. Code for Tables 4–6: Estimation rMSEP one-year.

# The Code 1 and Code 2 must be runned before this.
a <- Estimate.Parameters[2:n.origin]
b <- Estimate.Parameters[(n.origin+1):(n.origin+n.dev-1)]

alpha <- (diag(Cumulative.Paid[,n.origin:1])[n.origin:1] /
apply(Cumulative.Paid,2,sum,na.rm=T))[-n.origin]

r.k <- (exp(b[1:(n.dev-1)])/(1+cumsum(exp(b))))

q.k <- ( r.k * ( exp(a[(n.origin-1):1]) +alpha*c(0,cumsum(exp(a[(n.origin-1):2])))) ) /
(sum(exp(a))) # Eq. 65

mu.hat <- exp(Estimate.Parameters[1]+a[(n.origin-1):1]+b[1:(n.dev-1)])

Table.5 <- cbind(alpha,q.k,mu.hat,r.k)

w <- c(0,2:n.origin,1:(n.dev-1))
X.t1 <- X.hat[which(X.hat%*%w==n.origin+1),]
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Listing 3. Cont.

A <- exp(Estimate.Parameters[1])*sum(exp(a[1:(n.origin-1)]))*sum(c(1,exp(b)))

MSEP.CDR.tot <- (A^2) *(phi*sum((q.k^2)/mu.hat) + t(q.k)%*%X.t1%*%Var.beta%*%t(X.t1)%*%q.k )
# Eq. 63

s.matrix <- matrix(NA,nrow=n.dev-1 , ncol= n.origin-1)

s.matrix[1,] <- r.k[(n.origin-1):1]
for(j in 2:(n.origin-1)){
s.matrix[j,j:(n.origin-1)] <- r.k[(n.origin-1):(j)]*alpha[(n.origin-1):j]
}
Table.6 <- s.matrix

MSEP.CDR.R.i <- rep(0,n.origin)

for(i.star in 2:n.origin){

A <- exp(Estimate.Parameters[1])*sum(exp(a[i.star-1]))*sum(c(1,exp(b)))
s.i.star <- s.matrix[1:(i.star-1),i.star-1]

X.t1 <- X.hat[which(X.hat%*%w==n.origin+1 & X.hat[,2:n.origin]%*%(2:n.origin)<=i.star),]

Proc.Var <- phi* sum((s.i.star^2)/mu.hat[(n.origin-i.star+1):(n.origin-1)])
Par.Var <- if(i.star>2){
t(s.i.star)%*%X.t1%*%Var.beta%*%t(X.t1)%*%s.i.star
}
else{
s.i.star*(X.t1%*%Var.beta%*%X.t1)*s.i.star
}

MSEP.CDR.R.i[i.star] <- (A^2) * (Proc.Var + Par.Var)
}

Table.7 <- matrix(0, nrow= n.origin+1, ncol=8)
colnames(Table.7) <- c(’rMSEP.CDR.BS’,’rMSEP.CDR.CT’,’delta.CDR’,’sigma.BS’,’sigma.CT’,
’delta.sigma’,’ratio.BS’,’ratio.CT’)

Table.7[,’rMSEP.CDR.BS’] <- CDR.BS[,’CDR(1)S.E’]
Table.7[,’rMSEP.CDR.CT’] <- c(MSEP.CDR.R.i,MSEP.CDR.tot)^0.5
Table.7[,’delta.CDR’] <- Table.7[,’rMSEP.CDR.CT’]/Table.7[,’rMSEP.CDR.BS’]-1
Table.7[,’sigma.BS’] <- Table.7[,’rMSEP.CDR.BS’]/Table.4[,’R.BS’]
Table.7[,’sigma.CT’] <- Table.7[,’rMSEP.CDR.CT’]/Table.4[,’R.CT’]
Table.7[,’delta.sigma’] <- Table.7[,’sigma.CT’]-Table.7[,’sigma.BS’]
Table.7[,’ratio.BS’] <- Table.7[,’rMSEP.CDR.BS’]/Table.4[,’rMSEP.BS’]
Table.7[,’ratio.CT’] <- Table.7[,’rMSEP.CDR.CT’]/Table.4[,’rMSEP.CT’]

Table.5
Table.6
Table.7

7. Conclusions

In this work, after a short review about the claims reserve volatility in the GLM framework—
calculated in an ultimate view—we have drawn the formulae to calculate the one-year volatilities of
the specific ODP model. Nonetheless, while the ultimate view is drawn on the basis of the incremental
payments under an indipendence general assumption, the second one year volatility is derived through
the use of the chain ladder cumulative payments estimate. The consequence is the one-year volatility
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of a specific accident year is calculated also according to the previous accident year estimates, similarly
to the Merz–Wüthrich model.

Therefore, these formulae could generally be a valid alternative to the Merz–Wüthrich formulae
regarding volatility parameters, or undertaking specific parameters (USP), in order to calculate the
Solvency Capital Requirement according to the Solvency II framework. Furthermore, these results
could also be used to solve the potential distortions caused by approaches such as, for instance,
the emergence pattern introduced by England and linked to the single accident year (Casualty Actuaries
of Europe Fall Meeting 2009, Zurich) . This approach has been mainly developed to overcome the
cases where the bootstrapping is not appropriate, like, for example, due to triangle stability matters or
computational reasons linked to the re-reserving.

To summarize, the emergence-pattern is based on the assumption that volatility at the ultimate
level gradually emerges in time, so that, if a total volatility estimate can be determined, mechanisms
that allow for making it emerge by using a specific pattern can also be created. In this case, we assume
the Claims Development Result (CDR) to be a best estimate function; as a consequence, the CDR
standard deviation is calculated through this relation, by estimating one factor for each of the observed
accident years.

Basically, the calibration problem is dealt with by building the factors on the ratios between
the CDR and the ultimate cost standard deviations for each accident year—followed by the proper
equalizations to calibrate one pattern applicable to each accident year.

Indeed, the distortion can appear when the ultimate view volatilities are obtained by using
the ODP—through a closed-tool or bootstrapping technique—but are then distributed in time by
using factors drawn from the ratios between Merz–Wüthrich and Mack formulae, thus drawn from a
different model. The results from this paper will make these approaches—typical of current practice in
the internal models building—more coherent.
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The following abbreviations are used in this manuscript:

BS Bootstrap
CDR Claims Develpoment Result
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