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Abstract: In this article, a model for pandemic risk and two stochastic extensions is proposed. It is
designed for actuarial valuation of insurance plans providing healthcare and death benefits. The core
of our approach relies on a deterministic model that is an efficient alternative to the susceptible-
infected-recovered (SIR) method. This model explains the evolution of the first waves of COVID-19
in Belgium, Germany, Italy and Spain. Furthermore, it is analytically tractable for fair pure premium
calculation. In a first extension, we replace the time by a gamma stochastic clock. This approach
randomizes the timing of the epidemic peak. A second extension consists of adding a Brownian noise
and a jump process to explain the erratic evolution of the population of confirmed cases. The jump
component allows for local resurgences of the epidemic.

Keywords: SIR; epidemic risk; COVID-19; jump diffusion

1. Introduction

The recent outbreak of COVID-19 reminds us that epidemics raise not only sanitary
but also financial issues. There is a clear and growing need for covering the epidemic
risk and for developing analytically tractable models. In this article, we propose a new
deterministic model in which the contagion rate is inversely proportional to time instead
of to the susceptible population. This model presents a great analytical tractability and
replicates the first wave of COVID-19 in Belgium, Germany, Italy and Spain. In this
framework, we infer a closed-form expression for the fair premium rate of an insurance
plan covering healthcare expenses of infected persons and providing a lump sum capital
payment in case of death.

The deterministic model is next extended in two different directions. In the first one,
the time scale is random and ruled by a process called subordinator. Using a gamma
process as stochastic clock preserves the analytical tractability and randomizes the dynamic
of the pandemic. In the second extension, the evolution of the infectious population is
noised by a Brownian diffusion and a jump process.

Multiple contributions are presented in this article. The literature on mathematical
modeling of epidemic is abundant, but most of the existing solutions, as compartment
models, do not provide any analytical expression for the evolution of populations in each
compartment. The valuation of an epidemic-linked insurance requires one to calculate
integrals of infected and susceptible population sizes and is therefore computationally
intensive. The three models proposed in this article do suffer from this problem and have
a high level of analytical tractability for actuarial applications. Furthermore, estimating
their parameters does not pose any problem, and their empirical explanatory power is
comparable to the one of the susceptible-infected-recovered (SIR) approach. Finally, the
jump diffusion extension allows one to simulate realistic random epidemic scenarios and
to value reinsurance treaties.

We first present an overview of previous research. This is followed by the introduction
of the deterministic model that is compared to the susceptible-infected-recovered (SIR)
approach. Section 4 studies the valuation of an insurance plan with healthcare and death
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benefits. The model is fitted to COVID-19 datasets for Belgium, Germany, Italy and Spain
in the next section. Section 6 introduces the first stochastic variant of this model, based
on a random gamma clock. The valuation of reinsurance treaties is developed in the next
paragraph and the time-changed model is estimated in Section 8. Sections 9 and 10 explore
the features of the jump diffusion model. Finally, we propose an estimation method and fit
the model to COVID-19 datasets.

2. Overview of Previous Research

Communicable diseases have always been an important part of human history as
underlined by Smith (2017), who reviews their nature and proposes a brief history of
pandemics. He also introduces the mathematical models used to evaluate the risk that
pandemics pose to human populations. Another detailed survey of these quantitative
models, including future perspective, is available in Brauer (2017).

The reference model in epidemiology is the susceptible-infected-recovered (SIR) model
proposed by Kermack and McKendrick (1927). Various disease outbreaks, including the
SARS epidemic of 2002–2003, the concern about a possible H5N1 influenza epidemic in 2005,
the H1N1 influenza pandemic of 2009 and the Ebola outbreak of 2014 have reignited interest
in epidemic models, beginning with the reformulation of the Kermack–McKendrick model
by Diekmann et al. (1995). In the SIR, the population is homogeneous, whereas in reality, an
epidemic spreads differently according to factors like the age or susceptibility to infection.
It is then necessary to follow the secondary infections in the subpopulations separately;
this is done through the next-generation matrix as explained by Diekmann et al. (1990)
and Van den Driessche and Watmough (2002). Anderson and May (1979) extended the
SIR model by considering the host population as a dynamic variable rather than a con-
stant. Tchuenche et al. (2007) studied the stability of a SIR model with a time delay in
the contagion dynamic. Under the assumption that all individuals are susceptible, they
showed that the endemic equilibrium is stable. Similarly, Zhang and Wang (2013) studied
a nonautonomous SIRS epidemic model with time delay.

The SIR model has been extended to multiple compartments with labels such as M, S,
E, I and R that are often used for the epidemiological classes. The class M contains infants
with passive immunity inherited at birth. After that, the infant moves to the susceptible
class S. When a susceptible individual has adequate contact with an infected individual
such that transmission occurs, then the susceptible individual enters the exposed class E of
those in the latent period, who are infected but not yet infectious. After the latent period
ends, the individual enters the class I of infectious. We refer the reader to Hethcote (2000)
for a comparison of MSEIR and SEIR models for various diseases, including measles in
Niger and pertussis in the United States.

Drawing conclusions from mathematical models raises the question of the origin of
data and of methodological best practices. Walters et al. (2018) reviewed the literature,
highlighting common approaches and good practice and identifying research gaps. They
extracted information from 78 records and found that most epidemiological data come
from published journal articles, population data come from a wide range of sources and
travel data mainly come from statistics or surveys. Rhodes et al. (2020) traced how models
can be investigated as matters of correspondence and enactment in relation to their social
and policy contexts.

At the beginning of a disease outbreak, there is a small number of infectious indi-
viduals and the transmission of infection is a stochastic event depending on the pattern
of contacts between members of the population. The Watson and Galton (1874) process
was one of the first approaches to successfully described this pattern. An alternative
consists of introducing random noise into differential equations defining each compart-
ment. Zhang and Wang (2013) explored this alternative and studied the asymptotic be-
havior of SIR model with Brownian noise and a jump process. The stochastic model
containing a standard Brownian motion was studied by Caraballo and Colucci (2017).
Caraball and Keraani (2018) explored the features of a stochastic SIR model with a frac-
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tional Brownian motion. The book by Daley and Gani (1999) contains an account of some
of the more recent extensions.

In actuarial sciences, the literature on epidemics model is rather scarce.
Jia and Tsui (2005) proposed and estimated a compartment model for severe acute respira-
tory syndrome (SARS) data. Chen and Cox (2009) employed the theory of real options and
considered a regime-switching process for modeling the number of infected individuals.
Feng and Garrido (2011) quantified the risk of infection with a classical epidemiological
compartment model. They formulated financial arrangements between an insurer and
insured using actuarial methodology and applied their framework to the SARS epidemic
in 2003. Gathy and Lefèvre (2009) and Lefevre and Utev (1999) proposed extensions of de-
terministic compartment models and provided additional tools to account for randomness
in epidemiological dynamics. Based on a Markov chain formulation of the susceptible-
infected-recovered (SIR model), Lefèvre et al. (2017) developed a recursive method to
calculate the cost components and the corresponding premium levels. More recently,
Clara-Rahola (2020) proposed two distinct exponential models for the infection rate before
and after lockdown. The fit to data from China, Spain, South Korea and Italy revealed that
a crossover point between pre- and postlockdown infection rates is found one week after
lockdown, which, in turn, is the average COVID-19 incubation period.

3. A Deterministic Epidemic Model

We consider a population of size S0 hit by an epidemic disease at time 0. We pro-
pose to model the number of infectious persons at time t ≥ 0 , denoted by It, by the
following relation:

It = S0e−(α+µ)t(βt)γ , t ≥ t0, (1)

where α, β, µ, γ ∈ R+. This function is the product of two terms. The first one is an
exponential decreasing function, e−(α+µ)t, whereas the second one is an increasing function.
The number of infectious decreases exponentially with a rate (α + µ). The parameter α is
the recovery rate from the disease, whereas µ is assumed to be the death rate of infected
persons. The average duration before recovery is then 1/α. At time 0, the initial number
of infected individuals is equal to I0 = 0. In order to understand the role played by the
parameter β in the dynamics of infectious population, we differentiate Equation (1):

dIt = −(α + µ)Itdt + S0e−(α+µ)tβγ
(

γ tγ−1
)

dt

= −(α + µ)Itdt + It
γ

t
dt .

(2)

This differential equation reveals that the initial contagion rate per capita is equal to
γ
t . This is a decreasing function to 0 when t → ∞. Empirical tests in following sections
emphasizes that Equation (2) explains the evolution of the first wave of COVID-19 in
Belgium, Germany, Spain and Italy.

This model slightly differs from the susceptible-infected-recovered (SIR) model de-
veloped by Kermack and McKendrick (1927), which is a standard in the literature. In the
SIR model, the evolution of the epidemics is described by the ordinary differential equa-
tions (ODEs):

dISIR
t = −(αSIR + µSIR)ISIR

t dt + βSIRSSIR
t

S0
ISIR
t dt ,

dSSIR
t = − βSIRSSIR

t
S0

ISIR
t dt ,

(3)

where βSIR ∈ R+ and SSIR
t is the number of persons that are susceptible to be infected at

time t. As in our model, αSIR and µSIR are the recovery and mortality rates, respectively.
The contagion rate per capita in the SIR is proportional to the population of susceptible,
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βSIRSSIR
t

S0
, whereas it is a function of time, γ

t , in the approach proposed in this article.
This assumption allows us to obtain the closed form expression (2) for the infectious
populations. This is the greatest benefit of this model compared to the SIR that does
not admit analytical solutions for the system (3). In actuarial applications developed
in following sections, we have to integrate It. Therefore, having an analytical formula
allows us to avoid numerical integration of an ODE numerical solution and propagation of
numerical errors. Furthermore, the model (2) is easily extended to stochastic frameworks,
as detailed in following sections.

The basic reproduction number, R0, is defined as the average number of secondary
cases arising from a typical primary case. Under the assumption that the population of

susceptible is large, we have SSIR
t
S0
≈ 1 and the basic reproduction number of the SIR model

is R0 = β
α+µ . In our model, the reproduction number is instead a function of time equal to

R0(t) =
γ

t(α+µ)
. The time-varying R0 allows us to take into account the impact of preventive

measures to curb the epidemic, such as a lockdown or the wearing of masks. The empirical
analysis of the next section confirms that this approach offers a better fit than the SIR model.
Our model presents other interesting features. In particular, the peak of the epidemic is
known and obtained by canceling the first order derivative of Equation (1):

tmax =
γ

α + µ
. (4)

Combining Equations (1) and (4) allows us to evaluate the size of the infected popula-
tion when the peak is reached:

Itmax = S0e−γ

(
γ

α + µ

)γ

βγ . (5)

Since the population of infectious persons may not exceed S0, we infer the necessary
conditions βγ ≤ eγ

(tmax)
γ . As µ is the mortality rate, the total number of deaths up to time t

is a function, denoted by Dt, that is solution of the ordinary differential equation:

dDt = µItdt . (6)

Under the assumptions that recovery does not not provide a protective immunity and
that there is no entry into or departure from the population, the size of the population of
susceptible, denoted by St, is then solution of the following ODE:

dSt = αItdt− It
γ

t
dt , t > t0. (7)

By construction, the population of susceptible growths when infected individuals
recover from the disease and is decreased by the number of new contaminated. As we
do not consider new entrants in the population, the sum of the number of susceptible
individuals, infected individuals and deaths remains constant and equal to S0:

St + It + Dt = S0 , t ≥ 0. (8)

4. Actuarial Valuation of an Insurance Plan

In the same spirit as Feng and Garrido (2011), we consider an infectious disease
insurance plan that collects premiums in the form of continuous annuities from susceptibles,
as long as they are healthy. The premium rate is assumed constant and noted p. Collected
premiums cover medical expenses which are continuously reimbursed for each infected
policyholder during the period of treatment. The benefit rate is noted b. The plan terminates
when the individual recovers or dies from the disease. In case of death, a lump sum benefit,
c, is paid.
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The risk-free rate is constant and denoted by r. If the insurance plan covers the whole
population, premium, benefit rates and lump sum death capital must ensure the financial
equilibrium of the plan. Under the assumption that the plan starts at time 0 and finishes at
time T, discounted premiums have to cover all discounted benefits:

p
∫ T

0
e−rsSs ds = b

∫ T

0
e−rs Is ds + c

∫ T

0
e−rs dDs . (9)

As stated in the previous section, the discounted integral of It admits a closed-form
expression.

Proposition 1. For r ≥ 0, we have that:∫ T

0
e−rs Isds =

S0βγ

θγ+1 Γl(γ + 1, Tθ) , (10)

where θ = r + α + µ and Γl(γ + 1, x) =
∫ x

0 uγe−udu is the gamma lower incomplete function.

Proof. Using Equation (1), we develop the integral as follows:∫ T

0
e−rs Isds = S0βγ

∫ T

0
e−(r+α+µ)ssγds ,

and we perform a change of variable u = θs in order to rewrite the integral:∫ T

0
e−rs Isds = S0βγθ−γ−1

∫ θT

0
e−uuγdu .

From the definition of the gamma incomplete function, we directly obtain
Equation (10).

From this last proposition, we immediately infer the expressions of Dt,
∫ T

0 e−rs dDs
and St.

Corollary 1. The cumulated number of deceases caused by the epidemic at time t ≥ 0 is equal to

Dt = µS0βγ(α + µ)−γ−1Γl(γ + 1, t(α + µ)) . (11)

If θ = r + α + µ, the second term on the right-hand side of Equation (9) is:∫ T

0
e−rs dDs = µS0βγθ−γ−1Γl(γ + 1, Tθ) . (12)

The size of the population of susceptible at time t ≥ 0 is deduced from the relation St + It +
Dt = S0:

St = S0 − S0e−(α+µ)t(βt)γ − µS0βγ(α + µ)−γ−1Γl(γ + 1, t(α + µ)) . (13)

The next proposition reports the closed-form expression for the premium rate solution
of Equation (9).

Proposition 2. For the benefit rate (b, c), the fair premium rate that ensures the actuarial equilib-
rium of the plan is given by

p =
(b + cµ)S0βγθ−γ−1Γl(γ + 1, Tθ)∫ T

0 e−rsSs ds
, (14)
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where the denominator is equal to:

∫ T
0 e−rsSs ds =

S0

r
(
1− e−rT)− S0βγ

θγ+1 Γl(γ + 1, Tθ)
(

1 +
µ

r

)
+

µS0βγ

r(α + µ)γ+1 e−rTΓl(γ + 1, T(α + µ)) .
(15)

Proof. From Equation (13), we infer that∫ T

0
e−rsSs ds = S0

∫ T

0
e−rs ds−

∫ T

0
e−rs Is ds−

∫ T

0
e−rsDs ds

The first integral on the right-hand side is equal to S0
r
(
1− e−rT)whereas

∫ T
0 e−rs Is ds is

provided by Equation (10). From Equation (11), we infer that the integral of the discounted
number of deaths is:∫ T

0
e−rsDs ds =

µS0βγ

(α + µ)γ+1

∫ T

0
e−rsΓl(γ + 1, s(α + µ)) ds.

Integrating by parts leads to the following result:

∫ T

0

e−rs

(α + µ)γ+1 Γl(γ + 1, s(α + µ)) ds =

[
− e−rs

r (α + µ)γ+1 Γl(γ + 1, s(α + µ))

]s=T

s=0

−
∫ T

0

e−rs

r
d
ds

(∫ s

0
e−(α+µ)vvγdv

)
ds .

The integral in this last expression may also be reformulated in terms of an incomplete
lower gamma function:

∫ T

0

e−rs

r
d
ds

(∫ s

0
e−(α+µ)vvγdv

)
ds =

1
r

∫ T

0
e−(r+α+µ)ssγ ds

=
1

rθγ+1 Γl(γ + 1, Tθ) .

Combining these results leads to Equation (15) and the fair premium comes from the
actuarial equilibrium equation.

5. Empirical Illustration

We fit the model to data about the COVID-19 outbreak in Belgium, Germany, Italy
and Spain. The first three countries are selected because they have reported the highest
death rates in Europe during the 2020 first wave of COVID-19. In comparison, Germany
has better managed the spread of the virus but the distribution of infected individuals over
time has decreased at a lower pace than other countries considered in this study. We use
the datasets from the library “coronavirus1” in R which provides daily time-series of the
number of deaths and detected cases of COVID from the beginning of 2020 up to the end
of July. We choose as starting date the day when the number of confirmed cases passes
above a threshold set to 0.005% of the total population of the country. As the model is
designed for modeling a single epidemic wave, the ending date is set to the 15th of June
2020, which corresponds to the end of the lockdown period in the considered countries.
Figure 1 shows these time series and Table 1 reports some statistics of the datasets. For
Spain, the number of confirmed cases or deaths is negative for a few days. This is due to
retrospective corrections.

1 See, https://github.com/RamiKrispin/coronavirus, package developed by Rami Krispin.

https://github.com/RamiKrispin/coronavirus
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Figure 1. Graphs of the number of COVID-19 reported cases and deaths from March to June, for
Belgium, Germany, Italy and Spain.

Table 1. Statistics about the time series of deaths and confirmed COVID cases.

Country Starting
Date

Number of
Days

Number of
Infected

Individuals

Number of
Deaths

Population
Size, S0

Belgium 7/3/2020 101 59,991 9661 11,589,623
Germany 8/3/2020 100 186,883 8807 83,770,952

Italy 27/2/2020 110 236,837 34,359 60,461,826
Spain 7/3/2020 101 243,709 27,131 46,934,632

Both the SIR and our model aim to describe the evolution of the number of infected
persons, It. As the data sets only report new confirmed cases, we assume that contami-
nated individuals remain infected, on average, for 12 days, which is slightly less than the
duration of the quarantine imposed, e.g., in Belgium (14 days) after being in touch with
a contaminated person. If

(
Iobs
t

)
t=1,...,nobs

is the time series of observations and nobs is the

number of days, parameters are obtained by a weighted least-square minimization:

(α̂ + µ, γ̂, β̂) = arg min
∑nobs

k=1 ωk

(
Ik − Iobs

k

)2

∑nobs
k=1 ωk

, (16)

where Ik is the value of It at time tk. As the impacts of α and µ on It are indistinguishable,
we first estimate their sum. The annualized mortality rate is estimated as the ratio of
the total number of deaths on the cumulated number of infecteds forecast by the model,
multiplied by 365. Given that the COVID testing was far from being generalized in March,
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it is likely that the number of infected cases was higher than the one reported. In order
to take this into account in the estimation procedure, more importance is granted to most
recent daily observations as follows:

ωk = 0.05 k ∈ {1, ..., 25} ,
ωk = 0.5 k ∈ {36, ..., 73} ,
ωk = 1.5 k ≥ 74 .

(17)

These weights are chosen in order to obtain the best compromise fitting both the tail
and the peaks of the It curve. The results of the calibration procedure are reported in
Table 2.

Table 2. Parameter estimates for the model ruled by Equation (1) (unit of time t: year). The SSE is the
value of the optimization criterion in Equation (16).

α̂ γ̂ β̂ µ̂ tmax(days) Imax SSE

Belgium 40.718 4.74 6.606 4.457 38 17,829 535,988
Germany 40.633 3.124 3.693 1.239 27 65,665 12,513,688

Italy 30.878 3.382 3.709 3.931 35 65,103 3,093,842
Spain 46.631 3.937 6.979 2.966 29 89,479 24,203,834

We benchmark the capacity of Equation (1) to model the evolution of the infected
population with the SIR model, fitted by least-square minimization. Our numerical experi-
ments reveals that the SIR model fails to replicate the curve of It. The only way to fit this
model consists to consider that S0 is also a parameter. Parameter estimates are reported
in Table 3. Figure 2 compares observed to forecast It with our and SIR models. The SIR
offers at a first sight an excellent fit but considering that S0 is adjustable is hard to justify.
Furthermore, the adjusted S0 are considerably smaller than the real size of considered
populations. This confirms that our approach is a reliable alternative compared to the
SIR model.

Table 3. Parameter estimates of the SIR model.

Adjusted Ŝ0 α̂SIR β̂SIR µ̂ SSE

Belgium 38,203 12.407 107.76 4.457 16,109
Germany 128,250 16.816 131.649 1.239 1,372,666

Italy 118,250 10.616 113.425 3.931 1,175,335
Spain 171,750 15.914 146.516 2.966 2,743,222

Next, we use parameter estimates in order to evaluate the fair premium rates of an
insurance plan, such as described in Section 4. Two cases are considered. In the first one,
collected premiums cover exclusively medical expenses. An allowance of 1000 EUR per
day is paid during the treatment (c = 365,000 EUR on a yearly basis). The second plan
covers exclusively the death risk: a lump sum capital of 200,000 EUR is paid at the decease
of an infected patient. The duration of both plans is six months and the risk-free rate is set
to 2%. Tables 4 and 5 report the fair premium rates calculated with our approach and the
SIR model, respectively, for Belgium, Germany, Italy and Spain. We also test the sensitivity
of these rates to variations of parameters. Per country, premium rates computed with our
approach or the SIR model are similar. The premium rates for both benefits (62.38 EUR and
42.35 EUR per year) for Germany are the lowest due to the low number of confirmed cases
and deaths reported by this country. The death coverage is the most expensive for Belgium
(338 EUR/year), whereas Italy and Spain are in the same range (230.52 EUR and 232.57
EUR). The healthcare benefit is most expensive in Spain and Belgium (143.1 EUR/year and
138.54 EUR/year).
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Figure 2. Comparison of fitted It with observed ones and those computed with the SIR model.

Table 4. Fair premium rates with the model in (1). Duration T = 0.5 year and r = 2%.

b c Fair p β +
1%

β −
1%

α +
1%

α −
1%

γ +
1%

γ −
1%

Be 365,000 0 138.54 145.23 132.09 131.58 145.93 136.83 140.32
0 200,000 338.35 354.7 322.59 321.36 356.41 334.19 342.71

Ge 365,000 0 62.38 64.35 60.45 59.95 64.94 60.21 64.65
0 200,000 42.35 43.69 41.04 40.70 44.09 40.88 43.89

It 365,000 0 107.02 110.68 103.44 102.95 111.28 103.89 110.27
0 200,000 230.52 238.42 222.81 221.77 239.7 223.78 237.53

Sp 365,000 0 143.1 148.82 137.54 136.64 149.94 140.5 145.8
0 200,000 232.57 241.87 223.54 222.07 243.68 228.35 236.95

Table 5. Fair premium rates with the model (1). Duration T = 0.5 year and r = 2%.

b c Fair p, SIR βSIR + 1% βSIR − 1% αSIR + 1% αSIR − 1%

Be 365,000 0 142.43 142.45 142.4 141.38 143.49
0 200,000 347.84 347.89 347.79 345.29 350.43

Ge 365,000 0 61.86 61.86 61.85 61.28 62.44
0 200,000 42.00 42.00 41.99 41.61 42.39

It 365,000 0 97.95 97.95 97.94 97.24 98.66
0 200,000 210.98 211.00 210.97 209.47 212.52

Sp 365,000 0 141.51 141.52 141.51 140.33 142.72
0 200,000 229.99 230 229.98 228.07 231.95
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6. Time-Changed Extension

The model introduced in Section 3 is fully deterministic. In practice, we observe
random fluctuations of the number of infected persons. In order to replicate such random
variations, we propose two stochastic extensions of Equation (1). The first one developed in
this section consists of replacing the time t by a stochastic clock, also called a subordinator.
This clock is an increasing positive process denoted by (τt)t≥0, defined on a probability
space Ω endowed with a probability measure P and its natural filtration (Ft)t≥0. We
consider that τt is a gamma process, i.e., τt is gamma-distributed with expectation and
variance equal to λt. The probability density function of τt is given by

fτt(x) = 1x>0
xλt−1e−x

Γ(λt)
, (18)

where Γ(a) =
∫ ∞

0 xa−1e−xdx is the standard gamma function such that Γ(a + 1) = aΓ(a)
for a > 0. A straightforward calculation shows that the characteristic function for the
gamma process is given by

E
(

eiuτt
)
= (1− iu)−λt

= e−tψ(u) ,

where ψ(u) = λ ln(1− iu) is the characteristic exponent and u ∈ R. This Lévy–Khinchine
representation of the characteristic function reveals that τt is also a Lévy process. Indeed,
ψ(u) may be rewritten as the following integral:

ψ(u) =
∫ ∞

0
λx−1e−x(1− eiux)dx ,

from which we infer that the Lévy measure of τt is ν(dx) = λx−1e−x1(x≥0)dx. τt is a process
with finite variations. Therefore, for any function f (t, τt) of time and of the subordinator,
Itô’s lemma for semimartingales states that

d f (t, τt) =
∂ f (t, τt)

∂t
dt + f (t, τt− + ∆τt)− f (τt−)) .

Whereas the Ft−expectation of its infinitesimal variation is

E(d f (t, τt)|Ft) =
∂ f (t, τt)

∂t
dt +

∫ ∞

0
( f (t , τt− + x)− f (τt−)) λ x−1e−xdx dt .

The time-changed version of the deterministic model is obtained by replacing t with
the chronometer τt. The dynamics of the population of infectious individuals is then:

It = S0e−(α+µ)τt(βτt)
γ t ≥ 0, (19)

where α, β, µ, γ ∈ R+. Using Itô’s lemma and first-order Taylor developments, we infer that:

dIt = S0e−(α+µ)(τt−+∆τt)(β(τt− + ∆τt))
γ − S0e−(α+µ)τt−(βτt−)

γ

= It−
(
−(α + µ)∆τt +

γ
τt−

∆τt

)
+O

(
(∆τt)

2
)

.
(20)

This first-order approximation emphasizes the strong relation between the determinis-
tic and the time-changed dynamics. Parameters α and µ may still be interpreted as recovery
and death rates, but over a random time interval of size ∆t. The contagion rate per capita
at time t is equal to γ

τt−
for a period ∆t. The next proposition gives the first two moments

of (It)t≥0.
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Proposition 3. The expected number of infected persons at time t is equal to:

E(It | F0) =
S0βγΓ(γ + λt)

(α + µ + 1)γ+λtΓ(λt)
, (21)

whereas its variance is given by the following relation:

V(It | F0) = S2
0β2γ

 Γ(2γ + λt)

(2α + 2µ + 1)2γ+λtΓ(λt)
−
(

Γ(γ + λt)

(α + µ + 1)γ+λtΓ(λt)

)2
 . (22)

Proof. The expectation of It is rewritten in its integral form:

E(It | F0) = S0

∫ ∞

0

uλt−1e−u

Γ(λt)
e−(α+µ)u (βu)γ du

=
S0βγ

Γ(λt)

∫ ∞

0
uγ+λt−1e−(α+µ+1)u du .

Next, we do a change of variable v = (α + µ + 1)u in order to obtain Equation (21).
We obtain the moments of second order in a similar manner:

E
(

I2
t | F0

)
= S2

0

∫ ∞

0

uλt−1e−u

Γ(λt)
e−2(α+µ)u (βu)2γ du

=
S2

0β2γ

Γ(λt)

∫ ∞

0
u2γ+λt−1e−(2α+2µ+1)u du

=
S2

0β2γΓ(2γ + λt)

(2α + 2µ + 1)2γ+λtΓ(λt)
.

Equation (22) is the difference of this second moment and of the square of the expecta-
tion.

Notice that the maximum of the epidemics is reached at tmax with τtmax = γ
α+u . The

cumulated number of deaths is the time-changed version of Equation (11):

Dt = µS0βγ(α + µ)−γ−1Γl(γ + 1, τt(α + µ))

= µS0βγ(α + µ)−γ−1
∫ τt

0
(α + µ)uγe−udu

= µS0βγ
∫ τt

0
vγe−(α+µ)vdv .

(23)

We use Itô’s lemma and first-order Taylor developments to check that the dynamics of
Dt is compliant with the one of It:

dDt = µS0βγ
∫ τt−+∆τt

τt−
vγe−(α+µ)vdv

≈ µ S0(β τt−)
γe−(α+µ)τt−︸ ︷︷ ︸
It−

∆τt +O
(
(∆τt)

2
)

.
(24)

which is the stochastic equivalent equation to (6). This equation confirms that the infinites-
imal variation of Dt is a fraction µ∆τt of the population of infecteds. Unfortunately, the



Risks 2021, 9, 3 12 of 28

expectation and variance of the number of deaths only admit a semiclosed form expression
and their valuation requires numerical integration:

E(Dt | F0) = µS0βγ
∫ ∞

0

xλt−1e−x

Γ(λt)

∫ x

0
vγe−(α+µ)vdv dx

=
µS0βγ

Γ(λt)(α + µ)γ+1

∫ ∞

0
xλt−1e−x ∫ (α+µ)x

0 uγe−udu dx

=
µS0βγ

Γ(λt)(α + µ)γ+1

∫ ∞

0
xλt−1e−xΓl(γ + 1, x(α + µ)) dx .

(25)

and

E
(

D2
t | F0

)
= (µS0βγ)2

∫ ∞

0

xλt−1e−x

Γ(λt)

(∫ x

0
vγe−(α+µ)vdv

)2
dx

=
(µS0βγ)2

Γ(λt)(α + µ)2γ+2

∫ ∞

0
xλt−1e−x

(∫ (α+µ)x

0
uγe−udu

)2

dx

=
(µS0βγ)2

Γ(λt)(α + µ)2γ+2

∫ ∞

0
xλt−1e−x(Γl(γ + 1, x(α + µ)))2 dx .

(26)

The variance of the cumulated number of deaths up to time t is therefore:

V(Dt | F0) =
(µS0βγ)2

Γ(λt)(α + µ)2γ+2

[∫ ∞

0
xλt−1e−x(Γl(γ + 1, x(α + µ)))2 dx

−
(∫ ∞

0
xλt−1e−xΓl(γ + 1, x(α + µ)) dx

)2
]

.
(27)

The size of the population of susceptible at time t ≥ 0 is deduced from the relation
St + It + Dt = S0 and is given by the following expression:

St = S0 − S0e−(α+µ)τt(β τt)
γ−

µS0βγ(α + µ)−γ−1Γl(γ + 1, τt (α + µ)) .

The expected size of the population of susceptible is simply equal to E(St | F0) =
S0 −E(Dt | F0)−E(It | F0) where E(It | F0) and E(Dt | F0) are respectively provided by
Equations (21) and (25).

If we consider the insurance plan introduced in Section 4, the fair premium rate that
finances expected benefits is such that

p =
b
∫ T

0 e−rsE(Is | F0) ds + c
∫ T

0 e−rs E(dDs | F0)∫ T
0 e−rsE(Ss | F0) ds

. (28)

Contrary to the deterministic model, the integrals present in this last expression do
not admit a closed-form expression but can easily be approached by a sum over a partition
of the interval [0, T]. If we consider a partition {s0 = 0, s1, ..., sm = T} of equispaced times
and if we note by ∆m the length of interarrival times, the integrals are computed as:
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∫ T

0
e−rsE(Ss | F0) ds ≈

m

∑
i=1

e−rsiE(Ssi |F0)∆m ,

∫ T

0
e−rs E(dDs | F0) ≈

m

∑
i=1

e−rsi
(
E(Dsi |F0)−E

(
Dsi−1 |F0

))
,

∫ T

0
e−rsE(Is | F0) ds ≈

m

∑
i=1

e−rsiE(Isi |F0)∆m .

In the next Section, we present a different stochastic extension of our deterministic
model that leads to analytical expressions for these integrals.

7. Reinsurance in the Time-Changed Model

The introduction of randomness in the dynamic of the epidemic allows us to price
various reinsurance coverages. As illustration, we consider excess-of-loss contracts provid-
ing a compensation if the number of infected or the number of deaths exceeds a certain
threshold. The following proposition provides an analytical expression for a reinsurance
treaty that plans the payment of an amount C (It − K) at time t, where C, K ∈ R+, if It > K.
This contract is similar to a financial option with the underlying being the size of the
infected populations. The risk-free rate is noted r and the model parameters for It and τt
are assumed the same under the pricing and real measures2.

Proposition 4. The value of an excess-of-loss reinsurance covering an excessive number of infec-
tious is equal to:

Ce−rtE
(
(It − K)+ | F0

)
=

Ce−rt

(
S0βγΓu(λt + γ , (α + µ + 1)uK)

Γ(λt)(α + µ + 1)λt+γ
− K

Γu(λt, uK)

Γ(λt)

)
,

(29)

where uK is the positive solution of the following equation

ln S0 − (α + µ)u + γ ln β + γ ln u = ln K , (30)

and Γu(γ + 1, x) =
∫ ∞

x uγe−udu is the upper gamma incomplete function.

Proof. We insert the definition of It and rewrite the expectation as an integral with respect
to the density of τt:

Ce−rtE
(
(It − K)+ | F0

)
= Ce−rt

∫ ∞

0

uλt−1e−u

Γ(λt)

(
S0e−(α+µ)u(βu)γ − K

)
+

du .

The integrand is positive if and only if u is above uK, such as it is defined in Equation (29).
This allows us to rewrite the integral as a difference

∫ ∞

0

uλt−1e−u

Γ(λt)

(
S0e−(α+µ)u(βu)γ − K

)
+

du =

S0βγ

Γ(λt)

∫ ∞

uK

uλt+γ−1e−(α+µ+1)u du− K
∫ ∞

uK

uλt−1e−u

Γ(λt)
du ,

2 In practice, the reinsurer would use a set of parameters more conservative than the estimated one in order to include a safety margin.
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where the second term is the ratio KΓu(λt,uK)
Γ(λt) . We replace the integrating variable by v that

is (α + µ + 1)u = v and infer that the first term is:

∫ ∞

uK

uλt+γ−1e−(α+µ+1)u du =

∫ ∞
(α+µ+1)uK

vλt+γ−1e−v dv

(α + µ + 1)λt+γ

=
Γu(λt + γ , (α + µ + 1)uK)

(α + µ + 1)λt+γ
,

and we recover Equation (29).

Notice that, in practice, the reinsurer will price reinsurance treaties with a set of
parameters more conservative than the ones fitted to data in order to include a safety
loading. The time-changed model can also be used for the evaluation of contracts covering
an excess of mortality caused by the epidemic. To illustrate this, we consider a treaty that
plans the payment of an amount C (Dt − K) at time t, where C, K ∈ R+, if Dt > K. The
value of this contract is similar to an option written on Dt. If r is the risk-free rate, uK is the
positive solution of the equation:

Γl(γ + 1, u(α + µ)) =
K

µS0βγ(α + µ)−γ−1 ,

then the value of the reinsurance treaty is:

Ce−rtE
(
(Dt − K)+ | F0

)
=

Ce−rt

(
µS0βγ

(α + µ)1+γ

∫ ∞
uK

uλt−1e−u

Γ(λt)
Γl(γ + 1, u(α + µ)) du− K

KΓu(λt, uK)

Γ(λt)

)
.

(31)

Unfortunately, the integral in this last equation does not admit a simple analytical
form and must be computed numerically.

8. Estimation and Illustration

In order to illustrate the ability of the time-changed model to explain the evolution of
a pandemic, we fit it to COVID-19 data sets for Belgium, Germany, Italy and Spain. As in
Section 5, parameter estimates are found by a weighted least-square minimization between
expected and observed sizes of infected population. We use the same weights as those in
Equation (17). Given that the remission and mortality rates have the same impact on It, we
estimate their sum. The force of mortality is next found by considering the ratio deaths
to the number of infected persons adjusted by a time coefficient. More precisely, given
that τt has increments that are gamma-distributed, E(∆τt) = λ dt. From Equation (24), the
expectation is E(dDt|F0) ≈ µE(It−|F0)λ dt. Using a moment-matching approach, we then
estimate the mortality rate as follows:

µ̂ =
∑nobs

k=1 dDobs
k

λ̂
(
∑nobs

k=1 Ik
)
dt

.

Parameter estimates are presented in Table 6 and Figure 3 compares the expected
number of infectious obtained with the time-changed model and its deterministic counter-
part. Globally, we do not observe any similarities between parameters of time-changed
and deterministic models. The goodness of fit, measured by the SSE, is also worse for the
time-changed version than for the deterministic one. The time change does not fit the right
tail of the It curve better and overestimates, on average, the number of infected individuals
at the beginning of the pandemic.

Table 7 shows the fair premium rates for the healthcare and death insurances valued
in Section 5. Since the time-changed model predicts on average higher healthcare bene-
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fits during the growing phase of the outbreak, the healthcare insurance is slightly more
expensive than the one valued with the deterministic model. The death benefits and death
insurance premium rates are comparable in both models.

Table 6. Parameter estimates for the model ruled by Equation (19) (unit of time t: year). The SSE is
the value of the optimization criterion in Equation (16).

α̂ γ̂ β̂ µ̂ λ̂ SSE

Belgium 44.806 105.021 1.113 0.149 27.776 1,005,094
Germany 17.208 29.866 1.295 0.041 29.353 18,592,728

Italy 12.407 25.088 1.09 0.149 25.307 5,906,960
Spain 67.311 81.602 2.133 0.112 23.427 40,570,084
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Figure 3. Comparison of E(It|F0) with the observed values and those computed with the determin-
istic model of Section 6.

Table 7. Fair premium rates with the model in (1). Duration T = 0.5 year and r = 2%.

b c Fair p Model 1, Fair p λ + 1% λ − 1%

Be 365,000 0 148.76 138.54 147.29 150.26
0 200,000 336.76 338.35 336.77 336.76

Ge 365,000 0 63.98 62.38 63.34 64.62
0 200,000 41.9 42.35 41.9 41.9

It 365 000 0 110.99 107.02 109.9 112.11
0 200 000 228.32 230.52 228.32 228.31

Sp 365,000 0 161.6 143.1 160 163.23
0 200,000 227.73 232.57 227.73 227.73

If we limit our analysis to a comparison of the expected number of infected individuals
and premium rates, we have the impression that both deterministic and time-changed
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models are quite similar. However, this is far from being the case, given that the second
one is stochastic. In order to emphasize the different behavior of this model, we simulate
2000 samples paths with parameter estimates obtained for Italy. Figure 4 shows three
of these paths and the average over the 2000 simulations. We see that the time-changed
model generates curves of It with a different shape than the average sample path. The
simulated peaks of the epidemic may be far above the observed one and the timing of this
peak displays a high variance. The sample paths are also much more discontinuous than
the real evolution of It.
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Time (year)

I(
t)

Average

Sim 1

Sim 2

Sim 3

Figure 4. Simulation of three sample paths for It and comparison with the simulated average of
1000 sample paths for Italy.

It is also interesting to look at the distribution of the cumulated number of deaths.
Figure 5 presents the histograms of Dt for 2000 simulations at time t = 0.1 and t = 0.25.
For t = 0.1, we have a bimodal distribution, whereas the number of cumulated deaths after
a quarter is nearly deterministic. This is explained by the type of randomness driving the
model. The stochastic clock either delays or advances the time of the epidemic peak, but
it does not modify the ultimate total number of deaths caused by the pandemic. Table 8
reports the expectations, standard deviations, 5% and 95% percentiles of Dt, computed by
simulations for the other countries. We draw from those figures the same conclusions. The
discontinuities of It and the bimodal behavior of Dt being unlikely in practice (at least for
COVID-19), we investigate in the next section, an alternative stochastic extension of the
deterministic model.
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Figure 5. Histograms of the cumulated number of deaths at time t = 0.1 and t = 0.25 for the Italian
population. 2000 simulations.

Table 8. Expectations, standard deviations, 5% and 95% percentiles of simulated Dt. 2000 simulations.

E(D0.25)
√
V(D0.25) E(D0.10)

√
V(D0.10)

D0.10:
5%

D0.10:
95%

Percentile Percentile

Belgium 9574.027 1005.182 5138.069 4504.648 0 9718.298
Germany 8708.296 432.437 6288.87 3403.712 0 8741.932

Italy 33,735.473 3497.944 19071.41 14,798.839 0 34,382.855
Spain 26,533.64 1116.695 19,959.171 10,804.449 0 26,602.104

9. A Jump Diffusion Model

This section presents an alternative stochastic model for the dynamic of the infected
population that includes random noise and local resurgence of the epidemic. This model
also has an excellent analytical tractability and is estimated by a peak over threshold
approach. We consider a probability space (Ω,F , P) on which a Brownian motion (Wt)t≥0
and a compound jump process (Lt)t≥0 are defined. We denote by (Nt)t≥0 a Poisson process
with intensity λ ∈ R+, and by (Jk)k∈N ∼ J i.i.d. random variables defined on R+ with a
probability density function denoted by f J(.). The expectation and variance of a jump are
denoted by µJ = E(J) and V(J) = σ2

J , respectively. The compound Poisson process (Lt)t≥0
is defined as the sum of jumps Jk up to time t:

Lt =
Nt

∑
k=1

Jk . (32)

We assume that the dynamics of the population of infected individuals is ruled by the
following geometric jump diffusion:

dIt = −(α + µ)Itdt + It
γ

t
dt + σItdWt + It dLt , (33)
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where α, µ, γ
t are the recovery, mortality and contagion rates, respectively. The term σItdWt,

with σ ∈ R+, is a Gaussian noise, whereas It dLt introduces random discontinuities caused
by the discovery of clusters of infection. The next proposition presents the solution of
Equation (32). Under the assumption that It is ruled by Equation (32), the size of the
population of infected people is equal to:

It = S0e−
(

α+µ+ σ2
2

)
t+σWt(βt)γ

Nt

∏
k=1

(1 + Jk) . (34)

This result is a direct consequence of Itô’s lemma for jump diffusion. In order to
evaluate an insurance plan, we need to adopt a dynamic for the cumulated number of
deaths, Dt. As in previous models, we assume that the instantaneous number of death
at time t is a proportion µdt of the population of sick persons. The differential equation
ruling St, the population of susceptible individuals, guarantees that the total size of the
population remains equal to S0:{

dDt = µItdt ,
dSt = It

(
α− γ

t
)
dt− σItdWt − It− dLt .

The number of deaths is Dt = µ
∫ t

0 Isds, whereas St = S0 − It − Dt. Of course, we
could include a random noise in the dynamics of Dt, but this would not fundamentally
modify the results developed in the remainder of this section. The next proposition presents
the first two moments of It.

Proposition 5. The expectation and variance of the number of infected persons at time t are
respectively equal to

E(It|F0) = S0e(λµJ−(α+µ))t(βt)γ , (35)

and

V(It|F0) = S2
0e−2(α+µ)t(βt)2γe2λµJ t

(
e(σ2+λE(J2))t − 1

)
. (36)

Proof. Given that Wt is independent from Nt, the expectation of It is equal to a product of
expectations:

E(It|F0) = S0e−(α+µ)t(βt)γE
(

e−
σ2
2 t+σWt |F0

)
E
(

Nt

∏
k=1

(1 + Jk)|F0

)
.

As σWt ∼ N (0, σ2t) is normal, E
(

e−
σ2
2 t+σWt |F0

)
= 1. The moment-generating

function of Nt is E
(
eωNt

)
= eλt(eω−1) and Nt is independent for (Jk)k=1...,Nt

. Therefore, we
conclude that the expectation of the product of jumps is:

E
(

Nt

∏
k=1

(1 + Jk)|F0

)
= E

(
Nt

∏
k=1

(
1 + µJ

)
|F0

)
= E

(
eNt ln(1+µJ)|F0

)
= eλµJ t .

Combining these elements leads to Equation (35). In a similar manner, we calculate
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the second order moment of It—that is,

E
(

I2
t |F0

)
= S2

0e−2(α+µ)t(βt)2γE
(

e−σ2t+2σWt |F0

)
E

( Nt

∏
k=1

(1 + Jk)

)2

|F0

 .

Since e2σWt is log-normal, E
(
e2σWt |F0

)
= e2σ2t and E

(
e−σ2t+2σWt |F0

)
= eσ2t. Further-

more, the expectation of the square of the product of jumps is equal to:

E

( Nt

∏
k=1

(1 + Jk)

)2

|F0

 = E

E

( Nt

∏
k=1

(1 + Jk)

)2

|F0 ∨ Nt

|F0


= E

(
Nt

∏
k=1

E
(
(1 + J)2

)
|F0

)
= E

(
eNt ln(1+2µj+E(J2))|F0

)
= eλ(2µJ+E(J2))t .

We obtain, then, the second moment of It and the variance in (36).

The next proposition presents an analytical formula to evaluate expected healthcare
benefits paid up to time t. This result is similar to the one for the deterministic model,
except that it takes into account the frequency and the average size of jumps.

Proposition 6. Let us consider a discount rate r ∈ R+. The integral of expected discounted
numbers of infected is equal to:∫ t

0
e−rsE(Is|F0)ds =

S0βγ

θ
γ+1
J

Γl
(
γ + 1, θJt

)
, (37)

where θJ = r + α + µ− λµJ and Γl(γ + 1, x) is the gamma lower incomplete function.

The proof is similar to the one of Proposition 1. We insert the expression (34) of
E(Is|F0) in the integral and obtain Equation (37). Contrary to the time-changed model, the
expected number of deaths and its discounted integral admit closed-form expressions in
terms of incomplete lower gamma functions.

Corollary 2. The expected cumulated number of deaths caused by the epidemic at time t ≥ 0 is
equal to

E(Dt | F0) =
µS0βγ(

α + µ− λµJ
)γ+1 Γl

(
γ + 1, t

(
α + µ− λµJ

))
. (38)

If θJ = (r + α + µ)− λµJ , the expectation of the integral of discounted variation of Dt is
equal to:

E
(∫ T

0
e−rs dDs | F0

)
=

µS0βγ

θ
γ+1
J

Γl
(
γ + 1, θJt

)
. (39)

Let us again consider the insurance plan introduced in Equation (4) with a maturity
T. The premium rate is still denoted as p. The rate of healthcare expenses is b and the
lump sum benefit in case of death is c. The next proposition presents the fair premium rate
that ensures the equilibrium of this plan under the assumption that the pricing and real
measures are identical.
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Proposition 7. For the benefit rates (b, c), the fair premium rate that guarantees the actuarial
equilibrium of the plan is given by:

p =
(b + cµ)S0βγθ

−γ−1
J Γl

(
γ + 1, θJ T

)∫ T
0 e−rsE(Ss | F0) ds

, (40)

where the denominator is equal to:∫ T

0
e−rsE(Ss | F0) ds =

S0

r
(
1− e−rT)− S0βγ

θ
γ+1
J

Γl
(
γ + 1, θJ T

)(
1 +

µ

r

)
+

µS0βγe−rTΓl
(
γ + 1 ,

(
α + µ− λµJ

)
T
)

r
(
α + µ− λµJ

)γ+1 .
(41)

Proof. The fair premium rate in a stochastic framework is given by Equation (28). The in-
tegral

∫ T
0 e−rsE(Is | F0) ds is provided by Equation (37). As St = S0 − It − Dt, we infer that

∫ T

0
e−rsE(Ss | F0) ds =

S0

r
(
1− e−rT)− S0βγ

θ
γ+1
J

Γl
(
γ + 1, θJ T

)
−
∫ T

0
e−rsE(Ds | F0) ds ,

(42)

where
∫ T

0 e−rsE(Ds | F0) ds admits the following integral representation:

∫ T

0
e−rsE(Ds | F0) ds = µ

∫ T

0
e−rs

∫ s

0
E(Iu | F0) du ds

= µS0βγ
∫ T

0
e−rs

∫ s

0
e(λµJ−(α+µ))uuγ du ds .

Given that
∫ s

0 e(λµJ−(α+µ))uuγ du =
Γl(γ+1 ,(α+µ−λµJ)s)

((α+µ−λµJ))
γ+1 , the double integral in this last

expression becomes:

∫ T

0
e−rs

∫ s

0
e(λµJ−(α+µ))uuγ du ds =

[
−1

r
e−rsΓl

(
γ + 1 ,

(
α + µ− λµJ

)
s
)(

α + µ− λµJ
)γ+1

]s=T

s=0

+
1
r

∫ T

0
e(λµJ−(r+α+µ))ssγds

= −
e−rTΓl

(
γ + 1 ,

(
α + µ− λµJ

)
T
)

r
(
α + µ− λµJ

)γ+1

+
Γl
(
γ + 1 , θJ T

)
rθ

γ+1
J

Therefore, the integral of the discounted expected number of deaths is equal to:

∫ T

0
e−rsE(Ds | F0) ds = −

µS0βγe−rTΓl
(
γ + 1 ,

(
α + µ− λµJ

)
T
)

r
(
α + µ− λµJ

)γ+1

+
µS0βγΓl

(
γ + 1 , θJ T

)
rθ

γ+1
J

.
(43)

Combining expressions (42) and (43) leads to Equation (41).
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10. Reinsurance in the Jump Diffusion Model

As in the time-changed model, we can evaluate various reinsurance coverages by
Monte Carlo simulations. When jumps are constant and equal to J = κ ∈ R+, reinsurance
treaties with a payoff dependent on It can be valued with a closed-form expression. In this
case, conditionally to Nt = n jumps, It is log-normal:

(It |Nt = n) = S0(βt)γeX(n)
t ,

where X(n)
t ∼ N

(
µX(t, n) ; σ2

X(t, n)
)
. The mean and variance of X(n)

t are respectively
equal to

µX(t, n) = n ln(1 + κ)−
(

α + µ +
σ2

2

)
t ,

σ2
X(t, n) = σ2t .

The following proposition provides an analytical expression for a reinsurance treaty
that plans the payment of an amount C (It − K) at time t, where C, K ∈ R+, if It > K.
Model parameters are assumed to be the same under the pricing and real measures.

Proposition 8. Let us define

d2(t, n) =
1

σX(t, n)

(
ln
(

K
S0(βt)γ

)
− µX(t, n)

)
, (44)

d1(t, n) = d2(t, n)− σX(t, n) . (45)

The value of an excess-of-loss reinsurance covering an excessive number of infected is equal to:

Ce−rtE
(
(It − K)+ | F0

)
=

Ce−rt
∞

∑
n=0

P(Nt = n)
(

S0(βt)γeµX+
σ2

X
2 Φ(−d1(t, n))− KΦ(−d2(t, n))

)
,

(46)

where P(Nt = n) = (λt)n

n! e−λt and Φ(.) is the cumulative probability distribution of a standard
normal random variable.

Proof. We can rewrite the price of this treaty as a sum of conditional expectations with
respect to Nt:

Ce−rtE
(
(It − K)+ | F0

)
=

Ce−rt
∞

∑
n=0

P(Nt = n)E
((

S0(βt)γeX(n)
t − K

)
+
| F0

)
.

The conditional expectations may be developed as the difference of two integrals:

E
((

S0(βt)γeX(n)
t − K

)
+
| F0

)
= S0(βt)γ

∫ ∞

eµX+σX u≥ K
S0(βt)γ

eµX+σXu e−
u2
2√

2π
du

−K
∫ ∞

eµX+σX u≥ K
S0(βt)γ

e−
u2
2√

2π
du .

(47)

The second term, after a change of variable, is equal to:

K
∫ ∞

eµX+σX u≥ K
S0(βt)γ

e−
u2
2

√
2π

du = K
∫ ∞

u≥ 1
σX

(
ln
(

K
S0(βt)γ

)
−µX

) e−
u2
2

√
2π

du

= KΦ(−d2(t, n)) .
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where d2(t, n) = 1
σX(t,n)

(
ln
(

K
S0(βt)γ

)
− µX(t, n)

)
. In the same manner, the first term of

Equation (47) becomes:

∫ ∞

eµX+σX u≥ K
S0(βt)γ

eµX+σXu e−
u2
2

√
2π

du = eµX+
σ2

X
2

∫ ∞

u≥ 1
σX

(
ln
(

K
S0(βt)γ

)
−µX

) e−
u2−2σX u+σ2

X
2

√
2π

du

= eµX+
σ2

X
2

∫ ∞

s≥ 1
σX

(
ln
(

K
S0(βt)γ

)
−µX

)
−σX

e−
s2
2

√
2π

ds

= eµX+
σ2

X
2 Φ(−d1(t, n)) ,

and we retrieve the result.

By construction, the cumulated number of deaths up to time t is proportional to the
integral of It. Unfortunately, the statistical distribution of Dt is unknown and, therefore,
reinsurance treaties covering excess of mortality must be valued by simulations.

11. Estimation of the Jump Diffusion Model

The jump diffusion model is fitted in two steps. Let us recall that E(Ik|F0) =
S0eηtk (βtk)

γ where η = λµJ − (α + µ) and tk are the observation times for k = 1, ..., nobs.
The first step consists in estimating β, γ and η by minimizing the weighted sum of squares
between the expected and observed numbers of infected persons:

(η̂, γ̂, β̂) = arg min
∑nobs

k=1 ωk

(
E(Ik|F0)− Iobs

k

)2

∑nobs
k=1 ωk

. (48)

Given that the expectation of It in the jump diffusion approach coincides with the
deterministic model, we obtain the same estimates β̂, γ̂ as those in Table 2. In the second
stage, we fit the jump process by the peak over threshold method. From Equations (33)
and (35), we define Yt as the ratio of the process It on its expectation:

Yt :=
It

E(It|F0)
= e

(
−λµJ− σ2

2

)
t+σWt

Nt

∏
k=1

(1 + Jk) .

Using Itô’s lemma, we infer that Yt is driven by the following infinitesimal dynamics:

dYt

Yt
= +σdWt + dLt − λµJdt . (49)

The value of Yt at time tk is noted Yk and we define Zk =
Yk−Yk−1

Yk
the discrete approxi-

mation of dYt
Yt

. If the time lag of one day between two successive observations is noted ∆,
according to Equation (49), Zk is approximately the sum

Zk ≈ εk + ∆Lk − λµJ∆ , (50)

where εk ∼ N
(

0, σ
√

∆
)

and ∆Lk = Ltk − Ltk−1 . A jump is believed to occur when Zk is
above a threshold, noted by g(q), where q is a confidence level. To define the threshold, we
fit a pure Gaussian process to the time series of Zk ∼ µz∆ + σzW∆. The unbiased estimators
of µz and σz are:

µ̂z =
1

nobs∆

nobs

∑
j=1

Zj σ̂2
z =

1
(nobs − 1)∆

nobs

∑
j=1

(
Zj − µ̂z

)2 .
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If Φ(.) denotes the cumulative distribution function of a standard normal, g(q) is set
to the q percentile of the Gaussian process: g(q) = µ̂z∆ + σ̂z

√
∆Φ−1(q). The time sk of the

kth jump is therefore:

sk = min{tj ∈ {t1, ..., tn} | zj ≥ g(q) , j ≥ k} .

and the sample path of (Nt)t≥0 is approached by the following time series:

N(tk) = max{j ∈ N | sj ≤ tk} .

Under the assumption that the diffusion is negligible with respect to jumps, we
assimilate zk − µz∆ to Jk when a jump is detected at time tk.

We have applied this estimation procedure to COVID-19 data sets for Belgium, Ger-
many, Italy and Spain. The estimates β̂ and γ̂ are found by minimization of weighted
least squares as shown in Equation (48). We use the same weights as those used to fit
previous models (see Equation (17)). The other parameters are estimated by the peak over
threshold method and are reported in Table 9. Given that the number of confirmed cases
in March is underestimated due to the penury of tests, we mainly focus on the period
from mid-April to mid-June to calculate the time series of Zk. The threshold confidence
level is set to 90%. Figure 6 shows those series and the threshold level. For Spain, we
have not taken two abnormally high and low values into account due to retrospective
adjustments of the number of confirmed cases. For Belgium and Spain, the Zk values
have a mean close to zero and the variance seems more or less constant for different time
windows. This confirms that the postulated dynamic in Equation (50) for Zk is acceptable
for those countries. For Italy, the variance of Zk seems to raise during the month of June,
but their mean is close to zero. For Germany, the Zk values have a residual linear increasing
trend and their variance seems to increase as it does for Italy. The consequence is that
the peak-over-threshold method tends to overestimate the size and frequency of jumps.
Nevertheless, this is a conservative approach from the insurer point of view and, therefore,
we accept these parameter estimates. For the same reason, we do not consider negative
jumps.

Table 9. Parameter estimates for the model ruled by Equation (33) (unit of time t: year). The SSE is
the value of the optimization criterion in Equation (16).

α̂ γ̂ β̂ µ̂ σ̂ λ̂ µ̂J σ̂J SSE

Belgium 41.944 4.740 6.606 4.457 0.589 20.278 0.06 0.007 535,988
Germany 43.758 3.125 3.693 1.239 0.727 30.845 0.101 0.022 12,513,688

Italy 31.88 3.382 3.709 3.931 0.375 13.519 0.074 0.024 3,093,842
Spain 51.465 3.937 6.979 2.966 1.512 25.347 0.191 0.026 24,203,834

By construction, the expectation of the jump diffusion model corresponds to the
deterministic model of Section 3. Therefore, the fair premium rate of an insurance plan
covering healthcare expenses and death benefits are the same with both approaches. We
refer the reader to the previous Section 5 for numerical examples. However, the jump
diffusion model can generate a wide variety of sample paths for It. This point is illustrated
in Figure 7 that shows 1000 simulated paths and the expectation of It over a quarter. Notice
that these simulations are performed with the assumption that jumps J are constant and
equal to µJ .
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Figure 6. Plot of Zk time series for Belgium, Germany, Italy and Spain. The threshold is calculated
with q = 90%.

Contrary to the time-changed approach, the jump diffusion model generates smoother
sample paths which all appear as likely scenarios for the evolution of the infected popula-
tion. These graphs also display the expected and the observed number of infected cases for
each country. It reveals that the real sample path of It for each country is a likely realization
of the jump diffusion model, at least for t ≥ 0.07. At the beginning of the pandemic, the real
sample path of It bounds from below simulated trajectories. This is a direct consequence
of choices made in Section 5 for calibrating the average trend of the model. At the start
of the epidemic, testing polices were in the process of being deployed and the number of
infected cases was probably underestimated. This motivates our choice of underweighting
observations collected in the early ascending phase. We also remark that the peak of
infected cases is significantly higher than the observed one in some scenarios. To illustrate
this, Table 10 reports the 90% and 95% percentiles of the simulated maximum of infected
cases. The ratios of these 95% percentiles on real numbers of infected cases at the epidemic
peak range from 121.23% for Italy up to 202.49% for Spain.

Table 11 reports statistics about the simulated number of deceases over one quarter.
Globally, the mean and standard deviation of D0.25 seems credible and the distribution of
Dt does not display any bimodality as in the time-changed model.
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Figure 7. Simulations of 1000 sample paths of It, with parameter estimates in Table 9 and constant J.
The thick dotted blue line is the expectation of It, whereas the thick black line is the observed number
of infected cases.

Table 10. Statistics about the observed and simulated epidemic peaks (1000 simulations).

Maximum 90% Percentile 95% Percentile Ratio 95%
Number of Max. Number Max. Number Percentile on

Infected of Infected of Infected Max. Cases

Belgium 18,225 23,702 25,260 138.6%
Germany 71,219 93,506 100,764 141.49%

Italy 70,233 79,827 85,141 121.23%
Spain 97,400 164707 197,224 202.49%

Table 11. Expectation, standard deviation and 5%–95% percentiles of simulated cumulated number
of deaths, Dt. 1000 simulations.

D0.25 Expected Standard 5% 95%
Deviation Percentile Percentile

Belgium 9379.404 1850.385 6664.908 12,717.609
Germany 8576.788 2079.589 5671.554 12,163.033

Italy 33,166.37 4704.36 26,483.31 41,795.193
Spain 24,948.895 12,595.321 10,641.107 46,904.273

Table 12 presents the prices of a few excess-of-loss reinsurances with It and Dt as
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underlying risks. The treaties on It have a threshold K equal to one-fourth of the total
number of reported cases over the considered period of time (see Table 1). The time
horizon of the contract and the capital by unit in excess are set to t = 0.1 year and C = 1,
respectively. Prices are calculated with the closed-form expression (46). We use Monte
Carlo simulations for the valuation of reinsurance contracts covering an excessive mortality.
The threshold K is set to the observed number of deaths observed over the considered
period (see Table 1). The time horizon and the capital by unit in excess are respectively set
to t = 0.1 year and C = 1.

Table 12. Prices of excess of loss reinsurance treaties. r = 2%.

K e−r 0.10E
(
(I0.10 − K)+

)
K e−r 0.25E

(
(D0.25 − K)+

)
ine Belgium 14,998 3154.536 9661 610.114

Germany 46,721 11,411.364 8807 705.235
Italy 59,209 7088.726 34,359 1362.358
Spain 60,927 25,778.164 27,131 3739.249

12. Conclusions

The valuation of actuarial commitments requires us to integrate over time the size of
infectious and susceptible populations. Since existing compartment models do not admit
closed-form expressions for these quantities, actuarial calculations are in this framework
computationally intensive and subject to numerical errors. The three models proposed in
this article remedy to this issue and present a high degree of analytical tractability.

The first model is purely deterministic. The basic reproduction number, R0, decays
with time in order to replicate the impact of preventive measures to curb the epidemic.
Contrary to the SIR, the empirical tests performed on COVID-19 data confirm that the
model explains the first wave of such an epidemic. Furthermore, the insurance premium
rate admits a closed-form expression within this framework. The main disadvantage
of this approach is the absence of random effects that prevents to evaluate the incurred
extreme costs.

The second model is a time-changed extension of the deterministic one. The time of
the pandemic peak is randomized by observing the process on a stochastic time scale. The
main advantage of this approach is that it preserves the main features of the deterministic
model and leads to comparable premium rates. Nevertheless, the simulation study reveals
that simulated scenarios display a different trend from what is observed for the COVID-19
outbreak. Furthermore, the stochastic clock modulates the speed at which the pandemic
evolves but do not modify the sizes of infected and susceptible populations.

This article proposes a second stochastic extension of the deterministic model based on
a jump diffusion process. In this approach, the rate at which patients cease to be considered
as infected is noised by a Brownian motion. This allows us to randomize the duration of
illness. The apparition of local clusters of infected causing a sudden increase of the number
of contagious cases is replicated by the jump component. This model presents several
interesting features. As it behaves, on average, as the deterministic approach does, it keeps
a high analytical tractability for actuarial applications. On the other hand, the model is
able to generate realistic noised sample paths of infected cases. This feature allows us
to price reinsurance contracts, such as excess of loss treaties, that cannot be valued in a
deterministic framework. Last but not least, it is remarkably easy to estimate its parameters
with the proposed “peak-over-threshold” method.

Notice that, by construction, the contagion rate per capita decreases as 1
t , the size

of the infected population, converges to zero after having reached the epidemic peak. In
a similar way to the SIR model, the solutions proposed in this article are then designed
for explaining a single epidemic wave with, eventually, random recovery duration and
discovery of local clusters of infected individuals.
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This observations opens the way to further research. Instead of a deterministic starting
date for the epidemic, we can replace it by the jump time of a self-exciting point process,
e.g., Hainaut and Moraux (2019). In its simplest version, the intensity of this process is
persistent and suddenly increases as soon as a jump occurs. Within this approach, the
starting date of the pandemic becomes random and the probability of observing a new
epidemic wave raises after the first one but decay exponentially to its baseline level. Other
possible extensions consist to randomize the mortality rates or to develop a compartmental
version with subpopulations of infected individuals.
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