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Abstract: We investigate the impact of model uncertainty on hedging longevity risk with index-based
derivatives and assessing longevity basis risk, which arises from the mismatch between the hedging
instruments and the portfolio being hedged. We apply the bivariate Lee–Carter model, the common
factor model, and the M7-M5 model, with separate cohort effects between the two populations, and
various time series processes and simulation methods, to build index-based longevity hedges and
measure the hedge effectiveness. Based on our modeling and simulations on hypothetical scenarios,
the estimated levels of hedge effectiveness are around 50% to 80% for a large pension plan, and the
model selection, particularly in dealing with the computed time series, plays a very important role
in the estimation. We also experiment with a modified bootstrapping approach to incorporate the
uncertainty of model selection into the modeling of longevity basis risk. The hedging results under
this approach may approximately be seen as a “weighted” average of those calculated from the
different model candidates.

Keywords: index-based longevity hedging; longevity basis risk; model uncertainty

1. Introduction

Continual increase in longevity worldwide remains a serious concern for pension plan sponsors
and annuity providers. The major issue is the presence of longevity risk, which is the risk of paying
more than expected because of unanticipated mortality improvements. Broadly speaking, there are
three ways to mitigate longevity risk (e.g., Cairns et al. 2008). The first is to transfer the unwanted
risk to an insurer or reinsurer by paying a premium. The problem of this usual approach is that
insurers and reinsurers may also have limited appetite, and that a failure of a major player could cause
disastrous systemic outcomes. The second way is natural hedging, which makes use of the opposite
movements between the values of annuities and life insurances arising from changes in mortality
levels (e.g., Li and Haberman 2015). Although certain large institutions may have the resources and
economies of scale to offer both lines of products and so exploit this hedging effect, many other financial
entities do not have such necessary conditions to follow suit.

The third way is the use of capital market solutions, such as insurance securitization (e.g.,
Cowley and Cummins 2005), and mortality- and longevity-linked securities (e.g., LCP (Lane Clark &
Peacock LLP) 2012; Coughlan et al. 2007). The former involves packaging insurance and business risks
into securities, such as bonds with coupon and principal payments depending on the performance of
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the underlying portfolio. The latter has two types of transactions, bespoke and index-based. Bespoke
transactions are tailored to individual circumstances, for example, pension buy-ins, buy-outs, and
longevity swaps. In contrast, index-based solutions are constructed such that the cashflows are linked
to the values of selected mortality indices. As noted in Zhou and Li (2016), there is an imbalance
between demand and supply in longevity risk transfer. The insurance industry alone cannot generate
sufficient supply for accepting the risk due to capital constraints. Accordingly, an important, recent
idea is to design standardized products based on well-specified mortality indices, in order to draw
more investors’ interest and develop market liquidity.

One significant challenge in implementing index-based hedging in practice is the existence of
longevity basis risk, i.e., there is a mismatch or discrepancy between the hedging instruments (linked
to a reference population) and the pension or annuity portfolio being hedged (with the underlying
book population). Haberman et al. (2014) established a mortality modeling framework incorporating
three fundamental sources of longevity basis risk. They include demographic basis risk which comes
from demographic or socioeconomic differences between the book and reference populations, sampling
basis risk due to the randomness of outcomes of individual lives, and structural basis risk in terms
of how the payoff structures differ between the hedging instruments and the portfolio to be hedged.
Li et al. (2017) then adopted the framework and focused on assessing longevity basis risk in realistic
scenarios under practical circumstances. The major finding is that for a large portfolio, about 50%
to 80% of its longevity risk can often be reduced via index-based longevity swaps, while for a small
portfolio, the risk reduction is usually less than 50%.

In particular, from a modeling viewpoint, or a regulatory perspective such as Solvency
II (Committee of European Insurance and Occupational Pensions Supervisors (CEIOPS) 2010),
demographic basis risk can further be divided into process error, parameter error, and model
error (or process risk, parameter uncertainty, model uncertainty, respectively). Process error refers
to the variability in the time series, parameter error arises from the uncertainty in estimating model
parameters, and model error reflects the uncertainty in model selection. Figure 1 below provides a
graphical summary of all these risk components. Although several authors proposed different ways
to allow for both process error and parameter error in index-based hedging (e.g., Li and Luo 2012;
Cairns 2013; Tan et al. 2014; Haberman et al. 2014), relatively little attention has been given to assessing
model error. Most of the studies covered process error only or considered both process error and
parameter error, while some compared the hedging results briefly between a few different mortality
projection models. Li et al. (2016) took a step further by examining the effectiveness of a hedging
strategy based on a particular model but under a simulated environment produced from another model,
and found that coherence is a critical assumption in measuring the hedge effectiveness. Li et al. (2017)
conducted a detailed sensitivity analysis by changing various modeling assumptions. They noted
that the most important ones were the coherence property, behavior of simulated future variability,
simulation method, and additional model features such as structural mortality changes.

In this paper, we perform a more elaborate investigation on model error in an attempt to
supplement the current literature from two perspectives. Firstly, we assess the hedge effectiveness
based on three broad “families” of mortality projection models, a range of time series processes under
each model, and several simulation methods for each combination. Many of these combinations have
not been tested or studied in detail in the literature. Secondly, we adopt the modified semi-parametric
bootstrapping approach in Yang et al. (2015) and incorporate all the three errors in an integrated
manner. From these two different perspectives, we attempt to obtain better insights into the potential
impact of selecting an inappropriate model in hedging longevity risk with index-based solutions.

This paper is organized as follows. In Section 2, we set forth a list of two-population mortality
projection models, time series processes, and simulation approaches selected for our analysis.
In Section 3, we examine the hedge effectiveness under different model settings and assumptions and
simulated scenarios, and provide a discussion on the impact of model uncertainty. Finally, we give our
concluding remarks and set forth some suggestions for future research in Section 4.
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Figure 1. A modeling framework for longevity basis risk.

2. Mortality Modeling and Simulations

Recently, there is an emerging branch of literature that focuses on modeling multiple populations
jointly. Haberman et al. (2014) and Li et al. (2014) provide a comprehensive review of several
multi-population mortality projection models for measuring longevity basis risk. Although there are
probably more than 30 models proposed in the literature, we select the ones below for our analysis,
as they can be deemed as “key representatives” of the major “families” of mortality projection models.

The first belongs to the Lee and Carter (1992) family, in which there are some possible options
(noted as Model 1a, Model 1b, Model 1c, and Model 1d respectively) for modeling the time-varying
parameters:

ln mx,t,i = αx,i + βx,i κt,i + ιt−x,i; (Lee–Carter model with cohort) (1)

with
Kt = Θ + Kt−1 + ∆t, (bivariate random walk with drift) (1a)

or
κt,1 = θ+ κt−1,1 + δt, (random walk with drift)
κt,2 = a0 + a1 κt,1 +ωt, (co− integrated process)

(1b)

or

Kt −Kt−1 = Θ + Π Kt−1 +
p−1∑
r=1

Γr(Kt−r −Kt−r−1) + ∆t, (VECM(p)) (1c)

or

Kt −Kt−1 = Θ +
p∑

r=1
Γr(Kt−r −Kt−r−1) + ∆t. (VARIMA(p, 1, 0)) (1d)

The term mx,t,i is the central death rate at age x in year t of population i, in which i = 1 refers to
the reference population and i = 2 refers to the book population. The parameter αx,i is the general
age schedule, κt,i is the mortality index over time, Kt = (κt,1 , κt,2)′, and βx,i is the age sensitivity
of the log death rate to the mortality index. The cohort parameter ιt−x,i is added when there are
significant patterns in the residuals against cohort year (e.g., Haberman and Renshaw 2011). It can be
modeled with an autoregressive integrated moving average (ARIMA) process for future projections
and simulations, though this is not required in the analysis in the next section. Following Cairns et al.
(2009), the first and last five cohorts are excluded from the fitting procedure due to a lack of data.

The first method suggested in Carter and Lee (1992) is fitting the Lee–Carter model to each
population separately and then modeling the relationship between the two resulting mortality indices.
This approach involves the use of a bivariate random walk with drift (1a) naturally, in which Θ
is the vector drift term and ∆t is the Gaussian vector error term. In contrast, the third method in
Carter and Lee (1992) is treating the two mortality indices as a co-integrated process (1b), where θ,
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a0, and a1 are the parameters of the process, and δt and ωt are independent Gaussian error terms.
Moreover, Yang and Wang (2013) proposed using a vector error correction model (VECM) of order
p (1c), in which Θ is the vector constant term, Π and Γr are the matrix components, and ∆t is the
Gaussian vector error term. Finally, we also consider a vector autoregressive integrated moving
average (VARIMA) process (1d), which has been explored by Chan et al. (2014) in modeling other
mortality indices. The order chosen is (p, 1, 0), Θ is the vector constant term, Γr is the autoregressive
matrix, and ∆t is the Gaussian vector error term. The VARIMA in (1d) is in line with the VECM in (1c)
and serves as an extension of the random walk in (1a) and (1b) in terms of allowing for more flexibility
in modeling the various mortality indices, for comparison purposes. Please note that all the options
(1a) to (1d) would generally lead to non-coherence in mortality projections, i.e., the ratio of projected
death rates (central estimates) between the two populations at each age group does not converge to a
constant over time (e.g., Cairns et al. 2011).

The second is the Li and Lee (2005) family, which is an extension of the Lee–Carter model and
assumes a common factor for the two populations. Again, there are a few possible choices (noted as
Model 2a, Model 2b, Model 2c, and Model 2d respectively) in modeling the temporal parameters:

ln mx,t,i = αx,i + βc
x κ

c
t +

n∑
j=1

βx,i, j κt,i, j + ιt−x,i, (generalized common factor model with cohort)

κc
t = d + κc

t−1 + εt; (random walk with drift)
(2)

with
κt,i, j = θi, j + γ1,i, j κt−1,i, j + δt,i, j,

(
AR(1); independent δt,1, j and δt,2, j

)
(2a)

or

κt,i, j = θi, j +
p∑

r=1
γr,i, j κt−r,i, j + δt,i, j,

(
AR(p); independent δt,1, j and δt,2, j

)
(2b)

or

κt,i, j = θi, j +
p∑

r=1
γr,i, j κt−r,i, j + δt,i, j,

(
AR(p); correlated δt,1, j and δt,2, j

)
(2c)

or

Kt, j = Θ j +
p∑

r=1
Γr, j Kt−r, j + ∆t, j. (VAR(p)) (2d)

The parameter αx,i is the general age schedule of population i, κc
t is the mortality index of the

common factor for both populations with age sensitivity βc
x, and κt,i, j is the time component of the jth

additional factor for population i with age sensitivity βx,i, j. The common mortality index is modeled as a
random walk with drift as usual, with d as the drift and εt as the Gaussian error. Originally, Li and Lee
(2005) used only one additional factor; later, Li (2013) proposed using n additional factors where necessary,
and Yang et al. (2016) further suggested adding different cohort parameters such as ιt−x,i.

Li and Lee (2005) assumed that κt,i,1 followed an autoregressive (AR) process of order one, and
that the error terms are independent between the populations (2a). On the other hand, Li (2013) tested
a more general AR(p) process for each κt,i, j (2b), and Zhou and Li (2016) assumed that the error terms
δt,i,1’s are correlated between the populations (2c). The parameters θi, j and γr,i, j are the constant and
autoregressive terms respectively. Lastly, we also include a vector autoregressive (VAR) process of
order p for Kt, j =

(
κt,1, j , κt,2, j

)
′ (2d), which has been adopted by Haberman et al. (2014) for modeling

some other mortality indices. The notation Θ j is the vector constant term, Γr, j is the autoregressive
matrix, and ∆t, j is the Gaussian vector error term. All the choices (2a) to (2d) can result in coherence in
mortality projections, i.e., the ratio of projected death rates between the two populations at each age
group tends to a constant over time, if the selected time series processes are weakly stationary. More
technical details of time series modeling can be found in Tsay (2002).

The final one is an extension of the Cairns-Blake-Dowd (CBD) model by Cairns et al. (2006) and is
proposed by Haberman et al. (2014), being referred to as the M7-M5 model. There are also several
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possible time series processes to choose from (noted as Model 3a, Model 3b, Model 3c, and Model 3d
respectively) under this model:

logit qR
x,t = κ

R
t,1 + (x− x) κR

t,2 +
(
(x− x)2

− σ2
)
κR

t,3 + ι
R
t−x, (extended CBD model with cohort)

logit qB
x,t − logit qR

x,t = κ
B
t,1 + (x− x) κB

t,2 + ι
B
t−x (CBD model structure with cohort)

(3)

with
KR

t = ΘR + KR
t−1 + ∆R

t , (multivariate random walk with drift)

KB
t = ΘB +

p∑
r=1

ΓB
r KB

t−r + ∆B
t ,

(
VAR(p); independent ∆R

t and ∆B
t

) (3a)

or

KR
t −KR

t−1 = ΘR +
p∑

r=1
ΓR

r

(
KR

t−r −KR
t−r−1

)
+ ∆R

t , (VARIMA(p, 1, 0))

KB
t = ΘB +

p∑
r=1

ΓB
r KB

t−r + ∆B
t ,

(
VAR(p); independent ∆R

t and ∆B
t

) (3b)

or

KR
t = ΘR + KR

t−1 + ∆R
t , (multivariate random walk with drift)

KB
t = KB

t−1 + ∆B
t ,

(
bivariate random walk without drift; independent ∆R

t and ∆B
t

) (3c)

or
KR

t = ΘR + KR
t−1 + ∆R

t , (multivariate random walk with drift)

KB
t = ΘB +

p∑
r=1

ΓB
r KB

t−r + ∆B
t .

(
VAR(p); correlated ∆R

t and ∆B
t

) (3d)

The term qR
x,t is the mortality rate at age x in year t of the reference population, κR

t,1, κR
t,2, and κR

t,3
represent the level, slope, and curvature of the mortality curve in year t (e.g., Cairns et al. 2009), and ιRt−x
is the cohort parameter. The difference in the logit mortality rate between the book and reference
populations (i.e., logit qB

x,t − logit qR
x,t) is then modeled with another CBD structure of κB

t,1 and κB
t,2,

which explain the differences between the two populations, together with another cohort parameter
ιBt−x. Please note that the original M7-M5 model has a common cohort parameter for both populations,
while we use a separate cohort parameter for each population in order to allow for the different cohort
effects in our data. The notation x is the average age of the age range in the data, and σ2 is the average
value of (x− x)2.

In contrast to families (1) and (2) above, where both populations are modeled in parallel, Haberman
et al. (2014) fitted the reference population first and then the differences between the two populations.
One major argument for this treatment is that there are usually much more data for the reference
population than for the book, and so it would be more appropriate to base the main trends on the
reference population and consider the differences of the book population afterwards.

Haberman et al. (2014) assumed that KR
t =

(
κR

t,1 , κR
t,2 , κR

t,3

)
′ follows a multivariate random walk

with drift, KB
t =

(
κB

t,1 , κB
t,2

)
′ follows a VAR(1) process, and ∆R

t and ∆B
t are independent, whereas we

adopt a more general VAR(p) process here for KB
t (3a). Accordingly, we also consider three other

alternatives. First, similar to replacing the option (1a) with (1d), we replace the multivariate random
walk with drift with a VARIMA(p, 1, 0) process for KR

t (3b). Second, we replace the VAR(p) process with
a bivariate random walk without drift for KB

t (3c), as we have seen in our analysis that the calculated
κB

t,1 and κB
t,2 fluctuate around a constant level in many cases. Moreover, in line with the options (2b)

and (2c), we test the correlation assumption between ∆R
t and ∆B

t (3d). All the vectors and matrices of
parameters and error terms have similar meanings as previously. Please note that the options (3a), (3b)
and (3d) can generate coherence in the projected mortality rates approximately if the selected VAR
process is weakly stationary.
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Besides the central estimates’ coherence, the simulated future variability is also a significant
feature, as the relative potential movements between the book mortality and reference mortality is one
main driver of longevity basis risk. This issue, however, has largely been overlooked in the current
literature, which usually focuses on the mortality projection models and the (weak) stationarity of the
time series processes, but not on the simulated future variability resulting from time series modeling.
Based on the M7-M5 model and the CAE+Cohorts model (which is an extension of the Lee–Carter
model), Li et al. (2017) found that the behavior of simulated future variability of the “book minus
reference” component is the most important time series modeling assumption. It should be noted that
while the random walk and integrated autoregressive processes above produce increasing variability
over time in the simulations, the autoregressive processes (not integrated ones) generate bounded
variability instead. The combined or alternative use of these time series processes would give rise to
varying hedging results, as shown in the next section.

In addition to the Lee–Carter, Li-Lee, and CBD families described above, there are also several
other similar approaches for modeling longevity basis risk (e.g., Plat 2009; Coughlan et al. 2011;
Ngai and Sherris 2011; Tsai et al. 2011; Cairns 2013; Li et al. 2016). Furthermore, while there is an
abundant amount of time series processes developed in econometric studies, it appears that only a
handful of them would actually turn out to be useful for modeling longevity basis risk in practice,
due to the usually short length and small amount of annual book data being available.

Regarding the simulation methods, we consider four different choices (e.g., Li 2014). The first
is simply Monte Carlo simulation as in Lee and Carter (1992), where only process error is allowed
for. The second is the semi-parametric bootstrapping approach proposed in Brouhns et al. (2005),
and the third is the residuals bootstrapping approach suggested by Koissi et al. (2006), both of
which include process error and also parameter error. These simulation methods have initially been
catered for single-population mortality projection models, and some adaptations are needed for
the two-population models in this paper. In particular, in addition to the choice of resampling the
reference and book residuals separately, we also group together the two populations’ residuals in
each age-time cell as an individual (bivariate) data point for resampling, such that more information
about the relationships between the two populations may be embedded into the simulated samples
(Li and Haberman 2015).

Apart from measuring the hedge effectiveness by testing various models and investigating
different simulated scenarios, we also adopt the modified semi-parametric bootstrapping approach
in Yang et al. (2015) and incorporate process error, parameter error, and model error simultaneously.
It is effectively an extension of the bootstrapping approach suggested by Brouhns et al. (2005). First,
a pseudo-sample of the number of deaths is simulated from the Poisson distribution with the observed
number of deaths as the mean. Suppose there are two or more competing model candidates under
consideration. Each model in turn is fitted to the pseudo-data sample and the corresponding model
parameters are estimated. Based on some pre-determined model selection criteria, the most “optimal”
model is selected for this particular pseudo-data sample. The time series of the selected model’s
temporal parameters are then simulated into the future. Lastly, future death rates are produced from
the estimated and simulated parameters of the selected model. So far in this process, the pseudo-data
sample is used for generating only one future scenario via one selected model. The entire process
above can then be repeated iteratively to create, say, 5000 future scenarios in total1, in which different
models may be chosen in different scenarios. In this way, all the three errors are embedded in the
simulated future death rates. This modified bootstrapping approach provides a different perspective to
understand the impact of model uncertainty, though we acknowledge that the simulation time can be
significantly lengthened, especially when more competing models and selection criteria are included

1 The size of 5000 iterations appears to produce fairly stable results in the next section. We find that the estimated levels of
hedge effectiveness usually differ by less than 3% in magnitude between repeated runs on the same case study.
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in the process. Again, the bootstrapping process needs to be properly adapted to the two-population
models. Figure 2 below gives a list of the modeling techniques we experiment with to tackle the
different error components. In the next section, we will discuss in detail the similarities and differences
between the results on some hypothetical hedging scenarios generated by all these modeling and
simulation methods.Risks 2020, 8, x FOR PEER REVIEW 8 of 27 
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3. Hedge Effectiveness

We have collected two sets of data for the book and reference populations. The first set is composed
of the male assured lives and pensioners data (book) from the Continuous Mortality Investigation (CMI),
and England and Wales male data (reference) from the Human Mortality Database (HMD (Human
Mortality Database) 2017), for the period from 1983 to 2006. The second set comprises Australia,
New Zealand, Japan, Taiwan, Hong Kong (Census and Statistics Department, Hong Kong Special
Administrative Region 2017), and Singapore (Department of Statistics, Ministry of Trade & Industry,
Republic of Singapore 2017) male data from the HMD and governmental statistics departments, for the
years 1980 to 2016. Since Asia–Pacific insured data are scarce, we use the data of New Zealand, Taiwan,
and Singapore, with relatively smaller sizes, as a proxy for the book population, and the data of their
larger neighbors for the reference population. The age range considered is from 60 to 89. Figure 3 plots
the log central death rates of three age groups over time. It can be seen that the mortality declining
trends of different populations or regions are roughly in line with one another in the past few decades.
In general, the death rates of the assured lives and pensioners are lower than those of English and
Wales. One potential problem of the assured lives and pensioners data is that there may have been
different contributors to the data over the period and there would then be some extent of heterogeneity
or inconsistency. Judging simply from the graphs below, it seems that the issue may not be overly
significant. Australian death rates are slightly lower than New Zealand death rates, and Japan has
experienced lower mortality levels than Taiwan. Hong Kong has had lower mortality experience than
Singapore, while the latter is catching up fairly quickly in the last decade.

We mainly consider a hypothetical situation of a large pension plan with 10,000 members for a
particular cohort. All the pensioners are aged 65 and every pensioner receives $1 on survival of each
year in the next 25 years. Suppose that the pension plan financier attempts to minimize its longevity
risk exposure by building a longevity hedge with index-based S-forwards (e.g., LLMA (Life and
Longevity Markets Association) 2010), and that the S-forward at every future age is available for the
same birth cohort as the pensioners. For a floating rate receiver, the payoff on maturity of a S-forward
is equal to the actual survivor index (observed on maturity) minus the forward survivor index (set at
time 0), in which the survivor index is the percentage of the reference population who are still alive on
maturity. Assume that the current forward values are equal to the central estimates, setting a zero
risk premium for convenience, and that the interest rate is constant at 1% p.a. throughout the period,
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considering the current low interest rate environment. The valuation date is taken as just after the end
of the data period.
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After fitting the above-mentioned models to the data and carrying out the simulations as
in the previous section, we use the simulated future death rates of the book population and the
binomial distribution to further simulate the number of surviving pensioners in each future year (e.g.,
Haberman et al. 2014). We can then obtain random samples of the present value of the pension plan
liability. On the other hand, we use the simulated future death rates of the reference population to
determine the random S-forwards payoffs, which are discounted to the valuation date. The notional
amounts of the S-forwards are calculated by numerical optimization in order to maximize the level of
hedge effectiveness (e.g., Li et al. 2017). The weights are mostly in the range of 0.6 to 1.1 (per person)
in different cases of our analysis. Figure 4 demonstrates the longevity hedging scheme based on the
use of index-based S-forwards. Please note that the counterparties can be a financial exchange or
intermediary that brings the market investors (hedge providers) and the pension plan (hedger) into
conducting standardized transactions.
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Table 1 lists the BIC (Bayesian Information Criterion) values of fitting the three two-population
mortality projection models to the various datasets via an iterative updating scheme based on Newton’s
method. In the mortality forecasting literature, the BIC is much more popular than the Akaike
Information Criterion (AIC), as it is generally perceived that the BIC imposes a higher penalty on the
use of parameters and can point to more parsimonious models. For the first three hedging scenarios,
the M7-M5 model (3) produces the lowest BIC values (the italic figures). For the Taiwan pension
plan hedged by a Japan index, and also the Singapore pension plan hedged by a Hong Kong index,
the bivariate Lee–Carter model (1) gives the lowest BIC, followed very closely by the common factor
model (2). Although the BIC is probably the most frequently used selection criterion in the mortality
projection modeling literature, it is fundamentally a measure on how good the past patterns are
being captured under parsimonious use of parameters, which may or may not lead to accurate or
reasonable future predictions. Moreover, as noted earlier, there is always some level of uncertainty
in model selection, and the BIC alone (and even together with residuals examination) may point to
a less appropriate model given the random fluctuations in the data and the lack of information on
possible outliers. In fact, several other model aspects should also be considered (e.g., Cairns et al. 2009).
In terms of allowing for longevity basis risk, the most relevant model aspects would be the coherence
property, behavior of simulated future variability, and simulation method.

Table 1. BIC values of fitting three two-population mortality projection models to different datasets.

Family of
Mortality Models

Assured Lives
vs. E&W

Pensioners vs.
E&W NZ vs. AUS TAI vs. JPN SG vs. HK

Lee–Carter 16,948 16,972 21,577 26,895 4189
Li-Lee 17,049 17,067 21,694 26,897 4207
CBD 16,312 16,376 21,240 29,125 4524

Note: E&W, NZ, AUS, TAI, JPN, SG, and HK represent England and Wales, New Zealand, Australia, Taiwan, Japan,
Singapore, and Hong Kong.

Table 2 summarizes the behavior of the central estimates and simulated variability of each time
series process considered. Table 3 provides the details of the selected orders of the fitted time series
processes for all the datasets. Figure 5 then shows the various time-varying parameters estimated (solid
lines), their central estimate projections (dashed lines), and their simulated 95% prediction intervals
(dotted lines) using the UK assured lives data under different mortality projection models and time
series processes. As shown, the random walk, co-integrated, VECM, and integrated autoregressive
processes all produce linear projected (central estimate) trends and increasing variability across time
in the simulations, whereas the (weakly stationary) autoregressive processes show convergence and
bounded variability. The widths of the prediction intervals vary between different time series processes.
For example, within the Lee–Carter family, the VECM(2) generates narrower intervals for both κt,1 and
κt,2, and the VARIMA(1,1,0) produces wider intervals for κt,2 but narrower intervals for κt,1. For the
Li-Lee family, the AR(3) yields wider (bounded) intervals for κt,1,1 compared to the AR(1) and VAR(1).
For the CBD family, the VARIMA(2,1,0) leads to wider intervals for κR

t,1, κR
t,2, and κR

t,3 compared to the
multivariate random walk with drift, and the bivariate random walk without drift leads to unbounded
intervals for κB

t,1 and κB
t,2, in contrast to the bounded intervals from the VAR(2). Some goodness-of-fit

test results of the fitted time series processes are given in the Appendix A.
Figure 6 plots the corresponding book-to-reference ratios of projected death rates at ages 75 and

85. In agreement with the descriptions in the previous section, models (1a) to (1d) produce divergent
ratios of projected death rates between the two populations. Moreover, the projected ratios diverge in
various directions at different ages even under the same model. By contrast, models (2a) to (2d) and (3a)
to (3d) yield convergent ratios of projected death rates at each age, which are in the range of around 0.6
to 0.7 as illustrated in the plots. Figure 7 then displays some simulated ratios using 10 randomly picked
simulated paths. There are clear differences between model (1a) and models (2a) and (3a). Under model
(1a), the simulated ratios can move to values very different from the projected ones over time, while
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under models (2a) and (3a), the simulated ratios fluctuate around the projected levels. The potential
variations under model (1a) are much greater than those under models (2a) and (3a), in which model
(3a) demonstrates more obvious fluctuations but within a shorter distance from the projected values
than model (2a). Since demographic basis risk arises from possible deviations between the book and
reference mortality movements (due to demographic or socioeconomic differences), the behavior of
these simulated ratios of death rates would have a significant implication on the calculated levels of
hedge effectiveness, which will be discussed in the following numerical analysis.

Table 2. Major characteristics of time series processes under different mortality projection models.

Model Choice Temporal Parameters Time Series Process Central Estimates Variability

(1a) non-coherent κt,1, κt,2 BRWD linear trends increasing
(1b) non-coherent κt,1, κt,2 co-integrated linear trends increasing
(1c) non-coherent κt,1, κt,2 VECM(p) long-term linear trends increasing
(1d) non-coherent κt,1, κt,2 VARIMA(p,1,0) long-term linear trends increasing

(2) κc
t RWD linear trend increasing

(2a) coherent κt,1, j, κt,2, j AR(1) convergence bounded
(2b) coherent κt,1, j, κt,2, j AR(p) convergence bounded
(2c) coherent κt,1, j, κt,2, j correlated AR(p) convergence bounded
(2d) coherent κt,1, j, κt,2, j VAR(p) convergence bounded

(3a) coherent
κR

t,1, κR
t,2, κR

t,3 MRWD linear trends increasing
κB

t,1, κB
t,2 VAR(p) convergence bounded

(3b) coherent
κR

t,1, κR
t,2, κR

t,3 VARIMA(p,1,0) long-term linear trends increasing
κB

t,1, κB
t,2 VAR(p) convergence bounded

(3c) coherent
κR

t,1, κR
t,2, κR

t,3 MRWD linear trends increasing
κB

t,1, κB
t,2 BRW flat trends increasing

(3d) coherent
κR

t,1, κR
t,2, κR

t,3 correlated MRWD linear trends increasing
κB

t,1, κB
t,2 & VAR(p) convergence bounded

Note: The terms RWD, BRWD, MRWD, and BRW stand for the random walk with drift, bivariate random walk with
drift, multivariate random walk with drift, and bivariate random walk without drift, respectively.

Table 3. Selected orders of fitted time series processes under different mortality projection models for
different datasets.

Selected Time Series Process

Model
Choice

Temporal
Parameters

Assured Lives
vs. E&W

Pensioners vs.
E&W NZ vs. AUS TAI vs. JAP SG vs. HK

(1c) κt,1, κt,2 VECM(2) VECM(2) VECM(2) VECM(2) VECM(2)
(1d) κt,1, κt,2 VARIMA(1,1,0) VARIMA(1,1,0) VARIMA(1,1,0) VARIMA(2,1,0) VARIMA(2,1,0)

(2b) κt,1, j, κt,2, j AR(3), AR(1) AR(2), AR(3) AR(2), AR(1)
AR(3),

AR(1)/AR(2),
AR(1)

AR(1), AR(1)

(2c) κt,1, j, κt,2, j AR(3), AR(1) AR(2), AR(3) AR(2), AR(1)
AR(3),

AR(1)/AR(2),
AR(1)

AR(1), AR(1)

(2d) κt,1, j, κt,2, j VAR(1) VAR(1) VAR(2) VAR(1)/VAR(1) VAR(1)
(3a) κB

t,1, κB
t,2 VAR(2) VAR(1) VAR(1) VAR(1) VAR(1)

(3b) κR
t,1, κR

t,2, κR
t,3 VARIMA(2,1,0) VARIMA(2,1,0) VARIMA(1,1,0) VARIMA(1,1,0) VARIMA(1,1,0)

(3b) κB
t,1, κB

t,2 VAR(2) VAR(1) VAR(1) VAR(1) VAR(1)
(3d) κB

t,1, κB
t,2 VAR(2) VAR(1) VAR(1) VAR(1) VAR(1)

Note: The selected orders of the fitted time series processes are based on the partial autocorrelation functions
and matrices, whether the autocorrelations and cross-correlations of the residuals are insignificant, the estimated
parameters are significant, and the resulting fitted time series process (2b, 2c, 2d, 3a, 3b, 3d) is weakly stationary.
The weak stationarity can be tested via examining whether all the roots/eigenvalues of the characteristic equation
fall inside the unit circle. It can be also tested simply by projecting with the fitted time series process over a long
period of time to see whether the projected values converge to a constant. For the Taiwan pension plan hedged by a
Japan index, there are two additional factors in the common factor model, while for all the other hedging scenarios,
there is only one additional factor. The number of additional factors is based on the lowest BIC value.
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Figure 5. Time series projections and 95% prediction intervals from (bivariate) residuals 
bootstrapping using assured lives (book) data and England and Wales (reference) data. (a) Model 
(1a): Lee–Carter model with cohort with bivariate random walk with drift; (b) Model (1c): Lee–
Carter model with cohort with VECM(p); (c) Model (1d): Lee–Carter model with cohort with 
VARIMA(p,1,0); (d) Model (2a): Generalized common factor model with cohort with independent 
AR(1); (e) Model (2c) Generalized common factor model with cohort with correlated AR(p); (f) 
Model (2d) Generalized common factor model with cohort with VAR(p); (g) Model (3a): Extended 
CBD model with cohort with multivariate random walk with drift and VAR(p); (h) Model (3b): 
Extended CBD model with cohort with VARIMA(p,1,0) and VAR(p); (i) Model (3c): Extended CBD 
model with cohort with multivariate random walk with drift and bivariate random walk without 
drift. 

Figure 6 plots the corresponding book-to-reference ratios of projected death rates at ages 75 
and 85. In agreement with the descriptions in the previous section, models (1a) to (1d) produce 
divergent ratios of projected death rates between the two populations. Moreover, the projected 
ratios diverge in various directions at different ages even under the same model. By contrast, 
models (2a) to (2d) and (3a) to (3d) yield convergent ratios of projected death rates at each age, 
which are in the range of around 0.6 to 0.7 as illustrated in the plots. Figure 7 then displays some 
simulated ratios using 10 randomly picked simulated paths. There are clear differences between 

Figure 5. Time series projections and 95% prediction intervals from (bivariate) residuals bootstrapping
using assured lives (book) data and England and Wales (reference) data. (a) Model (1a): Lee–Carter
model with cohort with bivariate random walk with drift; (b) Model (1c): Lee–Carter model with cohort
with VECM(p); (c) Model (1d): Lee–Carter model with cohort with VARIMA(p,1,0); (d) Model (2a):
Generalized common factor model with cohort with independent AR(1); (e) Model (2c) Generalized
common factor model with cohort with correlated AR(p); (f) Model (2d) Generalized common
factor model with cohort with VAR(p); (g) Model (3a): Extended CBD model with cohort with
multivariate random walk with drift and VAR(p); (h) Model (3b): Extended CBD model with cohort
with VARIMA(p,1,0) and VAR(p); (i) Model (3c): Extended CBD model with cohort with multivariate
random walk with drift and bivariate random walk without drift.

Figure 8 offers a different view on the simulated book and reference death rates at age 80 at
different points of time using the UK pensioners data. It can be seen that over time, the simulated death
rates move to the southwest direction due to mortality improvements, and the simulated variability
(both the vertical and horizontal ranges) increases because of higher uncertainty in more distant future.
However, again, there are significant differences between the three models. For models (2a) and (3a),
the dependence between the simulated book and reference death rates increases gradually with time,
whereas for model (1a), the weak dependence appears to remain at a low level. It means that for the
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former the two death rates are very unlikely to deviate significantly further from each other in the
long term, but for the latter the two death rates can move in varying directions. The different model
structures clearly have a large impact on the resulting association between the two populations in the
simulations. The discussion of the numerical study below will explore the underlying reasons for these
observations. These simulated differences in the dependence would affect the calculation of basis risk
and hedge effectiveness significantly, as shown later.
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Figure 6. Projected (and observed) book-to-reference ratios of central death rates at ages 75 and 85 using
assured lives (book) data and England and Wales (reference) data. (a) Model (1a) to (1d); (b) Model (2a)
to (2d); (c) Model (3a) to (3d).

Table 4 sets out the estimates of the standard deviation and the 99.5% Value-at-Risk (VaR) (minus
the mean) of the present value of the pension plan liability, as a percentage of the expected present
value of the liability. On average, the standard deviation is about 1.7% and the 99.5% VaR is around
4.3% of the mean, in which the ratio between the two measures is close to that of a standard normal
distribution. For the assured lives and pensioners datasets, the bootstrapping approaches generally
give larger VaR estimates than those from Monte Carlo simulation (the cells within borders), while for
the other datasets, the differences are less obvious. The potential heterogeneity issue of the former may
be the reason they demonstrate a greater effect of parameter uncertainty. The simulated variability
from the Li-Lee family (2a, 2b, 2c, 2d) (the shaded rows), but not the other two families, is fairly robust
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to the selection of time series process. Model (3c) produces by far the largest estimates (the bolded
figures) among all the models. It appears that the bivariate random walk for KB

t together with the
multivariate random walk for KR

t in model (3c) produces much more variability in the book simulations
compared with the other models.
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Table 4. Standard deviation and 99.5% VaR (minus mean) of pension plan liability (in % of mean).

Model Choice Assured Lives Pensioners NZ TAI SG

Monte Carlo simulation
SD

(1a)/(1b)/(1c)/(1d) 1.3/1.1/0.9/1.4 2.3/1.5/1.1/1.6 1.8/1.5/1.1/1.3 1.9/1.7/1.1/0.9 1.7/2.0/1.1/1.1
(2a)/(2b)/(2c)/(2d) 1.1/1.1/1.1/1.1 1.4/1.3/1.4/1.4 1.4/1.4/1.4/1.4 1.7/1.7/1.7/1.7 1.6/1.6/1.7/1.6
(3a)/(3b)/(3c)/(3d) 1.6/1.6/2.5/1.6 1.9/1.8/3.1/1.7 2.0/1.4/3.2/2.0 1.9/1.4/2.6/1.8 2.5/1.7/3.4/2.2

VaR
(1a)/(1b)/(1c)/(1d) 3.1/1.1/0.9/1.4 5.6/3.8/2.7/3.9 4.5/3.6/2.8/3.4 4.6/4.4/2.8/2.3 4.2/4.8/2.7/2.7
(2a)/(2b)/(2c)/(2d) 2.6/2.7/2.7/2.7 3.5/3.3/3.3/3.4 3.5/3.5/3.4/3.4 4.3/4.3/4.3/4.3 3.9/3.9/4.1/3.9
(3a)/(3b)/(3c)/(3d) 3.8/3.9/5.9/3.8 4.6/4.5/7.5/4.3 5.1/3.5/7.5/5.0 4.8/3.6/6.6/4.9 5.2/4.2/7.9/5.5
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Table 4. Cont.

Model Choice Assured Lives Pensioners NZ TAI SG

Semi-parametric bootstrapping
SD

(1a)/(1b)/(1c)/(1d) 1.5/1.2/0.9/1.5 2.5/1.5/1.1/1.7 2.0/1.6/1.1/1.4 1.9/1.8/1.1/0.9 2.0/2.2/1.2/1.2
(2a)/(2b)/(2c)/(2d) 1.1/1.1/1.1/1.1 1.4/1.4/1.4/1.4 1.5/1.4/1.4/1.5 1.7/1.7/1.7/1.7 1.8/1.8/1.8/1.7
(3a)/(3b)/(3c)/(3d) 1.6/1.5/2.7/1.6 1.9/1.9/3.2/1.7 2.1/1.4/3.4/2.1 1.9/1.5/2.7/1.8 2.7/1.8/3.8/2.5

VaR
(1a)/(1b)/(1c)/(1d) 3.9/2.9/2.5/4.9 5.9/3.8/2.8/4.2 5.4/3.8/2.8/3.5 5.1/4.5/2.9/2.4 4.8/5.2/2.8/3.1
(2a)/(2b)/(2c)/(2d) 2.9/2.8/2.7/2.9 3.6/3.5/3.6/3.4 3.6/3.5/3.6/3.6 4.4/4.2/4.4/4.3 4.3/4.3/4.4/4.2
(3a)/(3b)/(3c)/(3d) 3.9/5.0/6.7/3.7 4.7/6.1/7.7/4.2 5.1/3.6/8.5/5.1 4.7/3.7/6.6/4.6 5.6/4.5/8.6/6.2

Residuals bootstrapping
SD

(1a)/(1b)/(1c)/(1d) 1.6/1.2/1.0/1.6 2.5/1.5/1.1/1.7 2.0/1.5/1.1/1.4 2.0/1.8/1.1/0.9 2.2/2.6/1.3/1.2
(2a)/(2b)/(2c)/(2d) 1.2/1.2/1.2/1.2 1.4/1.4/1.4/1.4 1.4/1.4/1.4/1.4 1.7/1.7/1.7/1.7 1.9/1.9/1.8/1.9
(3a)/(3b)/(3c)/(3d) 1.6/1.5/2.9/1.6 1.9/1.9/3.4/1.8 2.1/1.4/3.4/2.1 1.9/1.4/2.8/1.8 2.9/1.9/4.2/2.6

VaR
(1a)/(1b)/(1c)/(1d) 4.1/3.0/2.5/5.5 6.0/3.7/2.8/4.5 5.0/3.7/2.9/3.8 4.8/4.8/3.0/2.4 5.3/5.8/3.1/3.1
(2a)/(2b)/(2c)/(2d) 3.0/2.9/3.1/2.9 3.5/3.6/3.5/3.5 3.6/3.6/3.6/3.6 4.3/4.6/4.3/4.3 4.6/4.6/4.6/4.5
(3a)/(3b)/(3c)/(3d) 3.9/4.3/6.7/3.8 4.7/5.8/8.0/4.5 5.2/3.5/8.4/5.1 5.0/3.5/7.0/4.8 5.9/4.6/8.9/6.8

Bivariate residuals bootstrapping
SD

(1a)/(1b)/(1c)/(1d) 1.5/1.2/1.0/1.7 2.5/1.5/1.2/1.7 2.0/1.5/1.1/1.4 2.0/1.9/1.1/1.0 2.2/2.5/1.3/1.2
(2a)/(2b)/(2c)/(2d) 1.2/1.2/1.2/1.2 1.4/1.4/1.5/1.4 1.4/1.4/1.4/1.4 1.8/1.7/1.7/1.7 1.8/1.8/1.9/1.9
(3a)/(3b)/(3c)/(3d) 1.6/1.5/2.8/1.6 1.9/1.9/3.3/1.8 2.1/1.4/3.5/2.1 2.0/1.4/2.8/1.8 2.9/1.8/4.2/2.7

VaR
(1a)/(1b)/(1c)/(1d) 4.1/3.1/2.5/5.3 6.2/3.8/3.0/4.5 5.1/3.7/2.8/3.6 5.2/4.6/2.9/2.3 5.4/5.9/3.1/3.1
(2a)/(2b)/(2c)/(2d) 2.9/2.9/3.1/3.1 3.5/3.7/3.6/3.6 3.4/3.4/3.5/3.5 4.4/4.4/4.5/4.3 4.4/4.4/4.6/4.5
(3a)/(3b)/(3c)/(3d) 3.9/4.6/6.8/4.1 4.9/5.8/8.0/4.4 5.2/3.6/8.1/4.9 5.0/3.6/6.8/4.7 6.1/4.7/8.9/6.5

Modified semi-parametric bootstrapping
SD

(1b) + (2a) + (3a) 1.6 1.9 2.1 1.8 2.0
VaR

(1b) + (2a) + (3a) 4.0 4.8 5.0 4.5 5.1

In line with Coughlan et al. (2011) and Li et al. (2017), the level of hedge effectiveness is defined
as [1 – riskhedged/riskunhedged] × 100%. The two quantities riskunhedged and riskhedged are the pension plan’s
longevity risk exposure before and after implementing the hedge. This measure gives the proportion of
the original longevity risk exposure that is being transferred away. The remaining risk can then be seen
as a result of longevity basis risk. We consider the longevity risk exposure as the standard deviation
and the 99.5% VaR minus the mean of the present value of the pension plan liability. Please note that
the 99.5% VaR measure is highly relevant to the Solvency Capital Requirement (SCR) calculation under
Solvency II. It is a very important consideration for insurance practitioners and regulators in Europe.
Figure 9 presents the levels of hedge effectiveness (i.e., the proportion of the initial risk that is reduced)
under various models and simulation methods using different datasets. The major observations and
implications from the numerical results are listed below:

1. The estimated levels of hedge effectiveness are largely between 50% to 80%. The clear exceptions
include those produced from models (1a), (1d), and (3c), which are about 20% or lower. The first
two of these three cases are non-coherent and generate increasing variability in the time-varying
parameters’ future simulations for both the book and reference populations. Although the
estimated correlations in their Gaussian error terms are quite high (about 0.3 or greater),
the relationship between the book and reference mortality levels under the two models looks
too weak, when considering their past movements in the data (see Figure 3), and there is
an overestimation of longevity basis risk. Comparatively, while models (1b) and (1c) are
also non-coherent, their co-integration and error correction structures lead to some extent of
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co-movements between the two populations in the simulations, which is reflected in the estimated
hedge effectiveness. The last exception, model (3c), is coherent, but it produces increasing
simulated variability over time for the “book minus reference” component’s time-varying
parameters. The resulting effect is that the simulated book and reference mortality movements
could deviate significantly from each other, progressively so over the long run, leading to
an overestimation of longevity basis risk and so an underestimation of hedge effectiveness.
By contrast, the other model choices do not suffer from this problem.Risks 2020, 8, x FOR PEER REVIEW 16 of 27 
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Figure 8. Simulated book and reference central death rates at age 80 after 5, 10, 15, and 20 years from
residuals bootstrapping using pensioners (book) data and England and Wales (reference) data under
(a) Model (1a); (b) Model (2a); (c) Model (3a).

2. The results from the Li-Lee family (2a, 2b, 2c, 2d) are generally quite robust to the choice of time
series modeling, as long as the fitted time series processes are weakly stationary. Under the Li-Lee
mortality structure, both populations are governed by the common factor, in which the common
mortality index has increasing variability over time in the simulations, while the additional
population-specific factors’ time-varying parameters have bounded variability in the simulations
under all the four choices. Consequently, the former variability would dominate eventually,
and any deviance between the simulated book and reference mortality movements is unlikely to
continue to grow. The figures from models (2b) and (2c) are slightly lower than those from model
(2a) (by only about 3% in magnitude on average; more obvious for the pensioners dataset), due to
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the higher selected orders in the former. However, in general there is not much difference in
the results between models (2b) and (2c), and also between models (2a) and (2d), which suggest
that the additional dependence (via correlation or vector autoregression) is unlikely to have a
material impact on assessing longevity basis risk. Besides, though the common factor provides
a convenient way to capture the link between the two populations, the common factor model
(2) requires using the same data length for both populations in maximum likelihood estimation.
In practice, the length of book data is usually shorter, and approximation methods or Bayesian
techniques may be adopted to fit the model under the presence of missing data.

3. The figures from models (3a), (3b), and (3d) of the CBD family tend to be higher than those from
models (2a) and (2d) (by about 10% in magnitude or more) for the assured lives and the New
Zealand portfolios, while the two sets of results differ more randomly for the other datasets. Under
these models, the reference component’s temporal parameters have increasing simulated variability
over time, while the “book minus reference” component’s temporal parameters have bounded
simulated variability instead. The variability in the reference component would then dominate
in the long term, whereas the variability in the second component would become less influential
comparatively. The consequence is that the book and reference mortality movements cannot
deviate indefinitely in the simulated scenarios. The results are about the same between models (3a)
and (3d), which again suggest that the additional dependence (via correlation) does not have an
obvious effect on measuring longevity basis risk. For model (3b), as noted previously, the prediction
intervals for κR

t,1, κR
t,2, and κR

t,3 based on the VARIMA process are often different to those based on
the multivariate random walk with drift in model (3a). Some subsequent effect can be seen in the
differences between the figures from models (3a) and (3b), in which the latter ones tend to be lower.

4. The hedging results estimated from Monte Carlo simulation tend to be higher than those from
the bootstrapping approaches (by about 7% in magnitude on average) for the assured lives and
pensioners datasets. Since performing Monte Carlo simulation directly on the error terms of
the time series processes allows for only process error but not parameter error, there would be
an underestimation of longevity basis risk and hence an overestimation of hedge effectiveness.
But for the other datasets (New Zealand, Taiwan, and Singapore), there are no such obvious
differences, which indicate that the effect of parameter uncertainty is not material for these proxy
book data with a large size and more stable population compositions and mortality patterns.
In addition, there are no clear, significant differences between the results estimated from the two
residuals bootstrapping approaches, in which one involves resampling the reference and book
residuals separately and the other groups together the two sets of residuals in each age-time
cell as an individual data point for resampling. It means that the additional dependence from
linking the residuals does not appear to have any effect on longevity basis risk calculation. Some
random differences in the results between the semi-parametric bootstrapping and the residuals
bootstrapping can also be seen, but most of them are small and do not show any particular patterns.

5. For a demonstration of applying the modified semi-parametric bootstrapping approach,
we integrate models (1b), (2a), and (3a) which have earlier been shown to produce more
reasonable estimates of hedge effectiveness. Following Yang et al. (2015), the optimal model
for each pseudo-data sample in the bootstrapping process is selected based on the BIC. That is,
the BIC values of fitting the three mortality projection models are compared, and the one with the
lowest value is chosen for that pseudo-data. Note that besides a single statistical criterion, a mix
of other quantitative and even qualitative criteria may also be used, though the selection rules will
then be more complex, and the computation time will lengthen. Table 5 gives the proportions of
different models being chosen out of 5000 scenarios in each case. For the assured lives, pensioners,
and New Zealand datasets, model (3a) dominates in all the simulated scenarios. For the Taiwan
portfolio, model (2a) is selected in 99% of the scenarios and model (1b) is selected in only 1%.
For the Singapore portfolio, models (2a) and (1b) share a split of 58% and 42%. Furthermore,
as shown in Figure 9 (last row), regarding the Singapore portfolio, the final hedging results from
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this approach may be perceived as a “weighted” average of those calculated separately from
models (1b) and (2a), in which the “weights” are determined by how well the two models are
fitted to each of the 5000 pseudo-data samples.

6. The estimated levels of hedge effectiveness are quite close between using the standard deviation and
99.5% VaR in most cases. This observation may result from the fact that the simulated distributions
of the pension plan liability are fairly symmetric and do not have a heavy tail, under all the mortality
projection models, time series processes, and simulation methods considered, both before and after
hedging. We have also checked the results based on the 95% VaR and the observations are similar.

7. When the size of the pension plan is reduced to 1000 members, the levels of hedge effectiveness
estimated from those coherent models drop to mostly around 20% to 40% (not shown here).
By contrast, when the pension plan size is infinite (i.e., the step of using the binomial distribution to
simulate the number of lives is omitted), the estimated levels of hedge effectiveness largely rise by
about 10% or more in magnitude from the initial setting of 10,000 members. The effect of sampling
basis risk is significant, which pinpoints that index-based longevity hedging would be more feasible
for either very large pension plans, foundations joined by small pension plans, or reinsurers who
have accumulated sizable longevity risk exposures from smaller insurers and pension plans.

8. There are some differences in the hedging results between using the five datasets. On average, after
integrating both process error and parameter error via the bootstrapping approaches, the highest
level of hedge effectiveness is given by using the New Zealand dataset, followed by the Taiwan,
assured lives, Singapore, and pensioners datasets. It has been mentioned earlier that parameter
error would be immaterial for book data with stable population compositions and mortality
patterns, which may explain some of the results here. Another possible reason for the greater
hedge effectiveness shown by the New Zealand pension plan hedged by an Australia index is the
geographical and cultural closeness between Australia and New Zealand. Both neighbors are island
nations in the South Pacific and have very close connections historically, socially, and economically,
and they would tend to have more concurrent mortality movements than otherwise.

9. Under models (2a), (2b), (2c), (2d), (3a), (3b), and (3d), the calculated levels of hedge effectiveness
of the annual cash flows (not the present value; not shown here) are indeed very low in
the early years, but then increase significantly across time, i.e., the dependence between the
two populations’ mortality levels grows with time in the simulations. For the Li-Lee model
types, the common mortality index has increasing variability, while the additional time-varying
parameters have bounded variability. Similarly, for the M7-M5 model types, the reference
component’s time-varying parameters have increasing variability, but the book component’s
time-varying parameters have bounded variability. The resulting model effect is that the simulated
variability of the differences between both populations would have lesser impact gradually. Hence
the association between the two populations increases over time (see Figure 8).

10. The weights of the S-forwards are numerically optimized to maximize the hedge effectiveness.
Excluding models (1a), (1d), and (3c) which generate unreasonable simulations, for the assured
lives dataset, the weights are roughly about 0.5 (per person) in the first half of the age range,
0.7 in the third quarter, and 0.9 in the last quarter. For the pensioners dataset, the weights are
around 0.7 in the first half of the age range and 0.9 in the second half. For the New Zealand,
Taiwan, and Singapore datasets, most of the weights are approximately equal to one for the
whole range. Interestingly, the major patterns in the weights estimated are not too different
between the various models. It should be noted that these weights are subject to the technical
limitations of the optimization process, uncertainty of the model choice, and random variations
in the simulated samples. In addition, in practice, it would be impossible to enter into such
numerically precise amounts of S-forward positions due to liquidity issues. Accordingly, we have
also tested the hedging results using the approximate weights noted above, and we realize that
the corresponding reductions in the levels of hedge effectiveness are actually quite small, mostly
being a few percent in magnitude.
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Table 5. Simulated proportions of model selections in modified semi-parametric bootstrapping for
different datasets.

Simulated Proportions of Model Selections

Model Choice Assured Lives
vs. E&W

Pensioners vs.
E&W NZ vs. AUS TAI vs. JAP SG vs. HK

(1b) 0% 0% 0% 1% 42%
(2a) 0% 0% 0% 99% 58%
(3a) 100% 100% 100% 0% 0%

4. Concluding Remarks

In this paper, we study the impact of model uncertainty on hedging longevity risk via index-based
derivatives and measuring longevity basis risk. We adopt three families of mortality projection models,
using several time series processes and simulation methods, to calibrate index-based S-forwards,
construct longevity hedges, and assess the resulting hedge effectiveness. Notably, we test various
combinations of mortality models and time series processes different to those in the existing literature
and examine their impact in detail. Overall, the estimated levels of hedge effectiveness are mostly
about 50% to 80% for a large pension plan, which is in line with those in Li et al. (2017) using
different models and datasets to those adopted here, but the precise levels still depend heavily on
the selected model. In particular, while the choice of mortality models has certain effects, it appears
that the selection of time series processes has a far greater impact on the index-based hedging results.
Unfortunately, the length of the assured lives and pensioners data available is short, and application of
more sophisticated time series processes cannot be further investigated. Apart from comparing the
results from different models, the semi-parametric bootstrapping approach can also be extended to
include selection criteria and test several models simultaneously. However, those models or time series
processes with unrestricted simulated variability in the differences between the book and reference
populations lead to irrational hedging results and should be avoided. In practice, the final model
choice relies not only on a quantitative analysis of (usually limited) past book data but also on some
extent of qualitative judgement about uncertain future mortality trends and the user’s own knowledge
or preference.

There are a few possible areas for future research. So far, we focus on static hedging, under
which the hedging tools are not rebalanced in the future. By contrast, dynamic hedging requires
constant rebalancing of the hedged portfolio, and it would be interesting to explore the feasibility of
dynamic index-based longevity hedging. For simplicity, we also assume that the forward rates are
equal to the central estimates, implying a zero premium on longevity risk. To further incorporate
the costs of longevity hedging, it would be useful to investigate different risk-neutral methods (e.g.,
Cairns et al. 2006) for pricing index-based derivatives. Moreover, Li et al. (2017) considered some
simple model extensions to take structural mortality changes and mortality jumps into account when
assessing the hedge effectiveness. More sophisticated methods such as regime-switching models
(e.g., Milidonis et al. 2011) and copulas (e.g., Wang et al. 2015) can further be tested in modeling these
extreme events. In addition, we use a single information criterion in the modified semi-parametric
bootstrapping process. Alternatively, a more complex set of rules consisting of multiple quantitative
and qualitative criteria may provide a more realistic view of model uncertainty. Lastly, Bayesian
techniques can also be adopted to allow for model uncertainty directly, instead of using the modified
bootstrapping approach above. For instance, two or more competing models can be integrated into the
Bayesian framework by setting a prior distribution for all the model candidates (e.g., Cairns 2000).
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Appendix A

The AIC and BIC values of fitting the various time series processes in Table 3 are given below.
The lowest values in each case are made italic in the two tables. Under the common factor model (2)
and the M7-M5 model (3), the optimal time series processes are mostly in line between the AIC and
BIC criteria (the bolded figures). In particular, model (3d) is the most popular one under the M7-M5
model. However, under the bivariate Lee–Carter model (1), the AIC and BIC criteria lead to different
choices in more cases. Please note that using the BIC tends to favor more parsimonious models.

Regardless of the criterion adopted, the chosen model may not generate a reasonable assessment
of longevity basis risk and hedge effectiveness for use in practice. For instance, in the first hedging
scenario, model (3c) is the optimal choice based on both the AIC and BIC, but its estimates of hedge
effectiveness are only about 20% or lower. There is increasing simulated variability over time for
the book minus reference component’s temporal parameters and so an overestimation of longevity
basis risk. In this context, besides standard model diagnostics and test statistics, other features can
become more important, including the coherence property, behavior of simulated future variability,
and simulation method.

Table A1. AIC values of fitting various time series processes under different mortality projection
models for different datasets.

Model
Choice Temporal Parameters Assured Lives

vs. E&W
Pensioners
vs. E&W NZ vs. AUS TAI vs. JAP SG vs. HK

(1a) κt,1, κt,2 92.46 115.48 154.11 119.29 −41.78
(1b) κt,1, κt,2 91.63 108.40 137.81 122.96 −19.00
(1c) κt,1, κt,2 91.42 111.05 132.52 108.68 −39.48
(1d) κt,1, κt,2 92.54 110.26 135.43 106.67 −38.20

(2a) κt,1, j, κt,2, j −104.66 −117.85 −193.06 −106.73/−437.93 −106.30
(2b) κt,1, j, κt,2, j −103.16 −115.88 −193.61 −99.90/−430.56 −106.30
(2c) κt,1, j, κt,2, j −106.71 −117.51 −193.69 −103.25/−433.12 −106.54
(2d) κt,1, j, κt,2, j −110.25 −116.06 −188.73 −106.26/−464.64 −115.90

(3a) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −1030.64 −1045.11 −1473.59 −1577.04 −1048.46

(3b) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −998.30 −967.37 −1432.03 −1531.39 −1015.07

(3c) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −1067.37 −1038.22 −1447.97 −1573.33 −1042.56

(3d) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −1035.96 −1056.04 −1490.62 −1602.43 −1064.02

Table A2. BIC values of fitting various time series processes under different mortality projection models
for different datasets.

Model
Choice Temporal Parameters Assured Lives

vs. E&W
Pensioners
vs. E&W NZ vs. AUS TAI vs. JAP SG vs. HK

(1a) κt,1, κt,2 96.12 119.14 158.49 123.67 −37.88
(1b) κt,1, κt,2 97.12 113.89 144.37 129.53 −13.14
(1c) κt,1, κt,2 109.26 128.89 154.11 130.27 −20.36
(1d) κt,1, κt,2 103.24 120.97 148.39 127.94 −19.49

(2a) κt,1, j, κt,2, j −97.35 −110.53 −184.30 −97.98/−429.17 −98.50
(2b) κt,1, j, κt,2, j −92.45 −103.55 −182.73 −86.95/−419.69 −98.50
(2c) κt,1, j, κt,2, j −96.01 −105.18 −182.82 −90.30/−422.24 −98.73
(2d) κt,1, j, κt,2, j −99.27 −105.09 −167.14 −93.12/−451.50 −104.19

(3a) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −995.53 −1020.41 −1445.64 −1549.09 −1022.65

(3b) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −916.03 −895.72 −1376.68 −1476.03 −964.16

(3c) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −1059.14 −1029.98 −1438.65 −1564.01 −1033.96

(3d) κR
t,1, κR

t,2, κR
t,3, κB

t,1, κB
t,2 −1000.28 −1031.34 −1462.66 −1574.48 −1038.21
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