
risks

Article

Pricing, Risk and Volatility in Subordinated
Market Models

Jean-Philippe Aguilar 1,* , Justin Lars Kirkby 2 and Jan Korbel 3,4,5,6

1 Covéa Finance, Quantitative Research Team, 8-12 rue Boissy d’Anglas, FR75008 Paris, France
2 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA;

jkirkby3@gatech.edu
3 Section for the Science of Complex Systems,

Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna,
Spitalgasse 23, 1090 Vienna, Austria; jan.korbel@meduniwien.ac.at

4 Complexity Science Hub Vienna, Josefstädterstrasse 39, 1080 Vienna, Austria
5 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech Republic
6 The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodárenskou Věží 4,
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Abstract: We consider several market models, where time is subordinated to a stochastic process.
These models are based on various time changes in the Lévy processes driving asset returns, or on
fractional extensions of the diffusion equation; they were introduced to capture complex phenomena such
as volatility clustering or long memory. After recalling recent results on option pricing in subordinated
market models, we establish several analytical formulas for market sensitivities and portfolio performance
in this class of models, and discuss some useful approximations when options are not far from the money.
We also provide some tools for volatility modelling and delta hedging, as well as comparisons with
numerical Fourier techniques.

Keywords: Lévy process; subordination; option pricing; risk sensitivity; stochastic volatility; Greeks;
time-change

1. Introduction

In this opening section, we provide a general introduction to the class of subordinated market models;
we also present the key points investigated in the paper, as well as the work’s overall structure.

1.1. Time Subordination in Financial Modelling

Among the most striking patterns that are observable in financial time series are the phenomena of
regime switching, clustering, and long memory or autocorrelation (see e.g., Cont (2007) and references
therein). Such stylized facts have been evidenced for several decades, Mandelbrot famously remarking
in Mandelbrot (1963) that large price changes tend to cluster together (“large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by small changes”), thus creating
periods of market turbulence (high volatility) alternating with periods of relative calm (low volatility).
These empirical observations can be described, among other approaches, by agent based models focusing
on economic interpretation, such as Lux and Marchesi (2000); Niu and Wang (2013), by tools from statistical
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mechanics and econophysics (Krawiecki et al. 2002), or by the introduction of multifractals (Calvet and
Fischer 2008).

Another prominent approach to describe this subtle volatility behavior consists of introducing a time
change in the stochastic process driving the market prices. Besides stochastic volatility, time changed
market models also capture several stylized facts, like non-Normality of returns (the presence of jumps,
asymmetry) and negative correlation between the returns and their volatility (see a complete overview
in Carr and Wu (2004)). They are motivated by the observation that market participants do not operate
uniformly through a trading period, but, on the contrary, the volume, and frequency of transactions greatly
vary over time. Following the terminology of Geman (2009), the time process is called the stochastic clock,
or business time, while the stochastic process for the underlying market (a Brownian motion, or a more
general Lévy process) is said to evolve in operational time.

Historically, the first introduction of a time change in a diffusion process goes back to Bochner
(1949); it was first applied to financial modeling in Clark (1973) in the context of the cotton futures
market and for a continuous-time change. During the late 1990s and early 2000s, the approach was
extended to discontinuous time changes, with the introduction of subordinators (i.e., non-negative
Lévy processes, see the theoretical details in Bertoin (1999)). In other words, the business time now
admits increasing staircase-like realizations, describing peak periods of activity (following, for instance,
earning announcements, central bank reports, or major political events) alternating with less busy periods.
Perhaps the best-known subordinators are the Gamma process, like in the Variance Gamma (VG) model
by Madan et al. (1998), and the inverse Gaussian process, like in the Normal inverse Gaussian (NIG) model
by Barndorff-Nielsen (1997). Let us also mention that subordination has been successfully applied in many
other fields of applied science. For instance, Gamma subordination has been employed for modeling the
deterioration of production equipment in order to optimize their maintenance (see de Jonge et al. (2017) and
references therein), and inverse Gaussian subordination was originally introduced in Barndorff-Nielsen
(1977) to model the influence of wind on dunes and beach sands.

Recently, a new type of time subordination, based on fractional calculus, has emerged. Indeed,
Lévy processes are closely related to fractional calculus because, for many of them (including stable and
tempered stable processes), their probability densities satisfy a space fractional diffusion equation (see
details and applications to option pricing in Cartea and del-Castillo-Negrete (2007) and in Luchko et al.
(2019)). By also allowing the time derivative to be fractional, as, e.g., in Jizba et al. (2018); Kleinert and
Korbel (2016); Korbel and Luchko (2016); Tarasov (2019); Tomovski et al. (2020), it provides a new type of
subordinated models: while the order of the space fractional derivative controls the heavy tail behavior
of the distribution of returns, the order of the time fractional derivative acts as a temporal subordination
parameter whose purpose is to capture time-related phenomena, such as temporal risk redistribution. This
model, which we shall refer to as the fractional diffusion (FD) model, is an alternative to time-change
models, or to subordinated random walks (Gorenflo et al. 2006).

Regarding the practical implementation and valuation of financial derivatives within subordinated
market models, the literature is dominated by numerical techniques. In time changed models notably, tools
from Fourier transform (Lewis 2001) or Fast Fourier transform (Carr and Madan 1999), and their many
refinements, such as the COS method by Fang and Osterlee (2008) or the PROJ method by Kirkby (2015).
These methods are popular, notably because such models’ characteristic functions are known in relatively
simple closed-forms. Similarly, Cui et al. (2019) provides a numerical pricing framework for a general
time changed Markov processes, and Li and Linetsky (2014) employs eigenfunction expansion techniques.
However, recently, closed-form pricing formulas have been derived, for the VG model in Aguilar (2020a)
and for the NIG model in Aguilar (2020b). The technique has also been employed in the FD model,
for vanilla payoffs in Aguilar et al. (2018) and for more exotic options in Aguilar (2020c).
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In this paper, we extend these pricing tools to the calculation of risk sensitivities and to profit-and-loss
(P&L) explanation, and we provide comparisons between time changed models (such as the NIG and
the VG models) and the FD model. Like for the pricing case, risk sensitivities in the context of time
changed market models (and of Lévy market models in general) are traditionally evaluated by means of
numerical methods based on Fourier inversion (Eberlein et al. 2010; Takahashi and Yamazaki 2008); in the
present paper, we will therefore show that they can be expressed in a tractable way, under the form of
fast convergent series whose terms explicitly depend on the model parameters. This will allow for us to
construct and compare the performance of option based portfolios, and discuss, both quantitatively and
qualitatively, the impact on the parameters on risks and P&L. Related topics, such as volatility modeling,
will also be discussed.

1.2. Contributions of the Paper

Our purpose in the present work is to investigate and provide details on the following key points:

(a) demonstrate that the recent pricing formulas for the VG, NIG and FD models are precise and fast
converging, and can be successfully used for other applications (e.g., calculations of volatility curve);

(b) provides efficient closed-form formulas for first and second-order risk sensitivities (Delta, Gamma)
and compare them with numerical techniques; and,

(c) deduce from these formulas several practical features regarding delta-hedging policies and portfolio
performance.

1.3. Structure of the Paper

The paper is organized as follows: in Section 2 we recall some fundamental concepts on Lévy
processes and option pricing and, in Section 3, we introduce the class of subordinated market models and
their main implications in financial modeling.Subsequently, in Section 4, we mention the various closed
pricing formulas that have been obtained for this class of models. Approximating these formulas when
options are not far from the money, we establish formulas for computing the market volatility in this
configuration, thus generalizing the usual Black-Scholes implied volatility. In Section 5 (resp. Section 6),
we derive the expressions for the first (resp. second) order market sensitivities, and for the P&L of a
delta-hedged portfolio; the impact of the subordination parameter is discussed, and a comparison with
numerical techniques is provided. Last, Section 7 is dedicated to concluding remarks.

2. Exponential Lévy Processes

Let us start by recalling some fundamentals on Lévy processes (see full details in Sato (1999) and
in Cont and Tankov (2004) for their applications to financial modeling) and, following the classical setup
of Schoutens (2003), how they are implemented for the purpose of option pricing.

2.1. Basics of Lévy Processes

Let (Ω,F , {Ft}t≥0,P) be a probability space that is equipped with its natural filtration. Recall
that a Lévy process {Xt}t≥0 is a stochastically continuous process satisfying X0 = 0 (P-almost surely),
and whose increments are independent and stationary. This implies that the characteristic function
Ψ(u, t) := EP [eiuXt ] of a Lévy process has a semi-group structure and it admits an infinitesimal generator
ψ(u), called Lévy symbol or characteristic exponent, which satisfies

Ψ(u, t) = etψ(u), ψ(u) := log Ψ(u, 1). (1)
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The characteristic exponent is entirely determined by the triplet (a, b, Π(dx)), which corresponds to
Lévy–Khintchine representation

ψ(u) = a iu − 1
2

b2u2 +

+∞∫
−∞

(
eiux − 1− iux1{|x|<1}

)
Π(dx), (2)

where a is the drift and is b the Brownian (or diffusion) component. The measure Π(dx), assumed to be
concentrated on R\{0} and satisfy

+∞∫
−∞

min(1, x2)Π(dx) < ∞, (3)

is called the Lévy measure of the process, and determines its tail behavior and the distribution of
jumps. When Π(R) < ∞, one speaks of a process with finite activity (or intensity); this is the case
for jump-diffusion processes, like in the Kou Model (Kou 2002) or the Merton model (Merton 1976),
where only a finite number of jumps can occur on each time interval. When Π(R) = ∞, one speaks of a
process with infinite activity (or intensity); this class is far richer, because an infinite number of jumps
can occur on any finite time interval and, as a consequence, no Brownian component b is even needed
to generate a very complex dynamics. A prominent model with infinite activity is the Variance Gamma
process, introduced in Madan et al. (1998). When Π(R−) = 0 (i.e., the process has only positive jumps),
one speaks of a subordinator.

An important class of Lévy measures, which will be of particular interest to us in this paper,
corresponds to the so-called class of tempered stable processes:

Π(dx) :=

[
c+e−λ+x

x1+α+
1{x>0} +

c−e−λ− |x|

|x|1+α−
1{x<0}

]
dx. (4)

This class contains several sub-classes, such as the tempered stable subordinators (c− = 0) or the
stable processes (λ+ = λ− = 0). When c+ = c− := C, α+ = α− := Y, λ− := G and λ+ := M, one speaks
of a CGMY process (introduced in Carr et al. (2002)). By requiring the further restriction that Y = 0,
we obtain the Variance Gamma process of Madan et al. (1998); the symmetric case G = M was considered
earlier in Madan and Seneta (1990). We also note that the CGMY (and VG) models are members of the
KoBoL family, see Boyarchenko and Levendorskiĭ (2000).

2.2. Exponential Lévy Motions

Let T > 0 and S : t ∈ [0, T]→ St be the market price of some financial asset, seen as the realization of
a time dependent random variable {St}t∈[0,T] on the canonical space Ω = R+. We assume that there exists
a risk-neutral measure Q under which the instantaneous variations of St can be written down as:

dSt

St
= (r− q)dt + dXt (5)

where r ∈ R is the risk-free interest rate and q ≥ 0 is the dividend yield (both being assumed to
be deterministic and continuously compounded), and where {Xt}t∈[0,T] is a Lévy process. Under the
dynamics (5), the terminal market price is given by

ST = Ste(r−q+ω)τ+Xτ , (6)
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where τ := T− t is the time horizon and ω is the martingale adjustment (also called convexity adjustment,
or compensator), which is determined by the martingale condition

EQ [ST | Ft] = e(r−q)τSt. (7)

Given the form of the exponential process (6), the condition (7) is equivalent to:

ω = −ψ(−i) = − logEP
[
eX1
]

. (8)

2.3. Option Pricing

Given a path-independent payoff function P , i.e., a positive function depending only on the terminal
value ST of the market price and on some strike parameters K1, . . . , KN > 0, then the value at time t of a
contingent claim delivering a payoff P at its maturity is equal to the following risk-neutral expectation:

C = EQ [e−rτP(ST , K1, . . . , Kn) | Ft
]

. (9)

If the Lévy process {Xt}t∈[0,T] admits a density f (x, t), then the conditional expectation (9) can be
achieved by integrating all possible realizations for the payoff over the Lévy density, thus resulting in:

C = e−rτ

+∞∫
−∞

P(St e(r−q+ω)τ + x, K1, . . . , Kn) f (x, τ)dx. (10)

3. Subordinated Models

In this section, we introduce the class of subordinated market models, which is, models for which
time is driven by a particular subordinator. We also provide a review of their main financial applications.

3.1. Exponential VG Model

3.1.1. Model Characteristics

In the exponential VG model by (Madan et al. 1998), one chooses the Lévy process in (5) to be a VG
process; this process is defined by

X(VG)
t := θGt + σWGt (11)

where Wt is the standard Wiener process, and γ(t, 1, ν) is a Gamma process (i.e., a process whose increments
γ(t + h, 1, ν)− γ(t, 1, ν) follow a Gamma distribution with mean 1× h and variance ν× h). It follows from
definition (11) that the VG process is actually distributed according to a so-called Normal variance–mean
mixture (see Barndorff-Nielsen et al. (1982)), where the mixing distribution is the Gamma distribution;
this distribution materializes the business time, and it is a particular case of a tempered stable subordinator,
as it admits the following Lévy measure (see Sato (1999) for instance):

ΠG(dx) =
1
ν

e−
1
ν x

x
1{x>0} dx. (12)

It follows from (12) that ΠG(R) = ∞, which means that the Gamma process has infinite activity;
note also that the Gamma measure (12) is concentrated around 0, which means that most jumps in
the business time are small, and become bigger in the high ν regime. The VG process is actually a
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tempered stable process itself (and, more precisely, a CGMY process), its Lévy measure admitting the
following representation:

ΠVG(dx) =
e

θx
σ2

ν|x| e
−

√
θ2
σ2 + 2

ν

σ |x| dx. (13)

Note that (13) is symmetric around the origin when θ = 0 (i.e., positive and negative jumps in asset
prices occur with the same probability). The density function of the VG process is obtained by integrating
the normal density conditionally to the Gamma time-change, and it reads:

fVG(x, t) =
2eθ x

σ2

ν
t
ν
√

2πσΓ( t
ν )

(
x2

2σ2

ν + θ2

) t
2ν−

1
4

K t
ν−

1
2

(
1
σ2

√
2σ2

ν
+ θ2|x|

)
(14)

where Ka(X) denotes the modified Bessel function of the second kind, sometimes also called MacDonald
function (see definition and properties in Abramowitz and Stegun (1972)). The Lévy symbol is known in
the exact form:

ψVG(u) = −1
ν

log
(

1− iθνu +
σ2ν

2
u2
)

, (15)

allowing for a simple representation for the VG martingale adjustment:

ωVG = −ψVG(−i) =
1
ν

log
(

1− θν− σ2ν

2

)
. (16)

Remark 1. Note that, when θ = 0 and ν → ∞, then ωVG → − σ2

2 , which is the usual Gaussian adjustment,
and, in this limit, the exponential VG model degenerates into the Black–Scholes model (Black and Scholes 1973).

The limiting regime, VG(σ, ν, 0) ν→0−→ BS(σ), is illustrated in Figure 1 for decreasing ν. In particular, ν directly
controls the excess kurtosis for the VG model.

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

Figure 1. Black–Scholes (circles) as the limit of VG(σ, ν, 0) ν→0−→ BS(σ).
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3.1.2. Financial Applications

As already noted, the presence of the subordination parameter ν is particularly attractive for modeling
time-induced phenomena, as it allows for a non-uniform passage of time. When ν is small, realizations
of the Gamma subordinator are quasi-linear, which corresponds to a situation where the business time
is the same as the operational time. On the contrary, for bigger values of ν, realizations of the Gamma
process are highly discontinuous and staircase-like (because the process is non decreasing), capturing the
alternation of intense and quieter trading periods.

The exponential VG model has been successfully tested on real market data and shown to perform
better than Black–Scholes or Jump-Diffusion models in multiple situations, e.g., for European-style options
on the HSI index in Lam et al. (2002) or for currency options in Madan and Dual (2005). Several extensions
of the model have been subsequently developed, such as the generalization of the subordination to
a bivariate or multivariate Brownian motion (Luciano and Schoutens 2006; Semeraro 2008) (with an
application to basket options calibration in Linders and Stassen (2015)). Other recent extensions include
the possibility of negative jumps in the linear drift rate of the price process in Ivanov (2018). Last, let us
also mention that the exponential VG model has also found its way to applications in other fields of
quantitative finance, such as credit risk in Fiorani et al. (2007).

3.2. Exponential NIG Model

3.2.1. Model Characteristics

In the exponential NIG model (see Barndorff-Nielsen (1997)), one chooses the Lévy process in (5) to
be the NIG process, defined by

X(NIG)
t = βδ2 It + δWIt (17)

where {It}t∈[0,T] follows an Inverse Gamma distribution of shape δ
√

α2 − β2 and mean rate 1. α > 0 is
a tail or steepness parameter controlling the kurtosis of the NIG distribution; the large α regime gives
birth to light tails, while small α corresponds to heavier tails. β ∈ (−α, α− 1) is the skewness parameter:
β < 0 (resp. β > 0) implies that the distribution is skewed to the left (resp. the right), and β = 0 that the
distribution is symmetric. δ > 0 is the scale parameter and it plays an analogous role to the variance term
σ2 in the Normal distribution. Let us mention that a location parameter µ ∈ R can also be incorporated,
but it has no impact on option prices (see e.g., Aguilar (2020b)), and, therefore, we will assume that it is
equal to 0. Let us also note that, again, we are in the presence of a tempered stable subordination, as the
Lévy measure of the Inverse Gamma process {It}t∈[0,T] satisfies

ΠIG(dx) =
e−

δ2(α2−β2)
2 x

x
3
2

1{x>0} dx, (18)

while the Lévy measure of the NIG process itself is given by

ΠNIG(dx) :=
αδ

π
eβx K1(α|x|)

|x| dx. (19)

It follows from definition (17) that, like in the VG case, the NIG process is also distributed according
to a Normal variance-mean mixture, where the mixing distribution is now the IG distribution; this mixture
is a particular case of the more general class of hyperbolic processes (see discussion and applications to
finance in Eberlein and Keller (1995)), the mixing distributions in that case being the Generalized Inverse
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Gaussian (GIG) distribution. The probability density function for the NIG process is obtained by an
integration of the Normal density over the IG distribution and it reads

fNIG(x, t) :=
αδt
π

eδt
√

α2−β2+β(x−µt)
K1

(
α
√
(δt)2 + (x− µt)2

)
√
(δt)2 + (x− µt)2

, (20)

and its Lévy symbol is given by

ψNIG(u) = − δ

(√
α2 − (β + iu)2 −

√
α2 − β2

)
. (21)

It follows that the NIG convexity adjustment reads

ωNIG = −ψNIG(−i) = δ

(√
α2 − (β + 1)2 −

√
α2 − β2

)
. (22)

Remark 2. When α→ ∞ (large steepness regime), then ωNIG → − σ2

2 (1+ 2β) where σ2 := δ
α ; when, furthermore,

β = 0 (symmetric process) then one recovers the usual Gaussian adjustment − σ2

2 and the exponential NIG model
degenerates into the Black–Scholes model.

3.2.2. Financial Applications

The exponential NIG model has been proved to provide a distinguished fitting to financial data
many times. Let us mention, among others, initial tests for daily returns on Danish and German markets
in Rydberg (1997) and, subsequently, on the FTSE All-share index (also known as “Actuaries index”)
in Venter and de Jongh (2002). More recently, the impact of high-frequency trading has also been taken into
account, and calibrations have been performed on intraday returns, e.g., in Figueroa-López et al. (2012) for
different sampling frequencies. Like in the VG case, multivariate extensions have also been considered
(see Luciano and Semeraro (2010) and references therein), and applications to credit risk have also been
provided (Luciano 2009).

In Figure 2, we display the log-return density for a VG and NIG example, each being recovered
from their characteristic functions while using the method of Kirkby (2015). While both models exhibit
heavy-tails, the VG model is characterized by a pronounced cusp, especially for shorter maturities.
This near singular behavior presents challenges for Fourier pricing methods, and techniques, such as
spectral filtering, have been proposed as a remedy Cui et al. (2017); Phelan et al. (2019); Ruijter et al. (2015).
In contrast, the closed form pricing formulas presented here exhibit smooth exponential convergence
without special handling, as demonstrated in Section 4.
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Figure 2. Log-return densities for several maturities τ, for the VG(0.3, 0.5, 0) model (Left) and the
NIG(9.0, 0, 1.2) model (Right).

3.3. Fractional Diffusion Model

The FD model by Kleinert and Korbel (2016); Korbel and Luchko (2016) aims at generalizing the
Lévy stable model by introducing a time-fractional derivative in the equation governing the probability
densities, whose order will be interpreted as a subordination parameter. Before introducing the model and
its characteristics, we briefly recall some basics of stable distributions and their link with fractional calculus.

3.3.1. Lévy-Stable Processes and Fractional Derivatives

Taking λ+ = λ− = 0 and α+ = α− := α ∈ (0, 2) in (4) yields the Lévy measure of the stable
(or α-stable) process {X(stable)

t }t∈[0,T]:

Πstable(x) =
c−
|x|1+α

1{x<0} +
c+

x1+α
1{x>0}. (23)

It is known that, when using Feller’s parametrization,
σα := −(c+ + c−)Γ(−α) cos

πα

2

β :=
c+ − c−
c+ + c−

(24)

then the Lévy symbol of the stable process can be written as

ψstable(u) = σα|u|α
(

1− iβ tan
απ

2
sgnu

)
+ iau (25)

where the drift term a equals the expectation EQ[X(stable)
t ] as soon as α ∈ (1, 2), that is, for the class of

stable Paretian distributions. This class is the one with the greatest financial meaning and historical
importance, with initial calibrations going back to Mandelbrot (1963) with α ' 1.7 for cotton prices; see a
comprehensive overview of these distributions in Zolotarev (1986), and of their financial applications
in Mittnik and Rachev (2000). However, we may note that, due to the polynomial decay of (23) on the
positive axis, the moment generating function and moments of all order do not exist unless c+ = 0, or,
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equivalently, in terms of the parametrization (24), β = −1. This condition, which is known as the maximal
negative asymmetry (or skewness) hypothesis, is the key assumption in the Finite Moment Log Stable
(FMLS) model by Carr and Wu (2003); it follows from (25) that the FMLS martingale adjustment is

ωFMLS =

(
σ√
2

)α

cos πα
2

=
1
π

Γ
(

1− α

2

)
Γ
(

1 + α

2

)(
σ√
2

)α

(26)

where we have introduced the
√

2 normalization, so as to recover the Gaussian adjustment when α = 2,
and where the second equality is a consequence of the reflection formula for the Gamma function; in the
limiting case α = 2, the stable distribution degenerates into the Normal one, and, therefore, the FMLS
model recovers the Black–Scholes model.

Another consequence of the characteristic exponent (25) with β = −1 is that the FMLS probability
density fFMLS(x, t) satisfies the space fractional diffusion equation

∂ fFMLS
∂t

+ ωαDα
x fFMLS(x, t) = 0, x ∈ R, t ∈ [0, T], (27)

where Dα
x :=α−2 Dα

x is a particular case of the Riesz–Feller derivative defined (via its Fourier transform) by

̂θDα
x f (u) = |k|αei(signu)θπ/2 f̂ (u) , |θ| ≤ min{α, α− 2}. (28)

Remark 3. When θ = 0, the Riesz–Feller derivative is simply called Riesz derivative (as the operator inverse to
the Riesz potential, see all details and definitions e.g., in the classical monograph Samko et al. (1993)); the choice
θ = α − 2 in Equation (27) is the fractional calculus analogue to the maximal negative asymmetry hypothesis
β = −1. When α = 2 then the Riesz-Feller derivative degenerates into the usual second derivative; in that case,
(27) becomes the usual heat equation, whose fundamental solution (the heat kernel) is the probability density of the
Wiener process.

3.3.2. Model Characteristics

The FD model generalizes the FMLS model, by allowing the time derivative in the Equation (27) for
the probability density to be fractional as well:(∗Dγ

t + ωFD Dα
x
)

fFD(x, t) = 0, x ∈ R, t ∈ [0, T], (29)

where α ∈ (1, 2], γ ∈ (0, α] and ∗Dt
γ denotes the Caputo fractional derivative (see the definitions and

properties in Li et al. (2011) for instance); when γ = 1, it coincides with the usual first-order derivative.
The fundamental solution to (29) has been determined in Mainardi et al. (2001) and admits the

following Mellin–Barnes representation

fFD(x, t) =
1

αx

c+i∞∫
c−i∞

(
G∗+(s)1{x>0} + G∗−(s)1{x<0}

) ( |x|
(−µα,γtγ)

1
α

)s
ds

2iπ
, (30)

where we have defined

G∗+(s) :=
Γ(1− s)

Γ(1− γ s
α )

, G∗−(s) :=
Γ
( s

α

)
Γ
(
1− s

α

)
Γ(1− s)

Γ
(
1− γ

α s
)

Γ
(

α−1
α s
)

Γ
(

1− α−1
α s
) . (31)
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By analogy with (10), the price of a contingent claim C delivering a path independent payoff P at its
maturity is defined to be

C = e−rτ

+∞∫
−∞

P(St e(r−q+ωFD)τ + x, K1, . . . , Kn) fFD(x, τ)dx (32)

and the martingale adjustment is defined in terms of the cumulant generating function by

ωFD = − log
+∞∫
−∞

ex fFD(x, 1)dx. (33)

It has been shown in Aguilar et al. (2018) that ωFD can be conveniently expressed in the form of
a series

ωFD = − log
∞

∑
n=0

(−1)n

n!
Γ(1 + αn)

Γ(1 + γαn)
ωn

FMLS (34)

where ωFMLS is the FMLS martingale adjustment that is defined in (26), and under the condition that
γ ∈ (1− 1

α , α); using a first-order Taylor expansion for log(1 + u) and the expression (26), we obtain the
useful approximation:

ωFD =
1
π

Γ(1 + α)Γ
(

1−α
2

)
Γ
(

1+α
2

)
Γ(1 + γα)

(
σ√
2

)α

+ O
(

σ2α
)

. (35)

Remark 4. When α = 2, we are left with

ωFD = − σ2

Γ(1 + 2γ)
+ O

(
σ4
)

(36)

which coincides with the Black–Scholes adjustment − σ2

2 when γ = 1; we call the situation α = 2 and γ ∈ (0, 2]
the “subordinated Black-Scholes” (sub-BS) model. This is a slight abuse of terminology, because we are not
directly in the presence of a subordinating process (i.e., a non decreasing Lévy process) like in the VG and the
NIG cases; subordination is achieved here via the introduction of a fractional time derivative whose order γ acts
as a supplementary degree of freedom in the time dynamics. When γ = 1, then the sub-BS model recovers the
Black–Scholes model, like the VG model with ν→ 0 and the NIG model with α→ ∞; we summarize the situation
in Table 1.

Table 1. Some subordinated market models, and their limiting cases. Time changed models (exponential
VG and NIG), FD, and sub-BS models recover the Black–Scholes (BS) model for specific values of their
subordination parameters.

Subordinated Model Limiting Regimes

VG(σ, ν, θ) VG(σ, ν, 0) ν→0−→ BS(σ)
NIG(α, β, δ) NIG(α, 0, δ)

α→∞−→ BS(
√

δ/α)

FD(σ, α, γ) FD(σ, α, γ)
γ→1−→ FMLS(σ, α)

α→2−→ BS(σ)

sub-BS(σ,γ) := FD(σ, 2, γ) sub-BS(σ, γ)
γ→1−→ BS(σ)
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3.3.3. Financial Applications

The purpose of the FD model is to allow more flexibility in the risk redistribution of returns. When the
tail index α departs from 2, the model shifts the returns towards more significant losses due to the
presence of the left fat tail. Similarly, when the order of the fractional derivative γ is different from 1,
the risk is shifted either towards shorter (γ < 1) or longer (γ > 1) maturities: for instance, when γ < 1,
the prices of short term options increase while the prices of long term options slightly decrease (see
details, e.g., in Korbel and Luchko (2016)). This behavior is particularly relevant in periods of stressed
market conditions: for instance, it has been observed during the 2020 market turmoils (consecutive to
the COVID19 pandemics) that short-term implied volatility on the Euro Stoxx 50 index had increased
sharply while remaining more stable for long-term options. Several calibrations have been made, notably
on market data from turbulent times; in particular, in Kleinert and Korbel (2016), the FD model has been
calibrated on data from S&P 500 options traded during November 2008. Such calibrations have shown
that α could be quite different from 2: typically, α ' 1.6–1.7, that turns out to be quite remote from the
log-normal hypothesis (α = 2), but relatively close to the initial Mandelbrot estimate for the stable law on
cotton futures market (Mandelbrot 1963). Moreover, it has been noted that both fractional parameters α

and γ appeared to vary simultaneously and in the same direction, leaving the diffusion scaling exponent
γ/α relatively stable.

4. Pricing and Volatility Modelling

In this section, we first recall the pricing formulas that were obtained in recent works for the VG, NIG,
and FD models, in the case of a European option C delivering a payoff equal to [ST − K]+ at maturity.
Then, we discuss some volatility properties when asset prices are not far from the money. In all of the
following, we will denote the forward strike price and the log-forward moneyness by

F := Ke−rτ , k := log
St

K
+ (r− q)τ. (37)

We will also use the notations

kVG := k + ωVGτ , kNIG := k + ωNIGτ , kFD := k + ωFDτ (38)

and, in the specific case of the VG model, we will denote

τν :=
τ

ν
− 1

2
σν := σ

√
ν

2
. (39)

We will assume that the underlying VG (resp. NIG) processes are symmetric, which is, θ = 0
(resp. β = 0); this is to simplify the notations, but also because symmetric time-changed models extend
the Black–Scholes setup (see Table 1). Therefore, we will be better able to compare the results with usual
formulas known in the Black-Scholes model. We will also assume that τν /∈ Q; note that this condition
is not restrictive, due to the density of Q in R: if τν ∈ Q, it is easy to make τν irrational by adding an
arbitrary small perturbation, for instance, τν → τν + e/1010). Last, whenever the exponential NIG model
is concerned, we will always assume that

|kNIG|
δτ

< 1 (40)

to ensure the convergence of the series. Please note that this condition is automatically satisfied when
options are not far from the money because, in this case, kNIG is small. When St is far from K, condition (40)
necessitates a restriction on options maturities in order to be satisfied; for a typical set of parameters,
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maturities shorter than two or three months should be excluded, which remains a reasonable limitation
(see details in Aguilar (2020b)).

For convenience, we summarize the pricing formulas for a European call option.

Formula 1 (European call: pricing formulas).
(i) The value at time t of a European call option in the exponential VG model is:

- (OTM price) If kVG < 0,

C−VG(kVG, σν) =
F

2Γ( τ
ν )

∞

∑
n1=0
n2=1

(−1)n1

n1!

[
Γ(−n1+n2+1

2 + τν)

Γ(−n1+n2
2 + 1)

(
−kVG

σν

)n1

σn2
ν

+ 2
Γ(−2n1 − n2 − 1− 2τν)

Γ(−n1 +
1
2 − τν)

(
−kVG

σν

)2n1+1+2τν

(−kVG)
n2

]
. (41)

- (ITM price) If kVG > 0,
C+

VG(kVG, σν) = Ste−qτ − F− C−VG(kVG,−σν). (42)

- (ATM price) If kVG = 0,

C−VG(kVG, σν) = C+
VG(kVG, σν) =

F
2Γ( τ

ν )

∞

∑
n=1

Γ( n+1
2 + τν)

Γ( n
2 + 1)

σn
ν . (43)

(ii) The value at time t of a European call option in the exponential NIG model is:

CNIG =
Fαeαδτ

√
π

∞

∑
n1=0
n2=1

kn1
NIG

n1!Γ(1 + −n1+n2
2 )

K n1−n2+1
2

(αδτ)

(
δτ

2α

)−n1+n2+1
2

. (44)

(iii) The value at time t of a European call option in the FD model is:

CFD =
F
α

∞

∑
n1=0
n2=1

kn1
FD

n1!Γ(1 + γ−n1+n2
α )

(−ωFDτγ)
−n1+n2

α . (45)

Proof. (i) is proved in Aguilar (2020a), (ii) is proved in Aguilar (2020b) and (iii) in Aguilar et al. (2018).

The pricing formulas in Formula (1) converge exponentially fast to the true prices, as exhibited in
Figure 3 for the VG model (Left). The reference prices are obtained with N = 50 terms, and they are

verified by the method of Kirkby (2015). Recalling Remark 1, VG(σ, ν, 0) ν→0−→ BS(σ), and fewer terms are
required to accurately price the option as ν → 0. A nearly identical convergence profile is observed for
NIG (Right), displayed for several values of α. Recalling that NIG(α, 0, δ)

α→∞−→ BS(
√

δ/α) (see Table 1),
we again see that fewer terms are required in order to accurately price under NIG for larger α.
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Figure 3. Exponential convergence of pricing Formula (1) for a call option: τ = 1, St = K =

4000, r = 0.01, q = 0. (Left) VG(σ, ν, 0) with σ = 0.3. (Right) NIG(α, 0, δ) with δ = 1.2. Here N = n1 = n2

is the number of terms in the truncated series.

4.1. At-the-Money Forward Approximations

Let us assume that options are at-the-money forward (ATMF), that is, St = F (or, equivalently, k = 0).
If we approximate the European call price in the exponential VG model by the first term of the series (41),
which is, the term for n1 = 0, n2 = 1, we obtain (recall that Γ(3/2) =

√
π/2):

C−VG =
St√
2π

Γ( 1
2 + τ

ν )

Γ( τ
ν )

σ
√

ν. (46)

Using the Stirling approximation for the Gamma function, we know that

Γ
(

1
2 + τ

ν

)
Γ
(

τ
ν

) ∼
ν→0

√
τ

ν
, (47)

and, therefore, in the low variance regime, we recover the well-known approximation for the ATMF
Black–Scholes price

CBS '
St√
2π

σ
√

τ. (48)

The approximation (48) is often known to market practitioners under the form C ' 0.4Sσ
√

τ,
because 1/

√
2π = 0.399 . . . , and it was first derived in Brenner and Subrahmanyam (1994).

In a similar way, the ATMF price in the exponential NIG model can be approximated by the first term
of the series (44), resulting in

CNIG =
Stδτeαδτ

π
K0(αδτ). (49)

Using the large argument behavior of the Bessel function (see Abramowitz and Stegun (1972))

K0(αδτ) ∼
α→∞

√
π

2αδτ
e−αδτ , (50)
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it is immediate to see that (49) also recovers the approximation (48) in the large steepness regime,
with σ2 := δ/α. Likewise, in the FD model, the ATMF price is approximated by the first term of the
series (45), resulting in

CFD =
St

α

1
Γ(1 + γ

α )
(−ωFDτγ)

1
α . (51)

Taking α = 2 and using (36), the ATMF price in the sub-BS model becomes

Csub−BS =
St

2
1

Γ(1 + γ
2 )
√

Γ(1 + 2γ)
στ

γ
2 (52)

which recovers (48) when γ→ 1.

4.2. Implied Volatility

One key benefit of the subordinated models is their ability to capture the heavy-tails that were
observed in financial markets. For the VG model, ν directly controls the tail-heaviness, as illustrated in
Figure 4. In particular, large values of ν lead to steep implied volatility smiles. The ATMF prices that are
obtained in Section 4.1 are helpful to approximate the implied volatility σI of the subordinated models,
when St is close to F. Denoting by Ct the market price of an ATMF European call option at time t and
inverting (46), we immediately see that the VG implied volatility is

σVG =

√
2π

ν

Γ( τ
ν )

Γ( 1
2 + τ

ν )

Ct

St
, (53)

and, similarly, inverting Equation (52), the sub-BS implied volatility is

σsub−BS =
2
√

Γ(1 + 2γ)Γ(1 + γ
2 )

τ
γ
2

Ct

St
. (54)

As expected, VG and sub-BS both implied volatilities recover the BS implied volatility in their limiting
regimes (ν→ 0 and γ→ 1):

σBS =

√
2π

τ

Ct

St
. (55)

In the NIG case, things are a bit more complicated, because one has to solve

Stδτeαδτ

π
K0(αδτ) = Ct (56)

for which there is no exact solution in an analytical form. Nevertheless, an analytical approximation can be
determined by using Hankel’s expression for the Bessel function (see Andrews (1992) or any monograph
on special functions), which goes, as follows: define, for ρ ∈ R,

a0(ρ) = 1

ak(ρ) =
(4ρ2 − 12)(4ρ2 − 32) . . . (4ρ2 − (2k− 1)2)

k!8k , k ≥ 1,
(57)



Risks 2020, 8, 124 16 of 27

then, for large z and fixed ρ, we have:

Kρ(z) =
z→∞

√
π

2z
e−z

∞

∑
k=0

ak(ρ)

zk . (58)
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Figure 4. Implied volatility smiles of VG(σ, ν, 0) obtained by Formula (1). Params: σ = 0.3, τ = 0.2,
r = 1%, q = 0%, St = 4000. The moneyness is determined by F := St exp((r− q)τ).

In particular, when 4ρ2 − 1 = 0, i.e., when ρ = 1
2 , all the ak(ρ) are null in definition (57) when k ≥ 1,

and we are left with:

K 1
2
(z) =

√
π

2z
e−z (59)

for all z. Using (58) up to k = 1 for z = αδτ and inserting into (56), we are left with the quadratic equation

X2 − α
√

2π
Ct

St
X − 1

8
= 0 (X :=

√
αδτ), (60)

whose positive solution reads

X =
1
2

(
α
√

2π
Ct

St
+

√
2πα2 C2

t
S2

t
+

1
2

)
. (61)

Taylor expanding for large α and turning back to the δ variable, we obtain

δ =
2πα

τ

C2
t

S2
t
+

1
4ατ

+ O
(

1
α3

)
(62)

which, at first order, recovers (55) for σ2 := δ/α. We summarize these results in Table 2.
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Table 2. Volatility modelling for ATMF options in various subordinated models, and their limiting cases.

ATMF Implied Volatility (European Options)

Exponential VG σVG =
√

2π
ν

Γ( τ
ν )

Γ( 1
2 +

τ
ν )

Ct
St

Low variance regime (ν→ 0):

σVG →
√

2π
τ

Ct
St

Exponential NIG Solve Stδτeαδτ

π K0(αδτ) = Ct
Large steepness regime (α→ ∞):

δ = 2πα
τ

C2
t

S2
t
+ 1

4ατ + O
(

1
α2

)
At order α0:

σNIG :=
√

δ
α =

√
2π
τ

Ct
St

sub-BS σFD =
2
√

Γ(1+2γ)Γ(1+ γ
2 )

τ
γ
2

Ct
St

Non-fractional regime (γ→ 1):

σFD →
√

2π
τ

Ct
St

5. First-Order Sensitivities

The sensitivity of a contingent claim C to the underlying asset, often denoted Delta or ∆, is defined
by ∆ := ∂C/∂St; by deriving Formula (1) with respect to St and re-arranging the terms, we obtain the
following expressions for European options in subordinated market models:

Formula 2 (European call: Delta).
(i) The Delta at time t of a European call option in the exponential VG model is:

- (OTM sensitivity) If kVG < 0,

∆−VG(kVG, σν) =
F

2StΓ( τ
ν )

∞

∑
n1=0
n2=1

(−1)n1

n1!

[
−

n1Γ(−n1+n2+1
2 + τν)

Γ(−n1+n2
2 + 1)

(
−kVG

σν

)n1−1
σn2−1

ν

+ 2
Γ(−2n1 − n2 − 2τν)

Γ(−n1 +
1
2 − τν)

(
−kVG

σν

)2n1+1+2τν

(−kVG)
n2−1

]
. (63)

- (ITM sensitivity) If kVG > 0,

∆+
VG(kVG, σν) = e−qτ − ∆−VG(kVG,−σν). (64)

- (ATM sensitivity) If kVG = 0,

∆−VG(kVG, σν) = ∆+
VG(kVG, σν) =

F
2StΓ( τ

ν )

∞

∑
n=1

Γ( n
2 + τν)

Γ( n+1
2 )

σn−1
ν . (65)

(ii) The Delta at time t of a European call option in the exponential NIG model is:

∆NIG =
Fαeαδτ

St
√

π

∞

∑
n1=0
n2=1

kn1
NIG

n1!Γ(−n1+n2+1
2 )

K n1−n2
2 +1

(αδτ)

(
δτ

2α

)−n1+n2
2

. (66)
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(iii) The Delta at time t of a European call option in the FD model is:

∆FD =
F

αSt

∞

∑
n1=0
n2=0

kn1
FD

n1!Γ(1 + γ−n1+n2
α )

(−ωFDτγ)
−n1+n2

α . (67)

For illustration, in Figure 5 we compare the Delta of VG(σ, ν, 0) while using Formula (2) with that of
BS(σ). Similarly, we compare the Dollar Gamma using Formula (3). Figure 6 provides a comparison for
NIG(α, 0, δ). For both models, we can see the substantial impact of the heavy-tailed assumption and its
implications for hedging. In the next section, we discuss delta hedging in more detail, and provide some
simplified approximations for the ATMF case.
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Figure 5. Delta (Left) and Dollar Gamma (Right) of a call option under VG(σ, ν, 0) using Formula (2)
and Formula (3). Greeks of BS(σ) are provided for reference (dash lines). Params: σ = 0.3, τ = 1,
r = 1%, q = 0%, K = 4000.
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Figure 6. Delta (Left) and Dollar Gamma (Right) of a call option under NIG(α, 0, δ) using Formulas (2)
and (3). Greeks of BS(σ = 0.3) are provided for reference (dash lines). Params: δ = 1.2, τ = 1, r = 1%,
q = 0%, K = 4000.
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5.1. Delta Hedging

The leading term for the Delta of the European option in the exponential VG case is given for
n1 = n2 = 1 in (63) and it reads:

∆−VG =
F

2StΓ( τ
ν )

[
Γ
(

1
2
+ τν

)
− 2

Γ(−3− 3τν)

Γ(− 1
2 − τν)

(
−kVG

σν

)−3+2τν
]

; (68)

In the ATMF situation (St = F, i.e., k = 0), we can re-write the martingale adjustment and Taylor
expand for small σ

kVG = ωVGτ = −σ2

2
τ + O

(
σ4
)

(69)

and, recalling τν = τ
ν −

1
2 , we obtain

∆−VG =
1
2
+ O

(
σ4(τν+1)

)
. (70)

It is interesting to note that, in the ATMF situation, ∆−VG '
1
2 , which is, it suffices to be long one unit

of the asset S and short two units of an European call written on this asset, to offset the impact of the
variations of S on a portfolio; this fact is well-known in the usual Black–Scholes theory, and is therefore
preserved in the exponential VG model. The same observation actually also holds for the exponential NIG
model: indeed, the leading term in the series (66) (obtained for n1 = 0, n2 = 1) reads

Fαeαδτ

St
√

π
K 1

2
(αδτ)

√
δτ

2α
=

F
2St

(71)

where we have used the particular value of the Bessel function of index 1
2 (59) in order to simplify

the expression; when F = St, we obtain ∆NIG = 1
2 , which, again, turns out to be similar to the usual

Black–Scholes behavior. This effect is clearly illustrated in Figures 5 and 6. We can conclude that in both the
exponential VG and NIG models, the presence of a time subordination does not modify the delta hedging
policy, at least when options are not far from the money. In contrast, the option Gamma is significantly
influenced by time subordination, and it is discussed further in Section 6.

In the FD model, things are a bit different; keeping only the leading term (n1 = n2 = 0) in (67) yields

∆FD =
F

αSt

St→F−→ 1
α

(72)

which explicitly depends on the tail parameter α and resumes to 1
2 in the sub-BS model, for any

subordination parameter γ. Again, the subordination parameter plays no role in the delta-hedging
policy of the portfolio, which is entirely governed by the tail parameter α; in other words, it suffices to be
long one unit of the underlying asset S and short α European calls to offset the effect of the variations of S
on the portfolio’s value.

5.2. Comparisons with Numerical Techniques

In this subsection, we show that the series formulas for the first order sensitivity ∆ provided
by Formula (2) are a very efficient alternative to Fourier-based computations. Such calculations are
typically based on a representation for the price of an European call in terms of Arrau–Debreu securities
(see e.g., Lewis (2001))

EQ [e−rτ(ST − K)+ | St
]
= Ste−qτΠ1 − Ke−rτΠ2, (73)
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where e−qτΠ1 is the option’s Delta. This quantity is known to admit a convenient representation in the
Fourier space:

∆ = e−qτΠ1 =
1
2
+

1
π

∞∫
0

Re

[
eiukΨ̃(u− i, τ)

iu

]
du (74)

where k is the log forward moneyness defined in (37), and the “risk-neutralized” characteristic function is
defined by:

Ψ̃(u, t) := eiuωtΨ(u, t) = e(iuω+ψ(u))t (75)

In the case of the exponential VG and NIG models, the integral in (74) can be easily carried out by
inserting the expressions for the Lévy symbol ψ(u) and the martingale adjustment ω, and by evaluating
the integral by any classical recursive algorithm (such as a simple trapezoidal rule, for instance). In Table 3,
we compare the results of such numerical evaluations, with several truncations of the series in Formula (2),
and for various market configurations. We can observe that the convergence is extremely accurate and
fast, notably in the ATM region: this is because, in that case, k ' 0, which tends to accelerate the overall
convergence of the series.

Table 3. First order sensitivity (Delta) of European call options in the exponential VG and NIG models,
obtained by truncations of Formula (2), and by a numerical evaluation of (74). Here, N = n1 = n2 is the
number of terms in the truncated series. Parameters: K = 4000, r = 1%, q = 0%, τ = 1.

Exponential VG Model [σ = 0.2, ν = 0.85]

Formula (2) Lewis (74)

N = 3 N = 5 N = 10 N = 15

Deep OTM (St = 3000) 2.1823 0.6347 0.0941 0.0940 0.0940
OTM (St = 3500) 0.4113 0.2567 0.2455 0.2455 0.2455
ATM (St = 4040.90) 0.5703 0.5718 0.5719 0.5719 0.5719
ITM (St = 4500) 0.7569 0.8113 0.8134 0.8134 0.8134
Deep ITM (St = 5000) 0.4729 0.8589 0.9206 0.9206 0.9206

Exponential NIG Model [α = 9, δ = 1.2]

Formula (2) Lewis (74)

N = 3 N = 5 N = 10 N = 15

Deep OTM (St = 3000) 0.2921 0.2722 0.2747 0.2748 0.2748
OTM (St = 3500) 0.4289 0.4309 0.4311 0.4311 0.4311
ATM (St = 4234.09) 0.6336 0.6410 0.6412 0.6412 0.6412
ITM (St = 4500) 0.6936 0.7030 0.7033 0.7033 0.7033
Deep ITM (St = 5000) 0.7827 0.7966 0.7971 0.7971 0.7971

6. Second-Order Sensitivities and Portfolio Performance

6.1. Gamma, Dollar Gamma

The second order derivative of a contingent claim C with respect to St is often denoted
by Γ := ∂2C/∂S2

t . It is closely related to the performance, or Profit and Loss (P&L) of a portfolio: if t2 > t1

are two trading days, then the P&L between t1 and t2 is

P&L = Θ ∆t + market P&L , ∆t := t2 − t1, (76)
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where Θ is the time sensitivity of the portfolio, and the market P&L is, at order 2:

market P&L := ∆(∆St) +
1
2

Γ(∆St)
2 ∆St := St2 − St1 . (77)

Assuming that the portfolio has been delta-hedged, then we are left with

market P&L = $Γ
(

∆St

St

)2
(78)

where the Dollar Gamma has been defined by $Γ := 1
2 S2

t Γ; relation (78) is widely employed in financial
engineering, because it allows for expressing the performance of the portfolio as a simple function of the
realized variance of the underlying S. In the usual Black–Scholes theory, it is well known that the Dollar
Gamma of the European call is

$ΓBS =
St

2σ
√

2πτ
. (79)

Remarkably, as shown by Formula (3), the Gamma of European options admits a simple form in
subordinated market models: while the series expansion for the price or the first-order sensitivity is
expressed in terms of a double sum, the Gamma can be expressed as a sum over a single index.

Formula 3 (European call: Gamma).
(i) The Gamma at time t of a European call option in the exponential VG model is:

- (OTM sensitivity) If kVG < 0,

Γ−VG(kVG, σν) =
F

2S2
t σνΓ( τ

ν )

∞

∑
n=0

(−1)n

n!

[
Γ(− n

2 + τν)

Γ(−n+1
2 )

(
−kVG

σν

)n

+ 2
Γ(−2n− 2τν)

Γ(−n + 1
2 − τν)

(
−kVG

σν

)2n+2τν
]

. (80)

- (ITM sensitivity) If kVG > 0,
Γ+

VG(kVG, σν) = −Γ−VG(kVG,−σν). (81)

- (ATM sensitivity) If kVG = 0,

Γ−VG(kVG, σν) = Γ+
VG(kVG, σν) =

F
2
√

πS2
t σνΓ( τ

ν )

Γ(τν − 1
2 )

Γ( τ
ν )

. (82)

(ii) The Gamma at time t of a European call option in the exponential NIG model is:

ΓNIG =
Fαeαδτ

S2
t
√

π

∞

∑
n=0

kn
NIG

n!Γ(−n+1
2 )

K n
2 +1(αδτ)

(
δτ

2α

)− n
2

. (83)

(iii) The Gamma at time t of a European call option in the FD model is:

ΓFD =
F

αS2
t

∞

∑
n=0

kn
FD

n!Γ(1− γ
α (n + 1))

(−ωFDτγ)−
n+1

α . (84)
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Proof. The formulas are all straightforward to obtain, by deriving the series in Formula (2) with respect to
St and making an appropriate change of variables. For instance, in the NIG case, we have

ΓNIG =
Fαeαδτ

S2
t
√

π

− ∞

∑
n1=0
n2=1

kn1
NIG

n1!Γ(−n1+n2+1
2 )

K n1−n2
2 +1

(αδτ)

(
δτ

2α

)−n1+n2
2

+
∞

∑
n1=1
n2=1

kn1−1
NIG

(n1 − 1)!Γ(−n1+n2+1
2 )

K n1−n2
2 +1

(αδτ)

(
δτ

2α

)−n1+n2
2

 . (85)

Performing the change of variables ñ1 := n1 + 1, ñ2 → n2 + 1 in the second sum shows that only the
terms for ñ2 = 0 survive; renaming ñ1 := n yields Formula (83).

6.2. Properties and Particular Cases

Let us discuss some useful approximations and qualitative properties of Formula (3). First, in the VG
case, the leading term (n = 0) in (80) is

F
2S2

t σνΓ( τ
ν )

[
Γ(τν)√

π
+ 2

Γ(−2τν)

Γ( 1
2 − τν)

(
− kVG

σν

)2τν
]

. (86)

Taylor expanding the VG martingale adjustment for small ν and assuming that we are not far from
the money forward (St → F), we have

kVG ∼
ν→0

k− σ2

2
τ ∼

St→F
−σ2

2
τ, (87)

therefore, the Gamma writes, at first order:

Γ−VG =
1

2
√

πStσν

Γ( τ
ν −

1
2 )

Γ( τ
ν )

(88)

and the Dollar Gamma immediately follows:

$Γ−VG =
St

4
√

πσν

Γ( τ
ν −

1
2 )

Γ( τ
ν )

. (89)

While using the functional relation Γ(z + 1) = zΓ(z) and the Stirling approximation (47), we have:

Γ( τ
ν −

1
2 )

Γ( τ
ν )

=
1

τ
ν −

1
2

Γ( τ
ν + 1

2 )

Γ( τ
ν )

∼
ν→0

√
ν

τ
(90)

and, therefore, we obtain the behavior of (89) in the low variance regime:

$Γ−VG
ν→0−→ St

2σ
√

2πτ
, (91)

thus recovering the Black–Scholes Dollar Gamma (79) in this limit. It is interesting to note that, contrary to
the first order sensitivity Delta (70), which appeared to be independent of ν; this is no longer the case with
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the second order sensitivity Gamma (89) that explicitly depends on the subordination parameter. In other
words, while the subordination parameter does not modify the Delta Hedging policy of the portfolio
(when not far from the money), it directly impacts its performance. This observation also holds in the
exponential NIG model; indeed, the leading term in (83) for St → F reads

ΓNIG =
αeαδτ

πSt
K1(αδτ) (92)

and therefore the Dollar Gamma is

$ΓNIG =
αSteαδτ

2π
K1(αδτ). (93)

Using the asymptotic behavior for large argument (58) for the Bessel function, we know that

K1(αδτ) ∼
α→∞

√
π

2αδτ
e−αδτ (94)

and, therefore

$ΓNIG
α→∞−→ St

2σ
√

2πτ
, σ2 :=

δ

α
, (95)

recovering the Black–Scholes Dollar Gamma (79). Last in the FD model, the leading term in the series (84)
for St → F is

ΓFD =
1

αSt

(−ωFDτγ)−
1
α

Γ(1− γ
α )

, (96)

and, in the sub-BS model (α = 2), using the approximation (36) for the martingale adjustment,

Γsub−BS =
1

2St

√
Γ(1 + 2γ)

Γ(1− γ
2 )στ

γ
2

. (97)

Therefore, the Dollar Gamma in the sub-BS model is

$Γsub−BS =
St

4

√
Γ(1 + 2γ)

Γ(1− γ
2 )στ

γ
2

. (98)

and, in the non fractional limit (γ→ 1), we have, again,

$Γsub−BS
γ→1−→ St

2σ
√

2πτ
. (99)

In Table 4, we summarize these observations, as well as the properties that are discussed for the
first-order sensitivity in Section 5.
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Table 4. First and second order market sensitivities (ATMF situation) for European call options in various
subordinated models, and their limiting cases. Time subordination does not affect the Delta, but it directly
impacts the Gamma of options.

1st Order (∆) 2nd Order (Γ)

Exponential VG 1
2

1
2
√

πStσν

Γ( τ
ν−

1
2 )

Γ( τ
ν )

Low variance regime (ν→ 0):
1

Stσ
√

2πτ

Exponential NIG 1
2

αeαδτ

πSt
K1(αδτ)

Large steepness regime (α→ ∞):
1

Stσ
√

2πτ
, σ2 := δ

α

FD 1
α

1
αSt

(−ωFDτγ)−
1
α

Γ(1− γ
α )

sub-BS 1
2

1
2St

√
Γ(1+2γ)

Γ(1− γ
2 )στ

γ
2

Non fractional regime (γ→ 1):
1

Stσ
√

2πτ

7. Concluding Remarks

In this article, we have provided a review of several subordinated market models and recalled their
main properties. We have also recalled recent formulas while used for European option pricing in this
context. Our main conclusions are the following:

(a) The pricing formulas are smooth and fast converging, and provide excellent agreement with efficient
numerical techniques (such as the PROJ method). Moreover, these formulas can provide useful
approximations for at-the-money options, and allow for the construction of volatility curves.

(b) We have derived several analytical formulas for risk sensitivities and shown that they also provide
excellent agreement with standard numerical (Fourier) evaluations.

(c) Thanks to these formulas, we were able to show that the presence of a time subordination in the VG,
NIG, and FD models has a minimal impact on the delta hedging policy of an at-the-money option,
but, on the contrary, has a direct impact on the P&L of the delta hedged portfolio.

Future work should include extending the pricing and sensitivities formulas to path-dependent
instruments or to options written on several assets. It would also be interesting to determine whether these
analytical results could be extended if the risk-neutral hypothesis is replaced, for instance, by approaches
based on optimal quadratic hedging or utility functions.
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