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Abstract: We propose a multi-cohort model that is able to capture the mortality correlation between
different cohorts. The model is based on the Hull and White process to which we incorporate
inter-generational risk factors, by modifying its stochastic part. We provide a pricing framework
for a new survival forward contract under the Cost of Capital, risk-neutral and Sharpe approaches,
allowing to cover the global multi-cohort longevity risk. We give numerical illustrations for Belgian
cohorts, and we compute the price of the longevity derivative under the proposed methods,
for different correlation levels.
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1. Introduction

Insurance companies and pension funds are constantly exposed to mortality risk, and they
are, therefore, becoming increasingly interested in longevity-linked securities to transfer this risk.
However, only a few longevity derivatives have been launched for various reasons. One important
cause is that no consensus has yet been reached regarding the best model for the mortality risk.
Many continuous-time stochastic mortality models for a single generation have been proposed by a
number of researchers, including Biffis (2005); Cairns et al. (2006a); Dahl (2004); Luciano and Vigna
(2015); Milevsky and Promislow (2001); Schrager (2006).

However, the common trend in the evolution of the longevity of different populations is relevant,
and it should be taken into account by entities seeking to hedge their exposures to mortality and/or
longevity risk, as discussed in detail in Coughlan et al. (2011). In this way, these entities can assess
the overall longevity risk, and reduce the basis risk between their own population and population
associated with the hedging instruments.

Consequently, researchers have lately become more interested in developing multi-population
models for the evolution of longevity rates (see, for instance, Chen et al. (2014); Enchev et al. (2017);
Hunt and Villegas (2015); Ntamjokouen (2014)).

These multi-population mortality models are based on the assumption that the mortality
experiences of the populations are linked together, and do not diverge in long term. According to
Chen et al. (2014), this assumption could be justified by the long-term mortality evolution and,
therefore, can be applicable to longevity risk modelling.

Some multi-population models that have been proposed in the literature are based on the
generalization of the well-known Carter model Lee and Carter (1992). These models capture the
mortality dependence by including an additional common factor between the multiple populations
(see, for instance, the models that were presented by Danesi et al. (2015); Haberman et al. (2003); Li et
al. (2015); Li and Lee (2005)). In addition, Jevtic et al. (2013) have proposed a model for the mortality
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intensity using common factors that affect all the cohorts, as well as specific factors that only affect
specific cohorts.

In this paper, we consider a typical life insurer holding a portfolio of individuals with different
ages, and who needs to hedge the longevity risk. We attempt to capture the eventual correlations
across generations while using a multidimensional continuous-time mortality environment based on
the Hull and White model. We first consider a portfolio of two different cohorts, where the correlation
is based on the introduction of two risk factors modelled by independent Brownian motions; we then
generalize our framework to n cohorts.

We assess the longevity risk related to these n generations through the pricing of a new longevity
derivative that we call Global Survival forward contract (GS-forward). Therefore, we need to use a
pricing approach in order to compute the price of this derivative. The different pricing approaches
proposed in the literature are mainly based on the traditional pricing methods used in finance, such
as the Sharpe ratio, the risk-neutral, and the Wang approaches, which have been adapted in the
longevity context. However, these methods require the assessment of the risk premium, which is not
easy due to lack of data in the longevity market. In the literature, some authors use life annuities or
announced longevity bonds for calibration, or consider values usually used in finance. For instance,
(Cairns et al. 2006b; Meyricke and Sherris 2014) have used the longevity bond announced by BNP/EIB
in 2004 for calibration. Moreover, these classical pricing methods are not necessarily consistent with
the directives of Solvency II, which is an important issue for insurance companies. The Cost of Capital
method (COC) allows for avoiding these issues, since this method is consistent with Solvency II,
and the Cost of Capital rate is fixed by the regulator. This approach has been used by (Levantesi
and Menzietti 2017; Zeddouk and Devolder 2019) to price longevity derivatives, such as S-forward
contracts, allowing to hedge the longevity risk for individuals belonging to one given cohort. The
consistency between this Cost of Capital and the aforementioned classical methods have been discussed
in detail in (Zeddouk and Devolder 2019).

Our aim is to determine, in closed form, the price of the GS-forward derivative under the Cost of
Capital, risk-neutral (see Cairns et al. (2006b)), and Sharpe approaches (Biffis 2005; Milevsky et al. 2005)
in the case of a multi-cohort portfolio with correlated mortality experiences, as well as to compare the
price of a GS-forward with the corresponding individual S-forward contracts.

This paper is organized, as follows: in Section 2, we present the multi-dimensional model for
two cohorts, we study the correlation between these two cohorts, and we provide the general pricing
framework for the GS-forward under the COC, risk-neural, and Sharpe methods. Next, we generalize
this framework for n cohorts in Section 3. In Section 4, we present a numerical illustration enabling
the comparison of the different GS-forward prices and also between these GS-forward prices and
individual S-forwards prices. Finally, in Section 5 we conclude.

2. Cohort-Based Longevity Model: Two Cohorts

In order to describe the force of mortality, we have used an affine model that allows for the
valuation of longevity derivatives (Huang et al. (2019); Xu et al. (2020)). In particular, we have chosen
the Hull and White process (HW), which is a cohort mortality model. Zeddouk and Devolder (2020)
provided a comparison between different stochastic time-continuous models, and have shown that
this model can accurately predict the mortality of the Belgian population. Moreover, the HW model
was also used by Zeddouk and Devolder (2019) for mortality in order to price Survival-forwards and
Survival-swaps. We first focus on the case of a portfolio of two different cohorts, then we generalize
our study for n cohorts.

2.1. Correlation between Two Forces of Mortality

We consider two different cohorts Y and Z of individuals initially aged x0 = y and x0 = z at time
t = 0.
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The evolution of the mortality intensity of the two cohorts are assumed to be given by:

dµy(t) = (AyeByt − byµy(t))dt + σydwy(t) (1)

dµz(t) = (AzeBzt − bzµz(t))dt + σzdwz(t), (2)

where Ay, By, by, σy and Az, Bz, bz, σz all positive constants, wy and wz are two dependent
Brownian motions.

Using the Cholesky decomposition for correlated Brownian motions, Equations (1) and (2) can be
alternatively written as:

dµy(t) = (AyeByt − byµy(t))dt + σy(ρydw1(t) +
√

1− ρ2
y dw2(t)) (3)

dµz(t) = (AzeBzt − bzµz(t))dt + σz(ρzdw1(t) +
√

1− ρ2
z dw2(t)), (4)

with:
wy = ρyw1 +

√
1− ρ2

y w2, (5)

and
wz = ρzw1 +

√
1− ρ2

z w2, (6)

where w1 and w2 are two independent Brownian motions (independent risk factors), and ρy and ρz are
two risk parameters that link the mortality intensity of the cohorts Y and Z to the two risk factors.

The forces of mortality that are given by Equations (3) and (4) are now based on two independent
Brownian motions, generating risk factors that affect the mortality of the two cohorts, and allowing to
introduce the inter-generational correlation with different levels.

The solutions of the SDEs (3) and (4) are given by:

µy(t) = µy(0)e−byt +
Ay

by + By
(eByt − e−byt) + σye−byt

∫ t

0
ebyudwy(u) (7)

µz(t) = µz(0)e−bzt +
Az

bz + Bz
(eBzt − e−bzt) + σze−bzt

∫ t

0
ebzudwz(u), (8)

wy and wz being given by (5) and (6).
In order to measure the correlation between the forces of mortality of the two cohorts at any time

t, we compute the correlation corr(µy(t), µz(t)) that is induced by the model.
We first determine the covariance between the two forces of mortality:

Cov(µy(t), µz(t)) = EP[(µy(t)− EP(µy(t))(µz(t)− EP(µz(t))]

= σyσze−(by+bz)tEP

[ ∫ t

0
ebyudwy(u) ·

∫ t

0
ebzudwz(u)

]
. (9)

Using the Ito multidimensional formula (see for instance Tristan (2017)), Equation (9) becomes:

Cov(µy(t), µz(t)) = σyσze−(by+bz)t
∫ t

0
e(by+bz)u · ρwy ,wz du

=
σyσz

(by + bz)
(1− e−(by+bz)t)ρwy ,wz , (10)

where ρwy ,wz is the correlation factor between wy and wz given by:

ρwy ,wz = ρyρz +
√

1− ρ2
y

√
1− ρ2

z . (11)
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Finally, the correlation Corr(µy(t), µy(t)) is:

Corr(µy(t), µz(t)) =
Cov(µy(t), µz(t))√

VarP(µy(t))
√

VarP(µz(t))

= ρwy ,wz

2
√

bybz

by + bz

1− e−(by+bz)t
√

1− e−2byt
√

1− e−2bzt

=

(
ρyρz +

√
1− ρ2

y

√
1− ρ2

z

)(
2
√

bybz

by + bz

1− e−(by+bz)t√
1− e−2byt

√
1− e−2bzt

)
(12)

=

(
ρyρz +

√
1− ρ2

y

√
1− ρ2

z

)
ϕy,z(t). (13)

where ϕy,z(t) is given by:

ϕy,z(t) =
(

2
√

bybz

by + bz

1− e−(by+bz)t√
1− e−2byt

√
1− e−2bzt

)
. (14)

Remark 1. From Equation (12), we can see that, if by = bz, which means that the reversion force of mortality
is the same for the two noises, then ϕy,z(t) = 1, and Corr(µy(t), µz(t)) will be time-independent. In this case,
we have also three possibilities:

• The two noises are independent, namely ρy = 1 and ρz = 0 or ρy = 0 and ρz = 1, then
Corr(µy(t), µz(t)) = 0;

• The two noises are perfectly correlated, namely ρy = ρz = 1, or ρy = ρz = 0, then Corr(µy(t), µz(t)) = 1;
• The two noises are partially dependent, namely 1 < ρyρz < 0, then Corr(µy(t), µz(t)) = ρyρz +√

1− ρ2
y

√
1− ρ2

z ;

If by 6= bz, then we have three possibilities:

• The two noises are independent, namely ρy = 1 and ρz = 0 or ρy = 0 and ρz = 1,
then Corr(µy(t), µz(t)) = 0;

• The two noises are perfectly correlated, namely ρy = ρz = 1, or ρy = ρz = 0, then Corr(µy(t), µz(t)) =
ϕy,z(t) (now not necessarily equal to 1);

• The two noises are partially dependent, then Corr(µy(t), µz(t)) becomes a function of time t (now not
necessarily a constant).

2.2. Correlation between Two Longevity Indexes

Now, let us study the correlation between two longevity indexes. The two longevity indexes
related to the two cohorts Y and Z at time t are given by:

Iy(y + t, T − t) = e−
∫ T

t µy(u,ω)du (15)

Iz(z + t, T − t) = e−
∫ T

t µz(u,ω)du, (16)

where Iy(y + t, T− t) is the longevity index of an individual of the cohort Y initially aged y, alive at
time t, and surviving T − t years more.

Let us compute the covariance of the two longevity indexes. This covariance is given by:
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Cov(Iy(y + t, T − t), Iz(z + t, T − t)) = EP[(Iy(y + t, T − t)− EP(Iy(y + t, T − t)))

× (Iz(z + t, T − t)− EP(Iz(z + t, T − t)))]

= EP(Iy(y + t, T − t)Iz(z + t, T − t))− EP(Iy(y + t, T − t))

× EP(Iz(z + t, T − t))

= EP(e−
∫ T

t (µy(u,ω)+µz(u,ω))du)− eαy(t,T)−βy(t,T)µy(t)

× eαz(t,T)−βz(t,T)µz(t), (17)

where αy, βy and αz, αz are given by:



αy(t, T) =
Ay
by
[e−by T e(By+by )T−e(By+by )t

By+by
− eBy T−eBy t

By
]− σ2

y

2b2
y
[ 1

by
(1− e−by(T−t))− T + t]

− σ2
y

4b3
y
(1− e−by(T−t))2

βy(t, T) = 1
by
(1− exp(−by(T − t))

(18)

and 
αz(t, T) = Az

bz
[e−bzT e(Bz+bz)T−e(Bz+bz)t

Bz+bz
− eBzT−eBzt

Bz
]− σ2

z
2b2

z
[ 1

bz
(1− e−bz(T−t))− T + t]

− σ2
z

4b3
z
(1− e−bz(T−t))2

βz(t, T) = 1
bz
(1− exp(−bz(T − t)).

(19)

Let us now compute EP(e−
∫ T

t (µy(u,ω)+µz(u,ω))du).
For any given cohort of individuals aged x at time t, we have:

Ix(x + t, T − t) = e−
∫ T

t µP
x (u,ω)du = eXx(t,T). (20)

Under the real-world risk measure P, we have:

Xx(t, T) ∼ N(mx(t, T), nx(t, T)2). (21)

Accordingly, the survival index Ix is log-normally distributed with Xx having a mean and a
variance given by:mx(t, T) = µx(t)

(e−b(T−t)−1)
b − AeBt

B(b+B) (e
B(T−t) − 1)− AeBt

b(b+B) (e
−b(T−t) − 1)

n2
x(t, T) = σ2

b2 [T − t− 1−e−b(T−t)

b − (1−e−b(T−t))2

2b ].
(22)

We have:

Xy(t, T) ∼ N(my(t, T), ny(t, T)2) (23)

Xz(t, T) ∼ N(mz(t, T), nz(t, T)2),
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where: 
my(t, T) = µy(t)

(e−by(T−t)−1)
by

− AyeByt

By(by+By)
(eBy(T−t) − 1)− AyeByt

by(by+By)
(e−by(T−t) − 1)

n2
y(t, T) =

σ2
y

b2
y
[T − t− 1−e−by(T−t)

by
− (1−e−by(T−t))2

2by
],

(24)

and mz(t, T) = µz(t)
(e−bz(T−t)−1)

bz
− AzeBzt

Bz(bz+Bz)
(eBz(T−t) − 1)− AzeBzt

bz(bz+Bz)
(e−bz(T−t) − 1)

n2
z(t, T) = σ2

z
b2

z
[T − t− 1−e−bz(T−t)

bz
− (1−e−bz(T−t))2

2bz
],

(25)

then:
Xy(t, T) + Xz(t, T) ∼ N(myz(t, T), n2

yz(t, T)), (26)

where myz(t, T) = my(t, T) + mz(t, T)

n2
yz(t, T) = n2

y(t, T) + n2
z(t, T) + 2Cov(Xy(t, T), Xz(t, T)).

(27)

The covariance Cov(Xy(t, T), Xz(t, T)) is:

Cov(Xy(t, T), Xz(t, T)) = EP[Xy(t, T)− EP(Xz(t, T)) · (Xy(t, T)− EP(Xz(t, T)))]. (28)

Using (7) and (8), we have:

Cov(Xy(t, T), Xz(t, T)) = EP

[( ∫ T

t
σye−byt

∫ s

t
ebyvdwy(v)

)
ds ·

( ∫ T

t
σze−bzt

∫ s

t
ebzvdwz(v)

)
ds
]

= EP

[(
σy

∫ T

t

1− e−by(T−v)

by
dwy(v)

)
·
(

σz

∫ T

t

1− e−bz(T−v)

bz
dwz(v)

)]
= σyσzEP

[( ∫ T

t

1− e−by(T−v)

by
dwy(v)

)
·
( ∫ T

t

1− e−bz(T−v)

bz
dwz(v)

)]
.

Using the Ito multidimensional formula, we have:

Cov(Xy(t, T), Xz(t, T)) = σyσzρwy ,wz

( ∫ T

t

1− e−by(T−v)

by
· 1− e−bz(T−v)

bz
dv
)

= σyσzρwy ,wz
1

bybz

( ∫ T

t
(1− e−by(T−v)) · (1− e−bz(T−v))dv

)
= σyσzρwy ,wz

1
bybz

[
(T − t)− 1− e−bz(T−t)

bz
− 1− e−by(T−t)

by
+

1− e−(by+bz)(T−t)

by + bz

]
= σyσzρwy ,wz Ψy,z(t, T). (29)

Using (29), Equation (27) becomes:myz(t, T) = my(t, T) + mz(t, T)

n2
yz(t, T) = n2

y(t, T) + n2
z(t, T) + 2σyσzρwy ,wz Ψy,z(t, T).

(30)

Let:

K(t, T) = e−
∫ T

t (µy(u,ω)+µz(u,ω))du

= eXy(t,T)+Xz(t,T). (31)

EP(K(t, T)) is then given by:

EP(K(t, T)) = emyz(t,T)+
n2

yz(t,T)
2 . (32)



Risks 2020, 8, 121 7 of 23

By replacing (32) in (17), we get:

Cov(Iy(y + t, T − t), Iz(z + t, T − t)) = emyz(t,T)+
n2

yz (t,T)
2 − eαy(t,T)−βy(t,T)µy(t) · eαz(t,T)−βz(t,T)µz(t). (33)

The correlation Corr(Iy(y + t, T − t), Iz(z + t, T − t)) is given by:

Corr(Iy(y + t, T − t), Iz(z + t, T − t)) =
Cov(Iy(y + t, T − t), Iz(z + t, T − t))

n̄y(t, T) · n̄z(t, T)
, (34)

where n̄y(t, T) and n̄z(t, T) are the standard deviations that are related to the two longevity indexes Iy

and Iz.
Using (24) and (25), we can easily compute n̄y(t, T) and n̄z(t, T):

n̄2
y(t, T) = e2my(t,T)+n2

y(t,T) · (en2
y(t,T) − 1)

n̄2
z(t, T) = e2mz(t,T)+n2

z(t,T) · (en2
z(t,T) − 1).

We finally get:

Corr(Iy(y + t, T − t), Iz(z + t, T − t)) =
emyz(t,T)+

n2
yz (t,T)

2 − eαy(t,T)−βy(t,T)µy(t) · eαz(t,T)−βz(t,T)µz(t)√
e2my(t,T)+n2

y(t,T)(en2
y(t,T) − 1)

√
e2mz(t,T)+n2

z (t,T)(en2
z (t,T) − 1)

. (35)

Remark 2. We remark that, if the two noises are independent, namely ρy = 1 and ρz = 0 or ρy = 0 and
ρz = 1, then:

• Cov(Xy(t, T), Xz(t, T)) = 0;
• By elementary calculation, we find:

myz(t, T) +
n2

yz(t, T)
2

= αy(t, T)− βy(t, T)µy(t) + αz(t, T)− βz(t, T)µz(t),

which means that:
Corr(Iy(y + t, T − t), Iz(z + t, T − t)) = 0.

2.3. S-Forward Pricing

An S-forward (called individual S-forward in this paper) is a financial product exchanging at a
fixed maturity T, the realized survival rate of a given population, in return for a fixed rate that was
agreed at inception.

For a notional amount equal to one monetary unit, the payoff of this product at maturity becomes:

Payo f f (T) = I(x, T)− T p̂x , (36)

where I(x, T) is the realized survival rate at maturity, and T p̂x is a fixed survival rate that represents
the probability to be alive be alive at age x + T for an individual initially aged x.

This derivative allows to hedge the longevity risk that is related to an individual belonging to a
given cohort. The pricing of this derivative under the COC approach as well as under the classical
methods (risk-neutral, Sharpe, and Wang) was discussed in detail in Zeddouk and Devolder (2019).

2.4. GS-Forward Pricing

We consider the case of an insurer holding a portfolio of policyholders belonging to the cohort Y
or Z. We assume that this insurer should pay one monetary unit to each individual alive at maturity T.
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The payoff of this global S-forward (that we call GS-forward) at time t is given by:

Payo f f (T) = Iy(y, T) + Iz(z, T)− (T p̂y + T p̂z).

where T p̂y and T p̂z are two fixed survival rates related to cohorts Y and Z, of an individual aged y + T
and z + T, respectively, at time 0, to be alive at age y and z, respectively, (F0 measurable).

2.4.1. GS-Forward Pricing under the COC Approach

The price at time 0 under the COC approach is given by:

VCOC (0, T) = BEP
0 + RM0, (37)

where BEP
0 is as follows:

BEP
0 = P(0, T)EP[Iy(y, T) + Iz(z, T)− (T p̂y + T p̂z)].

The risk margin is equal to the present value of the required returns on the future Solvency Capital
Requirements (SCRs):

RM0 = C%
T−1

∑
i=0

SCRi P(0, i + 1),

where SCRi is the Solvency Capital Requirement that corresponds to the Value-at-Risk at a confidence
level of 99.5% on a one-year period, and C is the Cost of Capital nowadays equal to 6% (Solvency
II requirements).

The future SCRs being stochastic, we need to use an estimation of their future values at time 0.
This estimation is denoted by: ˆSCRi=SCRi |0 .

The initial risk margin is then given by:

RM0 = C%
T−1

∑
i=0

ˆSCRi P(0, i + 1).

Taking into account the Solvency II definition of the SCRs (Value-at-Risk at 99.5% on a one year),
the expression of the SCRi becomes:

SCRi = VaR99,5%[BEP
i+1P(i, i + 1)− BEP

i ],

where:

BEP
i+1 = (Iy(y, i + 1)EP( Iy(y + i + 1, T − i− 1) + Iz(z, i + 1)EP( Iz(z + i + 1, T − i− 1))

− (T p̂y + T p̂z ))P(i + 1, T)

BEP
i = (Iy(y, i)EP( Iy(y + i, T − i) + Iz(z, i)EP( Iz(z + i, T − i)− (T p̂y + T p̂z))P(i, T).
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The SCRi is then given by:

SCRi = P(i, T)VaR99,5%[Iy(y, i + 1)EP( Iy(y + i + 1, T − i− 1)) + Iz(z, i + 1)EP( Iz(z + i + 1, T − i− 1))

− Iy(y, i)EP( Iy(y + i, T − i))− Iz(z, i)EP( Iz(z + i, T − i))]

= P(i, T)[VaR99,5%[Iy(y, i)Iy(y + i, 1)EP( Iy(y + i + 1, T − i− 1)) + Iz(z, i)I(z + i, 1)

× EP( Iz(z + i + 1, T − i− 1))− Iy(y, i)EP( Iy(y + i, T − i))− Iz(z, i)EP( Iz(z + i, T − i))]

= P(i, T)[VaR99,5%[Iy(y, i)Iy(y + i, 1)EP( Iy(y + i + 1, T − i− 1))− Iy(y, i)EP( Iy(y + i, T − i))

+ Iz(z, i)Iz(z + i, 1)EP( Iz(z + i + 1, T − i− 1))− Iz(z, i)EP( Iz(z + i, T − i))]

= P(i, T)[VaR99,5%[Iy(y, i)(Iy(y + i, 1)EP( Iy(y + i + 1, T − i− 1))− EP( Iy(y + i, T − i))

+ Iz(z, i)(Iz(z + i, 1)EP( Iz(z + i + 1, T − i− 1))− EP( Iz(z + i, T − i))].

Therefore, the estimation of SCRi |0 can be given by:

SCRi |0 = P(i, T)[VaR99,5%[EP(Iy(y, i))((Iy(y + i, 1)EP( Iy(y + i + 1, T − i− 1))− EP( Iy(y + i, T − i)))

+ EP(Iz(z, i))((Iz(z + i, 1)EP( Iz(z + i + 1, T − i− 1))− EP( Iz(z + i, T − i)))]

= P(i, T)[VaR99,5%[EP(Iy(y, i))((Iy(y + i, 1)

× EP( Iy(y + i + 1, T − i− 1))− EP( Iy(y + i, 1))EP( Iy(y + i + 1, T − i− 1)))

+ EP(Iz(z, i))((Iz(z + i, 1)EP( Iz(z + i + 1, T − i− 1))

− EP( Iz(z + i, 1))EP( Iz(z + i + 1, T − i− 1)))]

= P(i, T)[VaR99,5%(ν · (Iy(y + i, 1)− EP( Iy(y + i, 1))) · θ + ξ · (Iz(z + i, 1)− EP( Iz(z + i, 1))) · η)],

where ν, θ, ξ, and η are constants given by:

ν = EP(Iy(y, i))

θ = EP( Iy(y + i + 1, T − i− 1))

ξ = EP(Iz(z, i))

η = EP( Iz(z + i + 1, T − i− 1)).

The risk margin at time 0 is then equal to:

RM0 = 6%
T−1

∑
i=0

P(0, i + 1)P(i, T)[VaR99,5%(ν · (Iy(y + i, 1)− EP( Iy(y + i, 1))) · θ + ξ · (Iz(z + i, 1)− EP( Iz(z + i, 1))) · η)].

The price of the GS-forward under the COC approach is finally given by:

V y,z
COC

(0, T) = P(0, T)(EP(Iy(y, T)) + EP(Iz(z, T))− (T p̂y + T p̂z ))

+ 6%
T−1

∑
i=0

P(0, i + 1)P(i, T)[VaR99,5%(ν · (Iy(y + i, 1)− EP( Iy(y + i, 1))) · θ + ξ · (Iz(z + i, 1) (38)

− EP( Iz(z + i, 1))) · η)].

2.4.2. GS-Forward Pricing under the Risk-Neutral Approach

The price of a GS-forward at time t under the risk-neutral probability measure Q, is given by:

Vy,z
Qλλ′

(0, T) = P(0, T)[EQλλ′
(Iy(y, T) + Iz(z, T))− (T p̂y + T p̂z) | F 0], (39)
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where λ and λ′ are the two market prices of longevity risk that are linked to the two independent risk
factors, modelled by the two Brownian motions w1 and w2 (Equations (5) and (6)).

We assume that the market price of risk is constant (λ(t) = λ and λ′(t) = λ′).
The two SDEs of the forces of mortality under the real-word measure P are given by Equations (3)

and (4). Under the risk-neutral measure, these formulas become:

dµ
Qλλ′
y (t) = (AyeByt − byµy(t) + τσy)dt + σy(ρydw∗1(t) +

√
1− ρ2

ydw∗2(t)) (40)

dµ
Qλλ′
z (t) = (AzeBzt − bzµz(t) + τ′σz)dt + σz(ρzdw∗1(t) +

√
1− ρ2

zdw∗2(t)), (41)

where:

• w∗1(t)= w1(t)−λt, and w∗2(t)= w2(t)−λ′t;

• τ = λρy + λ′
√

1− ρ2
y and τ′ = λρz + λ′

√
1− ρ2

z .

We have:

EQλλ′
(I(y, T)) = eα

Q
λλ′

y (0,T)−β
Q

λλ′
y (0,T)µ

Q
λλ′

y (0)

EQλλ′
(I(z, T)) = eα

Q
λλ′

z (0,T)−β
Q

λλ′
z (0,T)µ

Q
λλ′

z (0),

where α
Qλλ′
y , β

Qλλ′
y and α

Qλλ′
z , β

Qλλ′
z are given by:

α
Qλλ′
y (t, T) =

Ay
by
[e−by T e(By+by )T−e(By+by )t

By+by
− eBy T−eBy t

By
]− σ2

y

2b2
y
[ 1

by
(1− e−by(T−t))− T + t]

− σ2
y

4b3
y
(1− e−by(T−t))2 − σyτ

by
(1− e−by(T−t))

β
Qλλ′
y (t, T) = 1

by
(1− e−by(T−t))

and 

α
Qλλ′
z (t, T) = Az

bz
[e−bzT e(Bz+bz)T−e(Bz+bz)t

Bz+bz
− eBzT−eBzt

Bz
]− σ2

z
2b2

z
[ 1

bz
(1− e−bz(T−t))− T + t]

− σ2
z

4b3
z
(1− e−bz(T−t))2 − σzτ′

bz
(1− e−bz(T−t))

β
Qλλ′
z (t, T) = 1

bz
(1− e−bz(T−t)).

2.4.3. GS-Forward Pricing under the Sharpe Approach

Let us now compute the GS-forward price under the Sharpe approach. The price at time 0 is:

Vy,z
Sharpe

(0, T) = P(0, T)
[

EP(Iy(y, T)) + EP(Iz(z, T))− (T p̂y + T p̂z ) + S
√

VarP(Iy(y, T) + Iz(z, T))
]
, (42)

where S represents the Sharpe ratio, and VarP(Iy(y, T)) is the variance of the survival index.
Because Iy(y, T) and Iz(z, T) are dependent, we have:

VarP(Iy(y, T) + Iz(z, T)) = VarP(Iy(y, T)) + VarP(Iz(z, T)) + 2Cov(Iy(y, T), Iz(z, T)). (43)

The price under the Sharpe approach is finally given by:

Vy,z
Sharpe

(0, T) = P(0, T)
[

EP(Iy(y, T)) + EP(Iz(z, T))− (T p̂y + T p̂z )

+ S
√

VarP(Iy(y, T)) + VarP(Iz(z, T)) + 2Cov(Iy(y, T), Iz(z, T))
]
. (44)



Risks 2020, 8, 121 11 of 23

From (23), VarP(Iy(y, T)) and VarP(Iz(z, T)) are given by:

VarP(Iy(y, T)) = e(2my(0,T)+n2
y(0,T)) · (en2

y(0,T) − 1)

VarP(Iz(z, T)) = e(2mz(0,T)+n2
z(0,T)) · (en2

z(0,T) − 1).

We have the expression of the covariance Cov(Iy(y, T), Iz(z, T)) given by formula (33).
The expression of the variance VarP(Iy(y, T) + Iz(z, T)) is given by:

VarP(Iy(y, T) + Iz(z, T)) = e(2my(0,T)+n2
y(0,T)) · (en2

y(0,T) − 1) + e(2mz(0,T)+n2
z(0,T))(en2

z(0,T) − 1)

+ 2emyz(0,T)+ n2(0,T)
2 ) − eαy(0,T)−βy(0,T)µy

x(t) · eαz(0,T)−βz(0,T)µz
x(0).

2.5. Consistency between S-Forward and GS-Forward Pricing Methods

Let us now derive the price of the individual S-forward contract from the GS-forward’s price
formulas given in Section 2.4.

Under the real-world measure P, the mortality intensity Equations (3) and (4) can be written as:

dµy(t) = (AyeByt − byµy(t))dt + σydŵy(t) (45)

dµz(t) = (AzeBzt − bzµz(t))dt + σzdŵz(t), (46)

where ŵy(t) = ρyw1(t) +
√

1− ρ2
y w2(t) and ŵz(t) = ρzw1(t) +

√
1− ρ2

z w2(t).
For each of the three pricing methods, we can determine the price of the individual S-forward

contract directly from the GS-forward price formula, by considering just one cohort.

• Cost of Capital approach:

The prices of the individual S-forwards under the Cost of Capital approach for cohorts Y and Z
are given by:

Vy
COC

(0, T) = P(0, T) (EP[ Iy(y, T)− T p̂y]) + 6%
T−1

∑
i=0

[EP(Iy(y, i))[VaR99,5%(Iy(y + i, 1))

− EP( Iy(y + i, 1))]EP( Iy(y + i + 1, T − i− 1))P(0, i + 1)P(i, T) (47)

Vz
COC

(0, T) = P(0, T) (EP[ Iz(z, T)− T p̂z]) + 6%
T−1

∑
i=0

[EP(Iz(z, i))[VaR99,5%(Iz(z + i, 1))

− EP( Iz(z + i, 1))]EP( Iz(z + i + 1, T − i− 1))P(0, i + 1)P(i, T) (48)

• Sharpe approach:

The prices of the individual S-forwards under the Sharpe approach for cohorts Y and Z are
given by:

Vy
Sharpe

(0, T) = P(0, T)
[

EP(Iy(y, T))− T p̂y + S
√

VarP(Iy(y, T))
]

Vz
Sharpe

(0, T) = P(0, T)
[

EP(Iz(z, T))− T p̂z + S
√

VarP(Iz(z, T))
]

• Risk-neutral

The prices of the individual S-forwards under the risk-neutral approach for cohorts Y and Z are
given by:

Vy
Qλλ′

(0, T) = P(0, T)[EQλλ′
(Iy(y, T))− T p̂y) | F 0]

Vz
Qλλ′

(0, T) = P(0, T)[EQλλ′
(Iz(z, T))− T p̂z) | F 0].

Under the risk-neutral approach, Equations (45) and (46) can be written as:
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dµy(t) = (AyeByt − byµy(t) + τσy)dt + σydwy(t) (49)

dµz(t) = (AzeBzt − bzµz(t) + τ′σz)dt + σzdwz(t), (50)

where wy(t) = ρyw∗1(t) +
√

1− ρ2
y w∗2(t), and wz(t) = ρzw∗1(t) +

√
1− ρ2

z w∗2(t).
We can see that under the risk-neutral measure Qλλ′ , the drifts have been changed by adding τσy and
τ′σz where τ = λρy + λ′

√
1− ρ2

y and τ′ = λρz + λ′
√

1− ρ2
z .

If we consider the special case where ρy = 1, and only one risk parameter ρz = ρ, τ and τ′ become:

τ = λ

τ′ = λρ + λ′
√

1− ρ2.

We define the market price of risk λ∗ for the two cohorts, as follows:

λ = λ∗

τ′ = λρ + λ′
√

1− ρ2 = λ∗.

We find that:

λ = λ∗

λ′ = λ∗
√

1− ρ

1 + ρ
.

For illustration, if we consider ρ = 0.95 and λ = −20%, we find that λ′ = −3.2%. We can see that
the values of λ and λ′ are very different, but the market prices of risk τ and τ′ on which the final price
depends are equal.

We conclude that COC and Sharpe methods are coherent between global and individual models;
however, in the risk-neutral approach, we can also obtain coherency between the models, but we have
to impose conditions on the values of λ and λ′.

3. Cohort-Based Longevity Model: n Cohorts

Let us now generalize our study to n cohorts. We consider n different cohorts of individuals
initially aged x1, x2....xn at time t = 0, and we use the HW model for describing the evolution of
mortality of each cohort.

The mortality intensities that are related to these cohorts are given by:



dµx1(t)

dµx2(t)

.

.

.

dµxn(t)


=



A1eB1t − b1µx1(t)

A2eB2t − b2µx2(t)

.

.

.

AneBnt − bnµxn(t)


dt+



1 ρ1,2 ρ1,3 . . ρ1,n

ρ2,1 1 ρ2,3 . . ρ2,n

. ρ3,2 1 . . .

. . . . . .

. . . 1 . .

ρn,1 ρn,2 ρn,3 . . 1





σ1dw1(t)

σ2dw2(t)

.

.

.

σndwn(t)


. (51)

where w1, w2...wn are independent.
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We denote M =



1 ρ1,2 ρ1,3 . . ρ1,n

ρ2,1 1 ρ2,3 . . ρ2,n

. ρ3,2 1 . . .

. . . . . .

. . . 1 . .

ρn,1 ρn,2 ρn,3 . . 1


M is a symmetric n × n Matrix that represents the impact of the risk factors between two

cohorts ρi,j.
Equation (51) is the general case, since it includes n independent risk factors that affect each

cohort. We consider three particular cases in order to limit the number of risk factors, and also to look
at extreme situations. We study three possibilities that express how the cohorts are correlated:

1. One common risk factor: the cohorts are equally dependent, which means that the forces of
mortality of these cohorts are given by:



dµx1 (t)

dµx2 (t)

.

.

.

dµxn (t)


=



A1eB1 t − b1µx1 (t)

A2eB2 t − b2µx2 (t)

.

.

.

AneBnt − bnµxn (t)


dt+



σ1dw1(t)

σ2dw1(t)

.

.

.

σndw1(t)


.

In this case, the correlation is given by:

Corr(µxk (t), µxl (t)) = ϕxk ,xl (t),

where ϕxk ,xl (t) is given by:

ϕxk ,xl (t) =
(2
√

bxk bxl

bxk + bxl

1− e−(bxk+bxl )t√
1− e−2bxk t

√
1− e−2bxl t

)
.

2. Two common risk factors: the cohorts are dependent with different degrees:



dµx1(t)

dµx2(t)

.

.

.

dµxn(t)


=



A1eB1t − b1µx1(t)

A2eB2t − b2µx2(t)

.

.

.

AneBnt − bnµxn(t)


dt+



ρ1
√

1− ρ2
1 0 . . 0

ρ2
√

1− ρ2
2 0 . . 0

. . . . . .

. . . . . .

. . . . . .

ρn
√

1− ρ2
n 0 . . 0





σ1dw1(t)

σ2dw2(t)

.

.

.

σndwn(t)


,

where w1, w2 ... wn are n independent Brownian motions. In this case, the correlation is given by:

Corr(µxk (t), µxl (t)) =
(

ρkρl +
√

1− ρ2
k

√
1− ρ2

l

)
ϕxk ,xl (t),

3. One risk factor by cohort: the cohorts are completely independent:



dµx1 (t)

dµx2 (t)

.

.

.

dµxn (t)


=



A1eB1 t − b1µx1 (t)

A2eB2 t − b2µx2 (t)

.

.

.

AneBn t − bnµxn (t)


dt+



σ1dw1(t)

σ2dw2(t)

.

.

.

σndwn(t)


,
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where w1, w2 ... wn are n-independent Brownian motions. In this case, the correlation is given by:

Corr(µxk (t), µxl (t)) = 0.

3.1. GS-Forward Pricing

We consider the case of an insurer holding a portfolio of policyholders belonging to the cohorts
X1, X2 , X3 .... Xn. We assume that this insurer should pay one monetary unit to each individual alive
at maturity T.

The payoff of this GS-forward at time T that is evaluated at time 0 is given by:

Payo f f (T) =
n

∑
k=1

(
Ixk (xk, T)− T p̂xk

)
,

where T p̂xk
is the fixed survival rate related to cohort Xk, and Ixk (xk, T) the survival index of an

individual aged xk at time 0, to be alive at age xk + T.

3.1.1. GS-Forward Pricing under the COC Approach

The price at time 0 under the COC approach is given by:

V
G

COC
(0, T) = BEP

0 + RM0 (52)

where BEP
0 is as follows:

BEP
0 = P(0, T)EP

[ n

∑
j=1

(Ixj(xj, T)− T p̂xj
)
]
.

The risk margin at time 0 is:

RM0 = C%
T−1

∑
i=0

ˆSCRi P(0, i + 1).

Subsequently, the expression of the SCRi is given by:

SCRi = VaR99,5%
[
BEP

i+1P(i, i + 1)− BEP
i
]
,

where:

BEP
i+1 =

( n

∑
k=1

Ixk (xk, i + 1)EP(Ixk (xk + i + 1, T − i− 1)− T p̂xk
)P(i + 1, T

)
BEP

i =
( n

∑
k=1

Ixk (xk, i)EP(Ixk (xk + i, T − i)− T p̂xk

)
P(i, T).

The estimation of SCRi |0 can be given by:

SCRi |0 = P(i, T)
[

VaR99,5%
[ n

∑
k=1

EP(Ixk (xk, i))((Ixk (xk + i, 1)

× EP(Ixk (xk + i + 1, T − i− 1))− EP(Ixk (xk + i, T − i))
]]

.
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RM0 is then equal to:

RM0 = 6%
T−1

∑
i=0

P(0, i + 1)P(i, T)
[

VaR99,5%
[ n

∑
k=1

EP(Ixk (xk, i))((Ixk (xk + i, 1)

× EP(Ixk (xk + i + 1, T − i− 1))− EP(Ixk (xk + i, T − i))
]]

.

Finally, the price of the GS-forward with the COC approach is:

V G
COC

(0, T) = P(0, T)EP
[ n

∑
k=1

(Ixk (xk, T)− T p̂xk
)
]
+ 6%

T−1

∑
i=0

P(0, i + 1)P(i, T)

×
[

VaR99,5%
[ n

∑
k=1

EP(Ixk (xk, i))((Ixk (xk + i, 1)

× EP(Ixk (xk + i + 1, T − i− 1))− EP(Ixk (xk + i, T − i))
]]

. (53)

3.1.2. GS-Forward Pricing under the Risk-Neutral Approach

The price of the GS-forward at time 0 is given by:

VG
Qλk

(0, T) = P(0, T)
[ n

∑
k=1

EQλk
(Ixk (xk, T)− T p̂xk

| F 0

]
, (54)

where λk is the market price of risk associated to the cohort xk.

3.1.3. GS-Forward Pricing under the Sharpe Approach

The price of the GS-forward at time 0 under the Sharpe approach is given by:

VG
Sharpe

(0, T) = P(0, T)

[
n

∑
k=1

(EP(Ixk (xk , T))− T p̂xk
+ S

√
VarP(

n

∑
k=1

Ixk (xk , T))

]
, (55)

where S is the Sharpe ratio, and T p̂xk
is the fixed rate that is related to the cohort Xk.

Because Ixk (xk, T) are dependent, we have:

VarP
( n

∑
k=1

Ixk (xk, T)
)
=

n

∑
k=1

VarP
(

Ixk (xk, T)
)
+ 2

n

∑
k=1

n

∑
l 6=k
l=1

Cov
(

Ixk (xk, T), Ixl (xl , T)
)
. (56)

The price at time 0 under the Sharpe approach is finally given by:

VG
Sharpe

(0, T) = P(0, T)

[
n

∑
k=1

EP(Ixk (xk , T))− T p̂xk
+ S

√√√√√√
n

∑
k=1

VarP(Ixk (xk , T)) + 2
n

∑
k=1

n

∑
l 6=k

l=1

Cov
(

Ixk (xk , T), Ixl (xl , T)
) ]

, (57)

where Cov(Ixk (xk, T), Ixl (xl , T)) is given by (33).

3.2. Application to a Portfolio of Annuities

Life and pension annuities are typical products that allow retirees to obtain lifelong incomes.
For fixed lifetime annuities, the longevity risk is completely supported by the insurer or the pension
fund. Therefore, it is crucial for the annuity provider to hedge this risk, which is not easy given the
limited solutions available on the market.

Our pricing framework has the advantage to be flexible, as it can also be generalized to hedge a
portfolio of annuities: we consider a pension fund holding a portfolio of policyholders that belong
to the cohorts X1, X2, ... Xn, to whom he provides fixed annuities of one monetary unit at each date
t1, t2, ..., tm if the policyholder is alive.
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For each cohort Xk, the annuity provider can mitigate the corresponding longevity risk by entering
a survival swap (S-swap).

This S-swap is considered to be an aggregation of S-forward contracts (see for instance Zeddouk
and Devolder (2019)).

We denote, by Pxk (0, t1, t2, ..., tm), the price at time 0 of an S-swap for the individuals belonging
to the cohort Xk, with t1, t2, ..., tm as exchange dates (0 < t1 < t2 < ... < tm). Without arbitrage
opportunities, the price of this S-swap is equal to the sum of the prices of the corresponding individual
S-forward contracts (see, for instance, (Zeddouk and Devolder 2019)):

Pxk (0, t1, t2, ..., tm) =
m

∑
i=1

Vxk (0, ti), (58)

where Vxk (0, ti) is the price at time 0 of the individual S-forward contract related to a given cohort Xk
for a maturity ti.

Therefore, if we do not take into account the eventual correlation between cohorts, the price of
the S-swap for individuals that belong to the different cohorts X1, X2, ..Xn is given by:

P̄xk (0, t1, t2, ..., tm) =
n

∑
k=1

m

∑
i=1

Vxk (0, ti) (59)

Alternatively, if such product exists, the annuity provider can cover the longevity risk for all
individuals that belong to the different cohorts X1, X2, ..Xn, by entering one derivative instead of a
derivative by cohort, while taking the eventual correlation between cohorts into account. The price at
time 0 of this Global S-swap (GS-swap) is given by:

PG(0, t1, t2, ..., tm) =
m

∑
i=1

VG(0, ti) (60)

where VG(0, ti) is the price of the GS-forward contract.

4. Numerical Simulation

In this section, we compute the price of different GS-forward contracts based on the Belgian
population data, and using the different pricing methods.

4.1. Assumptions

To price the GS-forwards, we consider these assumptions:

• An insurer with a portfolio of pure endowment contracts paying 1e at maturity T;

• Two maturities: T = 5 and T = 10;

• N0=10 000 initial policyholders for each cohort;

• We consider two examples: individuals initially aged y = 55 and z = 60, or individuals initially
aged y = 60 and z = 65, old in 2015;

• According to the literature, the values of ρ are around 0.98 (Jevtic et al. 2013). However, to have a
better idea on the price evolution, we consider the following values for ρ: 0.95, 0.98, 1 (in view of
illustration, we also consider the extreme value ρ = 0);

• Data from the Belgian IA|BE unisex mortality table1;

• The risk-less interest rate denoted r, is considered constant, r = 1%;

1 IA|BE mortality projection for the Belgian population (2015) available at www.iabe.be.

www.iabe.be
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• The optimal parameters for the HW model are given by Table 1:

Table 1. Optimal parameters value for the different cohorts, HW model.

Age in 2015 µx(0) A B b σ

55 0.00466531 0.00042258 0.11428187 0.11669113 0.00200113

60 0.00722197 0.00089226 0.11571836 0.15355787 0.00166015

65 0.01056770 0.00231775 0.11562220 0.25062948 0.01770006

• The fixed rates are reported in Table 2:

Table 2. The fixed survival rates T p̂x for different ages and maturities.

T/Age 55 60 65

T = 5 0.9737899 0.9605744 0.9419321

T = 10 0.9395278 0.9107331 0.8658090

• For simplification purpose, we chose ρy = 1, and we consider only one risk parameter ρz = ρ

The two mortality intensities for cohorts Y and Z given by (3) and (4) now become:

dµy(t) = (AyeByt − byµy(t))dt + σydw1(t) (61)

dµz(t) = (AzeBzt − bzµz(t))dt + σz(ρdw1(t) +
√

1− ρ2dw2(t)) (62)

ρwy ,wz and the correlation given by Equation (13) become:

ρwy ,wz = ρ (63)

Corr(µy(t), µz(t)) = ρϕy,z(t)

4.2. Correlation between Cohorts

Before computing the prices of the GS-forward contracts, let us determine the correlation between
the cohorts. To do so, we first compute ϕy,z(t) for the two portfolios considered:

• x0= 55 and x0= 60 in 2015 (denoted ϕ55,60(t)); and,
• x0= 60 and x0= 65 in 2015 (denoted ϕ60,65(t)).

We use Belgian data from IA|BE and compute ϕ55,60(t) and ϕ60,65(t) for t = 1 to t = 10. Table 3
presents the results:
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Table 3. Some values of ϕy,z(t).

ϕ55,60(t) ϕ60,65(t)

t = 1 0.9999436 0.9995160

t = 2 0.9997768 0.9981148

t = 3 0.9995068 0.9959374

t = 4 0.9991450 0.9931869

t = 5 0.9987058 0.9900917

t = 6 0.9982057 0.9868707

t = 7 0.9976623 0.9837081

t = 8 0.9970927 0.9807412

t = 9 0.9965130 0.9780582

t = 10 0.9959375 0.9757037

Now that we have the values of ϕy,z(t), we can compute the correlation between the forces of
mortality, and between the longevity indexes.

For ease of notation, we write: Corr(µy(t), µz(t)) = Corr(µy,z(t))
The correlation between the forces of mortality are reported in Table 4:

Table 4. Values of Corr(µy,z(T)).

ρ = 0.95 ρ = 0.98 ρ = 1

Corr(µ55,60(T)) Corr(µ60,65(T)) Corr(µ55,60(T)) Corr(µ60,65(T)) Corr(µ55,60(T)) Corr(µ60,65(T))

T = 5 0.9487705 0.9405871 0.9787317 0.9702899 0.9987058 0.9900917

T = 10 0.9461406 0.9269185 0.9760188 0.9561896 0.9959375 0.9757037

The correlation between longevity indexes is given by (35). For ease of notation, we write:
Corr(Iy(y, T), Iz(z, T)) = Corr(Iy,z(T)). Table 5 reports the results:

Table 5. Values of Corr(Iy,z(T)).

ρ = 0.95 ρ = 0.98 ρ = 1

Corr(I55,60 (T)) Corr(I60,65 (T)) Corr(I55,60 (T)) Corr(I60,65 (T)) Corr(I55,60 (T)) Corr(I60,65 (T))

T = 5 0.9498743 0.9490736 0.9798716 0.9790453 0.9998698 0.9990265

T = 10 0.9495996 0.9475659 0.9795936 0.9774933 0.9995898 0.9974450
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4.3. Pricing GS-Forwards

Let us now compute the prices of the different GS-forward contracts under the different methods.

4.3.1. Pricing GS-Forwards under the Risk-Neutral Approach

Because the risk-neutral method is based on the expectation of the survival index, the price of the
GS-forward under this approach does not depend on ρ. This price is equal to the sum of the prices of
the individual S-forwards that are related to the corresponding cohorts:

V
y
(0, T) + V

z
(0, T) = P(0, T)[EQλ

(Iy(y, T))− T p̂y) | F 0] + P(0, T)[EQλ′
(Iz(z, T))− T p̂z) | F 0]

= P(0, T)[EQλ
(Iy(y, T)) + EQλ′

(Iz(z, T))− T p̂y −T p̂z) | F 0]

= P(0, T)[EQλ
(Iy(y, T) + Iz(z, T))− (T p̂y +T p̂z) | F 0]

= V
y,z
(0, T) (64)

Thus, we will only focus on the COC and Sharpe approaches.

4.3.2. Pricing GS-Forwards under the COC Approach

Let us now compute the price of the GS-forward while using the HW model under the COC
approach.

Table 6 reports the prices of the different GS-forwards V y,z
COC (0, T) for different ages, maturities,

and correlation levels:

Table 6. The prices of the different GS-forwards for different ages, maturities, and correlations, Cost of
Capital (COC) approach.

ρ = 0 ρ = 0.95 ρ = 0.98 ρ = 1

BE RM Price RM Price RM Price RM Price

V 55,60
COC

(0, 5) 71.0608 25.5553 96.6161 31.3349 102.3958 31.5374 102.5983 31.6411 102.7020

V 55,60
COC

(0, 10) 193.7744 63.4303 257.2047 76.1547 269.9291 76.5697 270.3441 76.7914 270.5658

V 60,65
COC

(0, 5) 84.1478 22.0132 106.1611 27.4256 111.5735 27.5616 111.7095 27.6549 111.8028

V 60,65
COC

(0, 10) 169.7714 18.2327 188.0041 27.1015 196.8729 27.5122 197.2836 27.6512 197.4226

4.3.3. Pricing GS-Forwards under the Sharpe Approach

Let us now compute the price of the GS-forward under the Sharpe approach, while using S = 10%,
which is consistent with the values found in the literature (see for instance (Barrieu and Veraart 2016),
and (Zeddouk and Devolder 2019)). Table 7 reports the prices of the different GS-forwards V y,z

Sharpe(0, T),
as well as the best estimates and the premiums P for different ages, maturities, and correlation levels:

Table 7. The prices of the different GS-forwards for different ages, maturities, and correlations,
Sharpe method.

ρ = 0 ρ = 0.95 ρ = 0.98 ρ = 1

BE P Price P Price P Price P Price

V 55,60
Sharpe

(0, 5) 71.0608 12.3187 83.3796 17.0625 88.1234 17.1910 88.2519 17.2761 88.3370

V 55,60
Sharpe

(0, 10) 193.7744 26.1532 219.9276 36.0616 229.8361 36.3305 230.1050 36.5088 230.2832

V 60,65
Sharpe

(0, 5) 84.1479 10.2784 94.4263 14.3410 98.4889 14.4507 98.5986 14.5234 98.6713

V 60,65
Sharpe

(0, 10) 169.7714 19.6761 189.4476 27.3093 197.0808 27.5159 197.2874 27.6528 197.4243
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4.4. Comparison between Individual and GS-Forward Prices

In our framework, we consider an insurer with a portfolio of individuals that belong to two
different cohorts. Hence, to hedge the longevity risk, this insurer needs to buy a GS-forward based
on these two cohorts. Such a product can be available as an OTC derivative, but if it is not the case,
the insurer should enter two different S-forwards that correspond to the two different cohorts. It could
be interesting to check if these two situations are equivalent. To do so, we compare the prices of the
individual S-forward contracts to the prices of the GS-forward. We denote, by Vy(0, T) and V

z
(0, T),

the prices of these S-forward contracts at time 0 for a maturity T, simultaneously for cohorts Y and Z.
In order to measure the difference between buying a GS-forward for the whole portfolio, and

buying an individual S-forward by cohort, let us define ∆
y,z
ρ by the following:

∆
y,z

ρ (0, T) =
V

y
(0, T) + V

z
(0, T)−V

y,z
(0, T)

Vy,z
(0, T)

.

We compute ∆ρ
y,z
(0, T) for the Cost of Capital and Sharpe approaches.

4.4.1. Cost of Capital Approach

Under the COC approach, the prices of the individual S-forward contracts for each cohort Y and
Z are reported in Table 8:

Table 8. The prices of the different individual S-forward contracts under the COC approach.

Prices

V 55
COC

(0, 5) 50.3640

V 55
COC

(0, 10) 143.2363

V 60
COC

(0, 5) 52.3390

V 60
COC

(0, 10) 127.3379

V 65
COC

(0, 5) 59.4699

V 65
COC

(0, 10) 108.2631

We report the values of ∆
y,z
ρ in Table 9:

Table 9. ∆
y,z

ρ (0, T) values for different ages and maturities, COC approach.

ρ = 0 ρ = 0.95 ρ = 0.98 ρ = 1

∆ 55,60
ρ (0, 5) 6.300% 0.300% 0.102% 0.00098%

∆ 55,60
ρ (0, 10) 5.198% 0.231% 0.085% 0.00310%

∆ 60,65
ρ (0, 5) 5.320% 0.211% 0.089% 0.00550%

∆ 60,65
ρ (0, 10) 5.020% 0.289% 0.080% 0.00978%

4.4.2. Sharpe Approach

Under the Sharpe approach, the prices of these S-forward contracts for each cohort Y and Z
without the correlation effect are reported in Table 10:
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Table 10. The prices of the different individual S-forward contracts under Sharpe approach.

Prices

V 55
Sharpe

(0, 5) 42.5466

V 55
Sharpe

(0, 10) 121.7403

V 60
Sharpe

(0, 5) 45.7909

V 60
Sharpe

(0, 10) 108.5467

V 65
Sharpe

(0, 5) 52.8839

V 65
Sharpe

(0, 10) 88.8951

We report the values of ∆
y,z
ρ in Table 11.

Table 11. ∆
y,z

ρ (0, T) values for different ages and maturities, Sharpe approach.

ρ = 0 ρ = 0.95 ρ = 0.98 ρ = 1

∆ 55,60
ρ (0, 5) 5.940% 0.240% 0.097% 0.00062%

∆ 55,60
ρ (0, 10) 4.710% 0.196% 0.079% 0.00160%

∆ 60,65
ρ (0, 5) 4.490% 0.188% 0.077% 0.00350%

∆ 60,65
ρ (0, 10) 4.220% 0.183% 0.078% 0.00880%

For the two approaches, we can see that:

• if ρ = 0, we observe a strong non-additive effect for the two random variables;
• if 0 < ρ < 1, the prices reflect the non-additive effect as well as the dependence effect

between cohorts;
• if ρ = 1, the values of ∆

y,z
ρ (0, T) are almost equal to 0, which means that COC and Sharpe

approaches are additive when the two cohorts are completely correlated; and,
• when ρ decreases, the GS-forward contract becomes less expensive than individual S-forwards.

5. Conclusions

In this paper, we have explored the correlation between the mortality of different cohorts,
and its impact in the pricing of the GS-forward contract under three pricing approaches. To describe
mortality, we have used the Hull and White model, into which we incorporate risk factors, which
allow for the introduction of inter-generational correlations with different levels. We have provided
the GS-forward price in closed form under the Cost of Capital, risk-neutral and Sharpe methods
for different dependence levels. In addition, to measure the impact of including this dependence,
we have compared both GS-forward and individual S-forward prices. For the risk-neutral approach,
the correlation between generations does not have an effect on the GS-forward price, whereas, for the
Cost of Capital and Sharpe approaches, we have observed a significant correlation effect on the prices.
For these two pricing methods, if the cohorts are not perfectly correlated, the GS-forward becomes less
expensive than the sum of the respective individual S-forward contracts.
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