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Abstract: We propose a statistical measure, based on correlation networks, to evaluate the systemic
risk that could arise from the resolution of a failing or likely-to-fail financial institution, under three
alternative scenarios: liquidation, private recapitalization, or bail-in. The measure enhances the
observed CDS spreads with a risk premium that derives from contagion effects across financial
institutions. The empirical findings reveal that the recapitalization of a distressed bank performed
by the other banks in the system and the bail-in resolution minimize the potential losses for the
banking sector with respect to the liquidation scenario, thus posing limited systemic risks. A closer
comparison between the private intervention recapitalization and the bail-in tool shows that the latter
slightly reduces contagion effects with respect to the private intervention scenario.

Keywords: bail-in; bank resolution; Corporate Default Swap (CDS) spreads; financial networks;
systemic risk

1. Introduction and Background

1.1. Measuring Systemic Risk in the Banking Sector

Measuring systemic risk in the banking sector is problematic, because of the high number of
dimensions to be included. Accordingly, different econometric models have been applied to a variety
of data, in different geographical regions and periods. We can classify systemic risk models into three
main categories: bivariate models (Acharya et al. 2010, 2012; Adrian and Brunnermeier 2016; Brownlees
and Engle 2012); causal models (Abedifar et al. 2017; Betz et al. 2014; Duffie and Lando 2001; Duprey
et al. 2018; Hautsch et al. 2015; Koopman et al. 2012; Lando and Nielsen 2010), and network models
(Ahelegbey et al. 2015; Battiston et al. 2012; Billio et al. 2012; Diebold and Yilmaz 2014; Giudici and
Spelta 2016; Giudici and Parisi 2018; Giudici et al. 2017; Lorenz et al. 2009). While the first two explicitly
deal with the time-varying dimension, the latter focuses on the cross-sectional dimension.

The aim of this paper is two-fold: first, to contribute to the literature on systemic risk measurement
through a network-based methodology able to consider both the time and the cross-sectional
dimension; second, to show the beneficial effects of the bail-in tool, expressed in terms of decreased
potential losses for taxpayers, in case of a simulated shock in the banking sector.

The Corporate Default Swap (CDS) spread of an institution at time t− 1 is often used as a good
predictor of the default probability of the same institution at time t: in an efficient market, CDS prices
adjust to reflect all the available information. However, CDS spreads may not quickly adjust for
multivariate dependencies, especially during banking crisis times, when cascade effects are often very
fast and highly non-linear (see, e.g., Avdjiev et al. (2018)). To overcome this problem, we propose to
improve the predictive accuracy of CDS spreads, by adding to them a risk premium derived from
their correlations.
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1.2. The Systemic Effects of Bank Resolution

While the relative importance of the shadow banking sector has been constantly increasing
in the last few years, banks can still be considered as the most relevant contributors to systemic
risk. For this reason, in the aftermath of the global financial crisis, policies aimed at monitoring and
supervising systemic risk arising from the banking sector have been developed in several countries,
within newly-established macro-prudential frameworks.

The European Union has introduced the 2014/59/EU directive, known as the Bank Recovery
and Resolution Directive (BRRD), and the Single Resolution Mechanism Regulation (SRMR), which
became fully operational in January 2016. In particular, while both the BRRD and the SRMR pose
the foundation for the finalization of Pillar 2 of the Banking Union, they have different scopes of
application, since the BRRD applies to all EU Member States and confers new powers to resolution
authorities in the EU, while the SRMR unifies the resolution of non-viable financial institutions within
the Banking Union. Both the Directive and the Regulation are based on the same basic principles to be
adopted when restructuring a financial institution, which prescribe the allocation of losses and costs
among banks’ shareholders and creditors, rather than on taxpayers.

Before the introduction of the BRRD and the SRMR, when a bank was deemed failing or
likely-to-fail, national resolution authorities could essentially choose between liquidation, with high
costs for all involved stakeholders (shareholders, bondholders, depositors, borrowers) and a public
bail-out, with high costs for taxpayers, relevant moral hazard problems, and vicious sovereign-bank
loops (see, e.g., Halaj et al. (2018)).

The BRRD framework proposes four alternative solutions to deal with a failing or likely-to-fail
bank: among them, we will focus on the bail-in tool, which imposes on private creditors an
ordered reconstruction of the bank, protecting taxpayers, while, at the same time, avoiding the
extreme consequences that would occur in case of liquidation. According to Article 32 of the
BRRD, a resolution action can be adopted if, and only if, some preliminary conditions are met:
(a) the bank has been assessed as failing or likely to fail; (b) no alternative private interventions,
nor supervisory interventions, would prevent such failure; (c) a resolution action is necessary in the
public interest. The decision of whether a bank can be classified as failing or likely-to-fail (Condition
(a)) is a competence of the supervisory authority (the European Central Bank (ECB) for significant
institutions). The Single Resolution Board (SRB) of the SRMR, however, has the power of making this
decision if the ECB does not, and it has the responsibility to determine whether Conditions (b) and (c)
are satisfied.

Our aim is to provide a methodology that can measure the consequences resulting from alternative
decisions, involving both the ECB and the SRB, in case one financial institution is failing: bail-in,
private intervention, and liquidation. We remark that with “private intervention”, we mean that the
failing bank is recapitalized (and totally or partially acquired) by other banks or private companies,
even without a supervisory action:1 this marks a substantial difference with the public intervention,
or bail-out, where the bank is totally rescued through the use of public funds. This latter possibility
is not considered in our analysis, as the BRRD does not explicitly take it into account (apart from
exceptional circumstances that, for instance, might allow extraordinary recapitalization actions).

While there is reference literature focusing on the policy debate about the bail-in as opposed to
the bail-out (see, e.g., Beck et al. (2017), and the references therein), there is very limited literature

1 The private recapitalization of a financial institution can occur under two different circumstances: it can be a precautionary
recapitalization (not to be confused with the extraordinary precautionary recapitalization, allowed by the BRRD under
exceptional circumstances and that can be performed by central governments) of the bank that takes place before any
decision related to the non-viability condition made by the supervisory authority; or it can consist of a private support to the
“good” bank after (a) the supervisory authority has declared the bank as failing or likely-to-fail, (b) the resolution authority
has established that the bank resolution is in the private interest, and (c) the resolution authority has decided to implement
the resolution via a bridge bank, thus separating the distressed institution into a “good” and a “bad” bank. In the current
study, we identify the private recapitalization scenario with the precautionary recapitalization.
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on the systemic implications of banks’ resolution, which in our view could be of great support
to supervisors, resolution authorities, and policy experts. An exception is the recent paper by
Halaj et al. (2018), who analyzed the implications of bail-in on the largest 26 banks in the Euro area by
using confidential European Central Bank data on common exposures. We follow Halaj et al. (2018),
but, rather than confidential bank balance-sheet data, we employ market-based data, which, albeit less
precise, are transparent and easily accessible and reproducible.

To measure the systemic implications of bank resolution, we will examine the evolution of the
Corporate Default Swap (CDS) spreads for a set of financial institutions. The use of multivariate CDS
spread data will allow us to develop a correlation network model able to identify if and how the
distress of one bank might propagate to other institutions and to measure the consequences it would
produce in terms of losses for the banking sector. Specifically, the model will be employed to compare
the potential losses that could occur under three possible scenarios: (a) liquidation, if the distressed
institution no longer meets the minimum capital requirements and is not deemed systemic; (b) private
intervention, if the distressed institution is rescued through a partial or total acquisition of the bank
by other institutions; (c) bail-in, if the distressed institution no longer meets the minimum capital
requirements, but is considered systemic.

Under Scenario (a), the liquidation of the distressed bank implies an immediate shock on the
default probabilities and the potential losses of the other banks. However, after some time, the banking
system would reach a new steady state without the defaulted bank and, thus, be less affected by
contagion risk.

Under Scenario (b), the distressed bank does not default and, consequently, does not immediately
affect the other financial institutions. However, the bank remains in the system so that all the other
banks in the network would keep suffering contagion risk. Furthermore, all banks that decide to
participate in the recapitalization would become even more exposed to the failing bank, thus increasing
their potential losses.

Finally, under Scenario (c) the distressed bank remains in the system as under Scenario (b); in
this case, contagion risk would derive not only from the persistence of a highly risky bank in the
system, but also from the loss sharing that would be imposed on the other banks as creditors of the
bailed-in bank.

Our proposed correlation network model will compare the consequences on the financial system
of the three alternative scenarios. It will consider two different viewpoints: (a) each single bank’s
perspective and (b) the system perspective. In the former, the model will focus on each bank’s loss
distribution, under the three scenarios, with the aim of providing to each bank guidelines to decide
whether it is convenient to take part in a private intervention or not. In the latter, the model will
focus on the potential losses for the entire banking system under the three scenarios, with the aim
of providing supervisory authorities and policy makers guidelines to decide which resolution action
to implement.

The model will be first applied to the stylized case of three banks: two safe banks (one larger than
the other) and one distressed bank (much smaller than the other two). Within this context, we will
evaluate the reduction in the potential losses of the safe banks in the case of a private intervention,
relative to the potential losses that would occur in case the distressed bank is liquidated. Our results
reveal that, from a bank’s viewpoint, a private recapitalization should be generally preferred to the
liquidation scenario. Such a preference would be even higher if the safe banks in the system are
relatively small.

We will then apply our methodology to the Italian banking system. In our view, this is
an interesting case study, as in early 2016, Italian banks organized the creation of an equity fund,
called Atlante, which includes, among its main objectives, the recapitalization of distressed financial
institutions. Each bank has decided, on a voluntary basis, whether to allocate capital to the Atlante
fund: as a result, two medium-sized lenders, Banca Popolare di Vicenza and Veneto Banca, which had
been found strongly undercapitalized by the European Central Bank, have been recapitalized with
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the help of most of the banks in the system. One year later, both banks were split into a good bank,
acquired by Intesa San Paolo, and a bad bank, liquidated through national insolvency procedures.
A similar intervention occurred for three other banks: Banca Etruria, Banca Marche, and CariChieti,
which had been found extremely undercapitalized before the BRRD became fully operative. They were
split into a good bank, sold to Unione Banche Italiane (UBI) in 2017, and a bad bank, sold to the Atlante
fund. A different discussion has involved Monte dei Paschi di Siena, whose larger size suggested
a precautionary recapitalization through the extraordinary use of public money (approved by the
European Commission in 2017 for a total amount equal to EUR 8.1 billion, of which EUR 3.9 billion
was in the form of capital injection by Italy), also given the unavailability of other institutions to
support the bank. Outside Italy, the Spanish Banco Popular was declared as failing or likely to fail
in 2017, and the SRB, together with the Spanish National Resolution Authority, decided that the sale
of shares and capital instruments to Banco Santander was in the public interest, as it would have
protected depositors and ensured financial stability. Furthermore, before the BRRD came into force,
the Portuguese Banco de Espirito Santo was split into two bridge banks, with the help of a private
intervention from other banks in the system Beck et al. (2017).

The outcomes of our analysis show that, in the case of a distressed bank and from the system
viewpoint, the private intervention and the bail-in resolution would minimize the potential losses for
the banking sector with respect to the liquidation scenario. By comparing the potential consequences
of a bail-in and a private intervention, our results also reveal that the former leads to lower
contagion effects.

The paper is structured as follows: Section 2 provides the methodological framework, in terms of
the proposed systemic risk measure (Section 2.1) and the specification of the three alternative resolution
scenarios (Section 2.2). Section 3 describes the application of our proposed methodology, both from
the banks’ (Section 3.1) and the system’s (Section 3.2) perspective. Section 4 concludes with some
final remarks.

2. Proposal

2.1. Measuring Systemic Risk in the Banking Sector

Let us consider a financial system composed by a set V of N banks: V = {1, . . . , N}. Let A
indicate the corresponding vector of net asset values: A = {A1, . . . , AN}. Net asset values can be
calculated by subtracting intangibles and liabilities from banks’ balance-sheet assets and indicate the
financial amounts owned by shareholders. For a bank n ∈ V, the expected net asset value can be
calculated as follows:

E(An) = An · (1− PDn) + An · (PDn) · RRn, (1)

where PDn and RRn indicate, respectively, the probability of default and the recovery rate in case of
default, for each bank n ∈ V. From (1), we can derive the expected losses of bank n:

ELn = An · (PDn) · (1− RRn). (2)

A Credit Default Swap (CDS) agreement allows the shareholders of bank n to buy a protection
against the default event of the bank: in the simplified case of a one-year contract, the premium paid
by the buyer is the spread Sn, which can be obtained from the following equation:

Sn = (PDn) · (1− RRn). (3)

If we substitute (3) in (2), we obtain:

ELn = An · Sn, (4)
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which provides a straightforward formula to estimate the expected loss of each bank in the system.
We remark that Equation (3) is rather simplistic with respect to the real pricing of CDS contracts:

as argued in many studies, in fact, there are more sophisticated methods to calculate CDS spreads as
a function of the PD and the RR of the underlying position (see, e.g., Zhu (2006)). Given the different
focus and objective of this study, we decided to adopt a simple approach for CDS spreads, and without
loss of generality, we will consider Sn as an input to our model, regardless of how it has been derived.

The aim of our analysis is to extend (4), which is based on a single CDS contract, into a formulation
that takes contagion between banks into account. We remark that banks are connected in multiple
ways through (even if not limited to) their balance-sheets. Besides interbank claims and liabilities,
which have been studied in most network models (see, e.g., Battiston et al. (2012), banks hold common
investment exposures on the asset side, as well as common liabilities on the funding side.

One methodology to tackle multiple interconnections implements a correlation networks built
on the market prices related to financial institutions, as in (Ahelegbey et al. 2015; Billio et al. 2012;
Giudici and Spelta 2016). In the current paper, we consider the correlation network between CDS
spreads. To this aim, we extend Equation (4) by defining a new variable, called Total Expected Loss
(TEL), which takes contagion between CDS spreads into account, as follows:

TELn = ELn + ∑
m 6=n

cmn|SELm, (5)

where S = V \ {m, n}, whereas cmn|S (with m 6= n) are coefficients to be estimated from the available
CDS spread data. Please note that Equation (5) (multivariate model) extends Equation (2) (univariate
model): when cmn|S = 0 ∀m, n, it follows that TELn = ELn, thus implying that the univariate expected
loss is a particular solution of the multivariate Equation (5).

From an economic viewpoint, we remark that without loss of generality, the total expected losses
could be constrained as follows:{

TELn = min(An, TELn) if TELn > 0,

TELn = max(0, TELn) if TELn < 0,
(6)

in order to prevent the expected losses from being negative or higher than the overall size assigned to
each bank (which, in our case, is equal to the net asset value).

The estimation of the coefficients cmn|S from the available data could, in principle, be based on
a linear regression model that explains the CDS spread of a bank as a function of all the other banks’
CDS spreads. Although feasible from a statistical and computational viewpoint, this model is not
economically meaningful, as the direction of contagion is typically unknown and, often, reciprocal.
We thus propose to estimate the coefficients in (5) without assuming any causal relationships, but rather
by exploiting an important correlation’s property that will now be described.

Let us assume that CDS spreads are correlated with each other so that, for each pair (m, n)
of banks:

Corr(Sm, Sn) = ρmn 6= 0. (7)

Let R be an N × N positive definite matrix, containing all pairwise correlations. Let then R−1

be the inverse of the correlation matrix, with elements ρmn. The partial correlation coefficient ρmn|S
between variables Sm and Sn, conditional on the remaining variables in V, can be obtained as:

ρmn|S =
−ρmn
√

ρmmρnn . (8)

It can be shown that the partial correlation between Sm and Sn, given all the other N − 2 spreads,
is equal to the geometric average between the coefficients in (5):
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|ρmn|S| = |ρnm|S| =
√

cmn|S · cnm|S. (9)

We would like to remark that in the case of only two components (S = ∅), Equation (5) becomes:

TELn = ELn + cnmELm, (10)

from which the standard correlation coefficient ρnm can be derived as the geometric average between
the coefficients in (10):

|ρmn| = |ρnm| =
√

cmn · cnm.

The result reported in (8) allows the estimation of (5) without assuming any dependency structure.
Instead of “directed” regression coefficients obtained through endogenously-imposed causality
constraints, we used “symmetric” partial correlations, able to identify the overall, comprehensive link
between two variables once the effects due to the other variables have been removed. Our model
for the total expected losses can thus be developed by substituting the coefficients cmn|S with their
geometric averages ρmn|S, as in (9):

TELn = ELn + ∑
m 6=n

ρmn|SELm. (11)

From a computational viewpoint, we remark that, consistent with (11), the only unknown
parameter is the correlation matrix between CDS spreads, which can be easily estimated with the
sample correlation matrix R. From an economic viewpoint, we can improve the interpretation of (11)
through an alternative definition of total expected losses analogous to its univariate definition (4),
as follows:

TELn = An · TSn, (12)

where the total spread TSn is defined as TSn = TELn
An

. The following equation can thus be derived:

TSn = Sn + ∑
m 6=n

ρmn|S · Sm ·
Am

An
. (13)

Equation (13) shows that the total spread TSn adds a spillover effect to each bank’s CDS spreads,
which derives from the propagation of the CDS spreads of the other banks through the network:
in our framework, such propagation is conveyed through partial correlation coefficients and relative
asset values.

What has been seen so far can be employed to understand banks’ propensity for a private
intervention, in case a bank is detected as failing or likely to fail. To achieve this aim, each bank should
evaluate the expected losses in a long-term perspective. We can think of a discrete timeline, made
up of a number K of subsequent points in time: T = {t1, ..., tK}. Each bank can evaluate its expected
losses across the whole time horizon, as follows:

TSn = 1− ∏
ti∈T
i≤j

(1− TSti
n,T). (14)

As described in the introductory remarks, the objective of this paper is not limited to
understanding which drivers might incentivize, or not, some banks to participate in the direct
acquisition of a distressed bank; the analysis presented so far can be further extended to understand
which policy action might limit the expected losses for the entire banking sector in case of an adverse
scenario. Let us suppose a banking system is composed by N institutions, each of them characterized
by a CDS risk premium Sn. We can define the total expected losses of the system as the amount the
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entire banking system would lose in case all banks are simultaneously affected by a distress event.
The total expected losses of the system can thus be derived as the product between the net asset value
of the system as a whole and the probability of simultaneous defaults. For simplicity, we will consider
the worst scenario, which consists of a null recovery rate for each financial institution. The total
expected losses of the system described above can be formalized as:

TELsystem =

[
N

∑
n=1

An

]
·
[

Pr

(
N⋂

n=1

Dn

)]
. (15)

Since default events are not independent but, on the contrary, can propagate to each other,
the previous equation can be rewritten in terms of an ordered sequence of conditional probabilities,
as follows:

TELsystem =

[
N

∑
n=1

An

]
·
[

Pr(D1) · Pr(D2|D1) · ... · Pr(DN |D1, D2, ..., D(N−1))
]

. (16)

Under the null recovery rate assumption (we remark that such an assumption makes our results
more conservative), the conditional probabilities in Equation (16) can be calculated as in (13), with the
conditioning set composed by, respectively, 1, 2, ..., (N − 1) institutions. Consistently, the sums in
Equation (13) will become, respectively, ∑n=1, ∑n=1,2, ..., ∑N−1

n=1 . Since the product in (16) depends
on the choice of the order between institutions2, let us introduce the following sets of indexes:
I = {i, l, o, ..., v}, and J = {j, m, p, ..., w}, such that the following ordering conditions hold:{

i ≤ l ≤ o ≤ ... ≤ v;

j ≤ m ≤ p ≤ ... ≤ w.
(17)

Consequently, we will obtain a set of N − 1 ordered couples of indexes:
{(i, j), (l, m), (o, p), ..., (v, w)}. After some calculations, it can be shown that Equation (16) becomes:

TELsystem =

[
N

∑
i=1

Ai

]
·
[

N

∏
i=1

PDN+

+ ∑
i,j

ρij(PDi)
2

(
∏

k 6=i,j
PDk

)
Ai

Aj
+

+ ∑
i,j,l,m

ρijρlmPDi PDl

(
∏

k 6=j,m
PDk

)
Ai Al
Aj Am

+

+ ∑
i,j,l,m,o,p

ρijρlmρopPDi PDl PDo

(
∏

k 6=j,m,p
PDk

)
Ai Al Ao

Aj Am Ap
+

+ ...

+ ∑
i,j,l,m,o,p,...,v,w

(ρijρlmρop...ρvw)(PDi PDl PDo ...PDv)

 ∏
k 6=(j,m,p,...,w)

PDk

 Ai Al Ao ...Av

Aj Am Ap...Aw

 .

(18)

To rewrite the previous equation in a compact form, let us consider the following matrix of indexes:

2 Even if the analysis considered in this study assumes that contagion occurs simultaneously through all the possible channels,
the links through which PDs propagate first, rather than later, have an impact on the overall expected losses of each bank
and of the banking system.
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I =




11 12 13 ... 1N
21 22 23 ... 2N
31 32 33 ... 3N
...

...
...

. . .
...

N1 N2 N3 ... NN

,

where the highlighted part indicates that the coefficients are consistent with the conditions in (17).
Let us call L(I) the lower triangular part of matrix I, L(I[i, 1]) the first column of matrix I, and L(I[1, j])
the first row of matrix I. We can thus define the following indexes:

ω ∈ vec(L(I)),

ω1 ∈ vec(L(I[i, 1]),

ω2 ∈ vec(L(I[1, j]).

(19)

It can be shown that (18) can be rewritten as:

TELsystem =

[
N

∑
i=1

Ai

]
·
[

N

∏
i=1

PDN+

+ ∑
ω,ω1,ω2

(
N(N+1)/2

∏
ω=1

ρω

N

∏
ω1=1

PDω1 ∏
k 6=ω2

PDk

N

∏
ω1,ω2=1

Aω1

Aω2

)]
.

(20)

Equation (20) defines the total expected losses of the entire banking system as the product between
the sum of the net asset values of all the banks and a factor composed by two parts: the first one
represents the product between the default probabilities of banks; the second one adds a further
component deriving from the propagation of default probabilities through the system (and thus
representing the contagion effects).

To improve the interpretation of the previous equation, we can develop the product in (20), thus
obtaining the following:

TELsystem =

[
N

∑
i=1

Ai ·
N

∏
i=1

PDN

]
+

+

[
N

∑
i=1

Ai · ∑
ω,ω1,ω2

(
N(N+1)/2

∏
ω=1

ρω

N

∏
ω1=1

PDω1 ∏
k 6=ω2

PDk

N

∏
ω1,ω2=1

Aω1

Aω2

)]
= TELsystem,1 + TELsystem,2.

(21)

In Equation (21), TELsystem,1 calculates the total expected losses of the system in case of
independent default probabilities. TELsystem,2 adds a further component, which represents the expected
losses of the system due to contagion effects. Consistently, TELsystem,2 becomes equal to zero if all the
partial correlation coefficients are null.

We also remark that TELsystem,2 is composed by a series of sums, where each term corresponds
to a different order of propagation: the first element represents the propagation of a bank PD to its
neighbors n1,..,n; the second element represents the propagation of the PD from the elements n1,..,n to
their neighbors, and so on, until all the possible propagation channels have been explored.

2.2. The Systemic Effects of Bank Resolution

We will measure the systemic effect of bank resolution under the three alternative scenarios
previously specified: (a) a distressed bank in the system is liquidated; (b) a distressed bank avoids
liquidation and resolution via bail-in through a private intervention action, aiming at recapitalizing the
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distressed bank through partial or total acquisitions by other actors in the market; (c) a distressed bank
undergoes resolution through a bail-in process. For each bank, the “best” scenario in our framework
will be the one able to minimize losses.

As discussed in the previous section, each total spread TSn depends on a set of variables:
the individual spread Sn, the spreads of the other banks, the correlation structure between banks,
and the relative asset sizes. To better understand the dependence of TSn on all these variables, we now
design an experimental setting in terms of a stylized model: the advantage of a reduced structure for
the banking sector is the possibility to isolate the effects, measured in terms of banks’ losses, deriving
from each single source of variability in the model.

Consider a simplified system composed of three banks: B1, B2, and B3, with the last one being in
distress, as shown in Figure 1.

B1	 B2	

B3	

ρ12,t 

ρ 23
,t ρ

13,t 

EL1,t = S1t A1t EL2t = S2t A2t 

EL3t = S3t A3t 

Figure 1. Correlation structure, stylized banking system. Notes: simulated correlation structure
between two “safe” banks, B1 and B2, and a “troubled” bank B3, at a certain time t. All banks are
associated with their expected losses, and links between each are based on the partial correlation
coefficients ρmn.

At any time, the three banks have an expected loss (ELn), calculated as the product between their
net assets (An) and their expected loss probability (Sn). In addition, they are all (directly) correlated
with each other through partial correlation coefficients ρmn, which depend on the conditioning set.

To understand whether B1 and B2 will benefit more from the private intervention on B3, rather
than its liquidation or bail-in, we derive the time evolution of the total balance-sheets and spreads
under the three scenarios. For simplicity, we consider three reference discrete times: t0, t1 and t2.
At time t1, three events can occur: (a) B3 is liquidated; (b) B3 is recapitalized by B1 and B2; (c) B3 is
bailed in. At time t2, the banking system will reach a new equilibrium, without (Scenario (a)) or with
(Scenarios (b) and (c)) B3.

2.2.1. Scenario (a): Liquidation

We assume that banks maintain their value in the considered time period: An,t0 = An,t1 = An,t2 .
Moreover, we assume that the two safe banks, B1 and B2, maintain the same spread through time:
S{1,2},t0

= S{1,2},t1
= S{1,2},t2

. The distressed bank B3 follows a different evolution: while its spread at
time t0 is S3,t0 , in the following time period and in the liquidation scenario that B3 defaults, so that
S3

t1
= 1 (assuming RR3 = 0). Finally, at time t2, the distressed bank exits the system.

From a balance-sheet perspective, we assume that B3 suffers severe losses at time t1, which
explain why that bank is considered to be in distress: at the same time, we suppose that the other
two safe banks in the system have not been affected by losses. The rationale behind this setup is that
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we are not interested in understanding what may happen in case of an exogenous systemic crisis,
but rather if systemic consequences might be triggered in case an endogenous distress event affects
one bank. We then assume that at time t2, the liquidation procedure is concluded, and thus, B3 is
not part of the system anymore: from a balance-sheet perspective, this means that its liabilities have
been written down to cover losses. We can reasonably suppose that a portion k of such liabilities3

consists of cross-bank exposures. This implies that the other two banks in the system have lost
a fraction, respectively equal to f1 and f2, of their balance-sheet. These fractions may be fixed by
regulation authorities.

Partial correlation coefficients can be derived from the correlation matrix between the CDS spreads,
along all the available time period. We suppose that the shock that B1 and B2 receive at time t1, due to
the liquidation of B3, depends on the correlations between the two safe banks and the distressed bank
B3 observed at time t0. At time t2, after the liquidation of B3, the banking system is composed by
only two banks, B1 and B2, so that the correlation matrix becomes a 2× 2, rather than a 3× 3, matrix.
A summary of the involved variables can be observed in Table 1.

Table 1. Variables’ time-evolution, liquidation.

t0 t1 t2

Assets
B1 A1 A1 − f1 · k · [A3− equity] A1 − f1 · k · [A3− equity]
B2 A2 A2 − f2 · k · [A3− equity] A2 − f2 · k · [A3− equity]
B3 A3 A3 -

S
B1 S1 S1 S1
B2 S2 S2 S2
B3 S3,t0 S3,t1 = 1 -

Marg.Corr.
B1

Rt0 (3× 3) Rt0 (3× 3) Rt2 (2× 2)B2

B3

Part.Corr.
B1

[(Rt0 )
−1]mn = ρmn|S [(Rt0 )

−1]mn = ρmn|S [(Rt2 )
−1]mn = ρa

mn|S,t2
B2

B3

Notes: Time evolution of the variables that determine the total spreads of the three banks in the system, under
the hypothesis that Bank 3 defaults at time t1 (Scenario (a), liquidation).

We can calculate the total spread of each bank, at each discrete point in time tj, by jointly
computing the variables in Table 1 according to Equation (13). The total spreads can be then aggregated
over time according to Equation (14): the results consist of an overall total spread for each bank,
TSa

n,T , where “overall” indicates the aggregation of the total spread over time and a refers to the
liquidation scenario.

2.2.2. Scenario (b): Private Intervention

When B1 and B2 decide to participate in a private intervention in order to recapitalize B3,
we assume a proportional capital injection, meaning that the amount that the two safe banks have
to use is proportional to their relative size. More precisely, we assume that the distressed bank B3

needs a net asset value equal to X in order to absorb all losses while still meeting minimum regulatory

3 For simplicity, and given that we have no access to bank-by-bank data on covered deposits, we consider the overall amount
of liabilities derived as the difference between the total balance-sheet and equity.
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requirements. The other two banks in the system should inject, respectively, a fraction X1 and X2 of
their net asset values, as follows: {

X1 = X A1
A1+A2

,

X2 = X A2
A1+A2

.
(22)

Consistent with (22), at times t1 and t2, the values of B1 and B2 are reduced by amounts X1 and
X2, while the value of B3 is increased by amount X. As concerns the spreads, we suppose that, as in
the liquidation scenario, B1 and B2 maintain their spread constant over time, and so does B3 until time
t1. However, differently from what happens under the liquidation hypothesis, B3 does not default so
that, at time t2, S3,t2 6= 1. After a bank has been recapitalized, its spread at time t2 is very likely to be
smaller than before, as it is reasonable to imagine that a highly capitalized bank has gained market
confidence; since we prefer being conservative, we assume that the worst scenario applies, so that
S3,t2 = S3,t1 = S3,t0 .

Partial correlations can be derived as in the liquidation scenario, the only difference being that
now, at time t2, the correlation matrix is a 3× 3 matrix since B3 remains part of the banking system
through time. A summary of the involved variables is reported in Table 2.

Table 2. Variables’ time-evolution, private intervention.

t0 t1 t2

Assets
B1 A1 A1(1− X

A1+A2
) A1(1− X

A1+A2
)

B2 A2 A2(1− X
A1+A2

) A2(1− X
A1+A2

)

B3 A3 A3 + X A3 + X

S
B1 S1 S1 S1
B2 S2 S2 S2
B3 S3,t0 S3,t0 S3,t2

Marg. Corr.
B1

Rt0 (3× 3) Rt0 (3× 3) Rt0 (3× 3)B2

B3

Part. Corr.
B1

[(Rt0 )
−1]mn = ρmn|S [(Rt0 )

−1]mn = ρmn|S [(Rt0 )
−1]mn = ρmn|SB2

B3

Notes: Time evolution of the variables used for estimating the total spreads of the three banks in the system,
under the assumption that Bank 3 is recapitalized by the other two through a private intervention at time t1
(Scenario (b), private intervention).

We can calculate the total spread of each bank, at each discrete point in time tj, by jointly
computing the variables in Table 2 according to Equation (13). As in the liquidation scenario, the total
spreads can be finally aggregated over time according to Equation (14): the results consist of an overall
total spread for each bank, TSb

n,T , where “overall” indicates the aggregation of the total spread over
time and b refers to the private intervention scenario. These outcomes can then be compared with TSa

n,T .

2.2.3. Scenario (c): Bail-In

As described in the introductory section, the bail-in tool considers the writing down and/or
conversion of some liabilities according to a hierarchy structure strictly determined by the regulatory
authority. According to the current regulation, in case of a distress event, the first action should consist
of writing down a portion of going-concern capital, mainly expressed in terms of Common Equity Tier 1
(CET 1), to absorb losses: in line with the guiding principles of the BRRD and the SRMR, this response
guarantees that shareholders bear the first burden. Since distressed banks have not only to cover all
losses, but also to meet minimum regulatory requirements in order to avoid sanctions or restrictions,
the second possible action, if needed, would consist of converting additional going-concern (Additional
Tier 1) or gone-concern (Tier 2) capital into CET 1: this could serve both the loss-absorbing and the
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recapitalization functions. In case both gone-concern and going-concern capital are not sufficient
to cover all losses while still ensuring regulatory requirements are not breached, and in case any
other private action is excluded, the bail-in tool can be adopted, if and only if the SRB decides it is
necessary in the public interest. Under this hypothesis, the competent or the resolution authorities
would prescribe the reduction or conversion of senior debt (that we will call bail-in-able liabilities)
into equity, with the objective to absorb potentially residual losses, to recapitalize the institution and
reinstate market confidence. The current regulation also establishes the pari passu principle, according
to which the bail-in should guarantee the equal treatment of creditors while still following the statutory
rank of claims that would apply under the relevant insolvency law. On the other hand, the resolution
authority has also the power to exclude some liabilities from bail-in for financial stability reasons.

Given the pari passu constraint and the fact that the possible exclusion of some liabilities from
the bail-in process is ex-ante unknown, we ignore this latter opportunity, and we divide the banks’
balance-sheet on the funding side into three categories: regulatory capital, bail-in-able liabilities, and
covered liabilities. In addition, we will not consider the possible intervention of the Single Resolution
Fund, for two main reasons: first of all, because the SRF has not been fully built yet;4 second, because
the inclusion of the SRF intervention can imply the payment of ex-post contributions by the other
banks in the system in order to replenish the SRF, thus creating further contagion effects that we are
not able to model since we have no data on ex-ante and (consequently) ex-post contributions. We also
remark that, according to the CRR, CRD, and the EBAGuidelines, the failing or likely-to-fail point
can be reached if a bank infringes the requirements on its capital position, on its liquidity position,
or any other requirements for continuing authorization. The capital position of a bank is determined
by Pillar 1 and Pillar 2 requirements,5 with the former one consisting of (a) a minimum requirement
on CET 1 equal to 4.5%RWA (Risk Weighted Assets), (b) a minimum requirement on Tier 1 (T1) equal
to 6%RWA, and (c) a minimum requirement on total capital (equal to T1 + AT2 (Additional Tier 2))
equal to 8%RWA. Given the fact that banks can convert T1 and AT2 into CET 1 while keeping the same
level of total capital constant, we will focus only on the 8%RWA requirement on total capital.

Under the above-mentioned assumptions, we thus suppose that the liability side of banks’
balance-sheet is stressed by severe losses: the bail-in tool starts via the conversion of capital instruments
into CET 1. If this is not enough to guarantee that all losses have been absorbed by banks without
breaching the minimum requirements, we proceed with the conversion of bail-in-able liabilities,
in the amount strictly necessary to meet the conditions on loss-absorbency and capital requirements.
As previously underlined, beside market-driven contagion (through CDS price dynamics), the bail-in
tool introduces a form of balance-sheet-driven contagion: a portion k of the bailed-in liabilities, in fact,
consists of cross-bank exposures.6 This means that each bank j in the system that is a creditor of
the bailed-in bank i would loose a portion f j of the fraction k of the bailed-in resources of bank i.
The balance-sheet-structure of the safe and bailed-in banks are specified in Table 3, where we indicate
with A3 the total balance-sheet of the distressed bank after it has been affected by losses.

We remark that, in this scenario, the total amount of assets (or liabilities) is not preserved over
time, as a result of bailed-in instruments and cross-bank exposures. In particular, at time t0, we obtain:

TAt0 =
N−1

∑
j=1

Aj,t0 + Ai,t0 , (23)

4 The Single Resolution Fund (SRF) is financed by banks through the payment of ex-post contributions, and it is supposed
to reach the steady state in 2024. The target size in the steady state will be equal to 1% of covered deposits at the banking
union level, which corresponds to approximately EUR 55 billion. In addition to the SRF, the current study ignores also the
role of the SRF backstop, whose target size and building steps are still under discussion at the European level.

5 In line with the current interpretation of the regulations, we assume that a breach of the capital buffer requirements does not
trigger the failing or likely-to-fail point.

6 Under our approximation, we do not consider the fact that, as prescribed by the BRRD, cross-bank exposures with maturity
of less than seven days are excluded from bail-in.
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while, by aggregating the total balance-sheet of banks at time t1, we can derive the following:

TAt1 =
N−1

∑
j=1

Aj,t1 + Ai,t1 =
N−1

∑
j=1

[Aj,t0 − f j · k · Bail-in] = TAt0 − k · Bail-in. (24)

This result is substantially different from what has been modeled in the private intervention
scenario: in this latter case, in fact, we model the precautionary recapitalization of the distressed bank,
thus preventing (a) capital from shrinking and (b) bail-in from being triggered. As a consequence,
the total balance-sheet of the distressed bank is not affected, and cross-bank exposures remain
untouched, thus preventing also the balance-sheet of the other banks in the system from being reduced.

Table 3. Variables’ time-evolution, bail-in.

t0 t1 t2

Assets
B1 A1 A1 − f1 · k· Bail-in3 A1 − f1 · k· Bail-in3
B2 A2 A2 − f2 · k· Bail-in3 A2 − f2 · k· Bail-in3
B3 A3 A3− Bail-in3 A3− Bail-in3

S
B1 S1 S1 S1
B2 S2 S2 S2
B3 S3 S3 S3

Marg. Corr.
B1

Rt0 (3× 3) Rt0 (3× 3) Rt0 (3× 3)B2

B3

Part. Corr.
B1

[(Rt0 )
−1]mn = ρmn|S [(Rt0 )

−1]mn = ρmn|S [(Rt0 )
−1]mn = ρmn|SB2

B3

Notes: Time evolution of the variables used for estimating the total spreads of the three banks in the system,
under the assumption that Bank 3 is subject to resolution (conversion of bail-in-able liabilities) at time t1
(Scenario (c), bail-in).

3. Application

3.1. The Banks’ Perspective

In this subsection, the objective is to understand which scenario minimizes each bank’s potential
losses in case one bank in the system is under distress. We thus compare the total expected losses under
two alternatives: (a) liquidation and (b) private intervention. We exclude the bail-in option in this part
as, under Scenario (c), the troubled bank would keep being part of the banking system: by assuming
that, in a system of only three banks, the contagion component deriving from cross-bank exposures is
negligible, the bail-in scenario can be assimilated, from a single bank’s perspective, to Scenario (b).

The total expected losses of the three banks, aggregated over the entire time horizon and referring
to the Scenarios (a) and (b) described above, can be summarized as follows:

TSa
n 6=3,T = 1− (1− TSa

n,t0
) · (1− TSa

n,t1
) · (1− TSa

n,t2
),

TSa
3,T = 1,

TSb
n,T = 1− (1− TSb

n,t0
) · (1− TSb

n,t1
) · (1− TSb

n,t2
).

(25)

To decide whether their participation in a private intervention to rescue B3 would decrease
their potential losses, the banks B1 and B2 should evaluate the difference between TSa

T and TSb
T .

If TSa
n,T − TSb

n,T > 0, a capital injection towards B3 would decrease their expected losses with respect
to the liquidation scenario. Conversely, if TSa

n,T − TSb
n,T < 0, the liquidation of B3 would decrease

their expected losses. The direct consequence is that each bank can decide whether to join a private
recapitalization plan or not, according to which one of the two scenarios minimize its potential losses.
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To better understand the determinants of the choice, we set up an experimental setup, as follows.
We assume that, among the three banks in the system, two banks are much larger than the

third one, their sizes being A1 = 40, A2 = 20, and A3 = 4 (billion Euros). To account for the
largest range of variability, we randomly sample the partial correlation coefficients between the
three banks from a continuous distribution, which allows us to include all the possible correlation
values between zero and one, while also ensuring that all the possible combinations between the
three coefficients can be explored. Without loss of generality, we select the Gaussian distribution
ρmn ∼ N (µρmn , σ2

ρmn), centered in µρ12 = µρ13 = µρ23 and with unit variances. Similarly, and for the
same reasons explained before, we sample the CDS spreads of B1 and B2 from a Gaussian distribution,
Sn ∼ N (µSn , σ2

Sn
), with unit variances, but centered in four alternative mean values for the two safe

banks: µS1 , µS2 = 0.01, 0.03, 0.05, 0.07. While the CDS spreads of B1 and B2 remain constant over time,
the CDS spreads of B3 change, as follows:

S3,tj ∼ N (µS3,tj
, σ2

S3
),

µS3,{t0,t1}
= 0.10,

µS3,t2
∼ U ([0, 0.10]),

(26)

with a unit variance. We remind that, under the liquidation scenario, B3 disappears from the system at
time t2, meaning that, in this case, the last equation in (26) does not apply.

In each simulation run (10,000 simulations for each bank), we have thus sampled, from the
previously-specified distributions and for each bank, two values for the two partial correlation
coefficients and one value for the CDS spread, resulting in 10,000 simulated total spreads for each bank.
The mean values of these differences, TSa

n,T − TSb
n,T , have been computed, and the corresponding

results are shown in Figure 2. Our results, that we do not report due to the lack of space, show that the
simulations’ results converge well before 10,000 simulations.
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Figure 2. Changes in TS’s as functions of S3,t2 , stylized banking system. Notes: Monte Carlo simulated
differences between the total spreads in case of liquidation (Scenario (a)) and private intervention
(Scenario (b)) for Bank 1 (left) and Bank 2 (right), plotted as functions of µS3,t2

. The safer and the smaller
the bank, the safer the banks in case of a private intervention; this effect, however, becomes weaker as
the spread S3,t2 increases in case of private intervention.

The results plotted in Figure 2 can be summarized as follows. First, in case of positive correlations,
the private intervention scenario always minimizes the potential losses of the two safe banks. Second,
the comparison between the two graphs shows that such an effect is stronger for the smaller bank B2.
Third, both graphs represent four lines according to four different values of the distributions’ average
µS1,2 , thus revealing that the safer a bank is, the greater the reduction in its potential losses when it
joins a private intervention.

The previous simulations have been obtained with a fixed mean correlation value µρmn .
However, this assumption can be too simplistic, especially in the liquidation scenario: as revealed
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by extensive literature, in fact, when a bank is failing or when the banking system is facing a crisis
period, correlations between financial institutions increase in number and strength. To analyze this
more realistic scenario, we have uniformly sampled also the distribution parameter µρmn , as follows:{

ρmn ∼ N (µρmn , σ2
ρmn),

µρmn ∼ U ([−1, 1]),
(27)

The resulting differences in TS, considered as functions of the sampled correlations and of the
spreads of the safe banks (with µS3,t2

= 0.10), are shown in Figure 3.
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Figure 3. Changes in TS’s as functions of partial correlations, stylized banking system. Notes: Monte
Carlo simulated differences between the total spreads in case of liquidation (Scenario (a)) and private
intervention (Scenario (b)) for Bank 1 (left) and Bank 2 (right), plotted as functions of µρ13 (top-left),
µρ23 (top-right), and µρ12 (bottom). The stronger the correlation with the troubled bank, the safer the
banks in the case of private intervention; for the small bank (Bank 2), however, this effect is a decreasing
function of the partial correlation coefficient with the other safe bank.

Figure 3 represents the decrease in the banks’ potential losses in case they recapitalize B3 (private
intervention scenario), as a function of the correlations between B1 and B3 (top-left), between B2 and B3

(top-right), and between the two safe banks B1 and B2 (bottom-left referring to B1, bottom-right
referring to B2). The two top graphs show that the smaller the safe bank is, the stronger the
dependence of expected losses on correlations. Second, in the case of positive correlations with
B3, the recapitalization scenario minimizes the potential losses; such a benefit is even stronger for
smaller and safer banks. In case of negative correlations, the results are opposite: the liquidation
scenario minimizes the potential losses, and the strength of such a result increases with the dimension
of the safe bank.

The two bottom graphs show the impact of the correlation between the two safe banks B1 and B2

on the potential losses. The graph reveals that this impact is negligible for large banks (such as B1),
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while it can be significant, even if low, for small banks: the weaker the correlation between B1 and B2,
the bigger the loss reduction in the case of the private intervention scenario.

To summarize, by jointly reading Figures 2 and 3, the results show that B1 and B2 overall reduce
their potential losses in case they join a private intervention with respect to the liquidation scenario:
this is not only true in the case of negative partial correlations between the safe banks. In addition,
the reduction in their potential losses in case of a private intervention is (a) a decreasing function of
the default probabilities of the safe banks, (b) a decreasing function of the dimension of the safe banks
in the system, and (c) an increasing function of the correlation coefficients between the safe banks and
the troubled institution.

3.2. The System Perspective

We now consider the Italian banking system. The rationale for this choice consists of the fact that
Italian banks, even if strongly impacted by the global financial crisis and the subsequent European
debt crisis, had not been subject to heavy public bail-out interventions before the BRRD came into
place. On the other hand, a number of Italian banks have been found to be greatly undermined and
considered as failing or likely to fail in the recent time period.

Our analysis is focused on the seven banks for which CDS data are available and reliable (source:
Markit): Banca Popolare di Milano (BPM), Banco Popolare (BAPO), Intesa San Paolo (ISP), Mediobanca
(MB), Monte dei Paschi di Siena (MPS), Unicredit (UCG), Unione Banche Italiane (UBI). We have
considered daily frequencies for the period January–September 2016, since January 2016 corresponds
to the concrete entry into play of the bail-in regulation. The summary statistics of CDS spreads are
reported in Table 4. On the balance-sheet side, we have computed the banks’ net asset values by using
the book values referring to 31 of December 2015 (source: Bureau Van Diyk Orbis Bank Focus): they
are reported in Table 5.

Table 4. CDS spreads.

Bank µ (%) Max (%) Min (%) σ (·10−2)

MPS 7.321 8.836 3.714 1.429
BPM 3.318 4.043 2.168 0.456

BAPO 3.771 4.871 2.608 0.484
MB 2.250 3.081 1.601 0.351

UCG 1.430 1.584 1.292 0.097
UBI 2.915 3.417 2.067 0.354
ISP 1.693 2.395 1.168 0.291

Notes: CDS spreads referring to seven Italian banks (MPS = Monte dei Paschi di Siena; BPM = Banca
Popolare di Milano; BAPO = Banco Popolare; MB = Mediobanca; UCG = Unicredit; UBI = Unione Banche
Italiane; ISP = Intesa San Paolo). The most troubled bank is MPS, with the highest mean value and volatility.
The biggest banks (UCG and ISP) have the lowest and least volatile values.

Table 5. Net asset values.

Bank Net Asset Value

MPS 9.58
BPM 4.44

BAPO 6.92
MB 8.08

UCG 48.00
UBI 7.63
ISP 41.06

Notes: Net asset values referring to eight Italian banks (expressed in billion Euros).

Tables 4 and 5 show that Monte dei Paschi di Siena (MPS) has the highest CDS spreads and the
highest volatility within our sample. On the contrary, the two largest Italian banks (Unicredit and Intesa
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San Paolo) have the lowest CDS spreads, meaning they can highly rely on market confidence. Since
MPS has the highest CDS spreads (with reference to our sample only), we assume it is the distressed
bank in our system: this hypothesis is also in line with the recent facts, as MPS has been exceptionally
recapitalized through public money in 2017, after intense discussions on whether a private intervention,
liquidation, or bail-in should be considered.

The computation of partial correlations relies on the time series of the expected losses of each bank,
as derived in Equation (2). The resulting partial correlation networks are reported in Figures 4 and 5:
in the first figure, the size of each node is proportional to the average CDS spread of the corresponding
bank, so to emphasize the importance of each financial institution in terms of its risk; in the second
figure, the size of each node is proportional to the amount of total assets of the corresponding bank,
so to emphasize the importance of each financial institution in terms of its relative dimension.

Figures 4 and 5 reveal that the two largest banks are not strongly connected to each other, as well
as they are not the most central institutions, both in terms of number of connections and correlation
magnitudes. On the contrary, medium-sized banks, among which is the distressed bank MPS, are
more interconnected.

Similarly to what has been described in the previous section, we can compute the total expected
losses of each bank under alternative simulated values of CDS spreads and partial correlations,
the difference being that now, we focus on all three scenarios and we adopt the system perspective.
More precisely, we assume that: 

Sn,tj ∼ N (µSn,tj
, σ2

Sn
),

µSMPS,t2
∼ U ([0, 0.20]),

ρmn ∼ N (µρmn , σ2
ρmn),

(28)

where the means µSn,tj
for n 6= MPS are fixed and based on the average CDS spreads.

Similarly, µSMPS,{t0,t1}
are fixed and based on the CDS spreads in the first two periods, whereas in

the last time period t2, we extract the mean of the spread distribution referring to MPS from a uniform
distribution. This choice allows the total spread of the other banks to depend on the increase or
decrease of the MPS spreads in the case of private intervention or bail-in.

The previous equation reports the simulation setting for the market-based measures; however,
we want to introduce a further degree of variability, which depends on balance-sheet items.
Consistent with the methodology, in fact, we impose the following sampling distributions:{

Lossesn,t0 ∼ U ([0, Bail-inn,t0 ]),

Equityn,t0
∼ Equityn,t0−1 − Lossesn,t0 ,

(29)

meaning that the equity structure of each bank at time t0 is calculated through a shock in its initial
values, due to potential losses that might affect the liabilities’ composition. The fractions fi (see
Equation (24)) are proxied as the normalized values of partial correlations, while the parameter k is
firstly chosen to be equal to 0.05 (meaning that 5% of the bailed-in liabilities consist of cross-bank
exposures), but we will later let it vary between 0.01 and 0.50 for robustness purposes.

We remark that the distributional setting described so far does not exhaust all the possible
contagion channels. We remark, in fact, that we model contagion as a cascade effect: this means that
we start by shocking one node in the network, which corresponds to the bank identified as failing
or likely-to-fail, and we then propagate the potential losses to the other nodes. As a consequence,
this mechanism strictly depends on the propagation order we follow: to take this factor into account,
we add a Monte Carlo simulation setting able to randomly select all the possible nodes’ permutations.

Finally, for each scenario and time period (t0, t1, t2), we obtain a distribution of the potential losses
for the banking system, built as a function of the different simulated values of the input variables
and of the cascade permutations described above. The first results are shown in Figure 6: the top graph
refers to t0, the middle one to t1, and the bottom chart to t2; each graph shows the comparison between
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the distributions obtained in case of liquidation (red line), private intervention (green line), and bail-in
(blue line).

MPS

BPM

BAPO
MB

UCG

UBI
ISP

Figure 4. Partial correlation network, Italian banking system, function of CDS spreads. Notes: Partial
correlation network between seven Italian banks, based on partial correlations between expected losses.
The size of each node in the network is proportional to the average CDS spreads of the corresponding
bank. Green lines indicate positive partial correlations, while red lines stand for negative partial
correlations. The thicker the line, the stronger the connection. Non-significant partial correlations have
been omitted.

MPS

BPM

BAPO

MB

UCG

UBI

ISP

Figure 5. Partial correlation network, Italian banking system, function of assets. Notes: Partial
correlation network between seven Italian banks, based on partial correlations between expected losses.
The size of each node in the network is proportional to the amount of total assets of the corresponding
bank. Green lines indicate positive partial correlations, while red lines stand for negative partial
correlations. The thicker the line, the stronger the connection. Non-significant partial correlations have
been omitted.
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Figure 6. Total expected losses of the system when MPS is in trouble. Notes: Monte Carlo simulated
distributions of the expected losses of the entire banking system in case Monte dei Paschi di Siena is
close to its default point, calculated at time t0 (top), t1 (middle), and t2 (bottom). Red lines represent
the liquidation scenario; blue lines represent the private intervention action; while green lines stand for
the bail-in scenario. Expected losses are much lower for Scenarios (b) and (c) at time t1, since the shock
produced by the liquidation of a big bank strongly increases contagion effects. On the contrary, at time
t2, the liquidation option reduces financial instability, since the persistence of the troubled bank in the
network in case of bail-in or private intervention increases the expected losses of the system.
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The results in Figure 6 clearly show that the liquidation scenario strongly increases the expected
losses of the system at time t1 with respect to the private recapitalization or the bail-in resolution.
The situation, however, appears almost reversed at time t2: after the resolution decision, in fact,
the liquidation hypothesis minimizes the potential losses for the banking system, since the exiting of
the distressed institution from the network reduces the probability of adverse contagion effects across
the system. The bail-in resolution tool, in addition, seems to restore the banking system better with
respect to the private intervention scenario: this result is driven by the limited amount of cross-bank
liabilities, as well as weaker post-resolution connections between the safe banks and the distressed bank
(we remark that, by construction, the private recapitalization of the distressed institution, differently
from resolution via bail-in, adds a further layer of connection among financial institutions).

Figure 7 aggregates the previous results over time and compares the overall potential losses under
the three alternative scenarios.
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Figure 7. Total expected losses of the system when MPS is in trouble, aggregated over time.
Notes: Monte Carlo simulated distributions of the expected losses of the entire banking system in case
Monte dei Paschi di Siena is close to its default point, aggregated over time. Red lines represent the
liquidation scenario; blue lines represent the private intervention action; while green lines stand for
the bail-in scenario. Overall, the liquidation action seems to increase the expected losses of the entire
banking system strongly; the private intervention and the bail-in tool, on the contrary, reduce financial
instability and the sources of risk for the banking system.

The results in Figure 7 reveal that the potential losses for the banking system are minimized under
the hypothesis of a private recapitalization or a bail-in resolution. As previously underlined, we remind
that this result is also due to the relatively large size of MPS, which makes the shock produced in
case of liquidation at time t1 strongly negative in terms of loss propagation, thus prevailing over
the beneficial effects liquidation would provide at time t2. On the other hand, and also confirming
our expectations, the bail-in resolution slightly reduces contagion effects with respect to the private
intervention scenario.

For robustness purposes, we also analyze how much the potential losses for the banking system
would change according to different levels of idiosyncratic risk at time t2: to this aim, we replicate the
simulations by using different values of the CDS spreads of MPS at time t2. These results are reported
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in Figure 8, and they refer, respectively, to the private intervention (top graph) and the bail-in (bottom
graph) scenario.
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Figure 8. Total expected losses of the system when MPS is in trouble as a function of SMPS,t2 : private
intervention scenario and bail-in resolution. Notes: Monte Carlo simulated distributions of the expected
losses of the entire banking system in case Monte dei Paschi di Siena is close to its default point,
calculated at time t2 as functions of SMPS,t2 in the context of a private intervention (top) or the bail-in
resolution (bottom). The red line represents the hypothesis SMPS,t2 = SMPS,t1 ; the green line represents
the hypothesis SMPS,t2 = 0.5 · SMPS,t1 ; the blue line represents the hypothesis SMPS,t2 = 2 · SMPS,t1 .
The bigger the default probability of MPS after the bail-in resolution, the bigger the expected losses for
the entire banking system after the resolution action taken at time t1.
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In line with our expectation, Figure 8 reveals that, under both scenarios, the bigger the default
probability of MPS at time t2, the bigger the potential losses for the entire banking system at time t2.
In other words, when the distressed bank does not recover after the resolution decision by gaining
market confidence (in our exercise modeled through an increase in its probability of default after the
bail-in or private intervention decision), the potential losses of the entire system increase.

Finally, and again for robustness purposes, we can run a sensitivity analysis in order to understand
to what extent the factor k affects the above-described results. Figure 9 reports the Monte Carlo
simulated distributions of the potential system losses obtained under the bail-in scenario: each
distribution corresponds to a different value of the parameter k, ranging from 1–50%.
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Figure 9. Sensitivity analysis as a function of the parameter k. Notes: Monte Carlo simulated
distributions of the expected losses of the entire banking system in case Monte dei Paschi di Siena is
close to its default point, calculated as a function of the bail-in parameter k at time t1 within the bail-in
context. Even a strong change in the interbank exposures factor does not radically change the results,
which thus appear to be robust with respect to our proposed methodology.

Figure 9 shows that our results seem robust with respect to the choice of k: this robustness test
also confirms that the bail-in tool, even if applied to all the bail-in-able liabilities of a distressed bank,
would not produce substantial contagion effects triggered by cross-bank exposures.

To summarize, our empirical findings show that, from the system viewpoint, the best resolution
decision on MPS would have been the resolution via bail-in, since it would have reduced the contagion
effects via market-based or balance-sheet-based dynamics, thus limiting potential systemic risk effects.
We remark, however, that our research considers the banking sector as a closed system and does
not model the impact of distress events occurring in the banking sector in terms of macroeconomic
consequences or indirect effects on tax payers (as shown for example in Beck et al. (2017)).
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4. Conclusions and Policy Implications

We contribute to the financial econometric literature concerned with the measurement of systemic
risk, by means of a novel correlation network model based on corporate default swap spreads,
which improves their predictive accuracy. The model adds to the observed CDS spread a contagion
component that is estimated through the observed correlation matrix between spreads, and it exploits
the properties of partial correlation coefficients.

We also contribute to the central banking literature concerned with the resolution of financial
institutions in light of the newly-adopted bail-in framework. We combine market-based measures,
partial correlation networks and balance-sheet analyses to simulate the effects of different resolution
plans, and to understand their consequences in terms of systemic risk. Our model derives the potential
losses that could affect banks as a consequence of a financial institution identified as failing or likely
to fail. Such losses are calculated under three alternative scenarios (liquidation, private intervention,
and bail-in) and according to two perspectives (the bank’s and the system’s perspective). This allows
the identification of the best resolution practice in terms of a loss minimization problem that, in our
view, would reflect potential financial stability risks. As a consequence of a simulated distress event,
our model is able to identify (a) which banks would minimize their potential losses in case they join
a private intervention aiming at recapitalizing a failing or likely-to-fail bank and (b) which resolution
plan would minimize the potential losses for the entire banking system.

From a single bank’s perspective, our empirical findings reveal that the recapitalization of
a distressed financial institution via a private intervention always minimizes the potential losses for the
other banks in the system, apart from the case of negative partial correlations. Furthermore, we found
that the advantages of a private recapitalization are (a) a decreasing function of the default probabilities
of the other (non-distressed) banks, (b) a decreasing function of the sizes of the other banks,
and (c) an increasing function of the correlations between the safe banks and the distressed bank.

From the system perspective, a private intervention and a bail-in resolution would always reduce
the potential losses of the banking sector with respect to the liquidation alternative. In addition,
the bail-in resolution would slightly reduce the contagion effects with respect to the private
recapitalization of the distressed banks. The outcomes of our analysis also show that in case the
distressed bank does not recover after having been bailed-in or recapitalized (which is reflected by
an increase in its default probability), the expected losses of the entire system increase: such increase is
stronger in the private intervention scenario.

We believe that the methodology developed in this paper and the corresponding findings could be
helpful guidelines in the context of a crisis event: for individual financial institutions, to decide whether to
recapitalize privately a failing or likely-to-fail bank; and for resolution authorities, to have an additional
tool to understand which resolution actions could be undertaken to preserve financial stability.

In terms of caveats, we are aware we have limited the scope of our analysis to a closed
banking system, thus excluding the macroeconomic impacts (and loop-effects) of the above-described
intervention scenarios. We recognize this assumption is strong and not too close to what would happen
in a real crisis scenario: but we also believe that the joint modeling of financial and macroeconomic
effects would require the involvement of too many factors and a long-term perspective, which would
make the analysis either not feasible or not reliable in the long-run. We are also aware that we have
performed a static, rather than a dynamic, analysis, although the latter may be difficult, in a network
model context: in our view, a dynamic analysis would require an accurate estimation of after-crisis
banks’ profitability, investors’ reliance, and managerial skills: this might be the objective of future
research. A dynamical analysis may also consider whether multi-year CDS contracts modify the results.

We also remark that our contagion model is not based on distributional assumptions, and we
recognize we could extend this paper in such a direction so to also derive confidence intervals for our
results. Since a multivariate model for CDS spreads cannot be based on the Gaussian assumption,
such improvement would require on to model interdependencies differently, for example by means of
a Gaussian copula model or a skew copula model to account for asymmetric relationships.
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