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Abstract: Quantitative investment strategies are often selected from a broad class of candidate models
estimated and tested on historical data. Standard statistical techniques to prevent model overfitting
such as out-sample backtesting turn out to be unreliable in situations when the selection is based on
results of too many models tested on the holdout sample. There is an ongoing discussion of how to
estimate the probability of backtest overfitting and adjust the expected performance indicators such
as the Sharpe ratio in order to reflect properly the effect of multiple testing. We propose a consistent
Bayesian approach that yields the desired robust estimates on the basis of a Markov chain Monte
Carlo (MCMC) simulation. The approach is tested on a class of technical trading strategies where a
seemingly profitable strategy can be selected in the naïve approach.
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1. Introduction

The problem of backtest overfitting appears mainly in two important economet-
ric research areas: testing and selection of factors explaining asset returns (see, e.g.,
De Prado 2015; Harvey and Liu 2013, 2014, 2015, 2017, 2020) and selection of investment
strategies (see, e.g., White 2000; Bailey et al. 2016; López de Prado and Lewis 2019). Our
focus is the investment strategy selection problem arising when many strategies are de-
veloped and tested on historical data in order to find a “performing” one. The selection
process can be realized by an individual researcher or institution or latently by a set of
researchers investigating various strategies and publishing only the promising ones (see,
e.g., Andrews and Kasy 2019; Chen and Zimmermann 2020). The latter approach is more
common for theoretical research, while the former, easier to control, would be typical for a
quantitative investment firm.

We formalize and investigate the problem of strategy selection on the basis of a large set
of candidates. Consider investment strategies1 S1, . . . ,SK that are backtested and evaluated
over a historical period with T1 (e.g., daily) returns rk,t, k = 1, . . . , K, t = 1, . . . , T1. Note
that the strategies could have been developed on another preceding training period and
backtested or validated on the {1, . . . , T1} period. Another possibility that we use in
the empirical study is that one considers a number of expertly proposed, e.g., technical,
strategies that are just evaluated on the backtest period. On the basis of the historical data,
we estimate the (annualized) sample means mk, standard deviations sk, or Sharpe ratios
SRk, and, given a criterion, we select the “best” strategy Sb. Of course, the key question
is what can be realistically expected from the best strategy if implemented in the future
period of length T2 (see Figure 1).

1 By an investment strategy, we mean a rule that dynamically determines a portfolio of assets that can be long or short according to information
available at the beginning of the period t over which the investment is held. The return over the period is net of the cost of borrowings needed to set
up the portfolio (i.e., the strategy is self-financing). For example, an investment strategy may just determine at the end of each trading day whether
a long or short position is taken in a specific index futures contract for the next day.
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Figure 1. Future performance of the best strategy selected on the basis of past data. 

Specifically, the questions usually asked include the following: 
• First, is it sufficient to apply the standard single p-test to the best strategy? 
• If not, how should we modify the test to incorporate the multiple test effects? 
• What is the expected future, i.e., true out-of-sample (OOS) performance (return, SR, 

etc.) of the best strategy selected on the in-sample (IS), i.e., historical dataset? 
• What is the haircut, i.e., the percentage reduction, of the expected OOS performance 

compared to the IS performance? 
• What is the probability of loss, if the strategy is implemented over a future period? 
• What is the expected OOS rank of the IS best strategy among the candidate strategies? 
• What is the probability that the selected model will in fact underperform most of the 

candidate models? 
• What is the probability that we have selected a false model (false discovery rate—

FDR)? 
We propose a Bayesian methodology that allows us to simulate many times the IS 

selection and OOS, i.e., future, realization process (Error! Reference source not found.) in 
order to address the questions formulated above. We provide an overview of several 
methods proposed in the literature that are compared with our method in an empirical 
study on a set of technical strategies. Since the strategies are basically random and, in fact, 
we know their performance following the backtesting period, none should be selected. On 
the other hand, we also artificially modify one of the strategies making it a “true” discov-
ery and analyze results of the strategy selection methods. 

2. An Overview of the Existing Approaches 
There are several relatively simple classical methods for adjusting p-values in order 

to accommodate the multiple test (see, e.g., Streiner and Norman 2011). More advanced 
and computationally demanding methods are based on various approaches to bootstrap-
ping and simulation of the past and future data. 

2.1. Classical Approaches 
To test significance of a single strategy, for example, 𝒮௕ with sample mean return 𝑚௕ and standard deviation 𝑠௕ observed over 𝑇 periods, the classical approach is to cal-

culate the t-ratio, 𝑇𝑅 = 𝑚௕𝑠௕/√𝑇 , 
and the two-sided2 p-value, 𝑝ௌ = Pr[|𝑋| > 𝑇𝑅], (1)

where 𝑋 is a random variable following the t-distribution with 𝑇 − 1 degrees of free-
dom. The implicit assumption is that the returns are i.i.d. normal. If the p-value 𝑝ௌ hap-
pens to be small enough, e.g., below 5% or 1%, then one tends to jump to the conclusion 
that a strategy with significantly positive returns has been discovered. 

 
2 A strategy with a significant negative t-ratio can be considered as a discovery as well since we can revert it in order to achieve 

systematic positive returns. 
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Figure 1. Future performance of the best strategy selected on the basis of past data.

Specifically, the questions usually asked include the following:

• First, is it sufficient to apply the standard single p-test to the best strategy?
• If not, how should we modify the test to incorporate the multiple test effects?
• What is the expected future, i.e., true out-of-sample (OOS) performance (return, SR,

etc.) of the best strategy selected on the in-sample (IS), i.e., historical dataset?
• What is the haircut, i.e., the percentage reduction, of the expected OOS performance

compared to the IS performance?
• What is the probability of loss, if the strategy is implemented over a future period?
• What is the expected OOS rank of the IS best strategy among the candidate strategies?
• What is the probability that the selected model will in fact underperform most of the

candidate models?
• What is the probability that we have selected a false model (false discovery rate—

FDR)?

We propose a Bayesian methodology that allows us to simulate many times the
IS selection and OOS, i.e., future, realization process (Figure 1) in order to address the
questions formulated above. We provide an overview of several methods proposed in the
literature that are compared with our method in an empirical study on a set of technical
strategies. Since the strategies are basically random and, in fact, we know their performance
following the backtesting period, none should be selected. On the other hand, we also
artificially modify one of the strategies making it a “true” discovery and analyze results of
the strategy selection methods.

2. An Overview of the Existing Approaches

There are several relatively simple classical methods for adjusting p-values in order to
accommodate the multiple test (see, e.g., Streiner and Norman 2011). More advanced and
computationally demanding methods are based on various approaches to bootstrapping
and simulation of the past and future data.

2.1. Classical Approaches

To test significance of a single strategy, for example, Sb with sample mean return mb
and standard deviation sb observed over T periods, the classical approach is to calculate
the t-ratio,

TR =
mb

sb/
√

T
,

and the two-sided2 p-value,
pS = Pr[|X| > TR], (1)

where X is a random variable following the t-distribution with T − 1 degrees of freedom.
The implicit assumption is that the returns are i.i.d. normal. If the p-value pS happens to
be small enough, e.g., below 5% or 1%, then one tends to jump to the conclusion that a
strategy with significantly positive returns has been discovered.

2 A strategy with a significant negative t-ratio can be considered as a discovery as well since we can revert it in order to achieve systematic positive
returns.
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The problem with the process of selecting the best strategy or, alternatively, testing
a number of strategies until we find a significant one is that the correct p-value should
(Harvey and Liu 2015) reflect the fact that we selected the strategy with the best t-ratio TR
out of K proposal strategies.

pM = Pr[max{|Xk|, k = 1, . . . , K} > TR],

where Xk are K random variables following the t-distribution with T− 1 degrees of freedom
(corresponding to the sample t-ratios of the K strategies). It can be noted (Harvey and Liu
2015) that, if the variables were independent, then we could find a simple relationship (also
called Šidák’s adjustment) between the single and multiple test p-values.

pM = 1−∏
k

Pr[|Xk| ≤ TR] = 1−
(

1− pS
)K

= KpS −
(

K
2

)(
pS
)2

+ · · · .

Harvey and Liu (2015) provided an overview of simple adjustment methods, such as
Bonferroni’s adjustment pM = min

{
KpS, 1

}
, Holm’s, or Benjamini, Hochberg, Zekutieli

(BHY) adjustments, using the ordered sequence of the single-test p-values pS
1 , . . . , pS

K for
all the strategies. The weak point of all those methods is the assumption of independence
since the tested strategies are often closely related (e.g., of the same type with varying
parameters).

We also propose and test a numerically relatively simple and efficient method on the
basis of an estimation of the covariance matrix Ω of the returns and numerically generate
the distribution of max{|Xk|, k = 1, . . . , K} conditional on the null hypothesis mk = 0 for
all k where Xk are K random variables following the t-distribution with T − 1 degrees of
freedom (or alternatively standard normal for a large T) and with covariances given by Ω.

Note that the classical (corresponding to the basic period, e.g., daily) Sharpe ratio can
be easily calculated given the t-ratio and vice versa.

SRk =
mk
sk

=
TRk√

T
.

The Sharpe ratio is usually annualized as follows:

SRa
k =

mk
sk

√
Ta = TRk

√
Ta

T
,

where Ta is the number of observation periods in a year, e.g., 252 in the case of daily returns.
According to Equation (1), the maximal acceptable p-value level can be easily translated to
a minimum required Sharpe ratio.

Generally, given a selected strategy with an in-sample (according to the backtest
data) Sharpe ratio SRIS, the question is what the expected (out-of-sample) Sharpe ratio
E0[SROOS] over a future, e.g., 1-year period, is. Here, E0[.] denotes the expectation given
all the information available today, in particular, given the in-sample performance such
as SRIS, the number of strategies from which the best one was selected, the relationship
between the strategies, and the underlying asset return process properties. The Sharpe
ratio haircut is then defined as the percentage we need to deduct from the in-sample Sharpe
ratio to get a realistic estimate of the future performance,

HC = 1− E0[SROOS]

SRIS
. (2)

Harvey and Liu (2015) noted that the rule-of-thumb haircut used by the investment
industry is 50%, but that, according to their analysis, it significantly depends on the level
of the in-sample Sharpe ratio and the number of strategies. They proposed to use the
relationship between the single- and multiple-test p-values in order to derive the haircut
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Sharpe ratio. Their estimate of the annualized expected Sharpe ratio ESRHL is based on
the idea that its corresponding single-test p-value should be equal to the adjusted multiple
test p-value pM, i.e.,

pM = Pr
[
|X| > ESRHL

√
T
Ta

]
, i.e.,

ESRHL = F−1(pM/2
)√ Ta

T ,

where X is a random variable following the t-distribution with T− 1 degrees of freedom
and F is its cumulative distribution function. The haircut is then calculated according
to Equation (2). The haircut estimation, of course, depends on the p-value adjustment
method as Bonferroni, Holm’s, BHY, or the general one we suggested above. Although the
estimation is obviously directionally correct, it is not obvious why this approach should
yield a consistent estimate of the expected Sharpe ratio E0[SROOS] and of the corresponding
haircut. We compare the different haircut estimates in the simulation study outlined below.

2.2. Stationary Bootstrap

In order to simulate the past and the future returns, we consider a bootstrapping and a
cross-validation approach. The stationary bootstrap proposed and analyzed in White (2000),
Sullivan et al. (1999), and Politis and Romano (1994) is applied to the underlying asset
returns assumed to be strictly stationary and weakly dependent time-series to generate
a pseudo time series that is again stationary (Figure 2). The tested strategies S1, . . . ,SK
are based only on the single underlying using its historical returns to take long, short, or
possibly zero positions.
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Formally, we generate new sequences of the underlying asset returns
{

uΘ(i); i = 1, .., T̃
}

where u1, . . . , uT1 is the original series of observed returns and Θ(i) ∈ {1, . . . , T1}. In order
to implement the bootstrap, we need to select a smoothing parameter 0 < q = 1/b < 1,
where b corresponds to the mean length of the bootstrapped blocks, for example, q = 0.1,
proposed by Sullivan et al. (1999). A bootstrapped sequence is obtained by drawing
randomly Θ(1) ∈ {1, . . . , T}, and, for i = 2, . . . , T̃, setting Θ(i) = Θ(i− 1) + 1 with
probability 1− q or randomly drawing a new block starting position Θ(i) ∈ {1, . . . , T1}
with probability q. If it happens that Θ(i) > T1 then we draw random Θ(i) ∈ {1, . . . , T1}.

Next, given a bootstrapped sequence of the underlying asset returns, we need to
apply strategies S1, . . . ,SK to get the strategies’ bootstrapped returns r̃k,t, k = 1, . . . , K, t =
1, . . . , T1. Note that, since the strategies’ decisions are built on the basis of past returns, we
generally need to have a longer series of the bootstrapped asset returns, T̃ > T1, where
T1 is the length of the in-sample period. Then, we evaluate our desired performance
indicator values (mean return, Sharpe ratio, etc.) f̃k. Let f ∗k denote the performance
indicators of the original series of returns. According to White (2000), under certain
mild theoretical assumptions, the empirical distribution of the B bootstrapped values
Ṽj = max

k=1,...,K

(
f̃k − f ∗k

)
for j = 1, . . . , B asymptotically converges to the distribution of the

best strategy performance indicator under the null hypothesis H0 that all the strategies
have zero performance. That is, obtaining B bootstrapped values

{
Ṽj; j = 1, . . . , B

}
, we

can test H0 by calculating the empirical p-value Pr
[∣∣∣Ṽj

∣∣∣ > f ∗b
]
, where b is the index of the

best strategy and f ∗b = max
k

f ∗k .
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The bootstrap technique can be also used to analyze the relationship between IS
and OOS Sharpe ratio (or another indicator), generating series of strategy returns over
a time period 1, . . . , T1, selecting the best strategy Sb with an in-sample performance
SRIS, and then looking at its out-of-sample performance SROOS over the following period
T1 + 1, . . . , T1 + T2. Note that, in this case, the original bootstrapping must be done over a
period of length T̃ > T1 + T2. Then, we can compare the mean SROOS against the mean
SRIS or conditional on certain level of SRIS. We may also bootstrap the OOS returns for
the actually selected strategy Sb (according to the real dataset). However, in this case,
it is especially obvious that even a truly positive strategy that is using medium-term or
long-term trends to make good predictions does not have to work on the bootstrapped
series of returns where the future and past returns of the original series are to a large extent
mixed up. Therefore, the estimated conditional SROOS may easily lead to a false rejection
of a positive strategy.

2.3. Combinatorial Symmetric Cross-Validation

Another disadvantage of the stationary bootstrap technique is that it cannot be applied
if we are given only the strategy returns but not details on the strategies themselves. The
stationary bootstrap is also problematic if the strategies are not technical ones and use a
number of additional, possibly lagged, explanatory factors. This is not the case for the
combinatorial symmetric cross-validation (CSCV) (Bailey et al. 2014, 2016) utilizing only the
matrix of the strategies’ returns M =

{
rk,t, k = 1, . . . , K, t = 1, . . . , T1

}
. The idea is to split

the time window of length T1 = SN into S blocks of length N, where S is even and draws
combinations of S/2 blocks (Figure 3). The submatrix J formed by joining T1/2 rows
of M corresponding to the selected time indices in the original order then represents an
in-sample dataset of returns where the best performing strategy can be selected while the
complementary K× T1/2 submatrix J represents the out-of-sample returns. The sampling

can be done with or without replacement. Since there are
(

S
S/2

)
combinations, we can

sufficiently form many different combinations with replacement as long as S is sufficiently
large, e.g., at least 16.
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Bailey et al. (2014, 2016) proposed using the technique to specifically estimate the
probability of backtest overfitting (PBO) defined as the probability that the best IS selected
strategy performs below the average OOS. More precisely, for K strategies S1, . . . ,SK,

PBO = Pr[RankOOS(X)< K/2|RankIS(X) = 1].

The PBO indicator, as well as the Sharpe ratio haircut, can be estimated using sufficient
cross-validation pairs of the IS/OOS datasets

〈
J, J
〉
. However, it is obvious that the

estimates are biased, introducing a negative drift into the OOS order of the strategies. For
example, if all the strategies represented just pure noise with mean returns over the full time
interval {1, . . . , T1} close to zero, then, for an IS/OOS combination

〈
J, J
〉
, the best strategy

IS return rb,J implies that the complementary OOS return rb,J ≈ −rb,J would probably be
the worst on J. We demonstrate the effect in the empirical section. The cross-validation
technique also cannot be used, due to this property, to estimate the OOS Sharpe ratio or
mean for a particular selected strategy. We can just estimate the overall PBO or Sharpe
ratio haircut keeping in mind that the estimations incorporate a conservative bias. The
cross-validation, as well as the bootstrapping approach, cannot be easily used to estimate
the false discovery rate (FDR) since it is not clear how to identify true and false discoveries
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given a CSCV simulation. This could be possibly done by testing the significance of OOS
performance involving an ad hoc probability level.

We show that all the indicators of interest can be consistently estimated in the Bayesian
setup outlined below.

3. Bayesian Simulation Approach

The Bayesian approach is based on the scheme given in Figure 4.
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First, of course, we need to specify a model defining the return generating process with
unknown parameters Θ for the observed strategy returns

{
rk,t, k = 1, . . . , K, t = 1, . . . , T

}
,

where T = T1 or T = T1 + T2. Then, the plan is to use a Bayesian technique, specifically,
the Markov Chain Monte Carlo (MCMC) simulation, in order to extract the posterior
distribution of the model parameters Θ. Finally, we simulate the matrices of IS and OOS
returns over desired time intervals 1, . . . , T1 and T1 + 1, . . . , T1 + T2. The Monte Carlo (MC)
is done in two steps, always selecting the parameters Θ from the posterior distribution
and then generating K series of T1 + T2 returns according to the model. The simulated IS
returns can be used to select the best strategy and the OOS returns to measure its future
performance. The average haircut or average relative rank can be easily estimated as in the
case of the stationary bootstrap (see Figure 4).

We consider two models; the simple one assumes that the returns are multivariate
normal with unknown covariance matrix and means, while the second incorporates un-
known indicators of truly profitable strategies allowing us to consistently estimate the false
discovery rate (FDR). The second model follows an idea of Scott and Berger (2006), also
mentioned in Harvey et al. (2016); nevertheless, in both cases, the model was formulated
only for observed mean returns and without considering a correlation structure of returns.
It should be emphasized that our focus is to analyze the impact of backtest overfitting
assuming that the strategies’ cross-sectional returns behave in a relatively simple and stable
way over time similarly to the classical, bootstrapping, or cross-validation approaches.
One could certainly come up with state-of-the-art models incorporating jumps, switching
regimes, stochastic variances, or even dynamic correlations. These improvements would
make the methodology computationally difficult to manage with results probably even
more conservative compared to the approaches we consider below.

3.1. The Naïve Model 1

To set up the naïve model, we assume that the cross-sectional strategy returns are
multivariate normal,

rt = 〈r1,t, . . . , rK,t〉 ∼ N(µ, Σ),

and that the observations over time are independent.
Given data = 〈rt〉, i.e., the matrix of back test returns, and possibly some priors for

µ and Σ, we can find the posterior distribution p(µ, Σ|data) using the standard Gibbs
MCMC sampler.
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Specifically, the iterative sampling is given by

p(µ|Σ, data ) = ϕ
(

µ; 1
T ∑T

t=1 rt, 1
T Σ
)

, and
p(Σ|µ, data ) = IW(Σ; T, S),

where S =
T
∑

t=1
(rt − µ)′(rt − µ) is the scale matrix (i.e., the covariance matrix times T),

and IW is the inverse Wishart distribution. For example, Matlab allows sampling from
the distributions, and the posterior distribution may be obtained quite efficiently (e.g.,
10,000 runs of the sampler).

Remark 1. The sampler above assumes the noninformative prior on the means, p(µ) ∝ 1, and the
standard improper prior on the covariance matrix,

p(Σ) ∝ |Σ|−
K+1

2 .

Given the extracted posterior distribution p(µ, Σ |data ), the parameters µ, Σ can be
now easily sampled in order to get the empirical distribution of the selected strategy
performance. However, in the process of selecting the best strategy, we do not know µ, Σ

but only a time series of the backtested returns with cross-sections from N(µ, Σ). On the
basis of the time series, the “best” strategy Sb is selected. Our key question is about its
expected forward-looking performance, e.g., µb or SRb. Therefore, we need to run the
following Monte Carlo simulation in order to faithfully sample the empirical distribution
of the performance indicators:

1. Sample 〈µ, Σ〉 from p(µ, Σ|data) .
2. Independently sample T1 + T2 cross-sections Rt ∼ N(µ, Σ).
3. Determine the index of the best strategy b on the basis of the backtest statistics

calculated from the matrix of backtested returns R = 〈Rt〉 for t = 1, .., T1.
4. Calculate and store the performance indicators, µ̂b, ˆSRb, in the OOS period T1 +

1, . . . , T2. Alternatively, store the selected strategy “true” performance indicators, i.e.,
µb, SRb.

The MCMC estimation of the multivariate normal distribution parameters is known
to converge relatively fast (see e.g., Lynch 2007); nevertheless, we apply a burn-out period
according to simple diagnostics, e.g., the average of the vector of mean returns µ. The
simulated posterior distribution of the desired performance indicators (after removing
the burn-out period) then tells us the mean, median, confidence intervals, or Bayesian
probabilities where the true performance is positive or above any given minimum threshold.
The ratio between the ex post and ex ante performance indicators also gives us an estimate
of the “backtest overfitting haircut”.

3.2. Model 2—Bimodal Means Distribution

In order to capture the situation when most strategies are random and only some
positive (nonzero), assume that there are, in addition, latent indicators γi ∈ {0, 1} so that
the mean of strategy i is µ∗i = γiµi. Therefore, the row vector of returns has the distribution

rt = [r1,t, . . . , rK,t] ∼ N(µ∗, Σ).

Here, we need to assume a prior distribution for γi ∼ Bern(1− p0) and µi ∼
N(m0, V0). It means that the Bayesian distribution of the means is bimodal with a large prob-
ability mass on 0, and the other mode is normal with prior mean m0 > 0 and variance V0.
The Gibb’s sampler can be modified as follows:
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1. Given µ, γ, set µ∗i = γiµi, and estimate Σ as above, i.e.,

p(Σ|µ, γ, data ) = IW(Σ; T, S), where S = ∑T
t=1(rt − µ∗)′(rt − µ∗).

2. Given Σ, γ, estimate µ. Set A = 1
T Σ, Γ = diag(γ), m = 1

T ∑t
t=1 rt, m0 = [m0, . . . , m0],

and D = diag([V0, . . . , V0]), where diag creates a matrix with diagonal elements given
by the vector in the argument, and sample

p(µ|Σ, γ, data ) = ϕ

(
µ;
(

ΓA−1Γ + D−1
)(

ΓA−1m + D−1m0

)
,
(

ΓA−1Γ + D−1
)−1

)
.

3. Given Σ and µ, estimate γ. For i = 1, . . . , K set Γ0 equal to Γ with the exception of the
diagonal element Γ0(i, i) = 0, and Γ1 setting Γ1(i, i) = 1. Let

L0 = exp
(
−1
2

(
(Γ0µ−m)′A−1(Γ0µ−m)

))
(1− p0),

L1 = exp
(
−1
2

(
(Γ1µ−m)′A−1(Γ1µ−m)

))
p0,

p̃ =
L1

L0 + L1
, and finally, sample γi ∼ Bern( p̃).

Proofs of the formulas used in steps 2 and 3 can be found in Appendix A. Again, we
apply a burn-out period according to a convergence diagnostic of the averages of γ and
of µ.

Remark 2. There are certain possible extensions.

• We may allow γi ∈ {−1, 0, 1} encoding negative significant mean return, zero return,
or significant positive return. In this case, the mean parameter of the prior distribution
µi ∼ N(m0, V0) must be strictly positive. In the Gibb’s sampler above, we just need to modify
step 3 in a straightforward manner.

• The hyper-parameters p0, m0, V0 for γi ∼ Bern(1− p0) and µi ∼ N(m0, V0) might be
estimated within the MCMC procedure. In this case, the Gibb’s sampler can be extended
as follows:

4. Sample p0 given γ:

p( p0|γ) ∝ pn1
0 (1− p0)

1−n1 p(p0) ∝ Beta(p0; n1 + k1 + 1, K− n1 + k2 + 1),

where n1 = #{i; γi = 1} and p(p0) = Beta(p0; k1 + 1, k2 + 1) is a conjugate prior distribu-
tion (e.g., k1 = k2 = 1).

5 Sample m0, V0 given µ and γ. Here, we just use the means {µi|γi = 1} where the
signal is positive and the normal Gibb’s sampler. Since the set may be empty, we need
to use proper conjugate priors, e.g., p(m0) = ϕ(m0; 0, mP) and

(V0) ∝ IG
(

V0,
k0

2
,

k0VP
2

)
.

For K̃ = #{µi|γi = 1} 6= 0 , set µ̃ = ∑{µi|γi = 1}/K̃ and Ṽ = ∑
{
(µi −m0)

2
∣∣∣γi = 1

}
/K̃.

Then,

p(m0|µ, γ, V0) ∝ ϕ(m0; µ̃, V0/K̃) ϕ(m0; 0, VP) ∝ ϕ
(

m0; µ̃K̃VP
K̃VP+V0

, VPV0
K̃VP+V0

)
and

p(V0|µ, γ, m0) ∝ IG
(

0; K̃
2 , K̃Ṽ

2

)
IG
(

V0, k0
2 , k0VP

2

)
∝ IG

(
V0, K̃+k0+1

2 , K̃Ṽ+k0VP
2

)
.

If K̃ = 0 . then we have to sample on the basis of conjugate priors p(m0) and p(V0) only.
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4. Numerical Study

Following Sullivan et al. (1999) and other studies, we compare and illustrate the
proposed Bayesian methods on a set of technical strategies’ returns. We also artificially
modify the mean returns of the strategies in order to test the methods, on one hand, if there
is a clearly extraordinary strategy or, on the other hand, if the returns of the returns of all
the strategies are very low.

4.1. Technical Strategies Selection

We used 1000 daily S&P 500 values and returns for the period 5 June 2009–24 May
2013 (1000 trading days). The period was selected with the purpose of finding at least
one strategy with a higher mean return. As in Sullivan et al. (1999), we applied the filter,
moving average, support, and resistance rules with varying parameters. We randomly
selected 200 strategies with the condition that the daily return series are not collinear (it
may even happen that the series are identical if the parameters do not differ too much).

The means and Sharpe ratios of the individual strategies’ return series and their
densities over the period 5 June 2009–24 May 2013 are shown in Figure 5. It should not
be surprising that the strategies’ returns are mostly positively correlated with the average
pairwise correlation 23.32%. Note that strategy 7 is apparently the best with the annualized
(ny = 252) mean return over 21% p.a. and Sharpe ratio approximately 1.2 (it is a filter
strategy with x = y = 1%, i.e., a long or short position is taken if the previous daily return is
over 1% or below−1%, respectively, and the minimum number of days to stay in a position
is 20). The strategy returns look attractive; nevertheless, looking forward, it turns out that
the realized mean return of the strategy in the 1000 days following 24 May 2013 is negative
(−5.21%).
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4.2. Single and Multiple p-Value Testing

The single-test annualized t-ratio and the p-value of the best strategy 7 with SR =
1.1987 are

TR = SR
√

nobs
ny

= 1.1987
√

1000/252 = 2.3878 and pS = 0.0171.

The multiple test p-value after Bonferroni adjustment is simply

pM = min{200× 0.171, 1} = 1.

Thus, the adjusted expected Sharpe ratio is 0 and the haircut is 100%. Šidák’s adjust-
ment yields only a slightly more optimistic result with pM = 0.9685, adjusted expected
SR = 0.02, and haircut 98.3%. Similar adjustments can be obtained by the Holm or Ben-
jamini, Hochberg, Yekutieli (BHY) methods using, for example, the package provided
by Harvey and Liu (2015). The simple adjustment methods allow to easily estimate the
minimum return of the best strategy (keeping the same covariance structure) in order to
get the multiple test p-value at most 5%. The estimated minimum return using the same
package is around 36%.

4.3. Multivariate Normal Simulation and the Stationary Bootstrap According to the
Null Hypothesis

Another relatively simple possibility is to estimate the return covariance matrix and
simulate the future multivariate returns on the basis of the return covariance matrix and
conditional on zero means. Figure 6 below shows the density of 1000 simulated annualized
SR as a function of a 1000 day period. The adjusted p-value of the best strategy with
SR = 1.1987 is then relatively optimistic 0.352 and the adjusted expected SR is 0.4683 (i.e.,
the implied haircut is just 61%).
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An analogous distribution (Figure 7) can be obtained via the much more computa-
tionally demanding stationary bootstrap (White’s reality check). The p-value according
to 1000 bootstrap simulations for a 1000-day time period and with q = 0.1 turns out to be
0.728, the corresponding adjusted expected SR is 0.175, and the SR haircut is 85.4%.

4.4. Stationary Bootstrap Two-Stage Simulation

The stationary bootstrap method can also be used to simulate the backtest period of
length T1 = 1000, as well as the future period with T2 = 1000. The number of stationary
bootstrap iterations is again 1000 according to the 5 June 2009–24 May 2013 window of
S&P returns, and the parameter is set to q = 0.1 with the corresponding average length
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of the bootstrapped blocks being 10. Figure 8 shows the typical strong shift of the ex ante
performance density to the left-hand side and the wider ex post performance density. The
results show that the best IS selected strategy performs poorly OOS with 32.8% probability
of loss, PBO around 0.44 (see also Figure 9), and SR haircut over 73%. For detailed
results including the ex ante and ex post SR or mean return values, see the summary in
Table 1. Note that the row “stationary bootstrap” shows values obtained via the two-stage
simulation except the p-value estimated by White’s reality check.
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Table 1. Summary of the backtest overfitting tests’ results.

Adjusted
p-Value (FDR)

Ex Ante av.
SR/Mean

Adjusted Expected
SR/Mean

SR/Mean
Hair Cut

Probability
of Loss

Mean OOS
Rank PBO

Boferroni
method 1.00 1.199 0 100% - -

Šidák’s
correction

0.968 1.199 0.02 98.3% - -

Mult. norm.
MC adj. 0.352 1.199 0.4668 61% - -

Stationary
bootstrap 0.728 1.110/0.194 0.297/0.051 73.2%/74% 0.328 55% 0.444

CSCV - 1.382/0.244 0.336/0.058 75.7%/76.4% 0.371 66.8% 0.323

Bayes mod. 1 - 2.102/0.371 1.014/0.180 51.8%/51.5% 0.171 75.7% 0.168

Bayes mod. 2 0.549 1.201/0.213 0.211/0.037 82.5%/82.5% 0.380 60% 0.395

4.5. Combinatorial Symmetric Cross-Validation

In order implement the CSCV algorithm, we chose the number of blocks 20 corre-
sponding to (

20
10

)
= 184, 756

combinations of 10 blocks of length 50. However, we sampled only 1000 combinations.
In this case, we always split the 1000-day time into the IS and OOS parts on the same length,
i.e., T1 = 500 and T2 = 500. The results shown in Table 1 are quite like the stationary
bootstrap only with PBO being slightly lower (0.323). The slightly better performance is
reflected in the bimodal ex post densities in Figure 10 where the right-hand side positive
mode corresponds to the selected strategy that performs well IS, as well as OOS. Figure 11
also indicates that, in this case, compared to Figure 9, the best IS strategy remains the best
OOS quite often.

Risks 2021, 9, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 9. Stationary bootstrap simulation histogram of the OOS relative rank of the best IS strat-
egy. 

4.5. Combinatorial Symmetric Cross-Validation 
In order implement the CSCV algorithm, we chose the number of blocks 20 corre-

sponding to ൬2010൰ = 184,756 

combinations of 10 blocks of length 50. However, we sampled only 1000 combinations. In 
this case, we always split the 1000-day time into the IS and OOS parts on the same length, 
i.e., 𝑇ଵ = 500 and 𝑇ଶ = 500. The results shown in Error! Reference source not found. are 
quite like the stationary bootstrap only with PBO being slightly lower (0.323). The slightly 
better performance is reflected in the bimodal ex post densities in Error! Reference source 
not found. where the right-hand side positive mode corresponds to the selected strategy 
that performs well IS, as well as OOS. Error! Reference source not found. also indicates 
that, in this case, compared to Error! Reference source not found., the best IS strategy 
remains the best OOS quite often.  

  
Figure 10. CSCV simulation of the ex ante (blue) and ex post (red) probability densities. 

Figure 10. CSCV simulation of the ex ante (blue) and ex post (red) probability densities.

4.6. The Naïve Bayes Model 1

In the Bayesian approach, we firstly extract the multivariate normal model means
and covariance given the observed data. This can be done in 1500 iterations using the
standard Gibbs sampler including 500 burn-out simulations, i.e., only the last 1000 iterations
are used to estimate the posterior parameters (see Figure A1, Appendix A, for the fast
MCMC convergence). In the MC simulation, we can choose the length of the backtest (IS)
period T1 = 1000 and the OOS forward looking period T2 = 1000. We then generated
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1000 scenarios (after removing the burned-out simulations) sampling the parameters
and the cross-sectional returns, selecting the best IS strategy, and measuring its OOS
performance. We have to keep in mind that the sampled posterior means may differ quite
significantly from the observed mean returns due to the high return volatility3 and, thus,
the observed best strategy 7 may look weak in the simulations, while other strategies are
selected as the best. The detailed results given in Table 1 and Figure 12 confirm that the
naïve multivariate normal model indeed appears too optimistic. Indeed, the best IS strategy
remains the best quiet often as shown in Figure 13 and the PBO is quite low (0.168). This
can be explained by the simple multivariate normal model and relatively long IS window
allowing to identify the truly positive strategy.

In reality, if we generate a large number of models and the best model performance is
still poor, then we are probably not going to enroll it for real trading. Therefore, we might
also consider a minimum hurdle at which we choose or reject the best selected model. This
is quite easy given the simulation outputs. For example, if we set the minimum SR to 1.2,
then the condition will be satisfied in 96.6% of the simulations with average ex ante SR
2.14 and ex post SR 1.00, i.e., again with the haircut slightly over 53%. It is interesting that
the haircut is not much sensitive to the hurdle, e.g., if the minimum SR was 2, then the
corresponding average haircut would be even higher (37%). Nevertheless, the probability
of loss can be reduced by setting the minimum SR higher, e.g., if we set the hurdle to 2,
then the conditional probability of loss would decline to 16.5% (conditional on the strategy
selection) and the unconditional probability would decline to 9.1% since 44.9% of the
proposed models would be rejected in the simulation.
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3 For example, 18% annualized volatility of returns is translated to 18%
√

252/100 ∼= 9% volatility of the posterior annualized mean return.
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4.7. Bayes Bimodal Mean Returns Model 2

In this case, in addition to the multivariate normal distribution with unknown param-
eters, we also consider latent indicators of zero and nonzero models. In order to extract
the posterior distribution of the parameters and the latent indicators, we again run 1500 it-
erations and use only the last 1000 iterations to estimate the parameters (removing first
500 burn-out iterations—see Figure A1, Appendix A, for the relative MCMC convergence)
of the Gibbs sampler outlined in Section 3.2. Analogously to Bayes Model 1, we then run
1000 Monte Carle simulations with T1 = 1000 and T2 = 1000. Since, in this case, the Bayesian
model incorporates the uncertainty whether the model is a true discovery or not, the results
should be more conservative compared to the naïve model. Indeed, the PBO turns out to be
0.395, substantially lower compared to model 1, the SR haircut is 82.5%, and the probability
of loss is 38% (see Table 1, Figures 14 and 15).
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The model also provides posterior averages of γi for each individual model i (see
Figure 16). The averages can be interpreted as Bayesian probabilities that the models are
true discoveries. There are a few models with the averages over 80%, including the model
7 with the value over 86%. The complements of these Bayesian probabilities to 100% can be
in a certain sense compared to the frequentist single-test p-values. However, the Bayesian
model also allows us to answer the key question we are asking: Given the observed data
and the general model assumptions, what is the probability that the best strategy b selected
on the basis of observed data is a true discovery, i.e., γb = 1? This can be estimated as
the mean of γb which turns out to be only 0.459. This means that, applying the selection
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process, we identify the true discovery only in 45.1% of cases and we make a false discovery
in 54.9% of cases, i.e., FDR = 54.9% can be shown instead of the adjusted p-value in Table 1.
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We may again test whether a higher SR hurdle reduces the high SR haircut. The
results are similar for the naïve model 1, i.e., the SR haircut stays around 82% more or less
independently of the hurdle. The probability of loss can be reduced only slightly, e.g., for
the hurdle of 1.5, the conditional probability of loss declines to 32.1%, but the unconditional
probability of loss goes significantly down to 5.2% as 83.8% of the best strategies are rejected
in the simulation.

It is also interesting to look at the dependence of the average posterior gamma depend-
ing on the number of strategies tested, e.g., the first 10, 20, . . . , 200 (with the number of
simulations again being 1000 after removing 500 burn-out iterations, T1 = 1000, T2 = 1000).
Note that the best observed strategy is included in the first ten strategies; however, as ex-
pected, the posterior expected gamma, mean, or SR of the best strategy declines with
the number of strategies tested (Figure 17). The result of the simulation is expected, i.e.,
with an increasing number of strategies from which the best one is selected, the expected
out-of-sample performance decreases.
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Figure 17. Estimated values of the average ex post gamma, mean return, and SR depending on the number of strategies
tested.

4.8. Testing with Modified Mean Returns

In order to better compare the methods, we modify the vector of returns of the
strategies while keeping the “natural” correlation structure. Firstly, we increase the strategy
7 return by 19% p.a. while keeping the other returns unchanged so that the strategy 7 with
mean over 40% and SR 2.27 stands out among the others (Figure 18), and one expects that
it should be identifiable as significant using the various methods.
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Table 2 shows the results (for simplicity, focusing only on SR values). Note that, in this
case, we are not able to implement the stationary bootstrap since there is no real strategy
behind the modified returns of “strategy” 7 and, thus, the row is missing.

Table 2. Summary of the test results.

Adjusted
p-Value (FDR)

Ex Ante av.
SR

Adjusted
Expected SR Hair Cut Probability

of Loss Mean Rank PBO

Boferroni method 0.0014 2.2707 1.6121 29% - -

Šidák’s correction 0.0014 2.2707 1.6122 29% - -

Multivariate norm.
MC adj. 0.0004 2.2707 1.783 21.5% - -

CSCV - 2.257 2.196 2.7% 0.014 98.5% 0.01

Bayes mod. 1 - 2.549 1.887 26% 0.092 87.1% 0.087

Bayes mod. 2 0.11 1.776 1.442 18.8% 0.067 92.1% 0.059

All methods confirm that a positive strategy can be selected with CSCV being the most
optimistic in terms of SR haircut or probability of loss. Figure 19 indicates that, in this case,
there is a fairly good coincidence between the ex ante and ex post SR distributions for all the
methods with CSCV again looking the best. Bayes model 2 provides a reasonable estimate
of the haircut and the probability of loss, but the estimated “p-value”, i.e., the probability
that the selected model is a false discovery is surprisingly high (11%). Nevertheless,
it should be noted that, in the MC simulations based on Bayesian posterior parameters, the
SR of the strategy 7 might be quite lower than the “observed” value of 40% due to the high
return volatility as already mentioned above.
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Lastly, we modify the returns of the strategies by deducting the observed mean returns
(from the daily strategy returns) and adding random noise means with standard deviation
1% p.a. (Figure 20). Therefore, in this case, we expect the methods to reject the existence of
a positive strategy.
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Figure 20. The modified annualized mean returns and Sharpe ratios of the 200 strategies.

All the methods, except for the Bayes Model 1, clearly refute the existence of a positive
strategy (Table 3). The surprisingly optimistic results of Bayes Model 1 can be again
explained by the volatility incorporated into the Bayes parameter MCMC estimation
leading to sampling of models with higher positive means in the MC part of the simulations.
The first graph in Figure 21 also clearly demonstrates the strong negative bias of the CSCV
method where the best IS model tends to the worst OOS not because of the models but due
to the design of the method. See also the IS/OOS scatter plots in Figure 22.
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Table 3. Summary of the test results.

Adjusted
p-Value (FDR)

Ex Ante av.
SR

Adjusted
Expected SR Hair Cut Probability

of Loss Mean Rank PBO

Boferroni method 1 0.1536 0 100% - -

Šidák’s correction 1 0.1536 0 100% - -

Multivariate norm.
MC adj. 0.997 0.1536 0.002 98.7% - -

CSCV - 1.027 −0.960 193.5% 1.00 1.2% 1

Bayes mod. 1 - 1.975 0.607 69.3% 0.286 67.1% 0.265

Bayes mod. 2 0.887 1.127 0.062 94.5% 0.447 53.2% 0.450
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5. Conclusions

The classical methods to adjust single-test p-values for the effect of multiple testing
when selecting a trading strategy out of many possibilities such as Bonferroni, Holms,
or BHY work relatively well, but provide very conservative estimations due to their
approximate nature. Certain improvement can be achieved by applying the independence-
based multiple-test p-value (Šidák’s) adjustment or the proposed multivariate normal MC
simulation method. The derived expected SR and the related haircut proposed by Harvey
and Liu (2015) are rather heuristic and, in our view, not well theoretically founded. The
stationary bootstrap method proposed by Sullivan et al. (1999) provides a consistent p-
value adjustment. However, if used in a two-stage simulation, it may damage functionality
of a positive strategy depending on medium/long-term trends due to the mixing bootstrap
algorithm. It also turns out to be the most computationally demanding, since all strategies
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must be replicated for each sequence of bootstrapped asset prices. Moreover, it cannot
be used if the strategies are not known or depend on other economic series. The CSCV
method (Bailey et al. 2016) is relatively computationally efficient and provides good results
if the mean returns of the strategies are well diversified. However, if the strategies’ mean
returns are all close to zero, then the method gives negatively biased results. On the other
hand, it appears overoptimistic if one strategy stands high above the others.

Lastly, we proposed and investigated two Bayesian methods, the naïve one based on
the simple assumption that the returns are multivariate normal, and the second extended
with latent variables indicating zero and nonzero mean return strategies. While the naïve
model gives mixed results, the second provides, according to our empirical study, the
most consistent results, and it is a useful tool to properly analyze the issue of backtest
overfitting. In addition to the probability of loss and backtest overfitting (PBO), it estimates
the posterior probabilities of whether each individual strategy is a true discovery and,
at the same time, the probability of making a true discovery (and the complementary
FDR) and selecting the best one. We believe that the proposed method (Bayesian model 2)
provides an efficient way to analyze the effect of backtest overfitting, keeping relatively
parsimonious assumptions on the underlying data-generating model. More advanced
multivariate stochastic models of the underlying returns might be considered in further
research.
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Appendix A

The following are proofs of the formulas used for Model 2 in Section 3:

Proof of Step 2.
p(µ|Σ, γ, data ) ∝ ϕ(Γµ; m, A)ϕ(µ; m0, D) ∝

∝ exp
(
−1
2

(
µ′
(

ΓA−1Γ + D−1
)

µ− 2µ′
(

ΓA−1m + D−1m0

)))
∝ ϕ

(
µ;
(

ΓA−1Γ + D−1
)(

ΓA−1m + D−1m0

)
,
(

ΓA−1Γ + D−1
)−1

)
.

�

Proof of Step 3. Again

p(γ|Σ, µ, data ) ∝ ϕ(Γµ; m, A)p(γ),

where Γ = diag(γ) and p(γ) = ∏
i

p0
γi (1− p0)

1−γi .

Since we can sample γi ∈ {0, 1} step by step given γj, for j 6= i, it is enough to
calculate

p(γi = 0|. . .) ∝ ϕ(Γ0µ; m, A)p(γ) ∝ exp
(
−1
2

(
(Γ0µ−m)′A−1(Γ0µ−m)

))
(1− p0),

https://finance.yahoo.com
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and similarly for p(γi = 1|. . .) . We prefer the expression on the right-hand side of the
relation above in order to avoid a numerical underflow problem that appears for a higher
dimension if the full multivariate density function is used. �
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