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Abstract: We propose an Explainable AI model that can be employed in order to explain why a
customer buys or abandons a non-life insurance coverage. The method consists in applying similarity
clustering to the Shapley values that were obtained from a highly accurate XGBoost predictive
classification algorithm. Our proposed method can be embedded into a technologically-based
insurance service (Insurtech), allowing to understand, in real time, the factors that most contribute
to customers’ decisions, thereby gaining proactive insights on their needs. We prove the validity of
our model with an empirical analysis that was conducted on data regarding purchases of insurance
micro-policies. Two aspects are investigated: the propensity to buy an insurance policy and the risk
of churn of an existing customer. The results from the analysis reveal that customers can be effectively
and quickly grouped according to a similar set of characteristics, which can predict their buying or
churn behaviour well.

Keywords: explainable machine learning; non-life insurance; customer profiling

1. Introduction

The performance of the insurance sector is undergoing a transformation. While life insurance
products are performing well in term of market penetration, non-life products are lagging behind.
This may be detrimental to the society, as the aim of the insurance industry is, in its essence,
a protective one, which serves as an hedge against the risk of contingent or uncertain losses, thus
generating efficiency.

The gap of the non-life insurance sector may be the manifestation of the inability of traditional
insurance companies to successfully complete the so-called “last mile”: the effective communication to
the final users of the importance of covering risks, either because they are not using the right tools
or simply because they can not offer the protection the customers need. In order to close the gap,
customers need to be understood, and effective communication is needed.

Technology based insurance (Insurtech), which is based on the application of Artificial Intelligence
methods to data retrieved from users’ engagement via smartphones, can close the gap between non-life
insurance providers and consumers, thereby improving the protection and resilience of our societies.
The advantage of using AI applications are, in a nutshell, the capability for insurance companies
to better understand consumer needs, listening to their preferences, as expressed by smartphone
generated data; and, the possibility for insurance consumers to receive an insurance coverage that well
fit their needs.

The application of Artificial Intelligence to insurance is relatively recent. Bernardino (2020)
provides an up-to-date review of the application of AI to the insurance sector, and of the related
opportunities. With the insurance sector being highly regulated, artificial intelligence applications, to
be trustworthy, must be accurate and explainable: see, for example European Commission (2020).
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In the introduction, we propose applying an accurate and explainable machine learning method,
based on Shapley values (see Joseph 2019; Murdoch et al. 2019), to the non-life insurance industry,
which can help to turn “black box” unexplainable algorithms into something closer to a white box.
The application of Shapley values can shift the perspective and gain insights into customers’ needs
and behaviour, building relevant profiles and going more towards prescriptive analytics.

We show the advantages of our proposal within a case study that aimed at estimating the
probability of buying (or churning) a specific non-life insurance product. We then show the utility of
the proposed model in order to highlight customers who are at risk of churn. In both cases, we are able
to estimate the amount of opportunity/risk at both the individual and overall level, while analysing
the factors that are responsible for it.

2. Methodology

2.1. Building a Predictive Classifier

The first step of our proposal is to select a highly accurate predictive model. The research
literature shows that ensemble methods, consisting in the combination of several different learners
to obtain low variation and low bias predictors are particularly suited for this kind of problems
(see e.g., Breiman 2000). Ensembles that are made up of classification trees, which natively capture
interactions and non linearities, are particularly suited for predictive classification problems. Among
the family of ensemble trees learner, we employ Extreme Gradient Boosting. This algorithm consistently
scores better against its peers, and it implements a gradient boosting algorithm that penalises trees
with a proportional shrinking of the leaf nodes (Chen and Guestrin 2016).

However, algorithms, like the Extreme Gradient Boosting (XGBoost), which aggregate a series
of learner into one output, are hardly interpretable, particularly by customers and regulators: the
most that can be gained in terms of interpretability are scores regarding variables’ importance, often
extrapolated from aggregated calculations. That is why these algorithms are usually classified as
“black boxes”. This limitation counterbalances some of the advantages of being a better classifier. In
the next subsection, we propose the use of explainable AI models for the output of Extreme Gradient
Boosting in order to overcome the issue of interpretability.

2.2. Explaining Model Predictions

In line with the request that AI applications must be trustworthy, researchers have recently proposed
explainable machine learning models (for a review, see e.g., Guidotti et al. 2018; Molnar 2019).

Among explainable models, the Shapley value approach, as proposed in Shapley (1952) and
operationalised by Lundberg and Lee (2017) and Strumbelj and Kononenko (2010), has many
attractive properties. In particular, in the Shapley framework, the variability of the predictions
is divided among the available covariates. In this way, the contribution of each explanatory variable
to each point prediction can be assessed, regardless of the underlying model (Joseph 2019), in a
model-agnostic manner.

From a computational perspective, the SHAP framework (short for SHapley Additive exPlanation)
returns Shapley values that express model predictions as linear combinations of binary variables that
describe whether each covariate is present in the model or not. It does so overcoming the computing
time limits that are encountered with kernel-based SHAP estimation (Lundberg et al. 2018).

More formally, the SHAP algorithm approximates each prediction f (x) with g(x′), a linear
function of the binary variables z′ ∈ {0, 1}M and of the quantities φi ∈ R, being defined, as follows:

g(z′) = φ0 +
M

∑
i=1

φiz′i, (1)

where M is the number of explanatory variables.
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Lundberg et al. (2018) has shown that the only additive method that satisfies the properties of
local accuracy, missingness, and consistency is obtained, attributing to each variable x′i an effect φi
(the Shapley value), defined by:

φi( f , x) = ∑
z′⊆x′

|z′|!(M− |z′| − 1)!
M!

[
fx(z′)− fx(z′ \ i)

]
(2)

where f is the model, x are the available variables, and x′ are the selected variables. The quantity
fx(z′) − fx(z′ \ i) expresses, for each single prediction, the deviation of Shapley values from their
mean: the contribution of the i-th variable.

Intuitively, Shapley values are an explanatory model that locally approximate the original model,
for a given variable value x (local accuracy); with the property that, whenever a variable is equal to
zero, so is the Shapley value (missingness); and, that, if in a different model the contribution of a
variable is higher, so will be the corresponding Shapley value (consistency).

2.3. Clustering the Explained Predictions

On top of being able to interpret and compare any model with the same framework, the Shapley
values can be subject to further elaborations, fostering a new range of possibilities and perspectives
in order to understand and communicate the characteristics of customers and their interaction with
insurtech products.

From a statistical viewpoint, this means that we can search for patterns and regularities by putting
in relation feature vectors with similar Shapley values, for example, explaining the similarity between
customers in their determinants, with respect to the target variable. To this end, we employ similarity
networks, a distance between customers based on the standardized Euclidean distance between each
pair (xi, xj) of predictors. More formally, we define the pairwise distance di,j, as:

di,j = (xi − xj)∆
−1(xi − xj)

′ (3)

where ∆ is a diagonal matrix whose i-th diagonal element contains the standard deviation.
The distances can be represented by a N×N dissimilarity matrix D, such that the closer two customers
i, j are in the Euclidean space, the lower the entry di,j. The matrix D may be highly dimensional and,
consequently, difficult to deal with. In order to simplify its structure, we employ K-means clustering,
defined by MacQueen (1967), to find whether consumers can be merged in groups, which represent
common behavioural characteristics.

3. Application

3.1. Data

The data with which we test our proposal are provided by the insurtech company Neosurance,
based in Italy, and concern the purchasing of instant and micro-policies in the sports and travel domain.
We will investigate two different user behaviours: the propensity to buy and customer’s churn. Even
though the data are the same, the actual dimensionality of the dataset is different as the propensity to
buy includes users who became customers as well as users that have not purchased anything yet, while
the definition of churn requires the existence of a purchase history. Therefore, we have 3778 users to
estimate the propensity to buy, and 1689 users in order to estimate customer churn. As explanatory
variables, we have some demographic information (mostly gender, age, approximative location, and
device used) and information regarding purchasing history and behaviour, use of the application, and
user experience.

The target variable is a binary variable: the “buy” event in the propensity to buy case and the
“leave” event in the churn case. The proportion of the event under study for the propensity study is
27.5%, while, for the churn study, is 53.3%.
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3.2. Results

The propensity study dataset is split in a 80% training and a 20% testing set. After adequate
optimization of the hyperparameters, the XGBoost model on the training set is tested in order to obtain
the relevant curves and metrics. In Figure 1, below, we compare the performance of the XGBoost
method with a benchmark logistic regression, obtained from a classic stepwise model selection.

Figure 1 shows the better predictive performance of the XGBoost method over the logistic
regression. Indeed, the Area Under the Curve is 0.7715 for the logistic regression models and 0.9018
for the XGBoost model.

Figure 1. ROC curves comparison.

We now interpret the output of the XGBoost method by means of the SHAP values approach,
for each explanatory feature available. This can be done with the TreeSHAP implementation, whose
computational complexity reduces from O(T ∗ L ∗ 2M) to O(T ∗ L ∗ D2), where T is the number of
trees, L is the maximum number of leaves in a tree, and D the maximal depth of a tree. Figure 2, below,
contains the SHAP summary plot from TreeSHAP, which shows the contribution of each variable by
representing its Shapley value averaged across all customers. In the figure, all of the observations
are plotted row wise, separately for each explanatory variable. In each row, the color indicates the
magnitude of each observation in terms of that variable: from low (blue color) to high (red color).

From Figure 2, note that the most important variable to predict propensity to buy is the number
of days since the last buy, followed by the number of bought items. In both cases, the impact on model
output varies considerably among all of the observations (days since last), and especially for those
with large values (number of bought items. Also note the effects of seasonality, in terms of weekdays
and seasons. You can find a complete description of the variables used in Appendix A.

The third part of the analysis involves using the shap values vectors that correspond to each user,
calculated from the classification model, and look for the presence of clustering structures that group
together similar potential buyers. To this aim, we employ a K-means clustering algorithm Bindra and
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Mishra (2017). We have obtained that the optimal number of clusters is four by plotting the resulting
within sum of squares against the number of clusters.

Figure 2. Shapley Additive exPlanation (SHAP) summary plot.

Thus, in Figure 3 we plot the scatterplot of the first two principal components of the SHAP values,
attributing each consumer to one of the four clusters. In the Figure, the four cluster means are indicated
with bolder nodes and positive events (consumers that buy) are coloured in red.

From Figure 3, it can be noticed that one cluster is positioned in an area with virtually no red
points (the black centroid), the two purple centroids are somewhat in-between and the cluster denoted
by the yellow centroid is in an area with a high-density of propensity to buy users. Checking the
proportion of positives with respect to each cluster, it turns out that the black cluster scores a 0.002
proportion (among the 1518 units that are contained in the cluster), the two purple clusters 0.09 and
0.093 (with 314 and 546 units in the clusters, respectively), while the yellow one shows a much larger
0.701, with 1400 units in the cluster.

It seems reasonable to group the two intermediate clusters into a new one, leaving us with three
final clusters. In this way, we operate an effective segmentation among users, with a probability of
buying ranging from 0.02% to 9% to 70%. The three clusters can be labeled, respectively, “unlikely”,
“less likely”, and “very likely”.

The obtained results are consistent with what could be obtained when directly applying the
K-means algorithm on the data, before XGboost and SHAP. In this case, the three probabilities, for
the same clusters of individuals, are: 6%, 34%, and 70%. This reveals, as expected, the improved
discriminatory capacity of the SHAP-XGBoost model over a pure empirical model, which does not
filter any noise.

In addition, it can be shown that the three clusters that are obtained from the application of our
proposal are well balanced, as we have 1495 users in the “unlikely” cluster, 866 users in the “less likely”
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cluster, and 1417 in the “very likely” one. Conversely, if we apply the K-mean clustering to the raw
data, then we obtain a cluster of 951 units, with a 0.0641 proportion of events; two similar clusters with
cumulatively 2807 units and a proportion of events of about 0.34 and a cluster with only 20 units and a
0.7 proportion: a rather unbalanced result. This further shows the advanage of our proposal, not only
in terms of predictive accuracy and interpretability, but also in terms of cluster profiling.

Figure 3. Clustering of Shapley values.

In a similar fashion, we can apply our proposal for the customer churn problem. The AUROC
value is equal to 0.91 against 0.75 for the selected stepwise logistic regression model. The application of
the K-means clustering to the SHAP values leads to clusters being better separated than in the buying
behaviour case, as shown in Figure 4, below.

Figure 4 shows a clear separation in four clusters, which can be again reduced to three, combining
clusters 1 and 2. This leads to 222 users in the “unlikely” cluster, 803 in the “less likely”, and 664 in the
“very likely” one. We summarize the three clusters, reporting the proportion of y and mean propensity
for each cluster in Table 1.

We finally remark that, also for this case, we have compared the K-means results over the
SHAP vaues with the K-means results over the raw data and, again, the obtained clusters are
better differentiated and balanced in the former case, confirming the advantage of using our
proposed method.
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(a) (b)

Figure 4. (a) Clustering of Shapley values with K = 4; (b) Propensity to buy: Precision/Recall curve
(Area Under the ROC Curve = 0.91).

Table 1. Mean by cluster.

Cluster Mean y Mean Propensity

unlikely 0.117117 0.104915
less likely 0.313823 0.317958
very likely 0.936747 0.933060

3.3. Conclusions

In order to improve non-life insurance understanding of consumers’ need, we have proposed
a novel methodology that can be embedded within a technological insurance service (Insurtech).
The methodology, which is based on the combination of a highly accurate predictive method (XGBoost)
with a model agnostic interpretability tool (Shapley Values), leads to a powerful segmentation of
customer’s profiles, both in terms of buy and churn behaviours.

Our approach brings several advantages and, in particular, the ability to perform behavioural
segmentation that is based on the behavioural similarity existing between customers. The research
suggests that explainable machine learning models can effectively improve our understanding of
customers’ behaviour. To further investigate this claim, future research may involve the application of
the model to other situations that arise in the insurance industry, which may gain from the application
of artificial intelligence technologies, such as underwriting and claims management.

Our approach can also be extended to other financial technology applications, such as peer-to-peer
lending (Bussmann et al. 2020) and financial pricing (Giudici and Raffinetti 2020).

Another line of research would be to extend our approach when considering the Mean Absolute
Shapley Values instead of the SHAP values, as in (Lundberg et al. 2020).
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Appendix A

Table A1. Variables’ description.

Variable Name Description

day_of_week The weekday of the event
days_since_last Days passed since last interaction with user
device Type of device
models Device model
models_Other Catch-all label for low frequency device models
month Month where the event occurs
n_afternoon Cumulative number of interactions occurred this moment of the day
n_autumn Cumulative number of interactions occurred this season
n_Friday Cumulative number of interactions occurred this day
n_morning Cumulative number of interactions occurred this moment of the day
n_on_demand Cumulative number of requested policy quotes
n_push_notification Cumulative number of notification pushed on device
n_Saturday Cumulative number of interactions occurred this day
n_spring Cumulative number of interactions occurred this season
n_summer Cumulative number of interactions occurred this season
n_Tuesady Cumulative number of interactions occurred this day
n_Wednesday Cumulative number of interactions occurred this day
n_winter Cumulative number of interactions occurred this season
number_bought Number of bought policies
number_pushed Number of times the insurance quote has been sent
os_Android Flag to represent device OS Android
os_iOS Flag to represent device OS iOS
season Season where the event occurs
time_of_day Moment of the day where the event occurs
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