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Abstract: This paper considers the risk model perturbed by a diffusion process with a time delay in the
arrival of the first two claims and takes into account dependence between claim amounts and the claim
inter-occurrence times. Assuming that the time arrival of the first claim follows a generalized mixed
equilibrium distribution, we derive the integro-differential Equations of the Gerber–Shiu function and
its defective renewal equations. For the situation where claim amounts follow exponential distribution,
we provide an explicit expression of the Gerber–Shiu function. Numerical examples are provided to
illustrate the ruin probability.

Keywords: ruin theory; delay renewal risk process; renewal equation; convolution formula; diffusion
process; FGM copula; exponential and equilibrium distribution.

1. Introduction

Financial institutions and insurers manage large amounts of capital and failure to properly estimate
the risk of ruin can result in serious financial consequences. To this end, researchers have constructed a
variety of models to study and predict the possible ruin time, the ruin probability, the claim outcomes,
and other useful risk metrics. One can cite the aggregate claims models, the Sparre Andersen model,
and many others. With these models, insurers are able to price and estimate the reserve and the ruin
related quantities. One very valuable analytical tool to understanding the event of ruin is the Gerber–Shiu
discounted penalty function (Gerber and Shiu 1998). This penalty function acts as a unified means of
identifying ruin-related quantities, which may be instrumental in understanding the vulnerability of
an insurance institution (Cheung and Feng 2013; Landriault and Willmot 2008; Lin and Willmot 2000;
Pavlova and Willmot 2004; Schmidli 2010; Willmot 2007; Zhang et al. 2009; Zou and Xie 2012).

In the actuarial literature, the Gerber–Shiu function satisfies a defective renewal equation in the
ordinary Sparre Andersen model. Due to the unrealistic nature of the model’s basic assumption of
independence and identical distribution for the claim inter-arrival time, extensions to that model have
been made. Consequently, extensions to the Gerber–Shiu function in the delayed renewal model have
also been made. For example, ((Willmot 2004; Willmot and Dickson 2003) considered the case where the
first inter claim time is assumed to follow a possibly different density than the common density of the
subsequent inter-claims times. (Cheung et al. 2010) considered the Gerber–Shiu function in a more general
settings. In particular, (Cai 2007; Cai et al. 2009; Zhou and Cai 2009) generalized a Gerber–Shiu function to
a more general cost function.

On the central problem of risk in the insurance industry, that of estimating the probability of ruin,
a lot of work has been done. (Dufresne and Gerber 1991) took the classical model of collective risk
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theory and added a diffusion process to the compound Poisson model. Then, they showed that the
probabilities of ruin (by oscillation or by a claim) satisfy certain defective renewal Equations and that
the convolution formula for the probability of ruin can be derived and interpreted in terms of the record
highs of the aggregate loss process. (Wang 2001) worked on a decomposition of the ruin probability for
the risk process perturbed by diffusion. (Tsai and Willmot 2002) considered the surplus process of the
classical continuous time risk model assuming independent diffusion (Wiener) process. They generalized
the defective renewal equation for the expected discounted function of a penalty at the time of ruin
in (Gerber and Landry 1998). (Gao and Wu 2014) worked on the Gerber–Shiu discounted penalty function
in a risk model with two types of delayed-claims and random income. They developed a new delayed
model with random premium income and two types of by-claims, and then derived an integral system of
equations for the Gerber–Shiu discounted penalty function and explicit solution of the Laplace transform
of the discounted penalty function. They proved that the discounted penalty function satisfies a defective
renewal equation and obtained an explicit result of the ruin probability under the exponential distribution.
(Schmidli 2014) studied the gerber–shiu functions with an application. (Zhang and Yang 2011) worked
on Gerber–Shiu analysis in a perturbed risk model with dependence between claim sizes and inter-claim
times, where they also considered that the compound Poisson risk model is perturbed by a Brownian
motion. (Lee and Willmot 2014) worked on the moments of the time to ruin in dependent Sparre Andersen
models with emphasis on Coxian inter-claim times.

This paper takes the results of (Zhang and Yang 2011) and incorporates the delay in the arrival of the
first two claim arrival times. The objective of this paper is to generalize (Zhang and Yang 2011) results to
the case of the delayed renewal risk model with a generalized mixed equilibrium first claim time, first
introduced by (Willmot 2004), and to derive the associated ruin probabilities. One justification of the
delay renewal risk model is from observations within the car insurance industries. For instance, if there
has been a long waiting time before a claim, the next inter-arrival time can be long, as well, because the
policyholders are potentially “good drivers” or the reverse could be obtained, where some policyholders
only start to use their cars a long time after purchasing them. Then, claims would suddenly arrive more
frequently after a long silence.

The paper is structured as follows. In Section 2, the risk model is presented. In Section 3, we
derive the equation for the Lundberg adjustment coefficient and its solutions. Sections 4–6 deal with the
integro-differential equations, the Laplace transform, and the defective renewal equations, respectively.
Representations of the solutions of the afore-mentioned equations are followed by numerical examples to
illustrate the theory.

2. Risk Model

2.1. Definition of the Risk Model

We consider the following delay renewal risk process perturbed by an independent diffusion process.
The delay renewal risk model used in this section is similar to the one proposed in (Willmot 2004).
The surplus process at time t is:

Ut = u + ct + σBt −
Nd

t

∑
i=1

Xi, ∀t ≥ 0, (1)

where u is the initial surplus and c is the rate at which premiums are received per unit of time. Nd
t denotes

the delayed renewal process, Nt is the ordinary renewal process, and σBt represents the diffusion process
accounting for the perturbation that may arise from the market or due to model error. We denote by Vi the
time between the (i− 1)th and the ith claim for i = 2, 3, . . .
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The assumptions of the model are summarized in the following:

• the time arrival of the first claim V1 has density function given by:

fV1(t) = qλ1e−λ1t + (1− q)
e−λ1t ∫ ∞

t fV2(y)dy∫ ∞
0 e−λ1y F̄V2(y)dy

, (2)

where 0 ≤ q ≤ 1, λ1 > 0, and the inter- occurrence time from the second claim V2 has the density function
fV2 with survival function F̄V2 .

Clearly, V1 is a mixture of two random variables Wi, i = 1, 2 with density functions given by fW1(t) =

λ1e−λ1t and fW2(t) =
e−λ1t ∫ ∞

t fV2 (y)dy∫ ∞
0 e−λ1y F̄V2 (y)dy

, t ≥ 0, with weights q and 1− q.

As in (Willmot 2004), the motivation for this particular choice of the generalized mixed-equilibrium
distribution is two-fold. First, when q = 0, fV1 is a generalized equilibrium distribution. The stationary
or equilibrium renewal risk model is a special case of the delayed renewal risk model where the time
until the first claim has an equilibrium distribution different from the other inter-claim times’ distribution.
The motivation of the equilibrium distribution is that it is the limiting distribution of the time until the
next claim occurs. Second, when q = 1, V1 is exponentially distributed, which is an intriguing choice for
the time until the first claim occurs. In particular, note that, if the duration between the last claim before
time 0 and the first claim after time 0 is exponential, then the (conditional) distribution at time 0 of the
time until the first claim after 0 has the same exponential density, regardless of when the last claim before
0 occurred, as follows from the memoryless property of the exponential distribution.

• The time between the second and the third claim, V2, is exponentially distributed with parameter λ2;
• Vi, i = 1, 2, . . . are independent;
• the subsequent claims inter-occurrence times {Vi}∞

i=3 are exponentially distributed with parameter λ,
i.e., Vi ∼ V ∼ exp(λ), i = 3, · · · ;

• {Xi}∞
i=1 are independent and {Xi}∞

i=3 are distributed as the generic X;
• Xi and Vi are dependent and jointed by FGM copulas with parameter (ηi)i=1,2, such that ηi = η for

i = 3, · · · ;
• {(Xi, Vi), i = 1, 2, . . .} are mutually independent; and
• the standard Brownian motion (Bt)t≥0 is independent of the aggregate claim process.

2.2. The Dependence

We introduce a specific structure of dependence based on the Farlie–Gumbel–Morgenstern (FGM)
copula. While there are many copula families, the advantage of using the FGM copula and its
generalizations lies in its mathematical manageability. As illustrated in (Cossette et al. 2010), it models
the dependence structure between the claim amounts and their occurrence times such as catastrophic
claims. Even if the FGM copula introduces only light dependence, it admits positive as well as negative
dependence between a set of random variables and includes the independence copula when its parameter
is zero. It is also known that the FGM copula is a Taylor approximation of order one of the Frank copula,
Ali–Milkhail–Haq copula and Plackett copula (see Nelsen 2006).

The joint cumulative distribution function (c.d.f.) of (Xi, Vi), the ith claim and its occurrence time is

F(Xi ,Vi)
(x, t) = CFGM

ηi
(FXi (x), FVi (t))

= FXi (x)FVi (t) + ηiFXi (x)FVi (t)(1− FXi (x))(1− FVi (t)),
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for (x, t) ∈ R+ ∗ R+ and where FXi and FVi are the marginal c.d.f. Recall that the density of the FGM
copula is cFGM

ηi
(u, v) = 1 + ηi(1− 2u)(1− 2v), i = 1, 2, 3 and η3 = η for (u, v) ∈ [0, 1] ∗ [0, 1] so that the

joint probability density function (p.d.f) of (Xi, Vi) is

f(Xi ,Vi)
(x, t) = ∂2

∂u∂v CFGM
ηi

(FXi (x), FVi (t)) = fXi (x) fVi (t)c
FGM
ηi

(FXi (x), FVi (t))

= fXi (x) fVi (t) + ηi fXi (x) fVi (t)(1− 2FXi (x))(1− 2FVi (t))

= fXi (x) fVi (t) + ηi fVi (t)hi(x)(1− 2FVi (t))

f(Xi ,Vi)
(x, t) = ( fXi (x)− ηihi(x)) fVi (t) + 2ηihi(x) fVi (t)F̄Vi (t),

(3)

where hi(x) = fXi (x)(1− 2FXi (x)), fXi , fVi are the density functions of Xi and Vi, respectively, and F̄Vi

is the survival function of Vi. For simplicity, we have the following notations: fi := fXi ; hi := hXi ; i =
1, 2; f := fX ; h := hX , i = 1, 2.

Remark 1. In this model, the risk process becomes ordinary renewal risk model after the occurrence of the second
claim. Therefore, we call the whole model a second-order delayed renewal risk model (or risk model of Type II). After
the occurrence of the first claim, the whole process becomes a first-order delayed renewal risk model (or of Type I) and
then an ordinary renewal risk model.

3. Generalized Lundberg-Type Equation

In this section, we introduce a generalized version of the Lundberg equation for the risk process and
analyze the existence of its roots. Let us define the Gerber–Shiu function by

m∗d(u) = E
[
e−δτw(Uτ−, |Uτ |)I(τ < ∞)|U(0)=u

]
,

where τ is the time of ruin (i.e., the first time the surplus level falls bellow zero) and is defined
mathematically as:

τ =

{
inf{t > 0 : Ut < 0}
∞ if Ut ≥ 0

∀ t > 0.

To guarantee that ruin is not a certain event, we assume that the following net profit condition holds
E[cVk − Xk] > 0 with k = 1, 2, . . . The Gerber–Shiu function m∗d can be decomposed as:

m∗d(u) = φ∗d(u) + ψ∗d(u), (4)

where

φ∗d(u) = E
[
e−δτw(Uτ−, |Uτ |)I(τ < ∞, Uτ < 0)|U(0)=u

]
, (5)

ψ∗d(u) = E
[
e−δτw(Uτ−, |Uτ |)I(τ < ∞, Uτ = 0)|U(0)=u

]
. (6)

This decomposition can be explained by the fact that if the ruin occurs it can be caused either by
oscillations or by claims. φd, ψd (respectively, φ, ψ) represent the Gerber–Shiu functions when ruin is caused
by claims and by oscillations in the delayed renewal risk model of Type I (respectively, the Gerber–Shiu
functions in the ordinary renewal risk model).
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Let us consider the sequence of the surplus at the nth claim such that

Un = u + cTn + σBTn −
Nd

Tn

∑
k=1

Xk,

where Tn = ∑n
k=1 Vk is the time occurrence of the nth claim. By the properties of Brownian motion

(independent increment and stationary), we have the following equality in distribution,

Un =d u +
n

∑
k=1

(cVk + σBVk − Xk).

Let us determine s such that {e−δTn+sUn}∞
n=1 is a martingale.

By setting Zn = e−δTn+sUn , we have that Zn+1 = Zne−δVn+1+s(cVn+1+σBVn+1−Xn+1). The martingale
condition is satisfied if

E[e−δVn+1+s(cVn+1+σBVn+1−Xn+1)] = 1.

Let us denote L(s) = E[e−δV+s(cV+σBV−X)]. The generalized Lundberg equation associated with the
risk model in n ≥ 3 is given by the following ordinary Lundberg equation

L(s) = 1, (7)

where

L(s) =
∫ ∞

0

∫ ∞

0
E[e−δt+s(ct+σBt−x)] f(X,V)(x,t)dxdt =

∫ ∞

0

∫ ∞

0
e−(δ−sc− σ2s2

2 )t−sx f(X,V)(x,t)dxdt. (8)

Substituting Equation (3) into Equation (8), one gets

L(s) = −2λ[ f̃ (s)− ηh̃(s)]
σ2A1(s)

− 4ληh̃(s)
σ2A2(s)

, (9)

with

A1(s) = s2 +
2c
σ2 s− 2(λ + δ)

σ2 ,

A2(s) = s2 +
2c
σ2 s− 2(2λ + δ)

σ2 ,

and f̃ , h̃ the Laplace transforms of f and h, i.e., f̃ (s) =
∫ ∞

0 e−sx f (x)dx.
By the Rouché theorem and analogously to Propositions 1 and 2 of

(Chadjiconstantinidis and Vrontos 2014), Equation (7) has exactly two roots in the the right complex plane,
say ρ1, ρ2, such that Re(ρi) > 0 and for δ = 0 one root is null.

4. Results

4.1. Integro-Differential Equation

In this section, we derive the integro-differential Equations that satisfy the Gerber–Shiu functions
when ruin is caused by claims and by oscillations. We start with the first-order delayed and perturbed
risk model (Type I), a model such that after the first claim the process becomes ordinary. In this case,
the occurrence time of the first claim is exponentially distributed with parameter λ2, and the process
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becomes ordinary with claim inter-occurrence time following exponential distribution with parameter λ.
Then, we move to the second-order delayed and perturbed risk model (Type II) where the time occurrence
of the first claim follows the distribution given in Equation (2) and the time until the second claim is
exponentially distributed with parameter λ2. Recall that, after the first claim, it behaves as the first-order
delayed renewal risk model (Type I) before becoming ordinary. Let

σf2(u) =
∫ u

0
φ(u− x) f2(x)dx + w f2(u); w f2(u) =

∫ ∞

u
w(u, x− u) f2(x)dx;

σh2(u) =
∫ u

0
φ(u− x)h2(x)dx + wh2(u); wh2(u) =

∫ ∞

u
w(u, x− u)h2(x)dx; (10)

σf = lim
f2→ f

σf2 ; σh = lim
h2→h

σf2 ; w f = lim
f2→ f

w f2 ; wh = lim
h2→h

wh2 ;

P1(s) = s2 +
2c
σ2 s− 2(λ2 + δ)

σ2 ;

P2(s) = s2 +
2c
σ2 s− 2(2λ2 + δ)

σ2 .

Setting D := d
du (·),D

2 := d2

du2 (·), I the identity operator, we define the following
differentiation operators:

P1(D) = D2 + 2c
σ2D −

2(λ2+δ)
σ2 I ,

P2(D) = D2 + 2c
σ2D −

2(2λ2+δ)
σ2 I ,

A1(D) = limλ2→λ P1(D),A2(D) = limλ2→λ P2(D).

(11)

Theorem 1. Under the assumptions of the first-order delayed and perturbed risk model (Type I) defined in
Equation (1), the Gerber–Shiu function φd defined in Equation (5) when the ruin is caused by claims satisfies
the following integro-differential equation,

P1(D)P2(D)(φd)(u) = −2λ2

σ2 P2(D)(σf2(u)− η2σh2(u))−
4λ2η2

σ2 P1(D)(σh2(u)), (12)

with the boundary conditions

φd(0) = 0, φ
′′
d (0) +

2c
σ2 φ

′
d(0) = −

2λ2

σ2 (w f2(0) + η2wh2(0)). (13)

In Equation (12), σf2 , σh2 defined in Equation (10) are functions of the ordinary Gerber–Shiu function φ

which satisfies

A1(D)A2(D)(φ)(u) = −2λ

σ2A2(D)(σf (u)− ησh(u))−
4λη

σ2 A1(D)(σh(u)). (14)

Remark 2. By letting λ2 → λ, f2 → f and η2 → η, Equation (12) reduces to the integro-differential Equation in
the ordinary renewal risk model in Equation (14), which is the equation from Theorem 1 of (Zhang and Yang 2011).

Proof. Let Zt = −ct− σBt and Z̄t = sup0≤s≤t{Zs}. The condition u− Z̄t > 0 ensures that the ruin is not
always caused by oscillation, i.e., the surplus process Ut is not defined to be almost surely negative. Let
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us recall the Wiener–Hopf factorization theorem (Kyprianou 2006). Given an independent exponentially
distributed random variable ea with mean 1

a , the random variables Z̄ea and Z̄ea − Zea are independent and
exponentially distributed. Let a1, a2 be the corresponding rates.

E[e−sZea ] = E[es(Z̄ea−Zea )−sZ̄ea ]

= E[es(Z̄ea−Zea )]E[e−sZ̄ea ] =

(
a1

a1 + s

)(
a2

a2 − s

)
,

and

E[e−sZea ] =
∫ ∞

0
E[e−sZt ] fea(t)dt =

∫ ∞

0
et(cs+ σ2s2

2 ) fea(t)dt

=
a

a− cs− σ2s2

2

.

The roots of a− cs− σ2s2

2 are −a1 and a2, with a1 = c
σ2 +

√
c2

σ4 +
2a
σ2 , a2 = − c

σ2 +
√

c2

σ4 +
2a
σ2 .

We now derive the expression of the Gerber–Shiu function by conditioning on the occurrence of
claims and taking into account the fact that ruin may occur or not.

φd(u) = E[e−V2δE[w(u− ZV2 , X2 − u + ZV2)1(X2 > u− ZV2 , ¯ZV2 < u)|(V2, X2)]]

+E[e−V2δE[φ(u− ZV2 − X2)1(X2 < u− ZV2 , ¯ZV2 < u)|(V2, X2)]]

=
∫ ∞

0

∫ u
−∞

∫ ∞
u−y e−δt[w(u− y, x− (u− y))]P[(Zt ∈ dy, Z̄t < u)] f(V2,X2)(t,x)dxdt

+
∫ ∞

0

∫ u
−∞

∫ u−y
0 e−δtφ(u− y− x)]P[(Zt ∈ dy, Z̄t < u)] f(V1,X1)(t,x)dxdt

=
∫ u
−∞

∫ ∞
u−y w(u− y, x− (u− y))p(u, y, x)dxdy +

∫ u
−∞

∫ u−y
0 φ(u− y− x)]p(u, y, x)dxdy.

(15)

The measure p is defined by:

p(u, dy, dx) = p(u, dy, dx|λ2, η2)

=
∫ ∞

0 [λ2e−(δ+λ2)t( f2(x)− η2h2(x))) + 2η2λ2e−(2λ2+δ)th2(x)]P[(Zt ∈ dyZ̄t < u)]dxdt

= λ2
λ2+δ ( f2(x)− η2h2(x)))P[(Ze(λ2+δ)

∈ dy, Z̄e(λ2+δ)
< u)]

+ 2η2λ2
2λ2+δ e−(2λ2+δ)th2(x)]P[(Ze(2λ2+δ)

∈ dy, Z̄e(2λ2+δ)
< u)].

(16)

Because

P[(Zea ∈ dy, Z̄ea < u)] =
∫ u

max(0,y) P[−(Z̄ea − Zea − Z̄ea) ∈ dy, Z̄ea ∈ dx)]

=
∫ u

max(0,y) P[(Z̄ea − Zea ∈ x− dy, Z̄ea ∈ dx)]

=
(∫ u

max(0,y) a1a2e−(a1+a2)x+a2ydx
)

dy

= a1a2
a1+a2

(
e−(a1+a2)max(0,y)+a2y − e−(a1+a2)u+a2y

)
dy,

(17)
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applying Equation (17) to Equation (16), we have: for 0 ≤ y < u,

p(u, y, x) = p(u, y, x|λ2, η2)

=
λ2α1α2

(λ2 + δ)(α1 + α2)
(e−α1y − e−(α1+α2)u+α2y)( f2(x)− η2h2(x)) (18)

+
2η2λ2β1β2

(2λ2 + δ)(β1 + β2)
(e−β1y − e−(β1+β2)u+β2y)(h2(x)),

and for y < 0

p(u, y, x) = p(u, y, x|λ2, η2)

=
λ2α1α2

(λ2 + δ)(α1 + α2)
(eα2y − e−(α1+α2)u+α2y)( f2(x)− η2h2(x)) (19)

+
2η2λ2β1β2

(2λ2 + δ)(β1 + β2)
(eβ2y − e−(β1+β2)u+β2y)(h2(x)),

where

α1 =
c

σ2 +

√
2(λ2 + δ)

σ2 +
c2

σ4 , α2 = − c
σ2 +

√
2(λ2 + δ)

σ2 +
c2

σ4 ,

β1 =
c

σ2 +

√
2(2λ2 + δ)

σ2 +
c2

σ4 , β2 = − c
σ2 +

√
2(2λ2 + δ)

σ2 +
c2

σ4 .

Substituting p(u, y, x) into Equation (15), setting v = u− y, and rearranging, we get

φd(u) =
λ2α1α2

(2λ2 + δ)(α1 + α2)

[∫ u
0 e−α1(u−v)(σf2(v)− η2σh2(v))dv−

∫ ∞
0 e−α1u−α2v(σf2(v)− η2σh2(v))dv

+
∫ ∞

u eα2(u−v)(σf2(v)− η2σh2(v))dv
]

+
2η2λ2β1β2

(2λ2 + δ)(β1 + β2)

[∫ u
0 e−β1(u−v)σh2(v)dv−

∫ ∞
0 e−β1u−β2vσh2(v)dv +

∫ ∞
u eβ2(u−v)σh2(v)dv

]
.

(20)

Applying the operators P1(D),P2(D) defined in Equation (11) (which can be re-written as
P1(D) = (D + α1I)(D − α2I),P2(D) = (D + β1I)(D − β2I)) to Equation (20), we get the result (12).
In Equation (20), we see that φd(0) = 0 and by taking the first, the second derivative, and setting u = 0
leads to the boundary conditions.

Let us

ζ f2(u) =
∫ u

0
ψ(u− x) f2(x)dx;

ζh2(u) =
∫ u

0
ψ(u− x)h2(x)dx; (21)

ζ f = lim
f2→ f

ζ f2 , ζh = lim
h2→h

ζh2 .

Theorem 2. Under the assumptions of the first-order delayed and perturbed risk model (Type I) defined in
Equation (1), the Gerber–Shiu function ψd defined in Equation (6) when the ruin is caused by oscillation satisfies the
following integro-differential equation,

P1(D)P2(D)(ψd)(u) = −2λ2

σ2 P2(D)(ζ f2(u)− η2ζh2(u))−
4λ2η2

σ2 P1(D)(ζh2(u)), (22)
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with the boundary conditions,

ψd(0) = 1, ψ
′′
d (0) +

2c
σ2 ψ

′
d(0) =

2(λ2 + δ)

σ2 . (23)

In Equation (22), ζ f2, ζh2 defined in Equation (21) are functions of the ordinary Gerber–Shiu function ψ,
which satisfies

A1(D)A2(D)(ψ)(u) = −2λ

σ2A2(D)(ζ f (u)− ηζh(u))−
4λη

σ2 A1(D)(ζh(u)). (24)

Remark 3. By letting λ2 → λ, f2 → f and η2 → η, Equation (22) reduces to the integro-differential equation in
the ordinary renewal risk model in Equation (24), which is the equation from Theorem 2 of (Zhang and Yang 2011).

Proof. Let τu = inf{t ≥ 0 : Zt = u},

E[e−δτu 1(τ < V2)] = E[e−δτu E[1(τu < V2)]|Zt] = E[e−(δ+λ2)τu ] = e−α1u,

using Formula (2.01) of (Borodin and Salminen 2002).
By conditioning on the fact that ruin caused by oscillation may occur or not before the first claim,

ψd(u) = E[e−δτu 1(τ < V2)] + E[e−δV2 E[ψ(u− ZV2 − X2)1(X2 < u− ZV2 , ¯ZV2 < u)|(V2, X2)]]

= e−α1u +
∫ ∞

0

∫ u
−∞

∫ u−y
0 e−δtψ(u− y− x)]P[(Zt ∈ dy, Z̄t < u)] f(V1,X1)(t,x)dxdt

= e−α1u +
∫ u
−∞

∫ u−y
0 ψ(u− y− x)p(u, y, x)dxdy.

(25)

In the same way as Theorem 1, we get the result.

We are now able to determine the differential Equation of the defined risk process of Type II.
Conditioning on the arrival of the first claim leads to the Type I risk process, which leads to the ordinary.

φ∗d(u) = E[e−δV1 E[w(u− ZV1 , X1 − u + ZV1)1(X1 > u− ZV1 , ¯ZV1 < u)|(V1, X1)]]

+E[e−δV1 E[φd(u− ZV1 − X1)1(X1 < u− ZV1 , ¯ZV1 < u)|(V1, X1)]]

= qE[e−δW1 E[w(u− ZW1 , X1 − u + ZW1)1(X1 > u− ZW1 , ¯ZW1 < u)|(W1, X1)]]

+(1− q)E[e−δW2 E[w(u− ZW2 , X1 − u + ZW2)1(X1 > u− ZW2 , ¯ZW2 < u)|(W2, X1)]]

+qE[e−δW1 E[φd(u− ZW1 − X1)1(X1 < u− ZW1 , ¯ZW1 < u)|(W1, X0)]]

+(1− q)E[e−δW2 E[φd(u− ZW2 − X1)1(X1 < u− ZW2 , ¯ZW2 < u)|(W2, X1)]],

φ∗d(u) =: qφ1(u) + (1− q)φ2(u).

Then,

φ1(u) = E[e−δW1 E[w(u− ZW1 , X1 − u + ZW1)1(X1 > u− ZW1 , ¯ZW1 < u)|(W1, X1)]]

+E[e−δW1 E[φd(u− ZW1 − X1)1(X1 < u− ZW1 , ¯ZW1 < u)|(W1, X1)]]

=
∫ u
−∞

∫ ∞
u−y w(u− y, x− (u− y))p(u, y, x|λ1, η1)dxdy

+
∫ u
−∞

∫ u−y
0 φd(u− y− x)p(u, y, x|λ1, η1)dxdy.

(26)
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Since we assume that V2 is exponentially distributed with parameter λ2, the distribution of
W2 becomes:

fW2(t) =
e−λ1t ∫ ∞

t fV2(y)dy∫ ∞
0 e−λ1y F̄V2(y)dy

= (λ1 + λ2)e−(λ1+λ2)t, t ≥ 0.

Thus,

φ2(u) = E[e−δW2 E[w(u− ZW2 , X1 − u + ZW2)1(X1 > u− ZW2 , ¯ZW2 < u)|(W2, X1)]]

+E[e−δW2 E[φd(u− ZW2 − X1)1(X1 < u− ZW2 , ¯ZW2 < u)|(W1, X1)]]

=
∫ u
−∞

∫ ∞
u−y w(u− y, x− (u− y))p(u, y, x|λ1 + λ2, η1)dxdy

+
∫ u
−∞

∫ u−y
0 φd(u− y− x)p(u, y, x|λ1 + λ2, η1)dxdy.

(27)

Therefore, the Hopf factorization theorem holds also in this case as in Theorem 1. Let

σf1(u) =
∫ u

0 φd(u− x) f1(x)dx + w f1(u), w f1(u) =
∫ ∞

u w(u, x− u) f1(x)dx,

σh1(u) =
∫ u

0 φd(u− x)h1(x)dx + wh1(u), wh1(u) =
∫ ∞

u w(u, x− u)h1(x)dx,
(28)

B1(s) = s2 +
2c
σ2 s− 2(λ1 + δ)

σ2 ,B2(s) = s2 +
2c
σ2 s− 2(2λ1 + δ)

σ2 ,

B1e(s) = s2 +
2c
σ2 s− 2(λ1 + λ2 + δ)

σ2 ,B2e(s) = s2 +
2c
σ2 s− 2(2(λ1 + λ2) + δ)

σ2 .

Theorem 3. Under the assumptions of the second-order delayed and perturbed risk model (Type II) defined in
Equation (1), the Gerber–Shiu function φ∗d defined in Equation (5) when the ruin is caused by claims satisfies the
following integro-differential equation,

B1(D)B2(D)B1e(D)B2e(D)(φ∗d)(u)

+
(

q 2λ1
σ2 B2(D)B1e(D)B2e(D) + (1− q) 2(λ1+λ2)

σ2 B1(D)B2(D)B2e(D)
)
(σf1(u)− η1σh1(u))

+
(

q 4λ1η1
σ2 B1(D)B1e(D)B2e(D) + (1− q) 4(λ1+λ2)η1

σ2 B1e(D)B1(D)B2(D)
)
(σh1(u)) = 0,

(29)

with the boundary conditions

φ∗d(0) = 0, φ∗
′′

d (0) +
2c
σ2 φ∗

′
d (0) = −

(
q

2λ1

σ2 + (1− q)
2(λ1 + λ2)

σ2

)
(w f1(0) + η1wh1(0)). (30)

In Equation (29), σf1 , σh1 defined in Equation (28) are functions of the Gerber–Shiu function φd which satisfies
Equation (12).

Proof. Since φ∗d(u) = qφ1(u) + (1− q)φ2(u), φ1, φ2 defined in Equations (26) and (27), by proceeding as
in Theorem 1, satisfy, respectively,

B1(D)B2(D)(φ1)(u) +
2λ1
σ2 B2(D)(σf1

(u)− η1σh1
(u)) +

4λ1η1
σ2 B1(D)(σh1

(u)) = 0, (31)

B1e(D)B2e(D)(φ2)(u) +
2(λ1 + λ2)

σ2 B2e(D)(σf1
(u)− η1σh1

(u)) +
4(λ1 + λ2)η1

σ2 B1e(D)(σh1
(u)) = 0. (32)
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Applying the operator qB1e(D)B2e(D) to Equation (31) added to the operator (1− q)B1(D)B2(D)
applied to Equation (32) leads to the result. The boundary conditions are obtained in the same way.

Let

ζ f1(u) =
∫ u

0 ψd(u− x) f1(x)dx,

ζh1(u) =
∫ u

0 ψd(u− x)h1(x)dx.
(33)

Theorem 4. Under the assumptions of the second-order delayed and perturbed risk model (Type II) defined in
Equation (1), the Gerber–Shiu function ψ∗d defined in Equation (5) when the ruin is caused by oscillation satisfies the
following integro-differential equation,

B1(D)B2(D)B1e(D)B2e(D)(ψ∗d)(u)

+
(

q 2λ1
σ2 B2(D)B1e(D)B2e(D) + (1− q) 2(λ1+λ2)

σ2 B1(D)B2(D)B2e(D)
)
(ζ f1(u)− η1ζh1(u))

+
(

q 4λ1η1
σ2 B1(D)B1e(D)B2e(D) + (1− q) 4(λ1+λ2)η1

σ2 B1e(D)B1(D)B2(D)
)
(ζh1(u)) = 0,

(34)

with the boundary conditions

ψ∗d(0) = 1; φ∗
′′

d (0) +
2c
σ2 φ∗

′
d (0) =

(
q

2(λ1 + δ)

σ2 + (1− q)
2(λ1 + λ2 + δ)

σ2

)
. (35)

In Equation (34), σf1 , σh1 defined in Equation (33) are functions of the Gerber–Shiu function ψd which satisfies
Equation (22).

Proof. As in the previous case of φ∗d , applying the same argument as in Theorem 2 leads to the result.
Since τu = inf{t ≥ 0 : Zt = u},

E[e−δτu 1(τ < V1)] = qE[e−δτu E[1(τu < W1)]|Zt] + (1− q)E[e−δτu E[1(τu < W2)]|Zt]

= qE[e−(δ+λ1)τu ] + (1− q)E[e−(δ+λ1+λ2)τu ],

Thus ψ∗d(u) = qψ1(u) + (1− q)ψ2(u),

ψ1(u) = E[e−(δ+λ1)τu ] +
∫ u

−∞

∫ u−y

0
ψd(u− y− x)p(u, y, x|λ1, η1)dxdy,

ψ2(u) = E[e−(δ+λ1+λ2)τu ] +
∫ u

−∞

∫ u−y

0
ψd(u− y− x)p(u, y, x|λ1 + λ2, η1)dxdy.

The result follows as in the proof of Theorem 3.

4.2. Laplace Transform of the Gerber–Shiu Functions

Lemma 1. The Laplace transform of φd is given by

φ̃d(s) =
2λ2

σ2

 (l1d(s)− v1d(s))
P1(s)P2(s)

−
2λ

σ2 (l1(s)− v1(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

P1(s)P2(s)[A1(s)A2(s) +
2λ

σ2 ( f̃ (s)− ηh̃(s))A2(s) +
4λη

σ2 A1(s)h̃(s)]

 , (36)
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where

v1d(s) = P2(s)(w̃ f2(s)− η2w̃ f2(s)) + 2η2P1(s)h̃2(s),

v1(s) = lim
λ2→λ, f2→ f ,η2→η

v1d(s) = A2(s)(w̃ f (s)− ηw̃ f (s)) + 2ηA1(s)h̃(s),

l1d(s) =
σ2

2λ2

(
φ̃
′
d(0)(s

2 +
2c
σ2 s +

4c2

σ4 −
2(3λ2 + 2δ)

σ2 ) +
4c
σ2 φ

′′
d (0) + φ̃

′′′
d (0)

)
+

2c
σ2 (w f2(0) + η2wh2(0)) + σ

′
f2
(0) + η2σ

′
h2
(0),

l1(s) =
σ2

2λ

(
φ̃
′
(0)(s2 +

2c
σ2 s +

4c2

σ4 −
2(3λ + 2δ)

σ2 ) +
4c
σ2 φ

′′
(0) + φ̃

′′′
(0)
)

+
2c
σ2 (w f (0) + ηwh(0)) + σ

′
f (0) + ησ

′
h(0).

Proof. ∫ ∞
0 e−suP1(D)P2(D)(φd(u)) = φ̃d(s)P1(s)P2(s)− φ

′
d(0)

(
4c2

σ4 −
2(3λ2+2δ)

σ2 + 4c
σ2 s + s2

)
−φ

′′
d (0)(

4c
σ2 + s)− φ

′′′
d (0).

(37)

− 2λ2
σ2

∫ ∞
0 e−su[P2(D)(σf2(u) − η2σh2(u)) + P2(D)(σh2(u))]du

= − 2λ2
σ2 φ̃(s)[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

− 2λ2
σ2 [P2(w̃ f2(s)− η2w̃h2(s)) + 2η2P1(s)w̃h2(s)]

+ 2λ2
σ2 (w f2(0) + η2wh2(0))(s +

2c
σ2 ) +

2λ2
σ2 (σ

′
f2
(0) + η2σ

′
h2
(0)).

(38)

Taking the Laplace transform of Equation (12) and using Equations (37) and (38) with the boundary
conditions, we get

φ̃d(s) =
2λ2

σ2

(
(l1d(s)− v1d(s))
P1(s)P2(s)

− φ̃(s)
P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)

P1(s)P2(s)

)
, (39)

where φ̃ is obtained by taking the Laplace transform of (14) that is:

φ̃(s) =
2λ
σ2 (l1(s)− v1(s))

A1(s)A2(s) + 2λ
σ2 ( f̃ (s)− ηh̃(s))A2(s) +

4λη

σ2 A1(s)h̃(s)
. (40)

Substituting Equation (40) into Equation (39) leads to Equation (36).

Lemma 2. The Laplace transform of φd is given by

ψ̃d(s) =
(l2d(s)− v2d(s))
P1(s)P2(s)

−
2λ2
σ2 (l2(s)− v2(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

P1(s)P2(s)[A1(s)A2(s) + 2λ
σ2 ( f̃ (s)− ηh̃(s))A2(s) +

4λη

σ2 A1(s)h̃(s)]
, (41)
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where

v2d(s) = −
{

s3 + 4c
σ2 s2 +

(
4c2

σ4 −
2(λ2+δ)

σ2

)}
,

v2(s) = −
{

s3 + 4c
σ2 s2 +

(
4c2

σ4 −
2(λ+δ)

σ2

)}
,

l2d(s) = ψ̃
′
d(0)

(
s2 + 2c

σ2 s + 4c2

σ4 −
2(3λ2+2δ)

σ2

)
+ 4c

σ2 ψ
′′
d (0) + ψ

′′′
d (0) +

2λ2
σ2 (ζ

′
f2
(0) + η2ζ

′
h2
(0)),

l2(s) = ψ̃
′
(0)
(

s2 + 2c
σ2 s + 4c2

σ4 −
2(3λ+2δ)

σ2

)
+ 4c

σ2 ψ
′′
(0) + ψ

′′′
(0) + 2λ

σ2 (ζ
′
f (0) + ηζ

′
h(0)).

Proof. In the same way as the poof of Equation (36), we get the result.

Lemma 3. The Laplace transform of φ∗d is given by

φ̃∗d(s) = M̃1(s) + φ̃d(s)g̃1(s), (42)

where φ̃d is given by Equation (36),

M̃1(s) = q
2λ1

σ2

(
(L1(s)− V1(s))
B1(s)B2(s)

)
+ (1− q)

2(λ1 + λ2)

σ2

(
(L1e(s)− V1e(s))
B1e(s)B2e(s)

)
,

g̃1(s) = −q
2λ1

σ2
B2(s)( f̃1(s)− η1h̃1(s)) + 2η1B1(s)h̃1(s)

B1(s)B2(s)

−(1− q)
2(λ1 + λ2)

σ2
B2e(s)( f̃1(s)− η1h̃1(s)) + 2η1B1e(s)h̃1(s)

B1e(s)B2e(s)
,

V1(s) = B2(s)(w̃ f1(s)− η1w̃ f1(s)) + 2η1B1(s)h̃1(s),

L1(s) =
σ2

2λ1

(
φ̃
′
1(0)(s

2 +
2c
σ2 s +

4c2

σ4 −
2(3λ1 + 2δ)

σ2 ) +
4c
σ2 φ

′′
1 (0) + φ̃

′′′
1 (0)

)
+

2c
σ2 (w f1(0)) + η1wh1(0)) + σ

′
f1
(0) + η1σ

′
h1
(0),

V1e(s) = B2e(s)(w̃ f1(s)− η1w̃ f1(s)) + 2η1B1e(s)h̃1(s),

L1e(s) =
σ2

2(λ1 + λ2)

(
φ̃
′
2(0)(s

2 +
2c
σ2 s +

4c2

σ4 −
2(3(λ1 + λ2) + 2δ)

σ2 ) +
4c
σ2 φ

′′
1 (0) + φ̃

′′′
1 (0)

)
+

2c
σ2 (w f1(0)) + η1wh1(0)) + σ

′
f1
(0) + η1σ

′
h1
(0).

Proof. Taking the Laplace transform of Equations (31) and (32) and substituting in the following

φ̃∗d(s) = qφ̃1(s) + (1− q)φ̃2(s),

leads to the result.

Lemma 4. The Laplace transform of ψ∗d is given by

ψ̃∗d(s) = M̃2(s) + ψ̃d(s)g̃2(s), (43)
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where ψ̃d are given by Equation (41),

M̃2(s) = q
(
(L2(s)− V2(s))
B1(s)B2(s)

)
+ (1− q)

(
(L2e(s)− V2e(s))
B1e(s)B2e(s)

)
,

g̃2(s) = −q
2λ1

σ2

(
B2(s)( f̃1(s)− η1h̃1(s)) + 2η1B1(s)h̃1(s)

B1(s)B2(s)

)
−(1− q)

2(λ1 + λ2)

σ2

(
B2e(s)( f̃1(s)− η1h̃1(s)) + 2η1B1e(s)h̃1(s)

B1e(s)B2e(s)

)
,

V2(s) = −
{

s3 +
4c
σ2 s2 +

(
4c2

σ4 −
2(λ1 + δ)

σ2

)}
,

L2(s) = ψ̃
′
1(0)

(
s2 +

2c
σ2 s +

4c2

σ4 −
2(3λ1 + 2δ)

σ2

)
+

4c
σ2 ψ

′′
1 (0) + ψ

′′′
1 (0) +

2λ1

σ2 (ζ
′
f1
(0) + η1ζ

′
h1
(0),

V2e(s) = −
{

s3 +
4c
σ2 s2 +

(
4c2

σ4 −
2(λ1 + λ2 + δ)

σ2

)}
,

L2e(s) = ψ̃
′
2(0)

(
s2 +

2c
σ2 s +

4c2

σ4 −
2(3(λ1 + λ2) + 2δ)

σ2

)
+

4c
σ2 ψ

′′
1 (0) + ψ

′′′
1 (0)

+
2(λ1 + λ2)

σ2 (ζ
′
f1
(0) + η1ζ

′
h1
(0)).

Proof. In the same way as the proof of Equation (42), we get the result.

4.3. The Defective Renewal Equation

In this section, we prove that the Gerber–Shiu function when ruin is caused by claims and by
oscillations both satisfy the defective renewal equation. Let us recall the Dickson–Hipp operator Tρ

defined by

Tρ( f )(x) =
∫ ∞

x
e−ρ(α−x) f (α)dα. (44)

Its Laplace transform is

T̃ρ( f )(s) =
f̃ (ρ)− f̃ (s)

s− ρ
.

For simplicity, let

R(s) = A1(s)A2(s) + 2λ
σ2 ( f̃ (s)− ηh̃(s))A2(s) +

4λη

σ2 A1(s)h̃(s);

π(s) = s2 + 2c
σ2 s;

π1(s) = π(s)− π(ρ1); π2(s) = π(s)− π(ρ2); a1(s) = π(s)− π(r1); a2(s) = π(s)− π(r2);

b1(s) = π(s)− π(µ1); b2(s) = π(s)− π(µ2); b1e(s) = π(s)− π(µ1e); b2e(s) = π(s)− π(µ2e);

(45)



Risks 2020, 8, 30 15 of 25

where r1, r2, µ1, µ2, µ1e, µ2e are, respectively, the positive roots of P1(s),P2(s),B1(s),B2(s),B1e(s),B2e(s)
and given by

r1 = − c
σ2 +

√
c2

σ4 +
2(λ2+δ)

σ2 , r2 = − c
σ2 +

√
c2

σ4 +
2(2λ2+δ)

σ2 ,

µ1 = − c
σ2 +

√
c2

σ4 +
2(λ1+δ)

σ2 , µ2 = − c
σ2 +

√
c2

σ4 +
2(2λ1+δ)

σ2 ,

µ1e = − c
σ2 +

√
c2

σ4 +
2(λ1+λ2+δ)

σ2 , µ2e = − c
σ2 +

√
c2

σ4 +
2(2(λ1+λ2)+δ)

σ2 .

(46)

Since A1(s)A2(s) − π1(s)π2(s) = π1(s)A2(ρ2) + π2(s)A1(ρ1) + A1(ρ1)A2(ρ2) is a degree one
polynomial in π(s), by Lagrange interpolation, we have

A1(s)A2(s)− π1(s)π2(s) =
π(s)− π(ρ2)

π(ρ1)− π(ρ2)
(A1(ρ1)A2(ρ1)− π1(ρ1)π2(ρ1))

+
π(s)− π(ρ1)

π(ρ2)− π(ρ1)
(A1(ρ2)A2(ρ2)− π1(ρ2)π2(ρ2)).

Thus, R(s) can be expressed as

R(s) = π1(s)π2(s) +
π2(s)

π2(ρ1)

(
2λ

σ2A2(s)( f̃ (s)− ηh̃(s)) +
4λη

σ2 A1(s)h̃(s) +A1(ρ1)A2(ρ1)

)
+

π1(s)
π1(ρ2)

(
2λ

σ2A2(s)( f̃ (s)− ηh̃(s)) +
4λη

σ2 A1(s)h̃(s) +A1(ρ2)A2(ρ2)

)
.

As ρi, i = 1, 2 are solutions of Equation (7), using π1(s)
π1(ρ2)

+ π2(s)
π2(ρ1)

= 1, we have

R(s) = π1(s)π2(s)
+ π2(s)

π2(ρ1)

{
2λ
σ2

[
(A2(s)−A2(ρ1))( f̃ (s)− ηh̃(s)) +A2(ρ1)

(
( f̃ (s)− ηh̃(s))− ( f̃ (ρ1)− ηh̃(ρ1))

)]
+ 4λη

σ2

[
(A1(s)−A1(ρ1))(h̃(s) +A1(ρ1)

(
h̃(s)− (h̃(ρ1)

)]}
+ π1(s)

π1(ρ2)

{
2λ
σ2

[
(A2(s)−A2(ρ2))( f̃ (s)− ηh̃(s)) +A2(ρ2)

(
( f̃ (s)− ηh̃(s))− ( f̃ (ρ2)− ηh̃(ρ2))

)]
+ 4λη

σ2

[
(A1(s)−A1(ρ2))(h̃(s) +A1(ρ2)

(
h̃(s)− (h̃(ρ2)

)]}
.

Using Ai(s)−Ai(ρj) = πj(s), (i, j) ∈ {1, 2} ∗ {1, 2} and re-writing R, we have

R(s) = π1(s)π2(s)

{
1 +

2λ

σ2

(
f̃ρ1(s)

π2(ρ1)
+

f̃ρ2(s)
π1(ρ2)

)}
, (47)

where

f̃ρi (s) = f̃ (s) + ηh̃(s)− 1
s + ρi +

2c
σ2

T̃ρi [A2(ρi) f + (2A1(ρi)−A2(ρi))ηh] (s); i = 1, 2. (48)

Since φ̃d, φ̃ defined in Equations (39) and (40) are analytics, r1, r2 must be the roots of the expression
in the numerator of Equation (39), and the same for ρ1, ρ2. Thus, by Lagrange interpolation,

l1(s) =
π1(s)

π1(ρ2)
v1(ρ2) +

π2(s)
π2(ρ1)

v1(ρ1).
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Since π1(s)
π1(ρ2)

+ π2(s)
π2(ρ1)

= 1, we have:

l1(s)− v1(s) =
π1(s)

π1(ρ2)
(v1(ρ2)− v1(s)) +

π2(s)
π2(ρ1)

(v1(ρ1)− v1(s)).

Analogously, we have

l1d(s)− v1d(s) = a1(s)
a1(r2)

(l1d(r2)− v1d(s)) +
a2(s)
a2(r1)

(l1d(r1)− v1d(s)),

l1d(ri) = v1d(ri) +
2λ
σ2

(l1(ri)−v1(ri))[P2(ri)( f̃1(ri)−η1 h̃1(ri))+2η2P1(ri)(h̃1(ri))]
R(ri)

; i = 1, 2.

Using the same arguments for ψ̃d, ψ̃, we have

l2(s)− v2(s) = π1(s)
π1(ρ2)

(v2(ρ2)− v2(s)) +
π2(s)

π2(ρ1)
(v2(ρ1)− v2(s)),

l2d(s)− v2d(s) = a1(s)
a1(r2)

(l2d(r2)− v2d(s)) +
a2(s)
a2(r1)

(l2d(r1)− v2d(s)),

l2d(ri) = v2d(ri) +
2λ2
σ2

(l2(ri)−v2(ri))[P2(ri)( f̃1(ri)−η1 h̃1(ri))+2η2P1(ri)(h̃1(ri))]
R(ri)

; i = 1, 2.

Since φ̃∗d , ψ̃∗d are analytics, by the same approach with Lagrange interpolation, the expressions of
M̃1,M̃2 defined in Equations (3) and (4) can be re-expressed as:

M̃1 = q
2λ1

σ2

(
b1(s)

b1(µ2)

(L1(µ2)− V1(s))
B1(s)B2(s)

+
b2(s)

b2(µ1)

(L1(µ1)− V1(s))
B1(s)B2(s)

)
+(1− q)

2(λ1 + λ2)

σ2

(
b1e(s)

b1e(µ2e)

(L1e(µ2e)− V1e(s))
B1e(s)B2e(s)

+
b2e(s)

b2e(µ1e)

(L1e(µ1e)− V1e(s))
B1e(s)B2e(s)

)
,

(49)

M̃2 = q
(

b1(s)
b1(µ2)

(L2(µ2)− V2(s))
B1(s)B2(s)

+
b2(s)

b2(µ1)

(L2(µ1)− V2(s))
B1(s)B2(s)

)
+(1− q)

(
b1e(s)

b1e(µ2e)

(L2e(µ2e)− V2e(s))
B1e(s)B2e(s)

+
b2e(s)

b2e(µ1e)

(L2e(µ1e)− V2e(s))
B1e(s)B2e(s)

)
,

(50)

where

L1(µi) = V1(µi) + φ̃d(µi)[B2(µi)( f̃1(µi)− η1h̃1(µi)) + 2η1B1(µi)(h̃1(µi))]; i = 1, 2;

L1e(µie) = V1e(µie) + φ̃d(µie)[B2e(µie)( f̃1(µie)− η1h̃1(µie)) + 2η1B1(µie)(h̃1(µie))]; i = 1, 2;

L2(µi) = V2(µi) +
2λ1
σ2 ψ̃d(µi)[B2(µi)( f̃1(µi)− η1h̃1(µi)) + 2η1B1(µi)(h̃1(µi))]; i = 1, 2;

L2e(µie) = V2e(µie) +
2(λ1+λ2)

σ2 ψ̃d(µie)[B2e(µie)( f̃0(µie)− η1h̃1(µie)) + 2η1B1(µie)(h̃1(µie))]; i = 1, 2.

Theorem 5. Under the condition of the first-order delayed and perturbed risk model (Type I) in Equation (1):

1. The Gerber–Shiu function φd caused by claims satisfies the defective renewal equation:

φd(u) = H1(u) +
∫ u

0
φd(u− x)g(x)dx. (51)

2. The Gerber–Shiu function ψd when ruin is caused by oscillations satisfies the defective renewal equation:

ψd(u) = H2(u) +
∫ u

0
ψd(u− x)g(x)dx. (52)
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The Laplace transforms of g, H1, H2 are given by:

g̃(s) = −2λ

σ2

(
f̃ρ1(s)

π2(ρ1)
+

f̃ρ2(s)
π1(ρ2)

)
,

H̃1(s) =
2λ2

σ2

 (l1d(s)− v1d(s))(1− g̃(s))
P1(s)P2(s)

−
2λ

σ2 (l1(s)− v1(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

P1(s)P2(s)π1(s)π2(s)

 ,

H̃2(s) =
(l2d(s)− v2d(s))(1− g̃(s))

P1(s)P2(s)
−

2λ2

σ2 (l2(s)− v2(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

P1(s)P2(s)π1(s)π2(s)
.

(53)

Proof. From the Laplace transform in Equations (36) and (41), we have the following equivalence:[
1 +

2λ

σ2

(
f̃ρ1(s)

π2(ρ1)
+

f̃ρ2(s)
π1(ρ2)

)]
φ̃d(s) =

2λ2

σ2

{
(l1d(s)− v1d(s))
P1(s)P2(s)

[
1 +

2λ

σ2

(
f̃ρ1(s)

π2(ρ1)
+

f̃ρ2(s)
π1(ρ2)

)]

−
2λ

σ2 (l1(s)− v1(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

P1(s)P2(s)π1(s)π2(s)

 ,

[
1 +

2λ

σ2

(
f̃ρ1(s)

π2(ρ1)
+

f̃ρ2(s)
π1(ρ2)

)]
ψ̃d(s) =

(l2d(s)− v2d(s))
P1(s)P2(s)

[
1 +

2λ

σ2

(
f̃ρ1(s)

π2(ρ1)
+

f̃ρ2(s)
π1(ρ2)

)]

−
2λ2

σ2 (l2(s)− v2(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]

P1(s)P2(s)π1(s)π2(s)
,

which can be rewritten as:

φ̃d(s) = g̃(s)φ̃d(s) + H̃1(s),

ψ̃d(s) = g̃(s)ψ̃d(s) + H̃2(s).

The result follows.

Theorem 6. Under the conditions of the second-order delayed and perturbed risk model (Type II) defined in
Equation (1):

1. The Gerber–Shiu function φ∗d caused by claims satisfies the defective renewal equation:

φ∗d(u) = Ha(u) +
∫ u

0
φ∗d(u− x)g(x)dx. (54)

2. The Gerber–Shiu function ψ∗d when ruin is caused by oscillations satisfies the defective renewal equation:

ψ∗d(u) = Hb(u) +
∫ u

0
ψ∗d(u− x)g(x)dx. (55)

where the Laplace transform of Ha, Hb are given by:

H̃a = M̃1(s)(1− g̃(s)) + H̃1(s)g̃1(s),

H̃b = M̃2(s)(1− g̃(s)) + H̃1(s)g̃2(s).
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Proof.

φ̃∗d(s) = M̃1(s) + φ̃d(s)g̃1(s)

= M̃1(s) + [H̃1(s) + φ̃d(s)g̃(s)]g̃1(s)

= M̃1(s)(1− g̃(s)) + H̃1(s)g̃1(s) + φ̃∗d(s)g̃(s).

The same is true for ψ̃∗d .

4.4. Representation of the Solution

The goal of this section is to derive the solution of the integro-differential equations.

Let G(x) =

∫ x
0 g(y)dy∫ ∞
0 g(y)dy

be the the associated claim size c.d.f.

It is discussed in detail in (Willmot et al. 2001) that the properties of the solution of the defective
renewal equations depend on the associated claim size distribution. The solutions of Equations (51) and
(52) can be represented as follow,

φd(u) = H1(u) +
1

1− b

∫ u

0
H1(u− x)dQ(x), ψd(u) = H2(u) +

1
1− b

∫ u

0
H2(u− x)dQ(x), (56)

φ∗d(u) = Ha(u) +
1

1− b

∫ u

0
Ha(u− x)dQ(x), ψ∗d(u) = Hb(u) +

1
1− b

∫ u

0
Hb(u− x)dQ(x), (57)

where

b =
∫ ∞

0
g(x)dx = g̃(0),

Q(x) =
∞

∑
n=1

(1− b)bnG∗n(x),

and G∗n is the n-fold convolution of independent random variable with c.d.f G. We have 0 < b < 1 from
the condition assuring that the ruin is not almost surely certain. Let

Q1(s) = (l1d(s)− v1d(s))R(s)− 2λ

σ2 (l1(s)− v1(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)], (58)

Q2(s) = (l2d(s)− v2d(s))R(s)− 2λ2

σ2 (l2(s)− v2(s))[P2(s)( f̃2(s)− η2h̃2(s)) + 2η2P1(s)h̃2(s)]. (59)

Theorem 7. Under the assumption of the first-order delayed and perturbed risk model (Type I) defined in
Equation (1), and given that the claim X2 is exponentially distributed with parameter θ2 and the subsequent
claims X are exponentially distributed with parameter θ and penalty function w ≡ 1, the Gerber–Shiu functions
when ruin is caused by claims φd and by oscillations ψd and the total expression of Gerber–Shiu function md are
given by:

φd(u) = k1e−(r1+
2c
σ2 )u + k2e−(r2+

2c
σ2 )u +

4

∑
i=1

ki+2 e−γiu, (60)

ψd(u) = k
′
1e−(r1+

2c
σ2 )u + k

′
2e−(r2+

2c
σ2 )u +

4

∑
i=1

k
′

i+2
e−γiu, (61)

md(u) = φd(u) + ψd(u),
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where −γi, i = 1 · · · 4, Re(γi) > 0 are the roots of the Lundberg equation (Equation (7)) located in the left
complex plane,

k1 =

2λ2

σ2 (θ − r1 −
2c
σ2 )(2θ − r1 −

2c
σ2 )Q1(−r1 −

2c
σ2 )

(2r1 +
2c
σ2 )(r1 + r2 +

2c
σ2 )(r1 +

2c
σ2 + ρ1)(r1 +

2c
σ2 + ρ2)(r2 − r1)∏4

i=1(γi − r1 −
2c
σ2 )

,

k2 =

2λ2

σ2 (θ − r2 −
2c
σ2 )(2θ − r2 −

2c
σ2 )Q1(−r2 −

2c
σ2 )

(2r2 +
2c
σ2 )(r1 + r2 +

2c
σ2 )(r2 +

2c
σ2 + ρ1)(r2 +

2c
σ2 + ρ2)(r1 − r2)∏4

i=1(γi − r2 −
2c
σ2 )

,

ki+2 =

2λ2

σ2 (θ − γi)(2θ − γi)Q1(−γi)

(γi + r1)(γi + r2)(γi + ρ1)(γi + ρ2)(r1 − γi +
2c
σ2 )(r2 − γi +

2c
σ2 )∏4

j=1,j 6=i(γj − γi)
, i = 1, · · · 4,

(62)

and

k
′
1 =

(θ − r1 −
2c
σ2 )(2θ − r1 −

2c
σ2 )Q2(−r1 −

2c
σ2 )

(2r1 +
2c
σ2 )(r1 + r2 +

2c
σ2 )(r1 +

2c
σ2 + ρ1)(r1 +

2c
σ2 + ρ2)(r2 − r1)∏4

i=1(γi − r1 −
2c
σ2 )

,

k
′
2 =

(θ − r2 −
2c
σ2 )(2θ − r2 −

2c
σ2 )Q2(−r2 −

2c
σ2 )

(2r2 +
2c
σ2 )(r1 + r2 +

2c
σ2 )(r2 +

2c
σ2 + ρ1)(r2 +

2c
σ2 + ρ2)(r1 − r2)∏4

i=1(γi − r2 −
2c
σ2 )

,

k
′
i+2

=
(θ − γi)(2θ − γi)Q2(−γi)

(γi + r1)(γi + r2)(γi + ρ1)(γi + ρ2)(r1 − γi +
2c
σ2 )(r2 − γi +

2c
σ2 )∏4

j=1,j 6=i(γj − γi)
, i = 1, · · · 4.

(63)

Proof. With exponential claim size (X2 ∼ Exp(θ2), X ∼ Exp(θ)), the expressions of v1d, v1 and R defined
in Lemma 1 and Equation (45) reduce to:

f̃2(s) =
θ2

s + θ2
, f̃ (s) =

θ

s + θ
, h̃(s) =

θs
(s + 2θ)(s + θ)

,

(s + 2θ2)(s + θ2)v1d(s) = s3 +

(
2c
σ2 + (2− η2)θ2

)
s2 +

(
2cθ2(2− η2)

σ2 − 2(2λ2 + δ)

σ2

)
s +

2η2θ2δ− 4θ2(2λ2 + δ)

σ2 ,

(s + 2θ)(s + θ)v1(s) = s3 +

(
2c
σ2 + (2− η)θ

)
s2 +

(
2cθ(2− η)

σ2 − 2(2λ + δ)

σ2

)
s +

2ηθδ− 4θ(2λ + δ)

σ2 ,

(s + 2θ)(s + θ)R(s) = s2(π(s))2 + 3θs(π(s))2 + 2θ2(π(s))2 +
2θ(λ(η − 8)− 6δ)

σ2 sπ(s)− 8θ2(λ + δ)

σ2 π(s)

− 2(3λ + 2δ)

σ2 s2π(s) +
4(λ + δ)(2λ + δ)

σ4 s2 +
4θ(2λ + δ)(2λ + 3δ)− ηλδ

σ4 s +
8θ2δ(λ + δ)

σ4 .

With π(s) = s2 + 2c
σ2 s defined in Equation (45), we get that:

(s + 2θ)(s + θ)R(s) = s6 +

(
3θ +

4c
σ2

)
s5 +

(
4c2

σ4 +
12cθ

σ2 + 2θ2 − 2(3λ + 2δ)

σ2

)
s4

+

(
12c2θ

σ4 +
8cθ2

σ2 +
2θ(λ(η − 8)− 6δ)

σ2 − 4c(3λ + 2δ)

σ4

)
s3

+

(
8c2θ2

σ4 +
4cθ(λ(η − 8)− 6δ)

σ4 − 8θ2(λ + δ)

σ2 +
4(λ + δ)(2λ + 3δ)

σ4

)
s2

(
4θ((2λ + δ)(2λ + 3δ)− ηλδ)

σ4 − 16cθ2(λ + δ)

σ4

)
s +

8θ2δ(2λ + δ)

σ4 .
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Equation (7) is equivalent to R(s) = 0 and has exactly six roots in the set of complex number. Since
ρ1, ρ2 are the only roots in the right complex plane, the remaining roots belong to left complex plane, say
−γi, i = 1, · · · , 4, such that Re(γ) > 0.

Note that Q1(r1) = Q1(r2) = Q1(ρ1) = Q1(ρ2) = 0, and Q2(r1) = Q2(r2) = Q2(ρ1) = Q2(ρ2) = 0.
φ̃d, ψ̃d can be expressed as:

φ̃d(s) =
2λ2
σ2 Q1(s)

P1(s)P2(s)R(s)
=

k1

s + r1 +
2c
σ2

+
k2

s + r2 +
2c
σ2

+
4

∑
i=1

ki+2

s + γi
,

ψ̃d(s) =
Q2(s)

P1(s)P2(s)R(s)
=

k
′
1

s + r1 +
2c
σ2

+
k
′
2

s + r2 +
2c
σ2

+
4

∑
i=1

k
′
i+2

s + γi
,

where ki, i = 1 . . . 6 are defined in Equation (62) and k
′
i, i = 1 . . . 6 are defined in Equation (63).

Theorem 8. Given that the fist two claims X1, X2 and the subsequent claims X are exponentially distributed with
parameters θ1, θ2, θ, respectively, under the assumptions of the second-order delayed and perturbed risk model (Type
II) defined in Equation (1) and penalty function w ≡ 1, the Gerber–Shiu functions when ruin is caused by claims φ∗d
and by oscillations ψ∗d and the total expression of Gerber–Shiu function m∗d are given by:

φ∗d(u) = H1(u) +
∫ u

0 φd(u− a)G(a)da

+
qλ1θ1(µ1(1− η1) + 2θ1)

(µ1σ2 + c)(µ1 + 2θ1)(µ1 + θ1)
Tµ1(φd)(u) +

2qλ1η1θ1µ2

(µ2σ2 + c)(µ2 + 2θ1)(µ2 + θ1)
Tµ2(φd)(u)

+
(1− q)(λ1 + λ2)θ1(µ1e(1− η1) + 2θ1)

(µ1eσ2 + c)(µ1e + 2θ1)(µ1e + θ1)
Tµ1e(φd)(u) +

2(1− q)(λ1 + λ2)η1θ1µ2e

(µ2eσ2 + c)(µ2e + 2θ1)(µ2e + θ1)
Tµ2e(φd)(u),

(64)

and

ψ∗d(u) = H2(u) +
∫ u

0 ψd(u− a)G(a)da

+
qθ1λ1(µ1(1− η1) + 2θ1)

(µ1σ2 + c)(µ1 + 2θ1)(µ1 + θ1)
Tµ1(ψd)(u) +

2qλ1η1θ1µ2

(µ2σ2 + c)(µ2 + 2θ1)(µ2 + θ1)
Tµ2(ψd)(u)

+
(1− q)(λ1 + λ2)θ1(µ1e(1− η1) + 2θ1)

(µ1eσ2 + c)(µ1e + 2θ1)(µ1e + θ1)
Tµ1e(ψd)(u) +

2(1− q)(λ1 + λ2)η1θ1µ2e

(µ2eσ2 + c)(µ2e + 2θ1)(µ2e + θ1)
Tµ2e(ψd)(u).

(65)

with m∗d(u) = φ∗d(u) + ψ∗d(u), where the expressions of φd, ψd are given by Theorem 7, G is given in Equation (67),
andH1,H2 are defined in Equations (66) and (68).

Proof. With first claim exponentially distributed with parameter θ1, the expressions of V1,V1e defined in
Lemma 3 are reduced to:

(s + 2θ1)(s + θ1)V1(s) = s3 +
(

2c
σ2 + (2− η1)θ1

)
s2 +

(
2cθ1(2−η1)

σ2 − 2(2λ2+δ)
σ2

)
s + 2η1θ1δ−4θ1(2λ2+δ)

σ2 ,

(s + 2θ1)(s + θ1)V1e(s) = s3 +
(

2c
σ2 + (2− η1)θ1

)
s2 +

(
2cθ1(2−η1)

σ2 − 2(2(λ1+λ2)+δ)
σ2

)
s

+ 2η1θ1δ−4θ1(2(λ1+λ2)+δ)
σ2 .

The expressions of M̃1 and g̃1 defined in Equation (49) and Lemma 3 can be reduced to:

M̃1(s) =
d1

s− µ1
+

d2

s + µ1 +
2c
σ2

+
d3

s− µ2
+

d4

s + µ2 +
2c
σ2

+
d5

s− µ1e
+

d6

s + µ1e +
2c
σ2

+
d7

s− µ2e
+

d8

s + µ2e +
2c
σ2

,

g̃1(s) =
k1

s− µ1
+

k2

s + µ1 +
2c
σ2

+
k3

s− µ2
+

k4

s + µ2 +
2c
σ2

+
k5

s− µ1e
+

k6

s + µ1e +
2c
σ2

+
k7

s− µ2e
+

k8

s + µ2e +
2c
σ2

.
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Since φ̃∗d is analytic, substituting M̃1, g̃1 into Equation (42), we have:

lim
s→µ1

(s− µ1)φ̃
∗
d(s) = d1 + φ̃d(µ1)k1 = 0, lim

s→µ2
(s− µ2)φ̃

∗
d(s) = d3 + φ̃d(µ2)k3 = 0,

lim
s→µ1e

(s− µ1e)φ̃
∗
d(s) = d5 + φ̃d(µ1e)k5 = 0, lim

s→µ2e
(s− µ2e)φ̃

∗
d(s) = d7 + φ̃d(µ2e)k7 = 0.

φ̃∗d can then be re-written as:

φ̃∗d =
d2

s + µ1 +
2c
σ2

+
d4

s + µ2 +
2c
σ2

+
d6

s + µ1e +
2c
σ2

+
d8

s + µ2e +
2c
σ2

+

(
k2

s + µ1 +
2c
σ2

+
k4

s + µ2 +
2c
σ2

+
k6

s + µ1e +
2c
σ2

+
k8

s + µ2e +
2c
σ2

)
φ̃d(s)

+k1
φ̃d(s)− φ̃d(µ1)

s− µ1
+ k3

φ̃d(s)− φ̃d(µ2)

s− µ2
+ k5

φ̃d(s)− φ̃d(µ1e)

s− µ1e
+ k7

φ̃d(s)− φ̃d(µ2e)

s− µ2e
.

Finding the coefficients di, ki, i = 1, · · · , 8 and taking the inverse of the Laplace transform leads to the
following deduced expression ofH1 and G.

H1 =
qλ1(V1(−µ2 − 2c

σ2 )−L1(µ2))

(µ2σ2 + c)b1(µ2)
e−(µ2+

2c
σ2 )u +

qλ1(V1(−µ1 − 2c
σ2 )−L1(µ1))

(µ1σ2 + c)b2(µ1)
e−(µ1+

2c
σ2 )u

+
(1− q)(λ1 + λ2)(V1e(−µ2e − 2c

σ2 )−L1e(µ2e))

(µ2eσ2 + c)b1e(µ2e)
e−(µ2e+

2c
σ2 )u (66)

+
(1− q)(λ1 + λ2)(V1e(−µ1e − 2c

σ2 )−L1e(µ1e))

(µ1eσ2 + c)b2e(µ1e)
e−(µ1e+

2c
σ2 )u,

and

G(a) =
qλ1θ1((−µ1 −

2c
σ2 )(1− η1) + 2θ1)

(µ1σ2 + c)(2θ1 − µ1 −
2c
σ2 )(θ1 − µ1 −

2c
σ2 )

e
−(µ1+

2c
σ2 )a

−
2qλ1η1θ1(µ2 +

2c
σ2 )

(µ2σ2 + c)(2θ1 − µ2 −
2c
σ2 )(θ1 − µ2 −

2c
σ2 )

e
−(µ2+

2c
σ2 )a

+
(1− q)(λ1 + λ2)θ1((−µ1e −

2c
σ2 )(1− η1) + 2θ1)

(µ1eσ2 + c)(2θ1 − µ1e −
2c
σ2 )(θ1 − µ1e −

2c
σ2 )

e
−(µ1e+

2c
σ2 )a

−
2(1− q)(λ1 + λ2)η1θ1(µ2e +

2c
σ2 )

(µ2eσ2 + c)(2θ1 − µ2e −
2c
σ2 )(θ1 − µ2e −

2c
σ2 )

e
−(µ2e+

2c
σ2 )a

.

(67)

By using the same arguments, one gets the following expression ofH2,

H2 =
qσ2(V2(−µ2 − 2c

σ2 )−L2(µ2))

2(µ2σ2 + c)b1(µ2)
e−(µ2+

2c
σ2 )u +

qσ2(V2(−µ1 − 2c
σ2 )−L2(µ1))

2(µ1σ2 + c)b2(µ1)
e−(µ1+

2c
σ2 )u

+
(1− q)σ2(V2e(−µ2e − 2c

σ2 )−L2e(µ2e))

2(µ2eσ2 + c)b1e(µ2e)
e−(µ2e+

2c
σ2 )u (68)

+
(1− q)σ2(V2e(−µ1e − 2c

σ2 )−L2e(µ1e))

2(µ1eσ2 + c)b2e(µ1e)
e−(µ1e+

2c
σ2 )u.

5. Numerical Illustration

In this section, we provide numerical examples of the Gerber–Shiu function where claims are
exponentially distributed in the delayed and perturbed risk model of Type I, i.e., only the first claim
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is delayed from Theorem 7. Then, we provide numerical illustrations of the results from Theorem 8 of the
risk model of Type II where the first two claims are delayed, with the first claim inter-occurrence’s time
following a generalized mixed equilibrium distribution.

Table 1 provides the examples of the Gerber–Shiu functions of the first-order delayed and perturbed
risk model (Type I). Figures 1 and 2 illustrate the ruin probabilities of the second-order delayed and
perturbed risk model (Type II) with λ1 = 2, θ1 = 12.5, q = 0.25, δ = 0, c = 2.5, η2 = 0.5, θ2 = 3.5, θ = 2.75,
η = 0.5, λ2 = 1.85, λ = 1.2, σ = 5 and different values of η1. This implies for the first-order delayed and
perturbed risk model (Type I) the following ruin probabilities:

φd(u) = −0.0126e−0.497u − 0.0104e−0.653u + 0.0129e−0.163u + 0.0177e−0.556u + 0.0004e−2.768u + 0.000013e−5.509u,

ψd(u) = −0.5441e−0.497u − 0.261e−0.653u + 1.166e−0.163u + 0.631e−0.556u − 0.0004e−2.768u − 0.000013e−5.509u,

and by the Theorem 8 we derive φ∗d and ψ∗d .

Table 1. Numerical illustration when claims are exponentially distributed under the risk model of Type I.

δ = 0, c = 2.5, η2 = 0.5, θ2 = 3.5, θ = 2, η = 0.5, λ2 = 1.85, λ = 1.2, σ = 5

φd(u) = −0.00133e−0.4975u − 0.01027e−0.6532u + 0.00805e−0.1713u + 0.0113e−0.5544u + 0.0063e−3.5142u − 0.00157e−7.0071u

ψd(u) = −0.6178e−0.4975u − 0.2604e−0.6532u + 1.1885e−0.1713u + 0.6817e−0.5544u + 0.0063e−3.5142u + 0.0016e−7.0071u

δ = 0, c = 4.25, η2 = 0.75, θ2 = 1.75, θ = 2.75, η = 0.5, λ2 = 1.75, λ = 1.25, σ = 3.5

φd(u) = 0.8794e−0.9842u − 3.6173e−1.1786u + 0.04781e−0.602u + 0.471e−1.096u − 0.00576e−2.794u − 0.00003e−5.5216u

ψd(u) = −15.692e−0.9842u − 26.884e−1.1786u + 2.772e−0.602u + 34.276e−1.096u + 0.00565e−2.794u + 0.000031e−5.5216u

δ = 0.15, c = 7.25, η2 = −0.75, θ2 = 1.25, θ = 2.75, η = 0.65, λ2 = 4.75, λ = 2.25, σ = 1.5

φd(u) = −0.30002e−7.0613u + 1.79386e−7.5766u − 0.8468e−2.4623u − 0.0012e−5.0643u + 0.01598e−6.6421u − 1.9103e−7.5663u

ψd(u) = 9.248e−7.0613u + 42.547e−7.5766u − 1.046e−2.4623u − 0.02024e−5.0643u − 1.0286e−6.6421u − 49.8108e−7.5663u

In Figures 1 and 2 illustrating the ruin probabilities caused by claims and by oscillations of the
second-order delayed and perturbed risk model (Type II), we notice that the ruin probabilities (caused by
claims and by oscillations) both decrease as the initial capital increases.

Figure 1. Ruin probabilities caused by claims: φ∗d .
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Figure 2. Ruin probabilities caused by oscillation: ψ∗d .

6. Conclusions

We model insurance surplus by considering a second-order delayed and perturbed risk model and
derived the Gerber–Shiu function. In this model, the occurrence time of the first claim follows a generalized
mixed equilibrium distribution and the risk process becomes ordinary after the second claim. We derive
the integro-differential equations of the Gerber–Shiu function when ruin is caused by claims and by
oscillations. By considering exponential claim distribution, analytical expressions of the Gerber–Shiu
functions are determined. The numerical illustration confirms the expectancy and the ruin probabilities (as
special case of Gerber–Shiu function) caused by claims and oscillations both decrease as the initial capital
is much more important.

Our main results are obtained from Equations (18) and (19) and can be further developed and
extended in a few ways, which are the subject of future research. For example, one can try and obtain
similar results to these two equations in some more general settings by first considering that the time
occurrence of the first two claims and the inter-occurrence time of the subsequent claims follow Erlang(n)
distributions with different parameters and second replacing the constant volatility by volatility that
depends on the market mode or regime that switches among a finite number of states. Finally, one can also
try to investigate in what ways the model can be extended so that it can be used to generalize the work
of (Tan et al. 2020), who studied the optimal dynamic policy for an insurance company whose surplus is
modelled by the diffusion approximation of the classical Cramer–Lundberg model.
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