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Abstract: We consider the optimal bail-out dividend problem with fixed transaction cost for a Lévy
risk model with a constraint on the expected present value of injected capital. To solve this problem,
we first consider the optimal bail-out dividend problem with transaction cost and capital injection
and show the optimality of reflected (c1, c2)-policies. We then find the optimal Lagrange multiplier,
by showing that in the dual Lagrangian problem the complementary slackness conditions are met.
Finally, we present some numerical examples to support our results.
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1. Introduction

De Finetti introduced in 1957 the expected net present value (NPV) of dividends paid by an
insurance company as a criterion for assessing its stability. According to this model, the maximum
of the expected NPVs, if it exists, can be a proxy for the insurance company’s value. In some cases
(e.g., due to regulatory issues), the insurance company has to ensure the negative balance protection
and therefore must be rescued by injecting capital. Hence, the company aims to maximize the total
amount of expected dividend payments minus the total expected cost of capital injection while
permanently keeping the surplus process non-negative.

Usually, spectrally negative Lévy processes (Lévy processes with only downward jumps) are used
to model the underlying surplus process of an insurance company, which increases with premium
payments and decreases with insurance payouts. The optimization problem for this model was studied
by Avram et al. (2007), who proved that it is optimal to inject capital when the process is below zero
and pay dividends when the process is above a suitably chosen threshold.

In this paper, we focus on the case when the insurance company pays a fixed transaction cost
each time a dividend payment is made. The fixed transaction cost makes the continuous payment
of dividends no longer feasible, which implies that only lump sum dividend payments are possible.
In this case, a strategy is assumed to have the form of impulse control; whenever dividends are
accrued, a constant transaction cost δ > 0 is incurred. Unlike the barrier strategies described above,
which are typically optimal for the case without transaction cost, we pursue the optimality of the
reflected (c1, c2)-policies. In these strategies, the surplus process is brought down to c1 whenever it

Risks 2019, 7, 13; doi:10.3390/risks7010013 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0002-5541-0758
https://orcid.org/0000-0002-9118-6626
https://orcid.org/0000-0002-6562-5066
http://www.mdpi.com/2227-9091/7/1/13?type=check_update&version=1
http://dx.doi.org/10.3390/risks7010013
http://www.mdpi.com/journal/risks


Risks 2019, 7, 13 2 of 24

exceeds the level c2 for some 0 ≤ c1 < c2 < ∞, and pushes the surplus to 0 whenever it goes below 0.
Previously, the version of the de Finetti’s optimal dividend problem with fixed transaction cost and
without bail-outs was solved for the spectrally negative case by Loeffen (2009) and for the dual model
(i.e., spectrally positive Lévy processes) by Bayraktar et al. (2014b).

In this paper, we also propose a model to maximize the value of the insurance company by means
of the dividend payments while keeping the expected present value of the capital injection bounded.
The idea of introducing this constraint is to bound the budget needed for the company to survive and
therefore to reduce the risk faced (e.g., operational risk).

Specifically, we solve the following two problems:

1. We find the solution to the optimal bail-out dividend problem with fixed transaction cost for the
case of spectrally negative Lévy processes. We show that a reflected (c1, c2)-policy is optimal
(see Theorem 1). We use scale functions to characterize the optimal thresholds as well as the value
function. We prove the optimality of the proposed policy by means of a verification theorem.

2. We solve the constrained dividend maximization problem with capital injection on the set of
strategies such that the expected net present value of injected capital must be bounded by a given
constant. This is an offshoot of Hernández et al. (2018) for the bail-out case. Using the previous
results, in Theorems 2 and 3, we present the solution when the surplus of the company is modeled
by a spectrally negative Lévy process.

This paper is organized as follows. In Section 2, we introduce the problem. In Section 3, we provide
a review of scale functions and some fluctuation identities of spectrally negative Lévy processes as
well as their reflected versions. In Section 4, we solve the optimal bail-out dividend problem with fixed
transaction cost for the case of a spectrally negative Lévy process. In Section 5, we present the solution
for the constrained bail-out dividend problem. In Section 6, we illustrate our main results by giving
some numerical examples.

2. Formulation of the Problem

Let X = {Xt : t ≥ 0} be a Lévy process defined on a probability space (Ω,F ,P), and let
F := {Ft : t ≥ 0} be the completed and right-continuous filtration generated by X. Recall that a Lévy
process is a process that has càdlàg paths and stationary and independent increments. For x ∈ R,
we denote by Px the law of X, where X0 = x. For convenience, we take P0 ≡ P, when x = 0.
The expectation operator associated with Px is denoted by Ex. We take E0 ≡ E, where E is the
expectation operator associated with P.

We henceforth assume that the insurance company’s surplus X is modeled by a spectrally negative
process, i.e., a Lévy process that only has negative jumps. We omit the case when X has monotone
trajectories to avoid trivial cases.

The Laplace exponent of X is given by

ψ(θ) := logE[θX1] = γθ +
σ2

2
θ2 −

∫
(0,∞)

(
1− e−θz−θz1{0<z≤1}

)
Π(dz), θ ≥ 0,

where γ ∈ R, σ ≥ 0, and the Lévy measure of X, Π, is a measure defined on (0, ∞) satisfying∫
(0,∞)

(1∧ z2)Π(dz) < ∞.

As is well-known, the process X has bounded variation paths if and only if σ = 0 and∫
(0,1]

zΠ(dz) < ∞. In this case, X can be written as

Xt = ct− S̃t, t ≥ 0, (1)
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where c := γ +
∫
(0,1]

zΠ(dz) and S̃ = {S̃t : t ≥ 0} is a drift-less subordinator. Since we omit the case

when X has monotone paths, it is necessary that the constant c is greater than zero. Note that the
Laplace exponent of X, with X as in Equation (1), is given as follows,

ψ(θ) = cθ −
∫
(0,∞)

(
1− e−θz )Π(dz), θ ≥ 0.

De Finetti’s Problem with Fixed Transaction Cost and Capital Injection

Let π = {Lπ , Rπ} be a strategy, where Lπ is left-continuous Px-a.s., and Rπ is right-continuous
Px-a.s. Additionally, we assume that Lπ and Rπ are non-negative, and non-decreasing Px-a.s., start at
zero and are adapted to the filtration F. Then, the controlled process, Xπ , associated with the strategy
π, is the following

Xπ
t = Xt − Lπ

t + Rπ
t , t ≥ 0.

For each t ≥ 0, the quantities Lπ
t and Rπ

t represent the cumulative amounts that the insurance
company has paid to its shareholders and has injected, respectively.

The set of admissible policies Θ consists of those policies π for which Xπ is non-negative and for
x ≥ 0,

Ex

[ ∫ ∞

0
e−qt dRπ

t

]
< ∞.

When there is a fixed transaction cost δ > 0, we only consider the class of admissible strategies
π = {Lπ , Rπ} ∈ Θ such that

Lπ
t = ∑

0≤s≤t
∆Lπ

s , t ≥ 0,

where ∆Lπ
t := Lπ

t+ − Lπ
t . We denote this class by Θδ and in the case δ = 0, we take Θ0 ≡ Θ.

Given an initial capital x ≥ 0 and a policy π = {Lπ , Rπ} ∈ Θδ, with δ ≥ 0, we define the expected
NPV as follows,

vπ
δ,Λ(x) := Ex

[∫ ∞

0
e−qt d

(
Lπ

t − δ ∑
0≤s≤t

1{∆Lπ
s >0}

)
−Λ

∫ ∞

0
e−qt dRπ

t

]
, (2)

where q > 0, δ ≥ 0, and Λ > 0 is the unit cost per capital injected.

Remark 1. Note that in the case of proportional transaction cost the expected NPV changes to

Ex

[∫ ∞

0
e−qt d

(
βLπ

t − δ ∑
0≤s≤t

1{∆Lπ
s >0}

)
−Λ

∫ ∞

0
e−qt dRπ

t

]
,

where 0 < β < 1, so by changing δ and Λ appropriately we can recover Equation (2).

Hence, the value function we aim to find is

Vδ,Λ(x) := sup
π∈Θδ

vπ
δ,Λ(x). (3)

Remark 2. Since we want to avoid this function taking the value−∞, we assume that ψ′(0+) = E[X1] > −∞.
We also assume that Λ ≥ 1, otherwise the value function will go to infinity since large amounts of dividends
will be paid, given that the company will inject capital at a cheaper cost to bail out.

Note that the problem in Equation (3) was studied by Avram et al. (2007) under the assumption
δ = 0 (see Section 3.2). Therefore, we focus on the optimal control problem when δ > 0 (see Section 4).
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3. Preliminaries

In this section, we revise the scale functions of spectrally negative Lévy processes and their
properties (see, e.g., Kuznetsov et al. (2013); Kyprianou (2014)). We also recall well known results
regarding optimal dividend strategies with capital injection for spectrally one-sided Lévy processes
when the transaction cost is equal to 0 (i.e., δ = 0).

For each q ≥ 0, there exists a map W(q) : R −→ [0, ∞), called q-scale function, satisfying W(q)(x) =
0 for x ∈ (−∞, 0), and strictly increasing on [0, ∞), which is defined by its Laplace transform:∫ ∞

0
e−θxW(q)(x)dx =

1
ψ(θ)− q

, θ > Φ(q), (4)

where
Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}.

We also define, for x ∈ R,

W(q)
(x) :=

∫ x

0
W(q)(y)dy, Z(q)(x) := 1 + qW(q)

(x),

Z(q)
(x) :=

∫ x

0
Z(q)(z)dz = x + q

∫ x

0

∫ z

0
W(q)(w)dwdz.

Since W(q) is equal to zero on (−∞, 0), we have

W(q)
(x) = 0, Z(q)(x) = 1 and Z(q)

(x) = x, x ≤ 0.

Remark 3.

1. By Equation (8.26) of Kyprianou (2014), the left- and right-hand derivatives of W(q) always exist on
R\{0}. In addition, as in, e.g., (Chan et al. 2011, Theorem 3), if X is of unbounded variation or the Lévy
measure is atomless, we have W(q) ∈ C1(R\{0}).

2. From Lemmas 3.1–3.2 of Kuznetsov et al. (2013), we know

W(q)(0) =

 0, if X is of unbounded variation,
1
c

, if X is of bounded variation,

W(q)′(0+) := lim
x↓0

W(q)′(x) =


2
σ2 , if σ > 0,

∞, if σ = 0 and Π(0, ∞) = ∞,
q + Π(0, ∞)

c2 , if σ = 0 and Π(0, ∞) < ∞.

3. From Lemma 3.3 of Kuznetsov et al. (2013), WΦ(q)(x) := e−Φ(q)x W(q)(x)↗ ψ′(Φ(q))−1, as x ↑ ∞.

Due to Remark 3, we make the following assumption throughout the paper.

Assumption 1. We assume that either X has unbounded variation or Π is absolutely continuous with respect
to the Lebesgue measure. Under this assumption, it holds that W(q) is C1 in (0, ∞).

We give the following properties related to Z(q) and W(q) for later use.

Remark 4.

(i) By Proposition 5.5 in Hernández et al. (2018), we have that Z(q) is a strictly log-convex function on (0, ∞),
for q > 0.

(ii) From Lemma 1 in Avram et al. (2007), it is known that W(q) is a log-concave function on (0, ∞).
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We define the stopping times τa− and τa+ , respectively, as follows,

τ−a := inf {t > 0 : Xt < a} and τ+
a := inf {t > 0 : Xt > a} , a ∈ R;

here and further on, let inf∅ = ∞. By Theorem 8.1 in Kyprianou (2014), we have that

Ex

[
e−qτ+a 1{τ+a <τ−b }

]
=

W(q)(x− b)
W(q)(a− b)

,

Ex

[
e−qτ−b 1{τ+a >τ−b }

]
= Z(q)(x− b)− Z(q)(a− b)

W(q)(x− b)
W(q)(a− b)

,

for a > b and x ≤ a. (5)

3.1. Reflected Lévy Processes

Let S = {St : t ≥ 0} and R0 = {R0
t : t ≥ 0} be defined, respectively, as

St := sup
0≤s≤t

(Xs ∨ 0) and R0
t := sup

0≤s≤t
(−Xs ∨ 0). (6)

We denote Ŷ := S− X and Y := X + R0, which are strong Markov processes. Observe that the
process R0 pushes X upwards whenever it attempts to down-cross the level 0; as a result the process
Y only takes values on [0, ∞). An introduction to the theory of Lévy processes and their reflected
processes can be encountered in Bertoin (1998); Kyprianou (2014).

Let τ̂a be defined as τ̂a = inf{t > 0 : Ŷt ∈ (a, ∞)}, with a > 0. Then, by Proposition 2 in
Pistorius (2004),

E−x

[
e−qτ̂a

]
= Z(q)(a− x)− qW(q)(a− x)

W(q)(a)
W(q)′(a)

, x ∈ [0, a].

We define for a > 0,

H(a) := E0

[
e−qτ̂a

]
= Z(q)(a)− q

[W(q)(a)]2

W(q)′(a)
. (7)

Remark 5. Note that, by definition, the function H is strictly positive, strictly decreasing and satisfies

lim
a→∞

H(a) = 0, lim
a→0

H(a) = 1− q[W(q)(0)]2

W(q)′(0+)
.

Therefore, the function H has an inverse from (0, 1− q/(q + Π(0, ∞))) onto (0, ∞) when σ = 0 and
Π(0, ∞) < ∞, and from (0, 1) onto (0, ∞) otherwise.

Similarly, taking κb := inf{t > 0 : Yt ∈ (b, ∞)}, with b > 0, we know from Proposition 2 in
Pistorius (2004) that

Ex

[
e−qκb

]
=

Z(q)(x)
Z(q)(b)

, x ≤ b. (8)
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In addition, we know from (Avram et al. 2007, page 167) that

Ex

[ ∫
[0,κb ]

e−qt dR0
t

]
= −Z(q)

(x) + Φ(q)−1Z(q)(x)− ψ′(0+)

q

+

(
Z(q)

(b)−Φ(q)−1Z(q)(b) +
ψ′(0+)

q

)
Z(q)(x)
Z(q)(b)

= −k(q)(x) +
Z(q)(x)
Z(q)(b)

k(q)(b), x ≤ b, (9)

where

k(q)(x) := Z(q)
(x) +

ψ′(0+)

q
. (10)

3.2. Optimal Dividends without Transaction Cost and with Capital Injection

When δ = 0, Equation (2) becomes

vπ
Λ(x) := vπ

0,Λ(x) = Ex

[∫ ∞

0
e−qt dLπ

t −Λ
∫ ∞

0
e−qt dRπ

t

]
,

for any initial capital x ≥ 0 and admissible policy π = {Lπ , Rπ} ∈ Θ. Consider the strategy
πa,0 = {La,0, Ra,0}, which consists in setting reflecting barriers at a and 0, respectively. The controlled
risk process Xπa,0 = X − La,0 + Ra,0 is a doubly reflected spectrally negative Lévy process and was
studied by Avram et al. (2007). Intuitively, the process behaves similar to a Lévy process when it is
inside [0, a], but when it tries to cross above the level a or below the level 0 it is forced to stay inside
[0, a]. Using Theorem 1 from Avram et al. (2007), we have that for a > 0 and x ∈ [0, a],

Ex

[∫ ∞

0
e−qt dLa,0

t

]
=

Z(q)(x)
qW(q)(a)

, (11)

Ex

[∫ ∞

0
e−qt dRa,0

t

]
=

Z(q)(a)
qW(q)(a)

Z(q)(x)− k(q)(x). (12)

Note that the expression in Equation (12) is finite under our assumption that ψ′(0+) > −∞.
Using the expressions above, we can see that, for Λ ≥ 1,

va
Λ(x) := vπa,0

Λ (x) =

{
Z(q)(x)ζΛ(a) + Λk(q)(x), if 0 ≤ x ≤ a,

x− a + va
Λ(a), if x > a,

(13)

where

ζΛ(a) :=
1−ΛZ(q)(a)

qW(q)(a)
, a > 0. (14)

Equation (13) suggests that, to find the best barrier strategy we should maximize the function ζΛ.
Thus, we can define the candidate for the optimal barrier by

aΛ = sup{a ≥ 0 : ζΛ(a) ≥ ζΛ(x), for all x ≥ 0}. (15)

Remark 6. Note that ζΛ : (0, ∞) −→ (−∞, 0) and satisfies

lim
a→0

ζΛ(a) = − Λ− 1
qW(q)(0)

and lim
a→∞

ζΛ(a) = − Λ
Φ(q)

.
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Here, in case that X is of unbounded variation, the first equality is understood to be −∞. The barrier level aΛ,
given in Equation (15), corresponds with the level defined in Avram et al. (2007). Using the definition of the
function H, we have that

dζΛ(a)
da

=
ΛW(q)′(a)

q[W(q)(a)]2
(H(a)− 1/Λ).

Since H is strictly decreasing, ζΛ has a unique maximum at aΛ that is either a critical point, which is a

solution of H(a) =
1
Λ

, or 0 if the right-hand derivative of ζΛ is negative at 0. Therefore, by Remark 5,

aΛ =

0, if σ = 0, Π(0, ∞) < ∞ and Λ < 1 +
q

Π(0, ∞)
,

H−1 (1/Λ) , otherwise.
(16)

In addition, note that ζΛ is strictly increasing on (0, aΛ) and strictly decreasing on (aΛ, ∞).

Hence, from Avram et al. (2007), we know that the value function in Equation (3) and the optimal
strategy are given by VΛ := V0,Λ = vaΛ

Λ and π0,aΛ , where vaΛ
Λ and aΛ are as in Equations (13) and (16),

respectively.

Remark 7. Note that the optimal barrier aΛ → ∞ as Λ→ ∞.

4. Capital Injection and Fixed Transaction Cost

In this section, we solve the problem in Equation (3) in the presence of a fixed transaction cost
δ > 0. We consider strategies where the capital injection policy is R0, given in Equation (6), and the
dividend strategy is the so-called reflected (c1, c2)-policy, defined below.

4.1. Value Function of Reflected (c1, c2)-Policies

Let (c1, c2) be a pair such that 0 ≤ c1 < c2. In this subsection, we define the reflected (c1, c2)-policy,
denoted by π(c1,c2),0, and under which we construct the controlled process. Let Y = X + R0 be the
Lévy process reflected from below 0, so we set

X(c1,c2),0
t = Yt, for t ≤ Tc1,c2

1 ,

where Tc1,c2
1 = inf{t > 0 : Yt > c2}. The process then jumps downward by YT

c1,c2
1
− c1 so that

X(c1,c2),0
T

c1,c2
1

= c1. Now, for Tc1,c2
1 ≤ t < Tc1,c2

2 = inf{t > Tc1,c2
1 : X(c1,c2),0

t > c2}, X(c1,c2),0 is the reflected

process from below at 0 of Xt + (c1 − XT
c1,c2
1

), and X(c1,c2),0
T

c1,c2
2

= c1. By repeating this procedure, we can

construct the process inductively. The process X(c1,c2),0 clearly admits the decomposition

X(c1,c2),0
t = Xt − L(c1,c2),0

t + R(c1,c2),0
t , t ≥ 0,

where L(c1,c2),0 and R(c1,c2),0 are the cumulative amounts of dividend payments and capital
injection, respectively.

Let us compute the expected NPV of dividends with transaction costs for this strategy. For this
purpose, we denote

fc1,c2(x) = Ex

[∫ ∞

0
e−qt d

(
L(c1,c2),0

t − δ ∑
0≤s≤t

1{
∆L

(c1,c2),0
s >0

}
)]

.
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If x < c2, by the Strong Markov Property and Equation (8), we obtain that

fc1,c2(x) = Ex

[
e−qT

c1,c2
1

]
fc1,c2(c2) =

Z(q)(x)
Z(q)(c2)

fc1,c2(c2). (17)

When x ≥ c2, an amount x − c1 is paid as dividends and a transaction cost δ is incurred
immediately, so by using Equation (17) we obtain

fc1,c2(x) = x− c1 − δ + fc1,c2(c1) = x− c1 − δ +
Z(q)(c1)

Z(q)(c2)
fc1,c2(c2).

Hence, taking x = c2, and solving for fc1,c2(c2) we get

fc1,c2(c2) = (c2 − c1 − δ)
Z(q)(c2)

Z(q)(c2)− Z(q)(c1)
.

Using the aforementioned expression in Equation (17), we have for x < c2,

fc1,c2(x) = (c2 − c1 − δ)
Z(q)(x)

Z(q)(c2)− Z(q)(c1)
. (18)

Now, let us calculate the expected NPV of the injected capital denoted by

gc1,c2(x) = Ex

[∫ ∞

0
e−qt dR(c1,c2),0

t

]
.

Again, by the Strong Markov Property, noting that Tc1,c2
1 = inf{t > 0 : Yt ∈ (c2, ∞)} and

Equations (8)–(9), we have for x ≥ 0

gc1,c2(x) = Ex

[∫
[0,T

c1,c2
1 ]

e−qt dR0
t

]
+Ex

[
e−qT

c1,c2
1

]
gc1,c2(c1)

= −k(q)(x) + k(q)(c2)
Z(q)(x)
Z(q)(c2)

+
Z(q)(x)
Z(q)(c2)

gc1,c2(c1).

Thus, setting x = c1 and solving for gc1,c2(c1), we obtain

gc1,c2(c1) =

(
− k(q)(c1) + k(q)(c2)

Z(q)(c1)

Z(q)(c2)

)
Z(q)(c2)

Z(q)(c2)− Z(q)(c1)

=

(
−Z(q)

(c1) + Z(q)
(c2)

Z(q)(c1)

Z(q)(c2)

)
Z(q)(c2)

Z(q)(c2)− Z(q)(c1)
− ψ′(0+)

q
.

Putting the pieces together, we obtain

gc1,c2(x) = −k(q)(x) + k(q)(c2)
Z(q)(x)
Z(q)(c2)

+

((
−Z(q)

(c1) + Z(q)
(c2)

Z(q)(c1)

Z(q)(c2)

)
Z(q)(c2)

Z(q)(c2)− Z(q)(c1)
− ψ′(0+)

q

)
Z(q)(x)
Z(q)(c2)

= −k(q)(x) + Z(q)
(c2)

Z(q)(x)
Z(q)(c2)

+

(
−Z(q)

(c1) + Z(q)
(c2)

Z(q)(c1)

Z(q)(c2)

)
Z(q)(x)

Z(q)(c2)− Z(q)(c1)

= Z(q)(x)
(

Z(q)
(c2)− Z(q)

(c1)

Z(q)(c2)− Z(q)(c1)

)
− k(q)(x).
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Hence, we have the following result.

Lemma 1. The expected NPV associated with a reflected (c1, c2)-policy is given by

vc1,c2
δ,Λ (x) := v

π(c1,c2),0
δ,Λ (x) =

{
Z(q)(x)GΛ(c1, c2) + Λk(q)(x), if x ≤ c2,

x− c1 − δ + vc1,c2
δ,Λ (c1), if x > c2,

where

GΛ(c1, c2) :=
c2 − c1 − δ−Λ

(
Z(q)

(c2)− Z(q)
(c1)

)
Z(q)(c2)− Z(q)(c1)

, for all c2 > c1 ≥ 0. (19)

Remark 8. Note that GΛ is C2 on A := {(c1, c2) ∈ R2
+ : c1 < c2}, and

lim
c2↓c1

GΛ(c1, c2) = −∞, for c1 ≥ 0 fixed,

lim
|c1|+|c2|→∞

GΛ(c1, c2) = lim
c2→∞

GΛ(c1, c2) = −
Λ

Φ(q)
.

4.2. Choice of Optimal Thresholds

To choose the optimal thresholds among reflected policies, we maximize the function GΛ.

Proposition 1. The function GΛ, defined in Equation (19), attains its maximum on A.

Proof. Let c1 ≥ 0 be fixed. The first derivative of GΛ with respect to c2 is given by

∂c2 GΛ(c1, c2) =
qFΛ(c1, c2)W(q)(c2)

(Z(q)(c2)− Z(q)(c1))2
, (20)

where

FΛ(c1, c2) :=
(Z(q)(c2)− Z(q)(c1))

qW(q)(c2)
(1−ΛZ(q)(c2))−

(
c2 − c1 − δ−Λ

(
Z(q)

(c2)− Z(q)
(c1)

))
=−Λ

[
(Z(q)(c2))

2

qW(q)(c2)
− Z(q)

(c2)−
(
(Z(q)(c2))

qW(q)(c2)
Z(q)(c1)− Z(q)

(c1)

)]

+
Z(q)(c2)− Z(q)(c1)

qW(q)(c2)
− (c2 − c1 − δ). (21)

On the other hand, taking a = c2 in Equation (12), we see

[Z(q)(c2)]
2

qW(q)(c2)
− k(q)(c2) ≥ 0 and

Z(q)(c2)

qW(q)(c2)
Z(q)(c1)− k(q)(c1) ≥ 0.

Then, using Equation (10), we have

FΛ(c1, c2) <
Z(q)(c2)

qW(q)(c2)
+ Λ

[
Z(q)(c2)

qW(q)(c2)
Z(q)(c1)− k(q)(c1)

]
−(c2 − c1 − δ). (22)

Therefore, since lim
c2→∞

Z(q)(c2)

qW(q)(c2)
=

1
Φ(q)

(see Remark 3), the right-hand side of the

aforementioned inequality goes to −∞ as c2 goes to ∞, which implies

∂c2 GΛ(c1, c2) < 0, for c2 large enough. (23)
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From here and Remark 8, we obtain that there exists c∗ ∈ (c1, ∞) (that depends on c1) such that

GΛ(c1, c2) ≤ GΛ(c1, c∗), for all c2 > c1.

Taking d∗(c1) := sup{c∗ > c1 : GΛ(c1, c2) ≤ GΛ(c1, c∗) for all c2 > c1}, with c1 ≥ 0, we see
d∗(c1) < ∞ for each c1 ≥ 0, since Equation (23) holds. From Equation (20) and the fact that
∂c2 GΛ(c1, d∗(c1)) = 0, it follows that FΛ(c1, d∗(c1)) = 0 for c1 ≥ 0. Then, by the definitions of
FΛ and ζΛ—see Equations (21) and (14), respectively—we get

GΛ(c1, d∗(c1)) =
d∗(c1)− c1 − δ−Λ(Z(q)

(d∗(c1))− Z(q)
(c1))

Z(q)(d∗(c1))− Z(q)(c1)
= ζΛ(d∗(c1)), for each c1 ≥ 0.

Now, let us take c̄1 > aΛ (where aΛ is defined in Equation (14)). Then, using the fact that ζΛ
is strictly decreasing in (aΛ, ∞) (see Remark 6), we have that for any c2 > c1 > d∗(c̄1) it holds that
d∗(c̄1) < d∗(c1) and

GΛ(c1, c2) ≤ GΛ(c1, d∗(c1)) = ζΛ(d∗(c1)) < ζΛ(d∗(c̄1)) = GΛ(c̄1, d∗(c̄1)).

This implies that the maximum of the function GΛ has to be achieved on the set

{(c1, c2) ∈ R2
+ : c1 < c2 and c1 ∈ [0, c̄1]}.

Finally, from Equation (22), we obtain

FΛ(c1, c2) <
Z(q)(c2)

qW(q)(c2)
+ Λ sup

c1∈[0,c̄1]

[
Z(q)(c2)

qW(q)(c2)
Z(q)(c1)− k(q)(c1)

]
−(c2 − c̄1 − δ), for c1 ∈ [0, c̄1].

Hence, for any c1 ∈ [0, c̄1], we can find c̄2 > c̄1 such that

∂c2 GΛ(c1, c2)(c1, c2) < 0, for any 0 ≤ c1 ≤ c̄1 and 0 ≤ c2 ≤ c̄2.

Therefore, the function GΛ attains its maximum on the set

{(c1, c2) ∈ [0, c̄1]× [0, c̄2] : c1 < c2} ⊂ A.

Note that by Proposition 1 the set B ⊂ A defined as

B := {(c∗1 , c∗2) ∈ A : GΛ(c∗1 , c∗2) ≥ GΛ(c1, c2) for all (c1, c2) ∈ A},

is not empty. Moreover, since GΛ ∈ C1(A) and using Equation (14), it follows that

∂c1 GΛ(c∗1 , c∗2) =
qW(q)(c∗1)

Z(q)(c∗2)− Z(q)(c∗1)
(GΛ(c∗1 , c∗2)− ζΛ(c∗1)) ≤ 0, for (c∗1 , c∗2) ∈ B, (24)

with equality if c1 > 0, and

∂c2 GΛ(c∗1 , c∗2) = −
qW(q)(c∗2)

Z(q)(c∗2)− Z(q)(c∗1)
(GΛ(c∗1 , c∗2)− ζΛ(c∗2)) = 0, for (c∗1 , c∗2) ∈ B. (25)
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Proposition 2. There exists a unique pair (cΛ
1 , cΛ

2 ) in B. Furthermore, 0 ≤ cΛ
1 ≤ aΛ < cΛ

2 < ∞, with aΛ
defined in Equation (16), and the value function associated with the (cΛ

1 , cΛ
2 )-policy is

vcΛ
1 ,cΛ

2
δ,Λ (x) =

Z(q)(x)ζΛ(cΛ
2 ) + Λk(q)(x), if x ≤ cΛ

2 ,

x− cΛ
2 + vcΛ

1 ,cΛ
2

δ,Λ (cΛ
2 ), if x > cΛ

2 .
(26)

Proof. Let M be the maximum value of GΛ in B; therefore, for any (c∗1 , c∗2) ∈ B, we have that
ζΛ(c∗2) = M by Equation (25). From Remark 6, we know that ζΛ is strictly increasing on (0, aΛ) and
strictly decreasing on (aΛ, ∞). If ζΛ(0) ≥ M, ζΛ attains M at a unique cΛ

2 > aΛ and therefore (0, cΛ
2 )

is the only point that satisfies Equation (24). On the other hand, if ζΛ(0) < M, ζΛ can only attain the
value M at a unique cΛ

1 < aΛ and a unique cΛ
2 > aΛ. Hence, (cΛ

1 , cΛ
2 ) is the only point that satisfies

Equations (24) and (25), that is, the only existing point in B. Now, from Lemma 1 and using that
GΛ(cΛ

1 , cΛ
2 ) = ζΛ(cΛ

2 ), we obtain the first part of Equation (26). For the second part, let x > cΛ
2 , then

vcΛ
1 ,cΛ

2
δ,Λ (x) = x− cΛ

1 − δ + vcΛ
1 ,cΛ

2
δ,Λ (cΛ

1 ) = x− cΛ
2 + cΛ

2 − cΛ
1 − δ + vcΛ

1 ,cΛ
2

δ,Λ (cΛ
1 ) = x− cΛ

2 + vcΛ
1 ,cΛ

2
δ,Λ (cΛ

2 ).

The following properties of vcΛ
1 ,cΛ

2
δ,Λ are used below in the verification theorem.

Remark 9. From Equations (10) and (26), we note

vcΛ
1 ,cΛ

2
δ,Λ (x) ≥ Λψ′(0+)

q
+ Z(q)(cΛ

2 )ζ(c
Λ
2 ), for x > 0.

Remark 10 (Continuity/smoothness at zero). Note that for x < 0, vcΛ
1 ,cΛ

2
δ,Λ (x) = vcΛ

1 ,cΛ
2

δ,Λ (0) + Λx. Therefore,

(i) vcΛ
1 ,cΛ

2
δ,Λ is continuous at zero.

(ii) For the case of unbounded variation, we have that

vcΛ
1 ,cΛ

2 ′
δ,Λ (0+) = qW(q)(0+)ζΛ(cΛ

2 ) + Λ = Λ = vcΛ
1 ,cΛ

2 ′
δ,Λ (0−).

4.3. Verification

Let us denote by vδ,Λ the function given in Equation (26), which is the optimal value function
among reflected policies. We now prove some properties of this function.

Lemma 2. The function vδ,Λ is C2((0, ∞)\{cΛ
2 }) and C1(0, ∞).

Proof. By Assumption 1, we have that, for each q ≥ 0, the function W(q) is continuously differentiable
on (0, ∞). This implies, by Equation (26), that vδ,Λ is C2((0, ∞)\{cΛ

2 }). On the other hand, using
Equation (26), we have that for x ≤ cΛ

2 ,

v′δ,Λ(x) = qW(q)(x)ζΛ(cΛ
2 ) + ΛZ(q)(x) = qW(q)(x)

(
1−ΛZ(q)(cΛ

2 )

qW(q)(cΛ
2 )

)
+ ΛZ(q)(x).

This implies that v′δ,Λ(c
Λ
2 −) = 1. For x > cΛ

2 , we obtain by Equation (26) that

v′δ,Λ(c
Λ
2 +) = 1 = v′δ,Λ(c

Λ
2 −),

which implies the result.
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Let L be the operator defined as follows,

LF(x) := γF′(x) +
σ2

2
F′′(x) +

∫
(0,∞)

(F(x− z)− F(x) + F′(x)z1{0<z≤1})Π(dz), x > 0,

where x ∈ R and F is a function on R such that LF(x) is well defined.

Proposition 3.

1. (L− q)vδ,Λ(x) = 0 for x < cΛ
2 .

2. (L− q)vδ,Λ(x) ≤ 0 for x > cΛ
2 .

Proof.

1. By the proof of Theorem 2.1 in Bayraktar et al. (2014a), we have that for 0 < x < cΛ
2 ,

(L− q)
(

Z(q)
(x) +

ψ′(0+)

q

)
= 0 and (L− q)Z(q)(x) = 0.

This implies that for 0 < x < cΛ
2 ,

(L− q)vδ,Λ(x) = 0.

2. We note that vδ,Λ(y) = ucΛ
2

Λ (y) for all y ≥ 0, where ua
Λ is the barrier strategy at the level a for the

dividend problem with capital injection given by Equation (13). Therefore,

(i) If we take y ≤ x, and cΛ
2 ≤ x, we obtain

ux
Λ(y) = Z(q)(y)ζΛ(x) + Λ

(
Z(q)

(y) +
ψ′(0+)

q

)
.

Recall the functions ζΛ and H are as in Equations (7) and (14), respectively. Then,

lim
y↑x

d2ux
Λ

dy2 (y) = ΛqW(q)(x) + qW(q)′(x)ζΛ(x)

=
W(q)′(x)
W(q)(x)

(
1−Λ

(
Z(q)(x)− qW(q)(x)

W(q)(x)
W(q)′(x)

))

=
W(q)′(x)
W(q)(x)

(1−ΛH(x))

= −qW(q)(x)ζ ′Λ(x).

By Proposition 2, we know that aΛ < cΛ
2 ≤ x. Then, lim

y↑x

d2ux
Λ

dy2 (y) ≥ 0 =
d2ucΛ

2
Λ

dx2 (x), since

ζ ′Λ(x) < 0 by Remark 6.
(ii) We have for y ∈ [0, cΛ

2 ],

ducΛ
2

Λ
dy

(y) = ΛZ(q)(y) + qW(q)(y)ζΛ(cΛ
2 ) ≥ ΛZ(q)(y) + qW(q)(y)ζΛ(x) =

dux
Λ

dy
(y),
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which comes from the fact that for x ≥ cΛ
2 > aΛ, then ζΛ(cΛ

2 ) ≥ ζΛ(x) by Remark 2. On the
other hand, for y ∈ (cΛ

2 , x], we have, using the fact that ζΛ(y) ≥ ζΛ(x),

dux
Λ

dy
(y) = ΛZ(q)(y) + qW(q)(y)ζΛ(x)

≤ ΛZ(q)(y) + qW(q)(y)ζΛ(y)

= ΛZ(q)(y) + qW(q)(y)
1−ΛZ(q)(y)

qW(q)(y)
= 1 =

ducΛ
2

Λ
dy

(y).

(iii) We note that

ux
Λ(c

Λ
2 ) = Λ

(
Z(q)

(cΛ
2 ) +

ψ′(0+)

q

)
+ Z(q)(cΛ

2 )ζΛ(x)

≤ Λ
(

Z(q)
(cΛ

2 ) +
ψ′(0+)

q

)
+ Z(q)(cΛ

2 )ζΛ(cΛ
2 ) = ucΛ

2
Λ (cΛ

2 ).

This and Point (ii) imply that (ucΛ
2

Λ − ux
Λ)(x) ≥ 0.

(iv) We have

ducΛ
2

Λ
dx

(x) = 1 = lim
y→x

dux
Λ

dy
(y).

Thus, by similar arguments to those in the proof of Theorem 2 in Loeffen (2008), we obtain
the result.

Lemma 3.

1. For x > 0, we have that v′δ,Λ(x) ≤ Λ.
2. For x ≥ y ≥ 0, we have that vδ,Λ(x)− vδ,Λ(y) ≥ x− y− δ.

Proof. 1. By Equation (5) together with Equation (26), we note that for x ≤ cΛ
2 ,

v′δ,Λ(x) = Λ

(
Z(q)(x)− W(q)(x)

W(q)(cΛ
2 )

Z(q)(cΛ
2 )

)
+

W(q)(x)
W(q)(cΛ

2 )

= ΛEx

e−qτ−0 1{
τ−0 <τ+

cΛ
2

}
+Ex

e
−qτ+

cΛ
2 1{

τ+
cΛ
2
<τ−0

}


≤ Λ

Ex

e−qτ−0 1{
τ−0 <τ+

cΛ
2

}
+Ex

e
−qτ+

cΛ
2 1{

τ+
cΛ
2
<τ−0

}


≤ Λ
(
Px

[
τ−0 < τ+

cΛ
2

]
+ Px

[
τ+

cΛ
2
< τ−0

])
= Λ.

On the other hand, v′δ,Λ(x) = 1 ≤ Λ for x > cΛ
2 .

2. Let us consider cΛ
2 ≥ x ≥ y. We note that

vδ,Λ(x)− vδ,Λ(y) = Λ
(

Z(q)
(x)− Z(q)

(y)
)
+
(

Z(q)(x)− Z(q)(y)
)

ζΛ(cΛ
2 )

= Λ
(

Z(q)
(x)− Z(q)

(y)
)
+ (Z(q)(x)− Z(q)(y))GΛ(cΛ

1 , cΛ
2 )
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≥ Λ
(

Z(q)
(x)− Z(q)

(y)
)
+ (Z(q)(x)− Z(q)(y))GΛ(x, y)

= Λ
(

Z(q)
(x)− Z(q)

(y)
)
+ (Z(q)(x)− Z(q)(y))

x− y− δ−Λ
(

Z(q)
(x)− Z(q)

(y)
)

Z(q)(x)− Z(q)(y)

= x− y− δ. (27)

Now, suppose that x ≥ y ≥ cΛ
2 , then using Equation (26) we obtain

vδ,Λ(x)− vδ,Λ(y) = x− y ≥ x− y− δ.

Finally, for the case x ≥ cΛ
2 ≥ y, by Equation (27), we have

vδ,Λ(x)− vδ,Λ(y) = x− cΛ
2 + vδ,Λ(cΛ

2 )− vδ,Λ(y) ≥ x− cΛ
2 + (cΛ

2 − y− δ) = x− y− δ.

Now, we proceed to the verification theorem that proves the optimality of the (cΛ
1 , cΛ

2 )-policy.

Theorem 1 (Verification Theorem). Let Vδ,Λ, vδ,Λ be as in Equations (3) and (26), respectively. Then,
vδ,Λ(x) = Vδ,Λ(x) for all x ≥ 0. Hence, the (cΛ

1 , cΛ
2 )-policy is optimal.

Proof. By the definition of Vδ,Λ, vδ,Λ(x) ≤ Vδ,Λ(x) for all x ≥ 0. Let us verify that vδ,Λ(x) ≥ vπ
δ,Λ(x) for

all admissible π ∈ Θδ and for all x ≥ 0. Recall that vπ
δ,Λ is defined in Equation (2). Take π = {Lπ , Rπ} ∈

Θδ fixed and let (Tn)n∈N be the sequence of stopping times where Tn := inf{t > 0 : Xπ
t > n}. Since

Xπ = X− Lπ + Rπ , with X being a spectrally negative Lévy process, it is a semi-martingale and vδ,Λ
is sufficiently smooth on (0, ∞) by Lemma 2, and continuous (respectively, continuously differentiable)
at zero for the case of bounded variation (respectively, unbounded variation) by Remark 10, we can
use the change of variables/Meyer-Itô’s formula (cf. Theorems II.31 and II.32 of Protter (2005)) on the
stopped process (e−q(t∧Tn) vδ,Λ(Xπ

t∧Tn
); t ≥ 0) to deduce under Px that

e−q(t∧Tn) vδ,Λ(Xπ
t∧Tn

)− vδ,Λ(x) =
∫ t∧Tn

0
e−qs(L− q)vδ,Λ(Xπ

s−)ds + Mt∧Tn + Jt∧Tn (28)

+
∫
[0,t∧Tn ]

e−qs v′δ,Λ(Xπ
s−)dRπ,c

s ,

where M is a local martingale with M0 = 0, Rπ,c is the continuous part of Rπ , and J is a jump process,
which is given by

Jt = ∑
0≤s≤t

e−qs (vδ,Λ(Xπ
s− + ∆[X + Rπ ]s)− vδ,Λ(Xπ

s− + ∆Xs)) 1{∆[X+Rπ ]s 6=0}

+ ∑
0≤s≤t

e−qs (vδ,Λ(Xπ
s− + ∆[X + Rπ ]s − ∆Lπ

s )− vδ,Λ(Xπ
s− + ∆[X + Rπ ]s)) 1{∆Lπ

s 6=0}, for t ≥ 0.

On the other hand, by Part (1) of Lemma 3, we obtain that∫
[0,t∧Tn ]

e−qs v′δ,Λ(Xπ
s−)dRπ,c

s

+ ∑
0≤s≤t∧Tn

e−qs [vδ,Λ(Xπ
s− + ∆[X + Rπ ]s)− vδ,Λ(Xπ

s− + ∆Xs)] 1{∆[X+Rπ ]s 6=0}

≤ Λ
∫
[0,t∧Tn ]

e−qs dRπ,c
s + Λ ∑

0≤s≤t∧Tn

e−qs ∆Rπ
s = Λ

∫
[0,t∧Tn ]

e−qs dRπ
s .
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Similarly, by Part (2) of Lemma 3,

∑
0≤s≤t∧Tn

e−qs[vδ,Λ(Xπ
s−+∆[X + Rπ ]s − ∆Lπ

s )− vδ,Λ(Xπ
s− + ∆[X + Rπ ]s)]1{∆Lπ

s 6=0}

≤ − ∑
0≤s≤t∧Tn

e−qs ∆Lπ
s + δ ∑

0≤s≤t∧Tn

e−qs 1{∆Lπ
s >0}

= −
∫
[0,t∧Tn ]

e−qs d

(
Lπ

s − δ ∑
0≤u≤s

1{∆Lπ
u >0}

)
.

Hence, from Equation (28), we derive that

vδ,Λ(x) ≥−
∫ t∧Tn

0
e−qs(L− q)vδ,Λ(Xπ

s−)ds−Λ
∫
[0,t∧Tn ]

e−qs dRπ
s

+
∫
[0,t∧Tn ]

e−qs d

(
Lπ

s − δ ∑
0≤u≤s

1{∆Lπ
u >0}

)
−Mt∧Tn + e−q(t∧Tn) vδ,Λ(Xπ

t∧Tn
).

Using Proposition 3 along with Point 3 in the proof of Lemma 6 in Loeffen (2009), and that
Xπ

s− ≥ 0 a.s. for s ≥ 0, we observe that

vδ,Λ(x) ≥
∫
[0,t∧Tn ]

e−qs d

(
Lπ

s − δ ∑
0≤u≤s

1{∆Lπ
u >0}

)
−Λ

∫
[0,t∧Tn ]

dRπ
s −Mt∧Tn + e−q(t∧Tn) vδ,Λ(Xπ

t∧Tn
)

≥
∫
[0,t∧Tn ]

e−qs d

(
Lπ

s − δ ∑
0≤u≤s

1{∆Lπ
u >0}

)
−Λ

∫
[0,t∧Tn ]

dRπ
s −Mt∧Tn

+ e−q(t∧Tn)

(
Λψ′(0+)

q
+ Z(q)(cΛ

2 )
(

ζ(cΛ
2 )
))

, (29)

where the last inequality follows from Remark 9. In addition, by the compensation formula (see, e.g.,
Corollary 4.6 of Kyprianou (2014)), (Mt∧Tn : t ≥ 0) is a zero-mean Px-martingale. Now, taking expected
value in Equation (29) and letting (t ∧ Tn)↗ ∞ Px-a.s., the monotone convergence theorem, applied

separately for Ex

[∫
[0,t∧Tn ]

e−qs d

(
Lπ

s − δ ∑
0≤u≤s

1{∆Lπ
u >0}

)]
and Ex

(
Λ
∫
[0,t∧Tn ]

e−qs dRπ
s

)
, gives

vδ,Λ(x) ≥ Ex

(∫
[0,∞)

e−qs d

(
Lπ

s − δ ∑
0≤u≤s

1{∆Lπ
u >0}

)
−Λ

∫
[0,∞)

e−qs dRπ
s

)
= vπ

δ,Λ(x).

This completes the proof.

5. Optimal Dividends with Capital Injection Constraint

In this section, we are interested in maximizing the expected NPV of the dividend strategy subject
to a constraint in the expected present value of the injected capital. Specifically, we aim to solve

Vδ(x, K) := sup
π∈Θδ

Ex

[∫ ∞

0
e−qt d

(
Lπ

t − δ ∑
0≤s<t

1{∆Lπ
s >0}

)]
s.t. Ex

[∫ ∞

0
e−qt dRπ

t

]
≤ K, (30)

for any x ≥ 0 and K ≥ 0. Strategies π that do not satisfy the capital injection constraint are called
infeasible. Recall that the insurance company has to inject capital to ensure the non-negativity of the
risk process. Therefore, small values of K require very low dividend payments to keep the risk process
non-negative, or would even make the problem infeasible. In the latter case, we define the value
function as −∞.
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To solve this problem, we use the solution of the optimal dividend problem with capital injection
found in the section above. Thus, for Λ ≥ 0, we define the function

vπ
δ,Λ(x, K) := vπ

δ,Λ(x) + ΛK,

with vπ
δ,Λ as in Equation (2). It is easy to check that Vδ(x, K) = sup

π∈Θδ

inf
Λ≥0

vπ
δ,Λ(x, K) since for infeasible

strategies inf
Λ≥0

vπ
δ,Λ(x, K) = −∞. By interchanging the sup with the inf we obtain an upper bound for

Vδ(x, K), the so-called weak duality. Hence, the dual problem of Equation (30) is defined as

VD
δ (x, K) := inf

Λ≥0
sup

π∈Θδ

vπ
δ,Λ(x, K) = inf

Λ≥0

{
ΛK + sup

π∈Θδ

vπ
δ,Λ(x)

}
= inf

Λ≥1
{ΛK + Vδ,Λ(x)} , (31)

with Vδ,Λ given in Equation (3). The last equality in Equation (31) is true, since Vδ,Λ(x) is infinite for
any Λ < 1; see Remark 2. The main goal is to prove that VD

δ (x, K) ≤ Vδ(x, K).

5.1. No Transaction Cost

In this subsection, we consider the problem in Equation (30) without transaction cost, i.e., δ = 0.
For this case, we denote V(x, K) := V0(x, K) and VD(x, K) := VD

0 (x, K). From Section 3.2, recall that
for each Λ ≥ 1, the optimal strategy is a barrier strategy, which is determined by aΛ defined in
Equation (16), and its NPV satisfies VΛ = vaΛ

Λ , where vaΛ
Λ is as in Equation (13). Given a barrier strategy

at a > 0 and x ∈ [0, a], the expected NPV of the injected capital is given by the function

Ψx(a) := Ex

[∫ ∞

0
e−qt dRa,0

t

]
=

Z(q)(a)
qW(q)(a)

Z(q)(x)− k(q)(x), (32)

with k(q) as in Equation (10). Clearly, if x > a, then Ψx(a) = Ψa(a). We also define

Kx := lim
a→∞

Ψx(a). (33)

Using Equation (12) and the properties of scale functions (see Remark 3 (3)),

Kx = −k(q)(x) +
Z(q)(x)

Φ(q)
.

Note that Kx is the expected present value of the injected capital for the pay-nothing strategy
πPN := {0, R0}. Therefore, letting a→ ∞ in Equation (13), it can be verified

vπPN
Λ (x, K) = Λ(K− Kx).

Hence, if K ≥ Kx, then for any x ≥ 0,

V(x, K) = sup
π∈Θ

inf
Λ≥0

vπ
Λ(x, K) ≥ inf

Λ≥0
vπPN

Λ (x, K) = 0. (34)

Conversely, if K < Kx, the problem in Equation (30) is infeasible, which is verified below.

Lemma 4. If K < Kx, then V(x, K) = −∞.

Proof. First, by Remark 7 and Equation (11), it is easy to verify that

lim
Λ→∞

Ex

[∫ ∞

0
e−qt dLaΛ ,0

t

]
= 0, for x ≥ 0. (35)
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Then,

VD(x, K) = inf
Λ≥1
{ΛK + VΛ(x)}

= inf
Λ≥1

{
Ex

[∫ ∞

0
e−qt dLaΛ ,0

t

]
+ Λ(K−Ψx(aΛ))

}
≤ lim

Λ→∞

{
Ex

[∫ ∞

0
e−qt dLaΛ ,0

t

]
+ Λ(K−Ψx(aΛ))

}
= −∞.

Now, since V(x, K) ≤ VD(x, K) for any x ≥ 0, K ≥ 0, we have the result.

The next lemma allows us to prove that, when K = Kx, Equation (34) holds with equality, and it
is used to prove the main result of this subsection.

Lemma 5. Let x ≥ 0 be fixed. The function Ψx is strictly decreasing on (0, ∞).

Proof. First, consider the case when x < a. Then, by Remark 4 (i), we have that
qW(q)(a)
Z(q)(a)

is strictly

increasing and the lemma is obtained. Now, when x ≥ a > 0, a simple calculation shows that

dΨa(a)
da

= −
Z(q)(a)

(
W(q)′(a)Z(q)(a)− q[W(q)(a)]2

)
q[W(q)(a)]2

= −Z(q)(a)W(q)′(a)
q[W(q)(a)]2

H(a),

which is strictly negative, by Remarks 3 and 5. From here, we conclude the assertion of the lemma.

Lemma 6. If K = Kx, then V(x, K) = 0 and the optimal strategy is the pay-nothing strategy πPN .

Proof. By Equation (34), we know that V(x, K) ≥ 0. On the other hand, from Lemma 5 and
Equation (33), we have that Λ(K−Ψx(aΛ)) ≤ 0 for all Λ ≥ 0. Then, using Equations (33) and (35)

VD(x, K) = inf
Λ≥1
{ΛK + VΛ(x)} = inf

Λ≥1

{
Ex

[∫ ∞

0
e−qt dLaΛ ,0

t

]
+ Λ(K−Ψx(aΛ))

}
≤ lim

Λ→∞
Ex

[∫ ∞

0
e−qt dLaΛ ,0

t

]
= 0.

Now, we define
K := lim

a→0
Ψa(a).

Using Equation (12), we have that K = ∞ when the risk process has unbounded variation.
Otherwise, by Remark 3 (2),

K =
c− ψ′(0+)

q
, (36)

and K corresponds to the expected NPV of the injected capital for the strategy π0,0 (see Equation (4.5)
in Avram et al. (2007)).

Lemma 7. Assume that the risk process X has bounded variation. If K ≥ K, then V(x, K) = K + V1(x),

with V1(x) = x +
ψ′(0+)

q
.
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Proof. If the Lévy measure is finite, by Equation (16), we have that a1 = 0. The same is true for
the infinite Lévy measure case since H−1(1) = 0 by Remark 5. Using Equation (13) and Remark 6,
we obtain

V1(x) = v0
1(x) = x +

c
q
− K = x +

ψ′(0+)

q
, for x ≥ 0. (37)

Now, by Equations (31), (36) and (37) and the weak duality, we get

V(x, K) ≤ VD(x, K) ≤ K + v0
1(x) = K + V1(x).

Since K ≥ K, π0,0 is a feasible strategy. Then, using Equation (11), it yields,

V(x, K) ≥ inf
Λ≥1
{v0

Λ(x) + ΛK} = x + K− c− ψ′(0+)

q
+

c
q
= K + V1(x).

Therefore, V(x, K) = K + V1(x).

We are now ready for the main result of this subsection.

Theorem 2. Assume δ = 0 and let V and VD as in Equation (30) and Equation (31), respectively, then
V = VD. Furthermore, if x and K are such that K ∈ (Kx, K), then

V(x, K) = Λ∗K + VΛ∗(x) = Ex

[∫ ∞

0
e−qt dLa∗ ,0

t

]
, (38)

where a∗ = Ψ−1
x (K), and Λ∗ =

1
H(a∗)

.

Proof. Lemmas 4, 6 and 7 show imply that Equation (38) holds when x and K are such that K ∈
[0, Kx] ∪ [K, ∞). Assume now that K ∈ (Kx, K), then by Lemma 5 the function Ψx is injective, so there
exists a unique a∗ > 0 such that Ψx(a∗) = K. Note that from Equation (16), we have that there exists a
unique Λ∗ such that aΛ∗ = a∗. Then,

VD(x, K) ≤ Λ∗K + VΛ∗(x)

= Λ∗K +Ex

[∫ ∞

0
e−qt dLa∗ ,0

t

]
−Λ∗Ψx(a∗)

= Ex

[∫ ∞

0
e−qt dLa∗ ,0

t

]
.

Meanwhile, since the strategy πa∗ ,0 is feasible, we see

V(x, K) ≥ inf
Λ≥1

{
v

πa∗ ,0
Λ (x) + ΛK

}
= inf

Λ≥1

{
Ex

[∫ ∞

0
e−qt dLa∗ ,0

t

]
+ Λ(K−Ψx(a∗))

}
= Ex

[∫ ∞

0
e−qt dLa∗ ,0

t

]
.

This implies that VD(x, K) ≤ V(x, K). Finally, the weak duality gives Equation (46).

5.2. With Transaction Cost

Now, we consider the problem given in Equation (30) with transaction cost δ > 0. From the
previous section, we know that optimal strategies are (cΛ

1 , cΛ
2 )-reflected strategies with (cΛ

1 , cΛ
2 ) given

in Proposition 2.

Proposition 4. The curve Λ 7→ (cΛ
1 , cΛ

2 ) is continuous and unbounded, for Λ ∈ [1, ∞).
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Proof. From Remark 7 and the fact that aΛ < cΛ
2 (by Proposition 2), we know that cΛ

2 → ∞ as Λ→ ∞,
so the curve is unbounded. To show the continuity of the curve, we consider two cases and use the
implicit function theorem. To this end, suppose first cΛ

1 = 0. Defining f (Λ, c2) := GΛ(0, c2)− ζΛ(c2),
we have f (Λ, cΛ

2 ) = 0. Then,

∂ f
∂c2

(Λ, cΛ
2 ) =

∂GΛ

∂c2
(0, cΛ

2 )− ζ ′Λ(c
Λ
2 ) = −ζ ′Λ(c

Λ
2 ) > 0,

since cΛ
2 > aΛ. From here, we see that the conditions of the implicit function theorem are satisfied.

Now, if cΛ
1 > 0, define the function f (Λ, c1, c2) = ( f1(Λ, c1, c2), f2(Λ, c1, c2)) by

f1(Λ, c1, c2) := GΛ(c1, c2)− ζΛ(c1),

f2(Λ, c1, c2) := GΛ(c1, c2)− ζΛ(c2).

Then, f (Λ, cΛ
1 , cΛ

2 ) = (0, 0). Again, simple calculations show that the Jacobian determinant of this
system of equations is ζ ′Λ(c

Λ
2 )ζ

′
Λ(c

Λ
1 ) < 0, since cΛ

1 < aΛ < cΛ
2 . Therefore, the curve Λ 7→ (cΛ

1 , cΛ
2 ) is

continuous, for Λ ∈ [1, ∞).

Next, we analyze the level curves of the constraint. Let Ψx(c1, c2) be the expected present value
of the injected capital under a (c1, c2)-reflected policy. Then, the calculations given in the proof of
Lemma 1 show that

Ψx(c1, c2) : = Ex

[∫ ∞

0
e−qt dR(c1,c2),0

t

]

=


Z(q)(x)

Z(q)
(c2)− Z(q)

(c1)

Z(q)(c2)− Z(q)(c1)
− k(q)(x), if 0 ≤ x ≤ c2,

Z(q)
(c2)Z(q)(c1)− Z(q)

(c1)Z(q)(c2)

Z(q)(c2)− Z(q)(c1)
− ψ′(0+)

q
, if x > c2.

(39)

Remark 11. Note that lim
c1→c2

Ψx(c1, c2) = Ψx(c2), where Ψx is as in Equation (32).

The next lemmas describe some properties of Ψx(c1, c2).

Lemma 8. Let x ≥ 0 be fixed.

1. If c1 ≥ 0 is fixed, then the function Ψx(c1, c2), given in Equation (39), is strictly decreasing for all c2 > c1,
and

lim
c2→∞

Ψx(c1, c2) = Kx, (40)

where Kx is defined in Equation (33).
2. If c2 > 0 is fixed, Ψx(c1, c2) is strictly decreasing for all c1 ∈ [0, c2).

Proof. Let c1 ≥ 0 be fixed. First, assume that c2 ≥ x. To show that Ψx(c1, c2) is strictly decreasing, it is
sufficient to verify that

Z(q)
(c2)− Z(q)

(c1)

Z(q)(c2)− Z(q)(c1)
, (41)

is strictly decreasing, which is true if

∂

∂c2

[
Z(q)

(c2)− Z(q)
(c1)

Z(q)(c2)− Z(q)(c1)

]
=

Z(q)(c2)

Z(q)(c2)− Z(q)(c1)
− qW(q)(c2)(Z(q)

(c2)− Z(q)
(c1))

[Z(q)(c2)− Z(q)(c1)]2
< 0. (42)
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Since Z(q) is a strictly log-convex function on [0, ∞) by Remark 4 (i),

qW(q)(η)

Z(q)(η)
<

qW(q)(ς)

Z(q)(ς)
, for η and ς such that η < ς.

Taking ς = c2 in the inequality above and integrating between c1 and c2, it follows that

Z(q)(c2) <
qW(q)(c2)[Z

(q)
(c2)− Z(q)

(c1)]

Z(q)(c2)− Z(q)(c1)
. (43)

Then, Equation (43) yields Equation (42) and hence Equation (41) is strictly decreasing. For the
case x > c2, it can be verified that

∂

∂c2

[
Z(q)(c2)

Z(q)
(c2)− Z(q)

(c1)

Z(q)(c2)− Z(q)(c1)
− Z(q)

(c2)

]

=
Z(q)(c1)

Z(q)(c2)− Z(q)(c1)

[
Z(q)(c2)−

qW(q)(c2)[Z
(q)

(c2)− Z(q)
(c1)]

Z(q)(c2)− Z(q)(c1)

]
. (44)

Then, using Equations (43) and (44), we obtain that Ψx(c1, c2) is strictly decreasing for all c2 ∈
(c1, x). Similarly, we obtain Point 2 of the lemma. Now, by L’Hôpital’s rule together with Exercise 8.5
(i) in Kyprianou (2014), it is not difficult to see that Equation (40) holds for any c1 ≥ 0.

Note that Equation (34) still holds if K ≥ Kx. On the other hand, using that cΛ
2 → ∞ as Λ → ∞

together with Equation (18) we have that

lim
Λ→∞

Ex

[∫ ∞

0
e−qt dL(cΛ

1 ,cΛ
2 ),0

t

]
= lim

Λ→∞
(cΛ

2 − cΛ
1 − δ)

Z(q)(x)
Z(q)(cΛ

2 )− Z(q)(cΛ
1 )

= 0, (45)

by Remark 3 (3).

Remark 12. Using the same arguments as in Lemma 7, we have that c1
1 = a1 = 0 < c1

2 for bounded and
unbounded variation processes. Similarly, if x and K are such that K ≥ Ψx(0, c1

2) =: Kx, then Vδ(x, K) =
Vδ,1(x) + K. Note also that Kx < K.

Lemma 9. Let x ≥ 0 be fixed. Then, for each K ∈ (Kx, K), there exist c ≤ c such that the level curve
LK(Ψx) := {(c1, c2) : Ψx(c1, c2) = K} is continuous, contained in the set [0, c] × [c, c] and contains the
points (0, c) and (c, c).

Proof. The continuity of the level curve is obtained as an immediate consequence of the continuity of
Ψx. Observe that, by Lemma 5, we know the existence of c > 0 such that Ψx(c) = K. Meanwhile, from
Lemma 8, we have that there exists c ∈ [c, ∞) such that Ψx(0, c) = K. Now, the fact that the level curve
LK(Ψx) is contained in [0, c]× [c, c] is a consequence of Remark 11 and Lemma 8.

Remark 13. Lemmas 4 and 9 yield that the parametric curve Λ 7→ (cΛ
1 , cΛ

2 ) and the level curve LK(Ψx) must
intersect, i.e., there exists Λ∗ such that Ψx(cΛ∗

1 , cΛ∗
2 ) = K, for K ∈ (Kx, Kx].

By similar arguments as in the proof of Theorem 2, by Remarks 12 and 13, and using Equation (45),
we get the following result, whose proof is omitted.

Theorem 3. Assume δ > 0 and let Vδ and VD
δ as in Equations (30) and (31), respectively, then Vδ = VD

δ .
Furthermore, if x, K are such that

1. K < Kx, then Vδ(x, K) = −∞;
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2. K = Kx, then Vδ(x, K) = 0;
3. K ≥ Kx, then Vδ(x, K) = Vδ,1(x) + K; and
4. K ∈ (Kx, Kx), then there exists Λ∗ ≥ 1 such that

Vδ(x, K) = Λ∗K + Vδ,Λ∗(x) = Ex

∫ ∞

0
e−qt d

L(cΛ∗
1 ,cΛ∗

2 ),0
t − δ ∑

0≤s<t
1{

∆L
(cΛ∗

1 ,cΛ∗
2 ),0

s >0

}

 . (46)

6. Numerical Examples

In this section, we confirm the obtained results by a sequence of numerical examples. Here, we
assume that X is of the form

Xt − X0 = t + 0.5Bt −
Nt

∑
n=1

Zn, 0 ≤ t < ∞,

where B = {Bt : t ≥ 0}, N = {Nt : t ≥ 0}, and Z = {Zn}n≥1 are a standard Brownian motion,
a Poisson process with arrival rate λ = 0.4, and an i.i.d. sequence of random variables with distribution
Gamma (1,2), respectively, which are assumed mutually independent. Since there is no closed form for
the scale function W(q) associated with X, we use a numerical algorithm presented in Surya (2008) in
order to approximate the inverse Laplace transform of Equation (4). Similarly, we approximate the
derivatives of the scale functions and use the trapezoidal rule to calculate its integrals.

We first consider the case without transaction cost presented in Section 3.2. In Figure 1 (left),
we plot the function x 7→ VΛ(x) +ΛK for various values of Λ and a fixed value of K. For x ≥ x0, where
x0 is such that Kx0

= K, its minimum over the considered values of Λ provides (an approximation
of) V(x, K), indicated by the solid red line in the plot. Since the process has unbounded variation,
then K = ∞. In Figure 1 (right), we plot, for x > x0, the Lagrange multiplier Λ∗ given in Theorem 2.
We observe that Λ∗ goes to infinity as x ↓ x0 and remains always above 1.
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Figure 1. (Left) Plots of x 7→ VΛ(x) + ΛK for Λ = 1, 1.1, . . . , 2, 3, . . . , 10,
20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10, 000, 20, 000 (dotted) for the case K = 2.7. The minimum
of VΛ(x) + ΛK over Λ is shown in solid bold-face red line. (Right) Plot of the Lagrange multiplier Λ∗

for x > x0, where x0 is such that Kx0
= K.

In Figure 2, we show the values of V(x, K) and Lagrange multiplier Λ∗ as functions of (x, K). It is
confirmed that V(x, K) increases as x and K increase, while Λ∗ increases as x and K decrease.
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Figure 2. Plots of V(x, K) (left); and the Lagrange multiplier Λ∗ (right) as functions of x and K.

We now move to the case with transaction cost. First, we illustrate the results shown in Section 4.
In Figure 3 (left), we plot the function x 7→ ζΛ(x) for the values of Λ = 1, . . . , 9. We also plot its
maximum value attained at aΛ and the value attained at the corresponding optimal values (cΛ

1 , cΛ
2 )

with transaction cost δ = 0.05. Note that, when Λ = 1, aΛ = cΛ
1 = 0 and for the other values of Λ,

ζΛ(cΛ
1 ) = ζΛ(cΛ

2 ) < ζΛ(aΛ). In Figure 3 (right), we plot the optimal thresholds aΛ, cΛ
1 and , cΛ

2 as
function of Λ.
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Figure 3. (Left) Plots of x 7→ ζΛ(x) for Λ = 1, . . . , 9 and the corresponding values of aΛ, cΛ
1 and , cΛ

2 for
δ = 0.05. (Right) Plots of the functions Λ 7→ aΛ, cΛ

1 and , cΛ
2 .

In Figure 4, we illustrate the findings of Section 5.2. This figure is analogous to Figure 1 but with
transaction cost δ as above. It can be seen that the change in the function Vδ(x, K) is relatively very
small, but the change in the optimal Lagrange multiplier Λ∗ is significant, being smaller in the case of
transaction cost. A similar figure as Figure 2 in the case of transaction cost is omitted since both have
the same shape.
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Figure 4. (Left) Plots of x 7→ VΛ(x) + ΛK for Λ = 1, 1.1, . . . , 2, 3, . . . , 10,
20, . . . , 100, 200, . . . , 1000, 2000, . . . , 10, 000, 20, 000 (dotted) for the case K = 2.7. The minimum
of Vδ,Λ(x) + ΛK over Λ is plotted in solid bold-face red line. (Right) Plots of the Lagrange multipliers
Λ∗ for x > x0, where x0 is such that Kx0

= K with δ = 0 and δ = 0.05.

7. Concluding Remarks

In this study, we proved that the optimal strategy for the bail-out dividend problem with fixed
transaction costs is given by a reflected (c1, c2)-policy. We also characterized the optimal thresholds and
gave a semi-explicit form for the value function in terms of the scale functions. In addition, we used
the previous results to solve the constrained dividend maximization problem with the restriction that
the expected present value of the capital injected is bounded by a given constant. The solution of the
constrained problem can provide the insurance company with a guideline to maximize the profits of
the shareholders taking into account the risk of bail-out losses.

It is a legitimate and interesting question whether the optimal strategy and the associated value
function with transaction costs (i.e., δ > 0) converge to the corresponding optimal strategy and its
value function without transaction cost as δ ↓ 0. Although we conjecture that indeed this is the case,
further investigation is needed.

Another interesting generalization would involve considering fixed and proportional costs for
the capital injection as well. We conjecture that in this case the optimal strategy would consist in a
double band strategy, that is, a band strategy similar to the dividend payment strategy given in this
paper, and a band strategy for the capital injection, which consists in pushing the process to a positive
level each time the surplus process tries to cross below 0. We leave this problem as an opportunity for
future research.
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