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Abstract: We focus on two particular aspects of model risk: the inability of a chosen model to fit
observed market prices at a given point in time (calibration error) and the model risk due to the
recalibration of model parameters (in contradiction to the model assumptions). In this context,
we use relative entropy as a pre-metric in order to quantify these two sources of model risk in a
common framework, and consider the trade-offs between them when choosing a model and the
frequency with which to recalibrate to the market. We illustrate this approach by applying it to
the seminal Black/Scholes model and its extension to stochastic volatility, while using option data
for Apple (AAPL) and Google (GOOG). We find that recalibrating a model more frequently simply
shifts model risk from one type to another, without any substantial reduction of aggregate model
risk. Furthermore, moving to a more complicated stochastic model is seen to be counterproductive if
one requires a high degree of robustness, for example, as quantified by a 99% quantile of aggregate
model risk.

Keywords: model risk; option pricing; relative entropy; model calibration; stochastic volatility

1. Introduction

The renowned statistician George E. P. Box (see Box and Draper (1987)) wrote that
“essentially, all models are wrong, but some are useful”. This is certainly true in finance,
where many models and techniques that have been extensively empirically invalidated
remain in widespread use, not just in academia, but also (perhaps especially)
among practitioners. At times, the way models are used directly contradicts the model
assumptions: as observed, market prices change, parameters in option pricing models,
which are assumed to be time-invariant, are recalibrated, often on a daily basis.
Incorrect models and model misuse represent a source of risk that is being increasingly
recognised—this is called “model risk”. As a paper by the Board of Governors of the
Federal Reserve System put it in 2011 (see Board of Governors of the Federal Reserve
System Office of the Comptroller of the Currency (2011)), “the use of models invariably
presents model risk, which is the potential for adverse consequences from decisions based
on incorrect or misused model outputs and reports”.

In broad terms, one could identify four general classes of model risk that are inherent
to the way mathematical models are used in finance, for example, in (but not limited to)
option pricing applications:

• Parameter uncertainty (and sensitivity to parameters)—let us call this “Type 0” model
risk for short. If model parameters need to be statistically estimated, then they will
only be known up to some level of statistical confidence, and this parameter uncer-
tainty induces uncertainty regarding the correctness of the model outputs. Examples
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of where this type of risk is considered explicitly in the literature include Löffler (2003),
Bannör and Scherer (2013) and Kerkhof et al. (2010).

• Inability to fit a model to a full set of simultaneous market observations —this is
“calibration error”, let’s call this “Type 1” model risk for short. “Calibration” in this
context refers to choosing model parameters in such a way that prices for derivative
financial instruments that are implied by the model match market prices at one given
point in time. Thus, calibration error on single-time-point (a.k.a. “cross-sectional”)
market data means that these data already contradict the model assumptions. The
classical example of this is the Black/Scholes implied volatility smile.

• Change in parameters due to recalibration—let us call this “Type 2” model risk
for short. Once one moves from one day to the next, this aspect of model risk becomes
apparent: in order to again fit the market as closely as possible, it is common practice
in the industry to recalibrate models. This recalibration results in model parameters
(which the models assume to be fixed) changing from day-to-day, contradicting the
model assumptions.

• The “true” dynamics of state variables do not match model dynamics—let us call
this violation of model assumptions “Type 3” model risk. The classical example of
this is the econometric rejection of the hypothesis that asset prices follow geometric
Brownian motion, thus invalidating the key assumption in the seminal model of
Black and Scholes (1973). This type of model risk is considered, for example, in
Kerkhof et al. (2010), who also relate this to identification risk, which they define
as risk that “arises when observationally indistinguishable models have different
consequences for capital reserves”. Boucher et al. (2014) present a method for making
value-at-risk more robust with respect to this source of model risk by “learning” from
the results of model backtesting. Type 3 model risk would impact, in particular, the
effectiveness of hedging strategies based on a model, for example
Detering and Packham (2016) take the approach of measuring model risk that is based
on the residual profit/loss from hedging in a misspecified model.

Note that there is a gradual transition between the different types of model risk
and, depending on one’s modelling choices, to a certain extent one can trade off one type
of model risk against another. For example,

• Less stringent requirements of an exact fit to market observations (Type 1) allows for
less frequent recalibration (Type 2).

• Instead of different model dynamics (Type 3), one could consider a parameterised
family of models (Type 2).

• Regime-switching models “legalise” changes in parameters, so Type 2 becomes more
like Type 3.

• Adding parameters shifts model risk from Type 1 to Type 2 (or, to a certain extent,
to Type 0).

• Adding state variables shifts model risk from Type 2 to Type 3.

Glasserman and Xu (2014) propose relative entropy as a consistent pre-metric by
which to measure model risk from different sources. What matters in the application of
mathematical models in finance is the probability distributions tha the models imply, either
under a “risk-neutral” probability measure (for applications to relative pricing of financial
instruments) or the “physical” (a.k.a. “real-world”) probability measure (for risk manage-
ment applications such as the calculation of expected shortfall). Breuer and Csiszár (2016)
call this distribution model risk. Each type of model risk manifests itself as some form of
ambiguity about the “true” probability measures that should be used for these purposes,
and being able to quantify different types of model risk in a unified setting while using a
pre-metric for the divergence between distributions (like relative entropy) allows for one to
make an informed choice about the trade-offs between different sources of model risk.
Glasserman and Xu (2014) postulate a “relative entropy budget” defining a set of models
that are sufficiently close (in the sense of relative entropy) to a nominal reference model to
be considered in an evaluation of model risk expressed as a “worst case” expectation—i.e.,
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a worst-case price or a worst-case risk measure. However, they say little as to how one
typically would obtain a specific number for this “relative entropy budget”. In a sense,
we invert this problem by noting that higher relative entropy between model distribu-
tions indicates higher model risk, and propose a method to jointly evaluate model risk of
two types, based on how this model risk manifests itself when option pricing models are
calibrated and recalibrated to liquid market instruments.

We focus on the model risk that is inherent in the calibration and recalibration (i.e.,
in the above terminology, Types 1 and 2) of option pricing models, and to illustrate our
approach we consider the models of Black and Scholes (1973) and Heston (1993), thus
comparing the most classical option pricing model with its popular extension incorporating
stochastic volatility. Clearly, if (as is often the case in practice) one solely focuses on calibration
error, more frequent recalibration will always be preferred to less, and Heston (1993)
preferred to Black and Scholes (1973). The latter point is due to the fact that the Heston
model has more parameters than Black/Scholes (four as opposed to one) and an additional,
unobserved state variable (the volatility), thus providing more freedom to fit option prices
across different strikes.

We quantify calibration and recalibration risk in both models applied to equity option
data, and also explore the trade-off between these two types of model risk, finding that there
is no longer a trivial answer to the question which model and recalibration frequency should
be preferred when these two sources of model risk are considered in a unified framework.

The rest of the paper is organised, as follows. Section 2 introduces a framework for
the joint evaluation of model risk due to calibration error and model recalibration. Section 3
discusses the numerical implementation of the method. Section 4 presents the results that
were obtained by applying this method to option price data, and Section 5 concludes.

2. Quantifying Model Risk by Relative Entropy

As noted above, model risk is reflected in the ambiguity with regard to the “correct”
probability distribution to use for relative pricing or risk assessment.
Following Glasserman and Xu (2014), we quantify this ambiguity while using the diver-
gence between probability measures. In the present context, these can be classified as
divergence measures that are defined as a function D(·||·) : S× S→ R, satisfying

D(Q||P) ≥ 0 ∀P, Q ∈ S (1)

D(Q||P) = 0 ⇔ P = Q, (2)

where S is a space of all probability measures with a common support. More specifically,
most divergence measures belong to the class of f -divergence (see e.g., Ali and Silvey (1966);
Csiszár (1967) or Ahmadi-Javid (2012)), which gives the divergence between two equivalent
measures as:

D(Q||P) =
∫

Ω
f
(

dQ
dP

)
dP , (3)

where f is a convex function of the Radon–Nikodym derivative satisfying f (1) = 0.
Kullback–Leibler divergence (a.k.a. relative entropy) is the most common f -divergence,
which assigns f (m) = m ln m. It is noted that the methodology of this paper applies to all
types of statistical distances in principle, athough, in the empirical study, the Kullback–
Leibler divergence is adopted due to its simplicity and widespread use.

2.1. Quantifying Calibration Error

If we wish to quantify calibration error (Type 1 model risk) in this fashion, then, in
Equations (1)–(3), the probability measure P corresponds to the calibrated model and thus
is parametric in some form. The probability measure Q, on the other hand, serves as a
reference measure exactly matching observed market option prices at a given point in
time, unrestricted by the assumptions of the model under consideration. Note that, if
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we only consider market prices for European options, then these only constrain the risk-
neutral distributions Q for a finite number of (discrete) time horizons and, therefore, the
requirement (because we are using f -divergence) that Q and P are equivalent measures
is not a material restriction—for example, for a fixed time horizon T, the risk-neutral
distribution of the underlying asset price implied by a Black and Scholes (1973) model is a
probability measure equivalent to the risk–neutral distribution implied by a Heston (1993)
stochastic volatility model, because both distributions have a strictly positive density on
the same support.

On calibrating an option pricing model, we may regard the measure Q as some
non-parametric risk-neutral measure that fits market option prices. However, in practice,
the measure Q is not unique, as the market is usually incomplete. For example, based on
the result of Breeden and Litzenberger (1978), in order to obtain Q for a single time horizon
completely non-parametrically, one would need option prices for a continuum of strikes,
which is clearly never available. Therefore, we define the space of all risk-neutral probability
measures that fit market prices by SQ ⊂ S.

We may further define the space of probability measures that are given by all possible
choices of parameter values for the target model by SP ⊂ S. The new calibration method-
ology that is proposed here aims to minimise the calibration error, as quantified by the
divergence between the two measures P and Q, taken from their respective spaces, i.e.,

(Q∗, P∗) = arg min
Q∈SQ ,P∈SP

D(Q||P). (4)

This is to say, the new approach attempts to calibrate a model measure P∗ (i.e., a set
of model parameters θ∗) and non-parametric perfect fit to the market (at a given point in
time) Q∗, in a fashion that minimises the calibration error that is expressed by

η1 = D(Q∗||P∗). (5)

This is not an end in itself—it is required in order to compare model risk due to the
calibration error and model risk due to recalibration (as specified in Section 2.2, below) in a
unified framework. Here, it is worth reiterating the point that was made in the introduction,
that using relative entropy to quantify model risk due to these two sources is motivated
by the role of a “relative entropy budget”, as introduced by Glasserman and Xu (2014)
in determining worst-case prices or risk measures—i.e., the greater the relative entropy
budget, the worse the worst case outcome, with all other things being equal. Furthermore,
choosing relative entropy as the divergence pre-metric means that solving (4) corresponds
to what Buchen and Kelly (1996) call the “Principle of Minimum Cross-Entropy” for fitting
a risk-neutral distribution to market option prices, and given P∗, Q∗ can be obtained in
closed form—this is exploited in the numerical implementation in Section 3, below.

The classical approaches of model calibration, such as minimising the mean-squared
error between model and market prices for options, would be inappropriate in this context,
as they would lead to unnecessarily high model risk quantities. It is the choice of divergence
measure that informs the calibration procedure, which results in a pair of probability
measures, (Q∗, P∗), one of which corresponds to the calibrated model while the other
provides a consistent reference measure fitting the market exactly.

2.2. Including Model Risk Due to Recalibration

In order to quantify the model risk due to recalibration, let us consider the more
specific case where the model is Markovian in a vector of observable state variables X,
the model is characterised by a vector of model parameters θ, and market prices are
given for European option prices of a single maturity T. This last assumption of a single
maturity T avoids the need to constrain the choice of Q in order to ensure the absence of
calendar spread arbitrage between non-parametric risk-neutral measures for different time
horizons—parametric models typically ensure this by construction. If we appropriately
constrain Q, this assumption could be lifted.
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Thus, a “model” in our context is a mapping from parameters θ and state variables X
at a current time (call it ti) to a risk-neutral distribution of an underlying asset (or assets) at
time horizon T. The two models that are considered below, Black and Scholes (1973) and
Heston (1993), both provide such a mapping. Of course, these models also provide more
than that, in particular specifying the dynamics of their respective state variables, but that
aspect would fall under “Type 3” model risk not considered here.

Suppose that we solved (4) yesterday (at time ti−1) to obtain a P∗—to be as explicit as
possible, denote this by

Pti−1,Xti−1 (ω),θ∗ti−1
(A) ∀ A ∈ FT . (6)

i.e., this is a (conditional) probability measure that is defined on all FT-measurable events,
where the conditioning is on the state variables at time ti−1, Xti−1 , and we write Xti−1(ω)
in order to express that the time ti−1 realisations of the state variables are known at the
time that these probabilities are evaluated. We write the subscript θ∗ti−1

to express that these
probabilities are evaluated in a model with parameters that are calibrated by solving (4) at
time ti−1. Furthermore, denote the non-parametric measure Q∗ that results from solving
(4) at time ti−1 by Qti−1 .

Now, if we recalibrate today (at time ti) by solving (4), we obtain Qti and

Pti ,Xti (ω),θ∗ti
(A) ∀ A ∈ FT . (7)

We can then define the model risk quantity due to recalibration, as

η2 = D(Pti ,Xti (ω),θ∗ti
||Pti ,Xti (ω),θ∗ti−1

), (8)

which is the divergence between the (conditional) probability measures that were evaluated
at time ti, where one measure is based on the recalibrated parameters θ∗ti

and the other is
based on the previously calibrated parameters θ∗ti−1

(thus, expressing, in terms of divergence,
the inconsistency with the model assumptions due to the fact that we are going “outside of
the model” to change parameters in recalibration). The aggregate of calibration error and
model risk due to recalibration is then

η3 = D(Qti ||Pti ,Xti (ω),θ∗ti−1
), (9)

i.e., the divergence between the non-parametric probability measure Qti obtained by solv-
ing (4) at time ti, and the non-recalibrated parametric probability measure, consisting of
probabilities that are conditional on the state at time ti, but based on model parameters
that were obtained by solving (4) at time ti−1. However, this approach minimises the diver-
gence between the reference distribution and the recalibrated distribution, thus arguably
overstating the divergence to the non-recalibrated (i.e. model-consistent) distribution and,
therefore, overstating the aggregate model risk η3.

Alternatively, we may choose as the non-parametric reference distribution at time ti

Q̂ti = arg min
Q∈SQ

D(Q||Pti ,Xti (ω),θ∗ti−1
), (10)

resulting in a lower aggregate model risk of

η3 = D(Q̂ti ||Pti ,Xti (ω),θ∗ti−1
). (11)

Note that θ∗ti
is still obtained by solving (4), because both Qti and Q̂ti represent

non-parametric probability measures that fit observed market prices exactly, so θ∗ti
remains

the best available parametric fit to the market at time ti (Q̂ti is only used to determine
minimum divergence of the non-recalibrated model to a measure giving a perfect fit).
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In the heuristic schematic shown in Figure 1a, point A represents Pti ,Xti (ω),θ∗ti
, being the

parametric probability measure “closest” to the set of non-parametric probability measures
fitting the market exactly, where point C represents Qti . If we do not recalibrate at time ti,
then we end up with the parametric probability measure Pti ,Xti (ω),θ∗ti−1

(point B), to which

Q̂ti (point D) is the “closest” non-parametric probability measure fitting the market exactly.
Note that these graphs are for the purpose of heuristic illustration only—in particular,
we are not requiring that the two sets of probability measures are convex.

In the case of Kullback–Leibler divergence, if Type 1 (calibration error) and
2 (recalibration) model risk involve independent Radon–Nikodym derivatives, then, in the
first case considered above, the aggregate model risk equals the sum of the two components.
In fact, the Radon–Nikodym derivatives, as random variables, take the key role in evaluating
the two types of model risk. At the time the model is recalibrated, we again consider the
optimisation (4), with SQ now changed to reflect the change in observed market prices,
so we have the following Radon–Nikodym derivatives:

for calibration error: m1 =
dQti

dPti ,Xti (ω),θ∗ti

(12)

for model risk due to recalibration: m2 =
dPti ,Xti (ω),θ∗ti

dPti ,Xti (ω),θ∗ti−1

(13)

for aggregate model risk: m1m2 =
dQti

dPti ,Xti (ω),θ∗ti−1

(14)

Abbreviating dPti ,Xti (ω),θ∗ti−1
as P and dPti ,Xti (ω),θ∗ti

as P∗, the aggregate risk can be

expressed in terms of m1 and m2, as

η3 =EP[m1m2 ln(m1m2)] (15)

=EP∗ [m1 ln(m1)] + EP[m1m2 ln(m2)] (16)

=η1 + [1− covP(m1, m2)]η2 + covP[m1, m2 ln(m2)]. (17)

If m1 and m2 are independent, then covP(m2, m1) = covP[m2, m1 ln(m1)] = 0. The
total model risk is equal to the sum of the calibration risk and recalibration risk. In our
empirical exploration in Section 4, below, we found that this equality is followed quite
well by the Black–Scholes model. However, it typically does not hold in the Heston
model, suggesting substantial dependence (of Radon–Nikodym derivatives) between the
calibration error and model risk due to recalibration. This already foreshadows the clear
trade-off between calibration error and model risk, due to recalibration in the model that is
better able to calibrate to option prices across different strikes (i.e., the Heston model) due to
its larger number of parameters. If this greater freedom to fit the market reduces calibration
error, but effectively only pushes the model risk from Type 1 to Type 2, this dependence
between m1 and m2 is to be expected.

2.3. The Treatment of Latent State Variables

A model may also involve one or more latent state variables. An example of that is the
class of stochastic volatility models where the volatility is taken as a latent state variable,
rather than a model parameter (in the empirical examples in Section 4 below, we specifically
consider the model of Heston (1993), which falls into this category). Under the framework
of a single stochastic volatility state variable, a model that is specified by a given set of
parameters forms a one-dimensional manifold (Figure 1b) for possible realisations of the
state variable, rather than a point in the Black/Scholes world (Figure 1a).
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(a) (b)

Figure 1. Graphic illustration of the mathematical definitions of model risks for (a) observable state variable,
(b) latent state variable.

Thus, the model that we are now considering is Markovian in a vector of state variables
(X, V), where the state variables X are observable and the state variables V are latent
(unobservable). Subsequently, the initial calibration problem (4) becomes

(Q∗, v∗, θ∗) = arg min
Q∈SQ ,v∈Sv ,θ∈Sθ

D(Q||P(v; θ)), (18)

where Sv and Sθ are the sets of legitimate values of the state variables and the
parameters, respectively. θ∗ is the set of model parameters calibrated to the market, and v∗

is the best estimate of the latent state variables under the calibrated model. This effectively
treats the latent (unobserved) state variable as an additional parameter to be calibrated,
but the recalibration of which does not contribute to (Type 2) model risk, due to recalibration,
because it is consistent with the model assumptions for this latent state variable to
evolve stochastically. This does shift Type 2 model risk to Type 3, the risk that the state
variable dynamics are not (econometrically) consistent with the dynamics that are assumed
in the model. However, in the present paper, we deliberately set aside Type 3 model risk
for the purposes of our analysis, leaving the integration of all four types of model risk for
future research.

The notation in (6) is amended to

Pti−1,Xti−1 (ω),v∗ti−1
,θ∗ti−1

(A) ∀ A ∈ FT . (19)

At time ti, we have, for the calibration error,

η1 = D(Qti ||Pti ,Xti (ω),v∗ti ,θ∗ti
). (20)

The model risk due to recalibration is

η2 = D(Pti ,Xti (ω),v∗ti ,θ∗ti
||Pti ,Xti (ω),v∗ti ,θ∗ti−1

). (21)
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The aggregate model risk while using Qti from Q∗ and v∗ti
from v∗ in (18) is

η3 = D(Qti ||Pti ,Xti (ω),v∗ti ,θ∗ti−1
) (22)

or, alternatively, using Q̂ti and v̂ti determined analogously to (10), i.e.,

(Q̂ti , v̂ti ) = arg min
Q∈SQ ,v∈Sv

D(Q||Pti ,Xti (ω),v,θ∗ti−1
), (23)

which results in
η̂3 = D(Q̂ti ||Pti ,Xti (ω),v̂ti ,θ∗ti−1

). (24)

We then have the following Radon–Nikodym derivatives:

for calibration error: m1 =
dQti

dPti ,Xti (ω),v∗ti ,θ∗ti

(25)

for model risk due to recalibration: m2 =
dPti ,Xti (ω),v∗ti ,θ∗ti

dPti ,Xti (ω),v∗ti ,θ∗ti−1

(26)

for aggregate model risk: m1m2 =
dQti

dPti ,Xti (ω),v∗ti ,θ∗ti−1

(27)

Note that the key difference between (12)–(14) and (25)–(27) is that the change in v,
being permitted by the model assumptions, does not contribute to the model risk quantities.
In (4) and (18), we are deliberately prioritising the minimisation of calibration error, as this
is congruent to the (often exclusive) focus of practitioners on calibration error (with little
or no regard to model risk due to recalibration). If desired, one could reformulate this
approach in order to prioritise the minimisation of aggregate model risk or of model risk
due to recalibration.

3. Numerical Implementation

In this section, we outline the numerical scheme for solving the minimisation problems
that arise when taking into account calibration error and model risk, due to recalibration
in the manner that is described in the previous section, including problems of the type (4)
involving the optimal choice of two probability measures. In this case, an iterative process
is required, optimising two probability measures Q and P, in turn, until convergence,
in the following manner:

(1) Produce P(0) from a parametric model that is based on an initial guess of the model
parameters (and latent state variables, where required).

(2) Solve, for Q(0), via Lagrange multipliers for the constrained problem that minimises
D(Q(0)||P(0)).

(3) Solve, for P(1), to obtain model parameters for the P(1) that minimises D(Q(0)||P(1)).
(4) Iterate steps 2 and 3: P(n) → Q(n) → P(n+1) until convergence.

3.1. Step 1

In Step 1, the initial guess may be obtained in several different ways. A common
way is to minimise the mean-squared error between model and market option prices at all
available strikes (see e.g., Cui et al. (2017)). We opted for the Broyden/Fletcher/Goldfarb/
Shanno (BFGS) algorithm for conducting this initial calibration of the model parameters
and (where required) latent state variables. In practice, the particular choice of the initial
guess in Step 1 appears to have little impact in our implementation, as Step 4 converged
quite quickly.
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3.2. Step 2

In Step 2, we solve the following constrained minimisation problem whlie using
Lagrange multipliers:

Q(0) = arg min
Q∈SQ

D(Q||P(0)) (28)

s.t. B ≤ EQ(Z) ≤ A. (29)

Note that, here, we specify the constraints in the form of expectations under the
measure Q, where these expectation are the model prices for our calibration instruments
for the model that is based on the non-parametric reference distribution Q. In general, B,
Z, and A are vectors; thus, (29) is a “stack” of inequality constraints representing observed
market prices. Additionally, notice that, for generality, we “relax” each equality constraint
into two inequality constraints. This is in order to account for the bid-ask spread of each
option traded on the market. The vector B denotes a list of bid prices, while the vector A
contains ask prices. In a simplified scenario, where exact option prices are given, we may
set B = A. Z denotes the vector of discounted option payoffs. By introducing vectors of
Lagrange multipliers λB and λA, we convert the constrained problem to an unconstrained
dual problem,

max
λB≥0,λA≤0

min
Q∈SQ

D(Q||P(0))− λB

[
EQ(Z)− B

]
− λA

[
EQ(Z)− A

]
. (30)

In the case of Kullback–Leibler divergence, solving the inner problem corresponds to
the “Principle of Minimum Cross-Entropy” in Buchen and Kelly (1996). By Equation (11)
in that paper, the probability density function q(0) of Q(0) is given in terms of the density
p(0) of P(0), by

q(0) =
p(0)eλZ

EP(0)(eλZ
) . (31)

Note that

D(Q(0)||P(0)) =
∫

Ω

dQ(0)

dP(0)
ln

dQ(0)

dP(0)
dP(0) =

∫
Ω

ln
dQ(0)

dP(0)
dQ(0) = EQ(0)

[
ln

dQ(0)

dP(0)

]
(32)

and (31) implies
dQ(0)

dP(0)
=

q(0)

p(0)
=

eλZ

EP(0)(eλZ
) . (33)

Substituting (31) into (30), we obtain a maximisation problem,

max
λB≥0,λA≤0

EQ(0)
[
(λB + λA)Z− ln EP(0)

[
e(λB+λA)Z

]]
− λB

[
EQ(Z)− B

]
− λA

[
EQ(Z)− A

]
(34)

= max
λB≥0,λA≤0

− ln EP(0)
[
e(λB+λA)Z

]
+ λBB + λA A (35)

= max
λB≥0,λA≤0

− ln EP(0)
(

e(λB+λA)Z
)
+ (λB + λA)

B + A
2
− (λB − λA)

A− B
2

. (36)

If B = A, then the last term vanishes, representing the problem with exact market prices.
If (component-wise) B > A, then the last term reflects a penality on the objective function
that is proportional to the difference of the two Lagrange multipliers. Therefore, we may
transform the Lagrange multipliers by
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λ+ = λB + λA (37)

λ− = λB − λA (38)

and the objective function becomes

max
λ+∈Rd ,λ−≥|λ+ |

− ln EP(0)
(

eλ+Z
)
+ λ+

B + A
2
− λ−

A− B
2

. (39)

Because λ− only appears in the final, negative term, maximising (39) implies that λ−
must be as small as possible, so we can set λ− = |λ+|, and the objective function becomes

max
λ+∈Rd

− ln EP(0)
(

eλ+Z
)
+ λ+

B + A
2
− |λ+|

A− B
2

. (40)

We can numerically solve the maximization problem by taking its gradient with
respect to λ+,

EP(0)
(

Zeλ+Z
)
=

[
B + A

2
− sgn(λ+)

A− B
2

]
EP(0)

(
eλ+Z

)
, (41)

where the element-wise sign function sgn(λ+) assigns 1, −1, or 0 to each element of λ+.
However, due to the discontinuouity of the sign, function (41) cannot be solved directly
in a stable way. In order to bypass this problem, we approximate the sign function with a
continuous step function:

sgn(x) = 1− 2
1 + exp

( x
δ

) . (42)

We use Powell’s hybrid method in order to solve the multidimensional Equations (41),
where δ controls the steepness of the function and choosing this value is critical for a fast
and stable convergence of the method, i.e., with a careful choice of δ, Step 2 converges
quickly.

3.3. Steps 3 and 4

In Step 3, we use the L-BFGS-B algorithm to minimise the divergence with respect to
model parameters (or latent variables or both). This step corresponds to the quite standard
process of calibrating a parametric option pricing model, and it does not result in any
difficulties in obtaining convergence. Step 2 and Step 3 are repeated until convergence.
The convergence criterion that is adopted here is that all of the percentage changes of
parameters after one iteration do not exceed a certain threshold, say 0.1%. On this “outer”
convergence, in practice we did not encounter any difficulties either, which may be due to
the convexity of the sets constraining P and Q.

4. Examining the Trade-Off between Calibration Error and Model Risk Due to Recalibration

As an application example of the method that is described in the previous two sections,
we consider historical data that consist of daily market prices for call options on Apple
(AAPL) and Google (GOOG) stock over a period from 6 January 2004 to 19 December 2008
for AAPL and 4 January 2005 to 19 December 2008 for GOOG. This gives us a reasonably
straightforward application example that is free of extraneous complications, while still
reasonably covering liquid options and including a period of “interesting” market volatility
(August 2007): although these options are of the American type, i.e., permitting early exer-
cise, AAPL and GOOG did not pay any dividends during this period. Thus, the possibility
of early exercise may be ignored (see Merton (1973)).
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From these data, we remove options that are very far away from the money, restricting
the range of strikes from delta 2.5% to delta 97.5%. Furthermore, we remove prices of
options that had zero trading volume on a given day, in order to avoid using prices that
are likely to be stale.

On these data, we consider two parametric models, Black and Scholes (1973) and
Heston (1993)—arguably the two most popular option pricing models available, where the
latter introduces a latent variable for stochastic volatility. The unified methodology,
quantifying calibration error, model risk due to recalibration, and the aggregate of the two
allows for us to explore the trade-off between calibration error (which is, unsurprisingly,
reduced by moving from Black and Scholes (1973) to Heston (1993)) and model risk
due to recalibration (which has hitherto been largely ignored) when moving from one
parametric model to another, as well as when changing the frequency with which the
model is recalibrated.

We start by evaluating the calibration, recalibration, and aggregated model risk
quantities under a Black/Scholes model, i.e., where the underlying asset price is assumed
to follow geometric Brownian motion, with dynamics under the risk-neutral measure that
is given by

dS(t) = rS(t)dt + σS(t)dW(t), (43)

where r is the continuously compounded risk-free rate of interest and σ is a constant volatility
parameter. In Appendix A, we note that, in the Black/Scholes model, we obtain a simple closed
form expression for the recalibration model risk quantity that is defined in (8):

η2 =

(
σ∗2

σ2 − 1
)[

1
2
+

T
8
(σ∗2 − σ2)

]
+ ln

( σ

σ∗

)
, (44)

where σ∗ is the correctly recalibrated Black/Scholes volatility parameter and σ is the
parameter value that was obtained in a previous calibration. This formula is a consequence
of the log-normal distribution of returns assumed in the Black/Scholes model.

We can express the aggregate model risk as the sum of the calibration error,
the recalibration risk, and a residual. The residual is zero if the likelihood ratios that are
involved in the calibration and recalibration risks are two independent random variables,
as noted in Equation (15). In practice, the residual usually takes a small non-zero value.
In Figure 2, we demonstrate the decomposition of the total model risk into the three compo-
nents. Unsurprisingly (as it is well documented that the Black/Scholes model cannot fit the
implied volatility “smile” observed in most options markets), we see that calibration error
typically predominates.

In the Heston model, the dynamics (43) are extended in order to allow for stochastic
volatility, i.e.,

dS(t) = rS(t)dt + σ(t)S(t)dW1(t) (45)

d(σ2(t)) = κ(θ − σ2(t))dt + ησ(t)dW2(t). (46)

This model involves two state variables, the underlying asset price S(t) and the
volatility σ(t), and five model parameters: r, κ, θ, η, and ρ, where ρ is the correlation
coefficient between the two Wiener processes:

d〈W1, W2〉t = ρdt.

r is the risk-free rate, and κ, θ and η relate to the volatility process, with κ being the rate of
mean reversion, θ the long-run mean, and η the volatility of this process.

In our empirical application examples, we take the risk-free rate as one of the financial
variables that were observed in the market, but we do not explicitly take the interest rate
risk in our empirical analysis into account. For the short-dated options that were considered
here, interest rate risk is known to be of relatively little importance—for a discussion of
this issue, see e.g., Cheng et al. (2018) and the literature cited therein.
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Figure 2. Decomposition of model risks of Apple (AAPL) options while using the Black/Scholes model as the nominal
model, for a selection of option maturity dates (given as the title of each graph). The vertical axis denotes the numerical
value of the relative entropy.

Following Gatheral (2006), Equation (2.13), the risk-neutral probability of exercise of a
European call option with strike K in the Heston model is given by

P0(x, v, τ) =
1
2
+

1
π

∫ ∞

0
R

[
exp{C(u, τ)θ + D(u, τ)v + iux}

iu

]
du , (47)
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where v is the current value of the volatility state variable σ(t), τ = T − t is the time to
maturity, and x is the logarithmic forward moneyness of the option, i.e.,

x : = ln
(

Ft,T

K

)
Ft,T =

S(t)
B(t, T)

with B(t, T) the time t price of a zero bond maturing in T. Furthermore,

C(u, τ) =κ

[
r−τ − 2

η2 ln

(
r+ − r−e−dτ

r+ − r−

)]
(48)

D(u, τ) =r−
r+ − r+e−dτ

r+ − r−e−dτ
(49)

r± =
β± d

η2 d =
√

β2 − 2αη2. (50)

Parameters α and β are functions of u (Fourier transform variable of x):

α(u) =− u2

2
− i

u
2

(51)

β(u) =κ − ρηiu. (52)

It is noted that P0 = EQ(1ST>K), since, by definition, P0 is the probability of exercise.
Therefore, the probability density function of the risk-neutral measure is obtained:

p(ST) =−
∂P0

∂K

∣∣∣∣
K=ST

= −∂P0

∂x
∂x
∂K

∣∣∣∣
K=ST

(53)

=
1

2πST

∫ ∞

−∞
R

[
exp

[
C(u, τ)θ + D(u, τ)v + iu ln

(
St

B(t, T)ST

)]]
du. (54)

For simplicity, ey denotes the ratio of the forward price at t to its spot price at maturity
T, i.e., ey = B(t, T)ST/St, we derive the risk-neutral probability with respect to y:

p(y) =p(ST)

∣∣∣∣ ∂y
∂ST

∣∣∣∣−1
(55)

=
1

2π

∫ ∞

−∞
R[exp[C(u, τ)θ + D(u, τ)v− iuy]]du. (56)

p(y) can be calculated by fast Fourier transform (FFT). We use this in each step of our
iterative procedure, where a risk-neutral probability measure P as a function of the model
parameters and state variables is required for the Heston model, i.e., when fitting an initial
guess of the model parameters to market option prices in Step 1, when using P(0) in Step 2,
when solving for P(1) in Step 3, and so on.

The decomposition of the total model risk into the three components (the components
due to calibration and recalibration, and the positive or negative residual measuring the
departure from independence between the first two components) when using the Heston
model as the baseline is given in Figure 3. Again, because it is well documented that the
Heston model can fit observed option prices better than Black/Scholes, it is unsurprising
that, in this case, the relative entropy measuring calibration error is much lower—however,
already in this set of example days, it is evident that this comes at the price of increased
model risk due to recalibration.
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Figure 3. Decomposition of model risks of Google (GOOG) options while using the Heston model as the nominal model,
for a selection of option maturity dates (given as the title of each graph). The vertical axis denotes the numerical value of the
relative entropy.

These observations are reinforced when we consider aggregate model risk,
calibration error, and model risk due to recalibration over the entire sample period,
as presented in Tables 1 and 2. Note that the absolute numbers refer to relative entropy
and, thus, lack direct financial interpretation—what matters are the relative values when
comparing the model across models and different recalibration frequencies,
in particular when considering the aggregate model risk. Here, we consider recalibrating
the Black/Scholes and Heston models either daily, every three days, every week,
every two weeks, or every quarter year. Thus, for each model and each recalibration
frequency, we get a (for example, daily) sequence of model risk quantities for each of the
three types (calibration, recalibration, and aggregate). In each column, we report summary
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statistics of such a sequence, i.e., its mean, median, and the 99%, 95%, 90%, and 75% quan-
tiles. Note that on days on which we do not recalibrate, the model risk, due to recalibration
being zero, because (consistent with the model assumptions) we are keeping previously
calibrated parameters unchanged—so, on those days, aggregate model risk is entirely due
to calibration error (which increases because the fit to market prices deteriorates when we
do not recalibrate).

We see that recalibrating more frequently has little effect on the aggregate model
risk, neither when using the Black/Scholes model nor when using the Heston model.
Essentially, recalibrating more frequently simply shifts calibration error into model risk,
due to recalibration, highlighting the dangers in the common practice of focusing solely
on the calibration of derivative pricing models, at the expense of all other sources of
model risk.

In addition, we observe that if we are interested in “robustness” at a high level
of confidence (looking at, say, the 99% quantile of aggregate model risk), moving from
Black/Scholes to Heston also does not appear to deliver any advantage (it does yield
some improvement at lower quantiles, or average or median, aggregate model risk). This
means that, when high levels of confidence are required, any gain in calibration accuracy
that is delivered by the Heston model is offset by higher model risk due to recalibration.
One should note that this last point holds, even before considering Type 3 model risk,
which may well be worse when additional state variables are introduced (as in the Heston
model). For these results, in Tables 1 and 2, we calculated the means, medians, and
quantiles across all available option maturities. If we only consider particular maturity
“buckets” (i.e., considering only subsets of options, with maturities in a particular range),
the same qualitative conclusions are evident—Tables 3 and 4 illustrate this in the case of
daily recalibration.

Table 1. Model risks (in terms of relative entropy) under different models and recalibration frequencies for AAPL.

Risk Measure
Black-Scholes Heston

1 Day 3 Days 1 Week 2 Weeks 1 Quarter 1 Day 3 Days 1 Week 2 Weeks 1 Quarter

Aggregate Model Risk

mean 0.070 0.071 0.073 0.073 0.085 0.037 0.035 0.038 0.039 0.046
median 0.045 0.047 0.047 0.051 0.057 0.005 0.005 0.005 0.006 0.010

Quantile

99% 0.474 0.427 0.471 0.455 0.462 0.508 0.462 0.512 0.503 0.649
95% 0.212 0.221 0.221 0.212 0.251 0.173 0.169 0.177 0.177 0.185
90% 0.158 0.160 0.165 0.160 0.192 0.096 0.097 0.098 0.105 0.121
75% 0.092 0.094 0.095 0.099 0.112 0.027 0.027 0.029 0.031 0.034

Calibration Error

mean 0.055 0.066 0.069 0.072 0.084 0.008 0.026 0.032 0.036 0.045
median 0.038 0.043 0.045 0.049 0.057 0.001 0.003 0.004 0.005 0.009

Quantile

99% 0.239 0.397 0.433 0.443 0.455 0.163 0.416 0.496 0.495 0.648
95% 0.171 0.207 0.212 0.210 0.249 0.015 0.130 0.158 0.168 0.182
90% 0.135 0.151 0.158 0.158 0.191 0.008 0.065 0.083 0.097 0.119
75% 0.075 0.087 0.091 0.096 0.111 0.003 0.012 0.019 0.026 0.034

Model Risk due to Recalibration

mean 0.024 0.009 0.005 0.002 0.001 0.057 0.019 0.011 0.006 0.001
median 0.002 0.001 0.001 0.000 0.000 0.004 0.001 0.001 0.001 0.000

Quantile

99% 0.458 0.196 0.057 0.030 0.012 0.630 0.226 0.117 0.067 0.011
95% 0.103 0.034 0.021 0.010 0.005 0.315 0.108 0.062 0.032 0.006
90% 0.056 0.020 0.011 0.006 0.002 0.164 0.052 0.031 0.016 0.004
75% 0.013 0.006 0.004 0.002 0.001 0.055 0.016 0.011 0.005 0.001
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Table 2. Model risks (in terms of relative entropy) under different models and recalibration frequencies for GOOG.

Risk Measure
Black-Scholes Heston

1 Day 3 Days 1 Week 2 Weeks 1 Quarter 1 Day 3 Days 1 Week 2 Weeks 1 Quarter

Aggregate Model Risk

mean 0.165 0.168 0.165 0.165 0.188 0.115 0.105 0.113 0.114 0.127
median 0.109 0.111 0.112 0.115 0.138 0.053 0.050 0.055 0.053 0.059

Quantile

99% 0.705 0.722 0.722 0.699 0.728 0.726 0.668 0.711 0.699 0.744
95% 0.519 0.530 0.521 0.496 0.549 0.475 0.438 0.455 0.467 0.560
90% 0.393 0.391 0.387 0.385 0.408 0.330 0.287 0.320 0.324 0.380
75% 0.219 0.223 0.214 0.215 0.256 0.145 0.137 0.142 0.153 0.157

Calibration Error

mean 0.125 0.155 0.158 0.162 0.187 0.055 0.083 0.103 0.107 0.126
median 0.082 0.102 0.106 0.111 0.137 0.006 0.022 0.043 0.046 0.058

Quantile

99% 0.655 0.701 0.709 0.696 0.728 0.626 0.651 0.706 0.688 0.744
95% 0.400 0.482 0.507 0.494 0.548 0.329 0.381 0.438 0.445 0.557
90% 0.295 0.359 0.362 0.379 0.408 0.172 0.250 0.298 0.306 0.375
75% 0.171 0.208 0.207 0.212 0.255 0.034 0.103 0.127 0.141 0.155

Model Risk due to Recalibration

mean 0.036 0.014 0.008 0.004 0.001 0.119 0.044 0.012 0.012 0.003
median 0.004 0.002 0.001 0.001 0.000 0.043 0.016 0.003 0.003 0.001

Quantile

99% 0.405 0.172 0.091 0.050 0.010 0.757 0.255 0.087 0.077 0.012
95% 0.173 0.066 0.035 0.018 0.004 0.543 0.187 0.056 0.064 0.011
90% 0.109 0.038 0.022 0.012 0.003 0.411 0.151 0.034 0.045 0.009
75% 0.036 0.013 0.008 0.004 0.001 0.142 0.052 0.016 0.013 0.003

Table 3. Model risks (in terms of relative entropy) under different models, by maturity buckets, for AAPL
(daily recalibration frequency).

Risk Measure
Black-Scholes Heston

All 0–0.2 Year 0.2–0.7 Year >0.7 Year All 0–0.2 Year 0.2–0.7 Year >0.7 Year

Aggregate Model Risk

mean 0.070 0.041 0.066 0.109 0.037 0.039 0.024 0.046
median 0.045 0.021 0.052 0.081 0.005 0.004 0.004 0.008

Quantile

99% 0.474 0.471 0.266 0.567 0.508 0.590 0.302 0.472
95% 0.212 0.120 0.185 0.282 0.173 0.243 0.091 0.191
90% 0.158 0.081 0.143 0.213 0.096 0.074 0.066 0.142
75% 0.092 0.047 0.090 0.141 0.027 0.021 0.015 0.054

Calibration Error

mean 0.055 0.026 0.057 0.087 0.008 0.012 0.004 0.007
median 0.038 0.014 0.048 0.068 0.001 0.001 0.001 0.001

Quantile

99% 0.239 0.157 0.230 0.289 0.163 0.072 0.052 0.116
95% 0.171 0.091 0.157 0.212 0.015 0.021 0.011 0.017
90% 0.135 0.062 0.126 0.181 0.008 0.006 0.007 0.010
75% 0.075 0.036 0.077 0.128 0.003 0.002 0.003 0.003

Model Risk due to Recalibration

mean 0.024 0.020 0.013 0.038 0.057 0.062 0.048 0.060
median 0.002 0.002 0.001 0.003 0.004 0.004 0.003 0.009

Quantile

99% 0.458 0.506 0.116 0.662 0.630 0.702 0.536 0.512
95% 0.103 0.066 0.066 0.169 0.315 0.443 0.274 0.247
90% 0.056 0.030 0.042 0.102 0.164 0.223 0.127 0.160
75% 0.013 0.009 0.010 0.031 0.055 0.030 0.048 0.091
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Table 4. Model risks (in terms of relative entropy) under different models, by maturity buckets, for GOOG
(daily recalibration frequency).

Risk Measure
Black-Scholes Heston

All 0–0.2 Year 0.2–0.7 Year >0.7 Year All 0–0.2 Year 0.2–0.7 Year >0.7 Year

Aggregate Model Risk

mean 0.165 0.167 0.162 0.164 0.115 0.115 0.120 0.109
median 0.109 0.104 0.099 0.120 0.053 0.052 0.057 0.048

Quantile

99% 0.705 0.736 0.709 0.661 0.726 0.714 0.707 0.736
95% 0.519 0.527 0.551 0.459 0.475 0.468 0.500 0.476
90% 0.393 0.417 0.382 0.371 0.330 0.351 0.322 0.304
75% 0.219 0.221 0.216 0.218 0.145 0.149 0.155 0.136

Calibration Error

mean 0.125 0.121 0.123 0.132 0.055 0.055 0.052 0.057
median 0.082 0.074 0.075 0.099 0.006 0.005 0.006 0.006

Quantile

99% 0.655 0.662 0.650 0.639 0.626 0.658 0.531 0.665
95% 0.400 0.403 0.423 0.391 0.329 0.349 0.311 0.330
90% 0.295 0.298 0.301 0.285 0.172 0.155 0.185 0.171
75% 0.171 0.162 0.160 0.176 0.034 0.031 0.034 0.034

Model Risk due to Recalibration

mean 0.036 0.038 0.039 0.033 0.119 0.117 0.117 0.124
median 0.004 0.005 0.003 0.005 0.043 0.043 0.037 0.049

Quantile

99% 0.405 0.419 0.479 0.284 0.757 0.746 0.767 0.754
95% 0.173 0.176 0.188 0.155 0.543 0.510 0.558 0.554
90% 0.109 0.111 0.115 0.098 0.411 0.390 0.418 0.418
75% 0.036 0.038 0.032 0.036 0.142 0.144 0.137 0.146

5. Conclusions

Under our approach, less relative entropy implies less model risk, and we are able
to evaluate two hitherto disparate sources of model risk (calibration error and model risk
due to recalibration) in a unified fashion, and examine the potential trade-off between the
two. We have considered a simple choice between two models, and between different
recalibration frequencies. “Putting a number on model risk” by calculating quantiles for
the maximum model risk (quantified by relative entropy) over a time series of market data
allows for one to assess the added value (if any) of more complicated stochastic models of
financial markets.

One should note that, instead of using a relative entropy pre-metric, one could
approach quantifying model risk in terms of optimal-transport distance, while using for
example Wasserstein distance, which most recently has become popular for this purpose
(see Bartl et al. (2020); Blanchet et al. (2018) and Feng and Schlögl (2018)). In the present
paper, we have followed the more established approach while using relative entropy,
which, in economics, has its roots in the seminal work of Hansen and Sargent (see e.g.,
Hansen and Sargent (2006)), as well as a long history of application in other fields, such as
thermodynamics and information theory.

In our application, we are deliberately prioritising the minimisation of calibration
error, as this is congruent to the (often exclusive) focus of practitioners on calibration error
(with little or no regard to model risk due to recalibration). Even in this case, we see
that, by including recalibration as one of the sources of aggregate model risk, frequently
recalibrating a model to a changing market simply interchanges one source of model
risk for another, and more complicated stochastic models may well underperform when
aggregate model risk is taken into account.
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Appendix A. Derivation of the Recalibration Model Risk Quantity in the
Black/Scholes Model

Denote by gσ(ST |S0) the risk–neutral probability density of the stock price at time T
given the stock price at time 0, in a Black and Scholes (1973) model with volatility σ. This is
given by

gσ(ST |S0) =
1

STσ
√

2π
exp

{
−
(ln ST − ln S0 − rT + 1

2 σ2T)2

2σ2T

}
. (A1)

Furthermore, denote by σ∗ the correctly recalibrated Black/Scholes volatility parameter
and by σ the parameter value obtained in a previous calibration. The model risk quantity
due to recalibration defined in (8) then becomes

η2 =
∫ ∞

0

gσ∗(ST |S0)

gσ(ST |S0)

(
ln

gσ∗(ST |S0)

gσ(ST |S0)

)
gσ(ST |S0)dST (A2)

=
∫ ∞

0

(
ln

gσ∗(ST |S0)

gσ(ST |S0)

)
gσ∗(ST |S0)dST . (A3)

Therefore,

η2 =
∫ ∞

0

(
(ln ST − ln S0 − rT + 1

2 σ2T)2

2σ2T
−

(ln ST − ln S0 − rT + 1
2 σ∗2T)2

2σ∗2T

+ ln(STσ
√

2π)− ln(STσ∗
√

2π)

)
gσ∗(ST |S0)dST . (A4)

Consider the different parts (A4) in turn:∫ ∞

0
(ln(STσ

√
2π)− ln(STσ∗

√
2π)gσ∗(ST |S0)dST = ln

σ

σ∗
(A5)∫ ∞

0

(ln ST − ln S0 − rT + 1
2 σ∗2T)2

2σ∗2T
gσ∗(ST |S0)dST =

Var[ln ST ]

2σ∗2T
=

1
2

(A6)

https://www.ivolatility.com/data/historical_data2.html
https://www.ivolatility.com/data/historical_data2.html
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and

∫ ∞

0

(ln ST − ln S0 − rT + 1
2 σ2T)2

2σ2T
gσ∗ (ST |S0)dST (A7)

=
1

2σ2T

∫ ∞

0

((
ln ST − ln S0 − rT +

1
2

σ∗2T
)2

+ 2(ln ST − ln S0 − rT)
(
−1

2
σ∗2T

)

− 2(ln ST − ln S0 − rT)
(
−1

2
σ2T

)
− 1

4
σ∗4T2 +

1
4

σ4T2

)
gσ∗ (ST |S0)dST (A8)

=
1

2σ2T

(
σ∗2T − σ∗2T

(
−1

2
σ∗2T

)
+ σ2T

(
−1

2
σ∗2T

)
− 1

4
σ∗4T2 +

1
4

σ4T2
)

(A9)

=
σ∗2

2σ2 +
T
8

(
σ∗4

σ2 − 2σ∗2 + σ2

)
. (A10)

Combining (A5), (A6) and (A10) gives

η2 =

(
σ∗2

σ2 − 1
)[

1
2
+

T
8
(σ∗2 − σ2)

]
+ ln

( σ

σ∗

)
. (A11)
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