
risks

Article

Asymptotically Normal Estimators of the Ruin
Probability for Lévy Insurance Surplus from
Discrete Samples

Yasutaka Shimizu 1,* and Zhimin Zhang 2

1 Department of Applied Mathematics, Waseda University, Shinjuku City, Tokyo 169-8555, Japan
2 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China;

zmzhang@cqu.edu.cn
* Correspondence: shimizu@waseda.jp

Received: 11 March 2019; Accepted: 29 March 2019; Published: 3 April 2019

Abstract: A statistical inference for ruin probability from a certain discrete sample of the surplus is
discussed under a spectrally negative Lévy insurance risk. We consider the Laguerre series expansion
of ruin probability, and provide an estimator for any of its partial sums by computing the coefficients
of the expansion. We show that the proposed estimator is asymptotically normal and consistent
with the optimal rate of convergence and estimable asymptotic variance. This estimator enables
not only a point estimation of ruin probability but also an approximated interval estimation and
testing hypothesis.

Keywords: ruin probability; spectrally negative Lévy process; Laguerre polynomial; discrete
observations; asymptotic normality

MSC: 62M86; 91B30; 60G44

1. Introduction

Ruin probability has been one of the central topics for long time in insurance mathematics since
the paper by Lundberg (1903), where a compound Poisson type surplus was supposed. After him,
various stochastic surplus models have been considered, and we found that Lévy processes seem to be
good candidates for insurance surplus models from several aspects: (1) computational convinience;
(2) compatibility with financial theories and dynamical risk managements; (3) statistical prediction
of the future surplus. On the aspect (1): Lévy process has properties of independent and stationary
increments, and it derives many beautiful mathematical formulae for ruin probability and other
ruin-related quantities via the fluctuation theory of Lévy processes; see Huzak et al. (2004), Feng and
Shimizu (2013), and Kyprianou (2014), among others. On (2), Trufin et al. (2011), Shimizu and Tanaka
(2018) proposed dynamic risk measures based on ruin probability and its related quantities, which are
useful not only in insurance but also financial mathematics. See also Schoutens and Cariboni (2009) for
relations to credit risk modeling. In this paper, we focus on the aspect (3), which is the most important
step to make the ruin theory applicable in practice.

1.1. Ruin Probability Under Lévy Surplus

On a stochastic basis (Ω,F , (Ft)t≥0,P) with usual conditions, let X = (Xt)t≥0 be an (Ft)-Lévy
process of the form

Xt = ct + σWt − Lt,
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where c > 0 and σ ∈ R are constants, W is an (Ft)-Wiener process, and L is a spectrally positive
(Ft)-Lévy process with the Lévy measure ν. We assume that the Laplace exponent of L, say, ψL(u) :=
t−1 logE[e−uLt ], is given by

ψL(u) =
∫ ∞

0
(1− e−uz) ν(dz) < ∞.

This implies that ν satisfies the condition

∫ 1

0
z ν(dz) < ∞. (1)

Assume that −X is a risk process of an insurance company, where the constant c > 0 corresponds
to the premium rate and L− σW corresponds to the randomness in insurance business—aggregate
claims, frequent costs, and uncertainties of premium income, for example. If

∫ ∞
0 ν(dz) < ∞, then L is a

compound Poisson process that corresponds to the aggregate claims process only. If
∫ ∞

0 ν(dz) = ∞, then
the process L has many infinitely small jumps in any finite time interval. In such a case, “large” jumps
of L are interpreted as “large” claims, and the small jumps are approximations of other uncertainties of
costs and some other businesses as well as “small” claims that frequently occur. Therefore, it would be
natural to assume that c > 0 is known and the constant σ and the Lévy measure ν are unknown.

When the company has the initial surplus x ≥ 0, the ruin probability is given by

φ(x) = P(x + Xt < 0 for some t > 0), x ≥ 0. (2)

The properties of the function φ is studied in Huzak et al. (2004) in detail under general Lévy
insurance risks. See also Biffis and Morales (2010) for more general Gerber-Shiu functions. As is well
known regarding the property of Lévy processes, the ruin probability satisfies φ(x) < 1 if and only if
the following net profit condition holds true:

E[X1] = c−
∫ ∞

0
z ν(dz) > 0. (3)

Otherwise, φ(x) ≡ 1; see, e.g., Kyprianou (2014), Theorem 7.2.
Under the conditions (1) and (3), the function φ satisfies a defective renewal equation (DRE) as

given in Proposition 1, which easily leads to important results of φ, such as the Laplace transform,
the Pollaczeck-Khinchine formula, and the Cramér-type approximation such as x → ∞, among others.
In this paper, the DRE is essential for the construction of a statistical estimator of φ later. With a DRE
approach for φ, the conditions (1) and (3) are necessary, and cannot be relaxed; see Remark 1. Hence,
these conditions are assumed throughout the paper, even where not specifically mentioned.

1.2. Earlier Works on Estimating Ruin Probability

The ruin probability φ depends on some unknowns: σ and functionals of ν. This motivates
actuarial researchers to estimate φ from past surplus data over a long time interval [0, Tn], where
Tn → ∞ as n→ ∞.

Recently, many authors have made contributions to statistical estimation of ruin-related quantities
under not only classical compound Poisson risks but also Lévy insurance risks. Shimizu (2011), in the
first statistical work on ruin-related quantities under a Lévy process with infinite activity jumps, uses a
“regularized” Laplace inversion of an empirical estimator of the Laplace transform of the Gerber-Shiu
function. The idea of estimation by regularized inversion is credited to Mnatsakanov et al. (2008), who
considered a classical risk model for the estimation of φ. The proposed estimators are consistent in
the sense of the mean integrated squared error with the rate of convergence

√
log Tn. However, this

rate is slower than the expected ideal rate
√

Tn in this context, and a finite sample performance gets
worse; see Zhang (2016) for some numerical experiments. This is due to the “regularized” Laplace
inversion, where some tuning parameter is needed to avoid the ill-posed problem of Laplace inversion;
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see Carroll et al. (1991) and Chauveau et al. (1994) for details. See also Shimizu (2012). To overcome
this problem, Zhang and Yang (2013) consider the Fourier inversion of an empirical Fourier transform
of the ruin probability. Thanks to the one-to-one properties of Fourier transform in L2(R)-space, their
estimators can realize a better rate of convergence Ta/(2a+1)

n for some a > 0. Moreover, the Fast-Fourier
Transform (FFT) algorithm allows easy computation of their estimators. See also Shimizu and Zhang
(2017) for estimation of the Gerber-Shiu function, where the rate

√
Tn/ log Tn is realized.

A most recent paper by Zhang and Su (2017) introduces a new idea of estimating the ruin
probability φ (they actually deal with the Gerber-Shiu function) under a compound Poisson risk model.
They estimate the partial sum φK(x) = ∑K

k=0 Pkζk(x) considering the Laguerre L2(R+)-expansion of the
ruin probability for x ≥ 0,

φ(x) = ∑
k≥0

Pkζk(x), Pk =
∫ ∞

0
φ(z)ζk(z)dz,

where ζk is the kth-order Laguerre function, provided later in (10). They evaluate the L2(R+)-error
of an empirical estimator of Pk. Letting φ̂K be their estimator of φK, they show that there exists some
r > 0 such that

‖φ̂K − φ‖2
L2(R+)

≤ 2‖φ̂K − φK‖2
L2(R+)

+ 2‖φK − φ‖2
L2(R+)

(4)

= Op(KT−1
n ) + O(K−r). (5)

Taking K = T1/(r+1)
n so that the last order is minimized, we have the optimal rate of convergence:

‖φ̂K − φ‖2
L2(R+)

= Op(T
−r/(r+1)
n ). (6)

Note that r is the parameter introduced in the definition of the Sobolev-Laguerre space
W(R+, r, B); see Section 2.1. Furthermore, it follows from Zhang and Su (2017) that r can be taken
arbitrarily large when φ is a combination of exponentials. Hence, in some “good” case, the constant
r > 0 can be taken arbitrarily, and the rate in (6) becomes close to

√
Tn.

Thus, the earlier works only consider the consistency of their estimators with the rate of
convergence, but not the asymptotic distribution of φ̂K. This paper considers the same type of
estimator as in Zhang and Su (2017), but under a Lévy risk process that is possibly of infinite activity.
We show the asymptotic normality of the estimator of φK with the rate

√
Tn: for each x ≥ 0 and K ∈ N,

√
Tn(φ̂K(x)− φK(x)) D−→ N(0, Σ),

where the asymptotic variance Σ > 0 is also estimable from the surplus data. Since φK approximates
to φ in any order, the asymptotic normality enables us to construct a confidence interval to test the
hypothesis for φ with approximate results.

1.3. Statistical Setting and General Notation

In the statistical argument, we assume that the surplus X is observed in a time interval [0, Tn] at
discrete time points, tn

i := i∆n (i = 0, 1, 2, . . . , n) with ∆n > 0:

Xn := {Xtn
i
| i = 1, 2, . . . , n}.

Note that Tn = tn
n. Moreover, we also assume “large” claims from L. That is, for a given constant

εn > 0, we observe Jn(εn) = {∆Lt := Lt − Lt− | t ∈ [0, Tn], ∆Lt > εn}, and we do not use “small”
jumps. Then, our observations consist of
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Dn = Xn ∪ Jn(εn). (7)

Later, we consider the asymptotic property that, as n→ ∞,

∆n → 0, Tn → ∞, εn → 0, (8)

which is an ideal situation where most data for X are available at the limit. This is the setting that we
should consider at first in inference for continuous-time stochastic processes. As a practical motivation,
we would like to estimate the ruin probability φ(x) from a data set Dn.

Moreover, we use the following notation in the paper:

• R+ = [0, ∞) and N0 = {0, 1, 2, 3, . . . } and N = N0 \ {0}.
• For a matrix A = (aij)1≤i≤p,1≤j≤q, |A|2 = ∑

p
i=1 ∑

q
j=1 a2

ij. Moreover, > stands for the transpose

A> = (aji)1≤j≤q,1≤i≤p.

• For each k ∈ N, 0k is the zero vector in Rk. Moreover, Ok and Ik are the k× k-zero matrix and
identity matrix, respectively.

• For functions f and g, f . g means that there exists a constant C > 0 such that f (x) ≤ Cg(x)
for all x.

• For p > 0, Lp(R+) =

{
f : R+ → R

∣∣∣ ∫ ∞

0
| f (x)|p dx < ∞

}
.

• For s ≥ 0 and f ∈ L1(R+), L stands for the Laplace transform operator

L f (z) =
∫ ∞

0
e−zx f (x)dx.

• For functions f , g ∈ L2(R+),

〈 f , g〉 =
∫
R+

f (x)g(x)dx, ‖ f ‖ =
√
〈 f , f 〉.

• f ∗ g stands for the convolution of f and g:

f ∗ g(x) =
∫ x

0
f (x− y)g(y)dy, x ∈ R+.

• θ = σ2/2 and β = c/θ.
• For a ν-integrable function h : R+ → R,

ν(h) =
∫ ∞

0
h(x) ν(dx).

In particular, as h(x) = 1[x,∞)(x) for x > 0, we write

ν(x) = ν(1[x,∞)) =
∫ ∞

x
ν(dz).

• Λ(x) =
∫ ∞

x
ν(z)dz for x ≥ 0.

• Denote by Kθ(x) the tail function of the exponential distribution with mean θ/c = 1/β: Kθ(x) = 1
for x ≤ 0 and

Kθ(x) = exp
(
− c

θ
x
)
= e−βx, x > 0.

Moreover, kθ is its density function: kθ(x) = −K′θ(x) = βe−βx (x > 0).
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2. Some Representations for the Ruin Probability

2.1. The Laguerre Expansion of φ

Under the net profit condition (3), it is well known that the ruin probability φ given in (2) satisfies
a defective renewal equation (DRE).

Proposition 1. As θ > 0, the ruin probability φ satisfies the following DRE:

φ(x) = φ ∗ gθ(x) + hθ(x), x ∈ R+, (9)

where
gθ(x) = c−1kθ ∗ ν(x), hθ(x) = c−1kθ ∗Λ(x) + Kθ(x).

As θ = 0, the Equation (9) also holds true for

g0(x) = c−1ν(x), h0(x) = c−1Λ(x).

Proof. As θ > 0, the Pollaczeck-Khinchine formula for φ, which is found in Huzak et al. (2004),
is rewritten as

φ(x) =

(
hθ ∗

∞

∑
k=0

g∗kθ

)
(x), x ∈ R+,

which is the unique solution to (9). See also Corollary 4.1 and Equation (43) in Biffis and Morales (2010).
The case where θ = 0 follows from Lemma 5 where the limit θ → 0 in the Equation (9) is taken with
θ > 0.

Remark 1. Note that
∫ ∞

0 gθ(x)dx < 1 from (25) in the proof of Lemma 3, which means the renewal-type
Equation (9) is defective. This DRE is essential to construct an estimator of φ as is seen below. The condition (1)
is necessary to get the DRE, and we cannot include the case where

∫ 1
0 z ν(dz) = ∞ in this statement; see

Feng and Shimizu (2013), Lemma 3.1 and its remark.

Let Lk(x) be the (normalized) Laguerre polynomial of order k, defined as

Lk(x) =
1
n!

ex dn

dxn (e
−xxn) =

k

∑
j=0

(−1)j
(

k
j

)
xj

j!
,

and let ζk be the Laguerre function of R+, given by

ζk(x) =
√

2Lk(2x)e−x, k ∈ N0. (10)

The functions {ζk}k∈N0 are known to form a complete orthogonal basis of L2(R+) with
supx |ζk(x)| ≤

√
2 for any k ∈ N0.

Since φ ∈ L2(R+) by Lemma 4, φ can be represented by the Laguerre expansion

φ(x) =
∞

∑
k=0

Pkζk(x), gθ(x) =
∞

∑
k=0

Qkζk(x), hθ(x) =
∞

∑
k=0

Rkζk(x), (11)

where Pk = 〈φ, ζk〉, Qk = 〈gθ , ζk〉 and Rk = 〈hθ , ζk〉. For each K ∈ N0, we denote by

pK = (P0, P2, . . . , PK)
>, qK = (Q0, Q1, . . . , QK)

>, rK = (R0, R1, . . . , RK)
>

(K + 1)-dimensional column vectors of coefficients for their expansions.
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By substituting the expression (11) into the defective renewal Equation (9), using a “convolution
formula” for ζk’s such as

ζm ∗ ζn =
1√
2
(ζm+n − ζn+m+1)

and comparing the coefficient of ζk’s, we have the following relations among pK, qK and rK.

Proposition 2 (Zhang and Su (2017)). Let AK = (aij)1≤i,j≤K+1 be a (K + 1) × (K + 1)-matrix, whose
components are given by

aij =


1− 1√

2
Q0 (i = j)

1√
2
(Qi−j−1 −Qi−j) (i > j)

0 (i < j)

.

Then, it holds for any K ∈ N0 that
AK pK = rK.

In particular, the matrix AK is invertible, and the elements aij’s are uniformly bounded.

Let
ζK(x) = (ζ0(x), ζ1(x), . . . , ζK(x)),

a (K+ 1)-dimensional row vector of the Laguerre functions. Then a “truncated version” of the Laguerre
expansion of φ, say, φK, is defined as

φK(x) =
K

∑
k=0

Pkζk(x) = ζK(x)pK = ζK(x)A−1
K rK,

since AK is invertible.
For constants r, B > 0, denote by W(R+, r, B) the Sobolev-Laguerre space:

W(R+, r, B) =

{
f ∈ L2(R+)

∣∣∣ ∞

∑
k=0

kr〈 f , ζk〉2 ≤ B

}

According to Zhang and Su (2017), if φ ∈W(R+, r, B) for some r, B > 0, then it follows that

∫ ∞

0
|φK(x)− φ(x)|2 dx ≤ B2

(1 + K)r ,

for each K ∈ N0. This implies that if K large enough, φ approximates to φK with arbitrary accuracy in
the sense of L2(R+). Under some regularities on φ, we can also show that φK converges to φ uniformly
on R+ as K → ∞. The following result suggests a uniform convergence of the Laguerre expansion in
the Sobolev-Laguerre space.

Proposition 3. Let f ∈W(R+, r, B) with r > 1, and let fK be the partial sum of the Laguerre expansion of f :

fK(x) =
K

∑
k=0
〈 f , ζk〉ζk(x).

Then, it follows that

sup
x∈R+

| fK(x)− f (x)| ≤
√

2B
r− 1

K−(r−1)/2.
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Proof. Noticing that supx∈R+
|ζk(x)| ≤

√
2, and applying the Cauchy-Schwartz inequality, we have

sup
x∈R+

| fK(x)− f (x)| = sup
x∈R+

∣∣∣∣∣ ∞

∑
k=K+1

〈 f , ζk〉ζk(x)

∣∣∣∣∣
≤
√

2
∞

∑
k=K+1

kr/2〈 f , ζk〉k−r/2

≤
√

2

(
∞

∑
k=K+1

kr〈 f , ζk〉2
)1/2( ∞

∑
k=K+1

k−r

)1/2

≤
√

2B
∫ ∞

K
x−r dx =

√
2B

r− 1
K−(r−1)/2.

2.2. Coefficients Qk and Rk

The coefficients Qk and Rk (k ∈ N0) can be represented as follows:

Proposition 4. For each k ∈ N0,

Qk = ν(HQ
k (·, θ)), Rk = ν(HR

k (·, θ)) + Lζk(β),

where, for θ > 0,

HQ
k (z, θ) =

1
c

∫ z

0

∫ ∞

y
kθ(x− y)ζk(x)dxdy,

HR
k (z, θ) =

1
c

∫ z

0

∫ ∞

y
kθ(x− y)(z− y)ζk(x)dxdy,

and for θ = 0,

HQ
k (z, 0) =

1
c

∫ z

0
ζκ(x)dx, HR

k (z, 0) =
1
c

∫ z

0
(z− x)ζk(x)dx. (12)

Proof. For θ > 0, by a standard application of the Fubini theorem, we have

Qk = 〈gθ , ζk〉 =
∫ ∞

0
gθ(x)ζk(x)dx

=
1
c

∫ ∞

0

∫ x

0
kθ(x− y)

∫ ∞

y
ν(dz)dyζk(x)dx

=
1
c

∫ ∞

0

∫ z

0

∫ ∞

y
kθ(x− y)ζk(x)dxdyν(dz)

= ν(HQ
k (·, θ))

(13)

and
Rk = 〈hθ , ζk〉 =

∫ ∞

0
hθ(z)ζk(x)dx

=
1
c

∫ ∞

0

∫ x

0
kθ(x− y)Λ(y)dyζk(x)dx + Lζk(β)

=
1
c

∫ ∞

0

∫ x

0
kθ(x− y)

∫ ∞

y
(z− y)ν(dz)dyζk(x)dx + Lζk(β)

=
1
c

∫ ∞

0

∫ z

0

∫ ∞

y
kθ(x− y)(z− y)ζk(x)dxdyν(dz) + Lζk(β)

= ν(HR
k (·, θ)) + Lζk(β),

(14)
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Similar calculations can yield the results for θ = 0.

Remark 2. Zhang and Su (2017) consider the case where X is a drifted compound Poisson process (i.e., θ = 0)
with the Lévy measure ν (i.e.,

∫ ∞
0 ν(dz) < ∞). Note the above ν(HQ

k,0) and ν(HR
k,0) are consistent with their

expressions (3.1) and (3.2) in Zhang and Su (2017).
The expressions of HQ

k,0 and HR
k,0 can also be obtained with the limit defined as θ ↓ 0. From the assumptions

in Proposition 4 and Lemma 5, it follows for each z ∈ R+ that

lim
θ→0+

HQ
k (z, θ) = HQ

k,0(z), lim
θ→0+

HR
k (z, θ) = HR

k,0(z).

Here, we provide some of the properties of HQ
k and HR

k , which will be discussed later.

Lemma 1. Let Θ be a bounded and compact subset of (0, ∞). Then, it follows for each z ∈ R+ that

sup
θ∈Θ
|HQ

k (z, θ)| . z, sup
θ∈Θ
|HR

k (z, θ)| . z2.

Proof. Without loss of generality, we may suppose that Θ ⊂ [ε, ε−1] if ε > 0 is small enough.
Considering that supx∈R+

|ζk(x)| ≤
√

2 and that
∫ ∞

y kθ(x− y)dx = 1 since kθ is an exponential
density function, we have

sup
θ∈Θ
|HQ

k (z, θ)| ≤
√

2
c

∫ z

0

∫ ∞

y
kθ(x− y)dxdy . z.

Similarly, we also have

sup
θ∈Θ
|HR

k (z, θ)| ≤
√

2
c

∫ z

0
(z− y)

∫ ∞

y
kθ(x− y)dxdy . z2.

Lemma 2. Let Θ be a bounded and compact subset of (0, ∞). Then, it follows for each z ∈ R+ and κ ∈ Θ that

sup
θ∈Θ
|HQ

k (z, θ + κ)− HQ
k (z, θ)| . zκ,

sup
θ∈Θ
|HR

k (z, θ + κ)− HR
k (z, θ)| . z2κ.

Proof. As in the previous proof, we may suppose that Θ ⊂ [ε, ε−1] if ε > 0 is small enough.
Considering that supx∈R+

|ζk(x)| ≤
√

2, it follows that

|HQ
k (z, θ + κ)− HQ

k (z, θ)| ≤
√

2
c

∫ z

0

∫ ∞

y

∣∣∣∣ c
θ + κ

e−
c

θ+κ (x−y) − c
θ

e−
c
θ (x−y)

∣∣∣∣dxdy

≤
√

2
c

(
c
θ
− c

θ + κ

) ∫ z

0

∫ ∞

y
e−

c
θ+κ (x−y)dxdy

+

√
2

c
c
θ

∫ z

0

∫ ∞

y

(
e−

c
θ+κ (x−y) − e−

c
θ (x−y)

)
dxdy

=
2
√

2
cθ

zκ.
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Then, we have

sup
θ∈Θ
|HQ

k (z, θ + κ)− HQ
k (z, θ)| ≤ sup

θ∈Θ

2
√

2
cθ

zκ ≤ 2
√

2
cε

zκ . zκ.

By the same argument as above, we also have

|HR
k (z, θ + κ)− HR

k (z, θ)| ≤
√

2
cθ

z2κ,

which leads to

sup
θ∈Θ
|HR

k (z, θ + κ)− HR
k (z, θ)| ≤ sup

θ∈Θ

√
2

cθ
z2κ ≤

√
2

cε
z2κ . z2κ.

This completes the proof.

3. Statistical Inference

Our goal is to estimate φK for a given K ∈ N from observation Dn as in (7) and investigate the
asymptotic behavior under the observation scheme (8). The strategy is to estimate the coefficients of
the Laguerre series of φ, which essentially consist of the functionals of the Lévy measure ν as well as
the diffusion coefficient θ. For that purpose, we will first introduce a few general tools, namely, some
statistics and their limit theorem.

Let Θ be a parameter space for θ, which is a bounded and compact subset of R. Hereafter, we
suppose that the true value of θ, say, θ0, is positive (σ > 0) if we consider a diffusion perturbation
model. Otherwise, we suppose that θ0 = 0 is known, and the treatment becomes much easier in
this case.

We assume that there exists a known constant ε > 0, which is small enough such that

Θ ⊂ [ε, ε−1],

and that θ0 belongs to the interior of Θ: θ0 ∈ int(Θ). We also put β0 = c/θ0, and note that
β0 ∈ [cε, cε−1].

Hereafter, we always assume the asymptotics (8) as n→ ∞:

∆n → 0, Tn → ∞, εn → 0.

3.1. Estimating the Lévy Characteristics

According to Proposition 4, we should estimate the functionals of the form ν(h). In this paper, we
use semiparametric-type estimators for those functionals, proposed by Shimizu (2011).

Let µ be a jump-counting measure associated with the spectrally positive Lévy process
L = (Lt)t≥0:

µ((0, t], A) = #{s ∈ (0, t] : ∆Ls ∈ A}

for each A such that A ⊂ R+ \ {0}. Note that, as is well-known,

E[µ(dt, dz)] = ν(dz)dt,

and put µ̃(dt, dz) = µ(dt, dz) − ν(dz)dt, the compensated measure, such that the process∫ ·
0

∫
A h(z, t) µ̃(dt, dz) is an Ft-martingale if

∫
A h2(z) ν(dz) < ∞.
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For estimation of the functional ν(h) from the data Jn(εn), Shimizu (2011) proposes the following
estimator:

ν̂n(h) =
1

Tn

∫ Tn

0

∫
|z|>εn

h(z) µ(dt, dz)

=
1

Tn
∑

t∈(0,Tn ]

h(∆Lt)1{|∆Lt |>εn}.

Let
Hθ = (H(1)

θ , . . . , H(d)
θ ) : R+ → Rd, for each θ ∈ Θ.

The following results are credited to Shimizu (2011).

Proposition 5. Suppose that ν(H2
θ ) < ∞ for each θ ∈ Θ. Then, it follows that

ν̂n(Hθ)
P−→ ν(Hθ), n→ ∞.

Suppose further that
sup
θ∈Θ
|ν(Hθ ∨ |Hθ |2)| < ∞,

and that there exists some H̃ : R+ → R such that, for any κ ∈ Rl ,

sup
θ∈Θ
|Hθ+κ(z)− Hθ(z))| ≤ H̃(z)|κ|

with ν(H̃ ∨ H̃2) < ∞. Then, it follows that

sup
θ∈Θ
|ν̂n(Hθ)− ν(Hθ)|

P−→ 0, n→ ∞.

Proposition 6. Suppose the following conditions for each θ ∈ Θ:

(i) There exists some δ > 0 such that ν(|Hθ |2+δ) < ∞.

(ii) For each i, j = 1, 2, . . . , d, σ2
ij(θ) := ν

(
H(i)

θ H(j)
θ

)
< ∞.

(iii) For each i = 1, 2, . . . , d, ∫
|z|≤εn

H(i)
θ (z) ν(dz) = o(T−1/2

n ), n→ ∞.

Then, it follows for the matrix Σ(θ) = (σij(θ))1≤i,j≤d that

√
Tn(ν̂(Hθ)− ν(Hθ))

D−→ Nd (0, Σ(θ)) , n→ ∞,

To estimate the diffusion coefficient θ = σ2/2, we use the results obtained by Jacod (2007); see
also Shimizu (2011), Lemma 3.1 and Remark 3.2.

Proposition 7. Suppose that, for ξn =
∫ εn

0 z2 ν(dz),

n∆2
n +
√

Tnξn → 0, n→ ∞. (15)

Then, the statist

θ̂t :=
1
2t

[bt/∆nc

∑
i=1
|∆iXn|2 −∑

s≤t
|∆Ls|21{|∆Ls |>εn}

]
,
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where ∆iXn = Xtn
i
− Xtn

i−1
, is a consistent estimator of θ0 for any constant t ∈ [0, Tn] with a more rapid rate of

convergence than 1/
√

Tn:
√

Tn(θ̂
t − θ0)

P−→ 0, n→ ∞.

3.2. Joint Convergence and Asymptotic Normality

Since θ̂t is consistent with θ0 for any fixed t > 0, we omit the superscript t in the sequel:

θ̂ := θ̂t, β̂ := c/θ̂t

In practice, it would be better to take as large a t as possible to use a sample of sufficient size.
Considering the discussion in the last section, it would be natural to estimate Qk’s and Rk’s,

respectively, from
Q̂k := Q̂k(θ̂), R̂k := R̂k(θ̂),

where

Q̂k(θ) = ν̂n(HQ
k (·, θ)), R̂k(θ) = ν̂n(HR

k (·, θ)) + Lζk(β)

for each θ ∈ Θ.

Proposition 8. Consider the condition (15) and suppose that there exists some δ > 0 such that∫ ∞

0
|z| ∨ |z|4+δ ν(dz) < ∞. (16)

Then, it follows for any k ∈ N0 that

(Q̂k, R̂k)
P−→ (Qk, Rk), n→ ∞.

Proof. Since θ̂ is consistent with the true value of θ under our assumption, it follows that

P(θ̂ 6∈ Θ)→ 0, n→ ∞. (17)

Moreover, note that for any subsequence of θ̂
P−→ θ0, there exists a further subsequence θ̂′, as we

see from Lemma 1 and the assumption that

ν(HQ
k (·, θ̂′))→ ν(HQ

k (·, θ0)) a.s.,

ν(HR
k (·, θ̂′))→ ν(HR

k (·, θ0)) a.s.,

as n → ∞ by the Lebesgue convergence theorem. Since these hold true for any subsequence of
ν(HQ

k (·, θ̂)), we also see that

ν(HQ
k (·, θ̂))

P−→ ν(HQ
k (·, θ0)), ν(HR

k (·, θ̂))
P−→ ν(HR

k (·, θ0)), (18)

as n→ ∞.
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To show the consistency of (Q̂k, R̂k), we use Proposition 5. Thanks to Lemmas 1 and 2, we
immediately see that the conditions in Proposition 5 hold true. Therefore, it follows for any ε′ > 0 that

P
(
|Q̂k −Qk| > ε′

)
= P

(∣∣∣ν̂n(HQ
k (·, θ̂))− ν(HQ

k (·, θ0))
∣∣∣ > ε′, θ̂ ∈ Θ

)
+ P(θ̂ 6∈ Θ)

≤ P
(∣∣∣ν̂n(HQ

k (·, θ̂))− ν(HQ
k (·, θ̂))

∣∣∣ > ε′/2, θ̂ ∈ Θ
)

+ P
(∣∣∣ν(HQ

k (·, θ̂))− ν(HQ
k (·, θ0))

∣∣∣ > ε′/2, θ̂ ∈ Θ
)
+ P(θ̂ 6∈ Θ)

≤ P
(

sup
θ∈Θ

∣∣∣ν̂n(HQ
k (·, θ))− ν(HQ

k (·, θ))
∣∣∣ > ε′/2

)
+ P

(∣∣∣ν(HQ
k (·, θ̂))− ν(HQ

k (·, θ0))
∣∣∣ > ε′/2

)
+ P(θ̂ 6∈ Θ)

→ 0,

as n→ ∞, by Proposition 5, (17) and (18).
The consistency of R̂k is similarly proved. In particular, the convergence of ν̂n(HR

k (·, θ̂)) is
similar to the above argument for ν̂n(HQ

k (·, θ̂)), and is therefore omitted. As for the convergence

of Lζk(β̂) =
∫ ∞

0 e−β̂zζk(z)dz, we can consider it on the event {|β̂− β0| ≤ δ} for some δ > 0 since
P(|β̂− β| > δ)→ 0 as n→ ∞. On this event, taking δ > cε−1, we see that β̂ ≥ δ− β0 > δ− cε−1 since
by definition β̂ > 0. Hence, we have∣∣∣e−β̂zζk(z)

∣∣∣ ≤ √2e−(δ−cε−1)z,

which is integrable and independent of the sample size n. Hence, it follows from the dominated
convergence theorem that Lζk(β̂)→p Lζk(β0). This completes the proof.

For each K ∈ N0, let

q̂K = (Q̂0, Q̂1, . . . , Q̂K)
>, r̂K = (R̂0, R̂1, . . . , R̂K)

>.

Proposition 9. Consider the conditions (15), (16), and suppose that∫ εn

0
z ν(dz) = o(T−1/2

n ), n→ ∞. (19)

Then, it holds for any K ∈ N0 that

√
Tn

(
q̂K − qK
r̂K − rK

)
D−→ N2(K+1)

(
02(K+1), ΣQR

)
, n→ ∞,

where ΣQR =

(
σQQ σQR

σQR σRR

)
, and σXY = (σXY

ij )1≤i,j≤K+1 for any combination of X = Q, R and Y = Q, R is

given by

σXY
ij =

∫ ∞

0
HX

i (z, θ)HY
j (z, θ) ν(dz) < ∞.

Proof. Without loss of generality, we can show the statement as K = 0, that is,

q̂0 = ν̂n(HQ
0 (·, θ̂)), q0 = ν(HQ

0 (·, θ0)),

r̂0 = ν̂n(HR
0 (·, θ̂)) + Lζ0(β̂), q0 = ν(HQ

0 (·, θ0)) + Lζ0(β0),
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We simply write that HQ := HQ
0 and HR = HR

0 in the proof. The general case where k ≥ 1 is
similarly proved.

Note that

√
Tn

(
q̂0 − q0
r̂0 − r0

)
=
√

Tn

(
ν̂n(HQ(·, θ̂))− ν̂n(HQ(·, θ0))

ν̂n(HR(·, θ̂))− ν̂n(HR(·, θ0))

)

+
√

Tn

(
ν̂n(HQ(·, θ0))− ν(HQ(·, θ0))

ν̂n(HR(·, θ0))− ν(HR(·, θ0))

)

+
√

Tn

(
0

Lζ0(β̂)− Lζ0(β0)

)
=: S(1)

n + S(2)
n + S(3)

n .

First, for S(3)
n , using supx≥0 |ζk(x)| ≤

√
2, we have

|S(3)
n | ≤

√
Tn

∫ ∞

0
|e−β̂x − e−β0x||ζ0(x)|dx ≤

√
2Tn

∫ ∞

0
|e−β̂x − e−β0x|dx.

Furthermore, using the mean value theory, we know that there exists a random number, say, β∗,
between β̂ and β0 such that

|S(3)
n | ≤

√
2Tn

∫ ∞

0
|β̂− β0|xe−β∗xdx =

√
2Tn|β̂− β0|
(β∗)2 =

c
√

2Tn|θ̂ − θ0|
θ̂θ0(β∗)2

,

which together with θ̂
P−→ θ0, β∗

P−→ β0 and Proposition 7 gives S(3)
n

P−→ 02.
Second, the asymptotic normality of S(2)

n is directly obtained from Proposition 6 by checking
conditions (i)–(iii). Condition (i) and the existence of each integral σXY

ij in (ii) are deduced from
Lemma 1 and the condition (16). Moreover, as for condition (iii), it follows for each θ ∈ Θ that∣∣∣∣∫ εn

0
HQ(z, θ) ν(dz)

∣∣∣∣+ ∣∣∣∣∫ εn

0
HR(z, θ) ν(dz)

∣∣∣∣ . ∫ εn

0
z ν(dz) = o(T−1

n ),

from the condition (19). This ensures that

S(2)
n

D−→ N2

(
02,

(
σQQ

11 σQR
11

σQR
11 σRR

11

))
.

Finally, it remains to show that S(1)
n

P−→ 0. Note that

√
Tn(ν̂n(HQ(·, θ̂))− ν̂n(HQ(·, θ0))) =

1√
Tn

∑
t∈(0,Tn ]

(
HQ(∆Lt, θ̂)− HQ(∆Lt, θ0)

)
=

1
Tn

∑
t∈(0,Tn ]

∂

∂θ
HQ(∆Lt, θ∗) ·

√
Tn(θ̂ − θ0),

where θ∗ is a random variable between θ̂ and θ. Here, we see from Lemma 2 that |(∂/∂θ)HQ(·, θ∗)| .
|z|, which implies that

ν

(∣∣∣∣ ∂

∂θ
HQ(·, θ∗)

∣∣∣∣2
)

< ∞. (20)
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We can then conclude from Proposition 5 that T−1
n ∑t∈(0,Tn ]

∂
∂θ HQ(∆Lt, θ∗) = Op(1) and from

Proposition 7 that
√

Tn(θ̂ − θ0) = op(1), which connotes that

√
Tn(ν̂n(HQ(·, θ̂))− ν̂n(HQ(·, θ0)))

P−→ 0.

Similarly, we also see that

√
Tn(ν̂n(HR(·, θ̂))− ν̂n(HR(·, θ0)))

P−→ 0

under (16). Hence S(1)
n

P−→ 0, which completes the proof.

4. Main Theorems

It follows from Proposition 2 that
pK = A−1

K rK.

Since the matrix AK consists of {Qi}i=1,...,K, a natural estimator of pK is given by

p̂K = (P̂0, P̂1, . . . , P̂K)
> = Â−1

K r̂K,

where Â−1
K is given by replacing Qi’s in the elements by Q̂i’s and r̂K = (R̂0, . . . , R̂K).

Let

φ̂K(x) :=
K

∑
k=0

P̂kζk(x) = ζK(x)p̂K. (21)

be an estimator of the function φ. We then have a weakly consistent φ̂K.

Theorem 1. Suppose the conditions (15) and (16). It then follows for each K ∈ N0 that

sup
x∈R+

|φ̂K(x)− φK(x)| P−→ 0, n→ ∞, (22)

Proof. Note that
P
(

ÂK is not invertible
)
→ 0, n→ ∞,

since ÂK
P−→ AK by Proposition 8 and AK is invertible. Therefore, Â−1

K
P−→ A−1

K conditional on the
event that AK is invertible; it then follows for any ε′ > 0 that

P(|p̂K − pK| > ε′) ≤ P(|Â−1
K r̂K − A−1

K rK| > ε′/2, ÂK is invertible)

+ P(ÂK is not invertible)

→ 0. (23)

Since φK(x) = ∑K
k=0 Pkζk(x) and considering supx |ζk(x)| ≤

√
2, the uniform consistency of (21)

holds as follows:

sup
x∈R+

|φ̂K(x)− φK(x)| ≤
K

∑
k=0

√
2|P̂k − Pk|

P−→ 0, n→ ∞. (24)
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Theorem 2. Suppose the same assumptions as in Proposition 9. It then follows for any K ∈ N0 and x > 0 that

√
Tn(φ̂K(x)− φK(x)) D−→ N (0, ΣK(x)) , n→ ∞,

where ΣK(x) = ζK(x)A−1
K P∗KΣQR(ζ

K(x)A−1
K P∗K)

>, ΣQR is given in Proposition 9, P∗K is of the form

P∗K =
(

P∗K −IK+1

)
with the lower triangle matrix P∗K given by

(P∗K)ij =


− 1√

2
P0 (i = j)

− 1√
2
(Pi−j − Pi−j−1) (i > j)

0 (i < j)

, (i, j = 0, 1, 2, . . . , K).

Proof. First, we shall show that p̂K = Â−1
K r̂K is asymptotically normal for each K ∈ N0.

Noticing the equality that

Â−1
K − A−1

K = −A−1
K (ÂK − AK)Â−1

K ,

we have

√
Tn(p̂K − pK) =

√
Tn(Â−1

K − A−1
K )r̂K +

√
Tn A−1

K (r̂K − rK)

= −A−1
K

[√
Tn(ÂK − AK)p̂K −

√
Tn(r̂K − rK)

]
Note that, from Proposition 2, the kth component of the (K + 1)-dimensional vector

√
Tn(ÂK −

AK)p̂K is given by

− 1√
2

√
Tn(Q̂0 −Q0)P̂k−1 +

1√
2

k−1

∑
j=1

[
√

Tn(Q̂j−1 −Qj−1)−
√

Tn(Q̂j −Qj)]P̂k−j−1

= P̂
>
k
√

Tn(q̂k−1 − qk−1),

for each k ∈ N, where

P̂1 = − 1√
2

P̂0, P̂k = −
1√
2


P̂k−1 − P̂k−2
P̂k−2 − P̂k−3

...
P̂1 − P̂0

P̂0

 , (k ≥ 2),

and we assume that ∑0
j=1 ≡ 0 as a convention.

Consider the following (K + 1)× (K + 1)-lower triangle matrix P̂
∗
K:

P̂
∗
K :=



P̂
>
1 , 0>K

P̂
>
2 , 0>K−1
...

...

P̂
>
K , 0>1

P̂
>
K+1


P−→ P∗K, n→ ∞,
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where P∗K is the limit in probability, the existence of which is shown in the proof of Theorem 1, (23).
Using this matrix P̂

∗
K, we see that

√
Tn(p̂K − pK) = −A−1

K

[
P̂
∗
K
√

Tn(q̂K − qK)−
√

Tn(r̂K − rK)
]

= −A−1
K

(
P̂
∗
K −IK+1

)√
Tn

(
q̂K − qK
r̂K − rK

)
,

Therefore, Proposition 9 and Slutsky’s lemma connote that

√
Tn(p̂K − pK)

D−→ NK+1

(
0K+1, A−1

K P∗KΣQR(P∗K)
>(A−1

K )>
)

with P∗K given in the statement. As a consequence,

√
Tn(φ̂K(x)− φK(x)) = ζK(x)

√
Tn(p̂K − pK)

D−→ N
(

0, ζK(x)A−1
K P∗KΣQR(ζ

K(x)A−1
K P∗K)

>
)

.

This completes the proof.

Remark 3. We can construct a consistent estimator of the asymptotic variance for φ̂K(x) by the statistics
p̂K, q̂K, and r̂K although the representation will be complicated. Therefore, the asymptotic normality result of
Theorem 2 enables us to construct a confidence interval to test the hypothesis for φK(x). If φ ∈ W(R+, r, B)
for r > 1 and B > 0, then with a large enough K φ̂K is uniformly close to the true φ on R+. Therefore, the
confidence interval for φK would be an approximated confidence interval for φ.

5. Simulations

We shall try some numerical example to confirm the asymptotic normality of our proposals.
We consider the following two models for finite and infinite activity jumps:

(CP) Compound Poisson model: for c = 15

Xt = ct + σWt −
Nt

∑
i=1

Ui,

where N is a Poisson process with the intensity λ = 12, and Ui’s are IID random variables with
an exponential distribution with mean µ = 1; the Lévy density ν(x) = λµ−1e−x/µ (x > 0),
and set σ = 1. In the simulation, we suppose that λ, µ, and σ are unknown. In this case, the
ruin probability is explicitly known as

φ(x) =
λµ

c
exp

(
− x

µ

{
1− λµ

c

})
= 0.8e−0.2x, x > 0.

(GS) Gamma subordinator model: for c = 1

Xt = ct + σWt − Lt,

where L is a gamma process with the Lévy density ν(x) = x−1e−γx (x > 0) with γ = 20,
and set σ = 1. In the simulation, we suppose that σ and γ are unknown. In this model,
the ruin probability is not explicit, but we can compute it numerically, e.g., via the Fast Fourier
Transform; see, e.g., Zhang and Yang (2013).

To observe the asymptotic normality of the proposed estimators of φK(x), we show QQ-plots for
φ̂K(x) with K = 10 and x = 1, 3, 5 by 300 replications under a sampling setting (7) with ∆n = 1/2Tn
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and εn = 2/Tn, and compare the results among the different values of the initial reserve x = 1, 3, 5 and
Tn = 120, 360 in the sequel. The results are given in Figures 1–3 for Model (CP), and Figures 4–6 for
Model (GS).

Most of the results manifest asymptotic normality as the value of Tn becomes large. As for the
case of φ̂K(5) with Tn = 360 in Figures 3 and 6, the right tails still seem not to converge to the normal
distribution. Although we cannot explain this phenomenon quite well, it might be due to the value
of εn selected, which significantly affects the estimation of parameters. How to choose εn in practice
is an important problem, but this is beyond the scope of this paper. It is a theme that merits serious
consideration by researchers.
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Figure 1. QQ-plot of φ̂K(1) for (CP); (a) Tn = 120, and (b) Tn = 360.

−3 −2 −1 0 1 2 3
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(a)

−3 −2 −1 0 1 2 3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

(b)

Figure 2. QQ-plot of φ̂K(3) for (CP); (a) Tn = 120, and (b) Tn = 360.
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Figure 3. QQ-plot of φ̂K(5) for (CP); Tn = 120 (a) and Tn = 360 (b).
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Figure 4. QQ-plot of φ̂K(1) for (GS); (a) Tn = 120, and (b) Tn = 360.
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Figure 5. QQ-plot of φ̂K(3) for (GS); (a) Tn = 120, and (b) Tn = 360.
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Figure 6. QQ-plot of φ̂K(5) for (GS); (a) Tn = 120, and (b) Tn = 360.

6. Concluding Remarks

In this paper, we consider the statistical inference for ruin probability of Lévy insurance surplus
under a certain sampling scheme. The samples consist of a mixture of n-discrete samples of the surplus,
which are assumed to be a book record of the (e.g., daily) surplus, and a ‘large’ jumps that are insurance
claims larger than a certain threshold εn > 0.

We consider the Laguerre expansion of the ruin probability, which is the series expansion based
on the Laguerre functions in (10) and the coefficients are obtained in explicit form that includes
unknown quantities: the diffusion coefficient D = σ2/2 and functionals of Lévy measure of the form
ν(H) =

∫
R H(z) ν(dz). Those unknowns are estimable from our sampling data, and we showed the

asymptotic properties of those estimators, which leads us the asymptotic normality of the estimated
partial sum of Laguerre expansion of the ruin probability as n→ ∞ and εn → 0 as well. The asymptotic
distribution enables us to construct the asymptotic confidence intervals of ruin probability, which
would be important to apply the ruin theory in practice.

In this paper, we assumed that εn → 0 and that we can observe all the jumps that are larger
than εn, which means that we can observe all the infinitely many jumps in the limit. Of course, such
a situation is not realistic, but this paper investigates the rate of convergence and the possibility of
the asymptotic normality of the estimators under a kind of ideal situation. We clarified the speed of
εn that goes to zero as in Proposition 9, which should be the first step to be specified in the theory
of statistical inference. Note that the rate condition on εn is only for theory, but is not checkable in
practice as always in asymptotic statistics. In the simulation, we use εn = 2/Tn as an example that
satisfies the asymptotic conditions in Proposition 9. However, in practice, the value of εn is naturally
determined, e.g., the value of deductible if it exists, or the smallest jump size within the observations.
The asymptotics that εn → 0 is a kind of approximation for the real situation: the theory ensures the
statistical validity of our estimators if the value of εn is practically ‘small’ enough and if we assume
that the observed surplus is a realization of a Lévy process we assumed here. In this context, we may
need “a new aspect" for the surplus model as described in Shimizu (2009).

7. Preliminary Lemmas

Lemma 3. The functions gθ and hθ in Proposition 1 satisfy gθ , hθ ∈ L1(R+) ∩ L2(R+).

Proof. Note that, from (1), it follows that

π∞ :=
∫ ∞

0
ν(y), dy =

∫ ∞

0
ν(dz)

∫ z

0
dy =

∫ ∞

0
z ν(dz) ∈ (0, ∞).
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Hence,

gθ(x) =
c
θ

∫ x

0
e−c(x−y)/θν(y)dy ≤ β

∫ ∞

0
ν(y)dy ≤ βπ∞ < ∞.

Moreover, note that πd(x) = π−1
∞ ν(x) is a probability density function, and gθ(x)π−1

∞ c =

kθ ∗ πd(x) is the probability density. In particular, we see that gθ is the density of a defective
distribution since ∫ ∞

0
gθ(x)dx =

π∞

c
< 1 (25)

by (3). Therefore, ∫ ∞

0
g2

θ(x)dx ≤ βπ∞

∫ ∞

0
gθ(x)dx < βπ∞ < ∞.

Note that
π−1

∞ Λ(x) =
∫ ∞

x
πd(y)dy ≤ 1

since the last term is a probability tail function. Hence, Λ(x) ≤ π∞, which yields

sup
x∈R+

|h(x)| ≤ 1
b

∫ x

0
Λ(x− y)kθ(y)dy + 1

≤ π∞

c

∫ ∞

0
kθ(x)dx + 1 =

π∞

c
+ 1 < ∞.

As a consequence,∫ ∞

0
h2(x)dx ≤

(
π∞c−1 + 1

) ∫ ∞

0
h(x)dx

=
(

π∞c−1 + 1
)(∫ ∞

0
kθ ∗Λ(x)dx + β−1

)
≤
(

π∞c−1 + 1
) (

π∞ + β−1
)
< ∞.

This completes the proof.

Lemma 4. φ ∈ Lp(R+) for any p ≥ 1.

Proof. From Proposition 1, we have the following Laplace transform of φ:

∫ ∞

0
e−sxφ(x)dx =

∫ ∞
0 e−sxhθ(x)dx

1−
∫ ∞

0 e−sxgθ(x)dx
.

The last term of right-hand side can be attributed to s = 0 since gθ , hθ ∈ L1(R+) by Lemma 3.
Therefore, we have ∫ ∞

0
φ(x)dx =

∫ ∞
0 hθ(x)dx

1−
∫ ∞

0 gθ(x)dx
< ∞.

Hence, φ ∈ L1(R+). Considering that 0 ≤ φ(x) ≤ 1 is the probability of ruin, it follows for any
p ≥ 1 that ∫ ∞

0
φp(x)dx ≤

∫ ∞

0
φ(x)dx < ∞.

This completes the proof.



Risks 2019, 7, 37 21 of 22

Lemma 5. Let f : R → R be a differentiable function such that | f (x)|+ | f ′(x)| . 1 + |x|C for a constant
C > 0, and let kλ(x) = λe−λx (x ≥ 0) for λ > 0. It then follows that

lim
λ→∞

∫ ∞

0
kλ(x) f (x)dx = f (0).

Proof. Since f is a polynomial growth function, we see, using integration by parts, that∫ ∞

0
kλ(x) f (x)dx = f (0) +

∫ ∞

0
e−λx f ′(x)dx

Taking a constant δ ∈ (0, λ), we have

|e−λx f ′(x)| = e−(λ−δ)x|e−δx f ′(x)| ≤ |e−δx f ′(x)|,

with the last function being integrable. Therefore, it follows from the Lebesgue convergence
theorem that

lim
λ→∞

∫ ∞

0
kλ(x) f (x)dx = f (0) +

∫ ∞

0
lim

λ→∞
e−λx f ′(x)dx = f (0).
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