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Abstract: The concordance probability, also called the C-index, is a popular measure to capture the
discriminatory ability of a predictive model. In this article, the definition of this measure is adapted
to the specific needs of the frequency and severity model, typically used during the technical pricing
of a non-life insurance product. For the frequency model, the need of two different groups is tackled
by defining three new types of the concordance probability. Secondly, these adapted definitions deal
with the concept of exposure, which is the duration of a policy or insurance contract. Frequency
data typically have a large sample size and therefore we present two fast and accurate estimation
procedures for big data. Their good performance is illustrated on two real-life datasets. Upon these
examples, we also estimate the concordance probability developed for severity models.

Keywords: C-index; performance measure; efficient algorithm; frequency; severity; clustering

1. Introduction

One of the main tasks of an insurer is to determine the expected number of claims
that will be received for a certain line of business and how much the average claim will
cost. The former is typically predicted using a frequency model, whereas the latter is
obtained by a severity model. The multiplication of these expected values then yields the
technical premium (for more information, we refer to Frees (2009); Ohlsson and Johansson
(2010)). Alternatively, one can also model the frequency and severity jointly (Shi et al.
2015). Predictive analytics are a key tool to develop both frequency and severity model
in a data-driven way. Note that insurers also use a variety of predictive analytic tools
in many other applications such as underwriting, marketing, fraud detection and claims
reserving (Frees et al. 2014, 2016; Wuthrich and Buser 2020). The main goal of predictive
analytics is typically to capture the predictive ability of the model of interest. Important
aspects of the predictive ability of a model are the calibration and the discriminatory
ability. Calibration expresses how close the predictions are to the actual outcome, while
discrimination quantifies how well the predictions separate the higher risk observations
from the lower risk observations (Steyerberg et al. 2010). Even though both calibration and
discrimination are of utmost importance when constructing predictive models in general,
the discrimination probably is considered to be slightly more important in the context of
non-life insurance pricing. The technical premium should first and foremost capture the
difference in risk that is present in the portfolio, which is exactly captured by discriminatory
measures. The concordance probability typically is the most popular and widely used
measure to gauge the discriminatory ability of a predictive model.

In case we have a discrete response variable Y, it equals the probability that a randomly
selected subject with outcome Y = 0 has a lower predicted probability than a randomly
selected subject with outcome Y = 1 (Pencina and D’Agostino 2004). Here, 71(X) equals
P(Y = 1]X), with X corresponding to the vector of predictors. In other words, the
concordance probability C can be formulated as:
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Furthermore, in a discrete setting and in the absence of ties in the predictions, this
concordance probability equals the Area Under the ROC Curve (AUC) (Reddy and Aggar-
wal 2015). This ROC curve is the Receiver Operating Characteristic curve, suggested by
Bamber (1975). It represents the true positive rate against the false positive rate at several
threshold settings. The AUC is a popular performance measure to check the discriminatory
ability of a binary classifier, as can be seen in the work of Liu et al. (2008) for example.

Even if definition (1) looks very promising to assess the discriminatory ability of
frequency models, it assumes that the outcome variable is a binary rather than a count
random variable. Moreover, since the policy runtime or exposure of an insurance contract
typically is included as an offset variable in the frequency model, definition (1) needs to be
extended to accommodate the presence of such an offset variable.

When dealing with a continuous outcome Y, this basic definition is typically adapted
as:

We say that the pairs (77(X;), Y;) and (77(X;), ;) are concordant when sgn(r(X;) —
7(X;)) = sgn(Y; — Y;). Hence, the probability that a randomly selected comparable pair
of observations with their predictions is a concordant pair, is another way of formulating
the definition of the concordance probability. Note that definition (2) is a very popular
measure in the field of survival analysis, where the continuous outcome corresponds to the
time-to-event variable (Legrand 2021). For the severity model, it can be argued whether
it is important to discriminate claims for which the observed cost hardly differs, hence
an extension of definition (2) will be considered. Since the estimation of any definition of
the concordance probability is time-consuming for larger datasets, we will also consider
time-efficient and accurate estimation procedures.

In this paper, we will focus on the concordance probability applied to frequency and
severity models used to construct a technical premium P for an insurance contract. This
technical premium typically corresponds to the product of the expected probability of
occurrence of the event (E(YN)) times the expected cost of the event (E(Y®)). Note that
these expectations are often conditional on some variables, such that the technical premium
corresponds to

P= E(YN|XN) x E(Y5|X5),

with XN and X the set of variables that are used to model each random variable. From
here on, (YN, XN) will be referred to as the frequency data and (Y*, X°) to as the severity
data.

First, we introduce in Section 2 the real datasets that will be used throughout this
article, together with the frequency and severity models based on them. Section 3 covers
the required changes of the general concordance probabilities (1) and (2), such that they
can be applied in an insurance context. Next, we develop several algorithms that calculate
these new definitions in an accurate and time-efficient way. These algorithms will be
introduced in Section 4, where they are immediately applied to the introduced models.
Finally, the conclusion is given in Section 5.

2. Datasets and Models

In this section, we first introduce some real datasets. Next, we explain the frequency
and severity models using these datasets.

2.1. Datasets

The datasets explained in this section, are all obtained from the pricing games of the
French Institute of Actuaries, which is a game that can be played by both students and
practitioners. First, we discuss the one of the 2015 pricing game and next we consider
the ones of the 2016 pricing game. Both datasets are publicly available in the R-package
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CASdatasets' and contain data on which both a frequency and severity model can be
applied.

2.1.1. 2015 Pricing Game

The pgl5training dataset was used for the 2015 pricing game of the French Institute of
Actuaries organized on 5 November 2015 and contains 100,021 third-party liability (TPL)
policies for private motor insurance. Each observation pertains to a different policy and a
set of variables has been collected of the policyholder and the insured vehicle.

For reasons of confidentiality, most categorical levels have an unknown meaning. This
dataset can be used for the frequency and severity model, and the selected and renamed
variables are explained in Appendix A. The two most important ones are claimNumb
and claimCharge, which will be the dependent variables of the frequency and severity
analysis respectively. The variable claimNumb shows the number of third-party bodily
injury claims. For policies for which more than two claims were filed during the considered
exposure, the value was set to 2. This adaptation is needed for the measures that are
presented in Section 3. The variable claimCharge represents the total cost of third-party
bodily injury claims, in euro. Finally, exposure will be used as an offset variable during the
analysis of the frequency data. It is the percentage of a full policy year, corresponding to the
run time of the respective policy. Note that 72.58% of the observations have an exposure
equal to one.

2.1.2. 2016 Pricing Game

pglétrainpol and pglétrainclaim are two datasets that were used for the same pricing
game of the French Institute of Actuaries one year later, in 2016. Both of them can be
found in the R -package CASdatasets. The first dataset contains 87,226 policies for private
motor insurance and can be used for the frequency model. The pglétrainclaim dataset
contains 4568 claims of those 87,226 TPL policies and combined with the pglétrainpol
dataset, the severity model can be constructed. Policies are guaranteed for all kinds of
material damages, but not bodily injuries.

Once again, most categorical levels have an unknown meaning for reasons of con-
fidentiality. The selected and renamed variables of the pglé6trainpol and pglé6trainclaim
dataset are explained in Appendix A. The two most important ones are claimNumb and
claimCharge, which will be the dependent variables of the frequency and severity analysis
respectively. The variable claimNumb shows the number of claims. The policies for which
more than two claims were filed during the considered exposure, the value was once again
set to 2. This adaptation is needed for the measures that are presented in Section 3. The
variable claimCharge represent the claim size. Moreover, exposure will be used as an offset
variable during the analysis of the frequency data. It is the percentage of a full policy
year, corresponding to the run time of the respective policy. In this dataset, 14.16% of the
observations have an exposure equal to one.

Note that we only selected the 3969 observations that had a strictly positive claim, to
construct the severity model. Finally, we could merge the pglé6trainclaim and the pgl6trainpol
datasets based on the their policy number, begin date, end date and license number.

2.2. Models

In this subsection, we construct the frequency and severity models based on the
aforementioned datasets. It is important to know that the interest of this paper is not really
on the construction of the models, but on the calculation of the concordance probability of
the models once the predictions are available. For both models, we first split the required
dataset in a training and a test set. The training set is obtained by selecting 60% of the
observations of the entire dataset. The remaining 40% of the observations represent the
test set.
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2.2.1. Frequency

In order to obtain predictions of the frequency model, we consider a basic Poisson
model where the variable claimNumb is the response variable. The exposure is used as
an offset variable, and all other variables of the training set, apart from claimCharge, are
considered as predictor variables. Applying the frequency model on the test set of the 2015
(2016) pricing game, we obtain 40,008 (34,890) pairs of observations and their corresponding
predictions. However, the goal of this paper is to calculate the concordance probability of
these frequency models for big datasets. Therefore, we will also consider a bootstrap of
these pairs of observations and predictions, resulting in 1,000,000 pairs for each dataset.

2.2.2. Severity

In order to obtain predictions for the severity, we consider a gamma model where the
ratio of claimCharge over claimNumb is the response variable, and the weights are equal
to the variable claimNumb. This is a popular approach for severity models, as explained in
Appendix B, based on the book of Denuit et al. (2007). All other variables of the training
set, apart from exposure and claimNumb, are considered as predictors. Applying the
severity model on the test set of the 2015 (2016) pricing game, we obtain 1837 (1588) pairs
of observations and their corresponding predictions. However, the goal of this paper is to
calculate the concordance probability of these severity models for big datasets. Therefore,
we will also consider a bootstrap of these pairs of observations and predictions, resulting
in 1,000,000 pairs for each dataset.

3. Concordance Probability in an Insurance Setting

In this section, the general definitions (1) and (2) of the concordance probability will
be modified to the use for frequency and severity models.

3.1. Frequency Models

The general definition of the concordance probability will in this section be modified
to a concordance probability that can be used for frequency models. The basic definition
(1) requires the definition of two groups, based on the number of events that occurred
during the duration of the policy. However, non-life insurance contracts typically have
an exposure of maximum one year. Hence, it is unlikely that more than two events will
take place during this (short) period. Therefore, three groups will be defined: policies
that experienced zero events, one event, and two events or more, respectively represented
by the 0-, 1- and 2-group. These groups result in the following three definitions of the
concordance probability for frequency models:

Coit+ = P(”N(Xi) <N (x;) [ YN =0, Y,N > 1),
Coae =P(N(Xi) < 2N(X)) [ Y] =0, YN > 2), 3)
Cioy = P(nN(Xi) <X YN =1, YN > 2),

where 7tV (-) refers to the predicted frequency of the frequency model and YV to the ob-
served claim number. The set of definitions (3) has several interesting interpretations. First
of all, Cg 14 (Cp2+) evaluates the ability of the model to discriminate policies that did not
encounter accidents from policies that encountered at least one (two) accident(s). Further-
more, Cq 1 quantifies the ability of the model to discriminate policies that encountered one
accident from policies that encountered multiple accidents. In other words, C; 5 quantifies
the ability of the model to discriminate clients that could just have been unfortunate versus
clients that are (probably) accident-prone.

However, these concordance probabilities do not take the concept of exposure into
account. This is the duration of a policy or insurance contract, and plays a pivotal role
in frequency models. In order to make sure that the pair is comparable, the definition of
the concordance probability needs to be extended to deal with the concept of exposure
as well. As such, two main possibilities can be imagined which ensures comparability of
the given pair. For the first possibility, the member of the pair that experienced the most
accidents needs to have an exposure that is equal to or lower than the exposure of the other
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member of the pair. These pairs are sort of comparable since the member of the pair that
experienced the most accidents did not have a longer policy duration than the member
of the pair that experienced the fewest accidents. The set of definitions (3) can then be
altered as:

oty =P(nN(x) < V(X)) | YN =0, YN =1, 4> ),

C02,2A+ = P(”N(Xi) < ﬂN(Xj) |YN =0, Y]'N >2, A > )\j>, 4

Crdy =P(aN(x) < AV (X) YN =1, YN 22, 4 2 ),

where A; corresponds to the exposure of observation i. However, the above set of definitions
(4) runs into trouble for pairs where there is a considerable difference in exposure. In
order to understand why this is the case, we need to have a look at the structure of
the predictions of a Poisson regression model, which corresponds for observation i to
N(X;) = A;exp(BX;). This reveals that the prediction is mainly determined by the
exposure A; and the linear predictor BX;. Therefore, when the predictions of a Poisson
regression model of a pair of observations are compared, two possibilities can occur when
the pair is comparable according to the above set of definitions (4). One member of the pair
can have a higher prediction than the other member due to a difference in risk, as expressed
by the linear predictor and as is desirable, or due to a mere difference in exposure, which
would obscure the analysis. A possible solution would be to set the exposure values of
all observations equal to 1 when making predictions, such that one only focuses on the
difference in risk between the different observations. However, this is undesirable as we
would like to evaluate the predictions of the Poisson model that are used to compute the
expected cost of the insurance policy, and for this the exposure is a key ingredient. In other
words, the set of definitions (4) are of little practical use within the domain of insurance

and will no longer be considered.

For the second possibility, the exposure A of both members of the pair need to be
more or less the same, in order to ensure their comparability. Incorporated in the set of
definitions (3), we get:

iy (n) =P(mV(x) < a(x) [ YN =0, ¥V 21, |- A <),
oo (m) = P(nV(X) < aN(xX) [ YN =0, YN 22, |4 -4 <), (5)
Ciay (1) = P (X)) < aV(x) [ YN =1, ¥ 22, [ - A < 7).

Here, 1y is a tuning parameter representing the maximal difference in exposure between

both members of a pair that is considered to be negligible.

All former definitions are global measures, meaning that the concordance probability
is computed over all observations of the dataset, where comparability is considered as the
sole exclusion criterion for a given pair. The following definitions show a local concordance
probability, by taking a subset of the complete dataset based on the exposure:

Core () = P(7N(X) < V(X)) | YN =0, YN 21, {Ai A} € A £1/2)),
Coar (A1) =P(a¥(X) < 2N(X)) [ YN =0, YN 22, {Ai, A} € M £4/2)), ©)
Chy (A7) = P(nN(Xi) <aNx) [ YN =1, YN >2, {A 0} € [Ai’y/Z]).

In the above set of definitions, A is the parameter corresponding to the exposure
value for which the local concordance probability needs to be computed. In practice,
C™ . (v) = C7 . (1,7) because the main mass of the data is located at a full exposure. The
appealing aspect of this set of definitions is that it allows the construction of a (A, C(A, 7))
table, i.e., an evolution of the local concordance probabilities in function of the exposure.
However, the disadvantage of this plot is that one has to choose the values of A and 7.
Assume one takes y equal to 0.05 and A € {0.05,0.15,...,0.95}. In this case, observations
with for example exposure 0.49 and 0.51 will not be comparable, although their exposures
are very close to each other. To eliminate this issue, we first define two groups:

¢ O-group: group with the largest number of elements, hence the group with the
smallest number of events,
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e l-group: group with the smallest number of elements, hence the group containing the
largest number of events.

When we consider for example CT,, (A,7), the O-group consists of the elements with
YN = 1 and the 1-group of the elements with YN > 2. Next, we apply following steps to
construct a better (A, C(A, 7)) plot:

1. Determine the pairs of observations and predictions belonging to the O-group and
the ones to the 1-group.
2. Define the number of unique exposures A within 1 and apply a for-loop on them:

®  Select the elements in 1 with exposure A;.

e Select the elements in O with exposure in [max(0, A; — ), min(1, A; + )]
e Determine C(A;, ), the concordance probability on these two subsets.

e Define m;, the number of comparable pairs used to calculate C(A;, 7).

3. The global concordance probability C(-y) can be rewritten as:

) Z?:H ] z+11( mt(x;) > 7 (x]) yi€L, yj € O, Mj _/\i| < ')/)
Zr'l: j= 1+1I( (xl)#ﬁ(x]) yiel, y]E(D |)‘j_)\i|<'7)
_Z Z"O I(72(x;) > 7A(x) , |Aj— A <)
Yt Z"O I(7(x;) # (x) , A — A <)
Zl 1 mzc()‘ 'Y)
2?11 m;
=Y wiC(A;, ), @)
i
where 1 equals the number of observations, 1 (1) the number of observations in ©
(1), n} the number of unique exposures in 1 and w; = n'/”" .
Zi:11 mi

4. Construct the plot of C(A;, ) in function of A;.

Since the loop iterates over all unique exposures in the 1-group, which is the smallest
one, the x-axis can have a rather rough grid. Therefore, one can also easily adapt the
previous steps by looping over the unique exposures in the O-group, resulting in a plot
with an x-axis that has possibly a finer grid. In Figures 1 and 2, both the rough and the
fine version of the (A, Cg’1, (A, 7)) plot are constructed for the test sets of the 2015 and 2016
pricing game respectively. We choose 7 to be 0.05, which is approximately equal to the
length of one month. For the test set of the 2015 (2016) pricing game, the maximal weight
w; is 0.96 (0.32) for the observations with exposure 1.

However, the plots are hard to interpret, since there are large differences depending
on which group is iterated. Especially in Figure 2, we see that for example C(0.08,0.05)
is much larger when iterating over the O-group (fine grid), than when iterating over the
1-group (rough grid). For the fine grid version, we use the elements of the O-group with
exposure equal to 0.08, together with the elements of the 1-group with an exposure between
0.08 and 0.13. This subset leads to a high value for C(0.08,0.05), meaning that the selected
elements of the 1-group have in general a higher prediction than the ones of the O-group.
However, for the rough grid version, we use the elements of the O-group with an exposure
between 0.08 and 0.13, together with the elements of the 1-group with an exposure equal
to 0.08. This is yet another subset, and this time we often see higher predictions for the
elements in the O-group, leading to a small value for C(0.08,0.05). Considering different
subgroups, leads to a difficult interpretation of these plots. However, it is important to
know that both versions of this local plot lead to the same global concordance probability,
based on equality (7).
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Figure 1. Plot of the concordance probability C§; , (A,0.05) in function of the exposure A, for the
frequency model based on the dataset of the 2015 pricing game.
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Figure 2. Plot of the concordance probability Cg; , (A,0.05) in function of the exposure A, for the
frequency model based on the dataset of the 2016 pricing game.

1.

A solution to the lack of interpretability of both local plots (fine and rough grid), is to
consider a weighted mean of them, with the weights based on the number of comparable
pairs. This weighted-mean-plot is constructed for both datasets and can be seen in Figure 3.
For the interpretability, it is important to see that the weighted-mean-plot is equivalent
with applying the following two steps:

element.

the weights are based on the total number of comparable pairs.

For every observation i, construct C(A;, y), with A; the exposure of the considered

For every considered exposure A;, determine the weighted mean of C(A;, ), where
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Figure 3. Weighted-mean-plot for C§; , (A, 0.05), constructed as the weighted mean of the fine grid
and the rough grid plot.

From Figure 3b, we see that the basic Poisson model for the frequency model based
on the dataset of the 2016 pricing game results in small concordance probabilities when
considering observations with an exposure around 0.25 or 0.75. Hence, near these exposure
values, the model has a hard time distinguishing the two considered groups.

3.2. Severity Models

The general definition (2) of the concordance probability will in this section be modi-
fied to a concordance probability that can be used for severity models. Since it might be of
little practical importance to distinguish claims from one another that only slightly differ
in claim cost, the basic definition can be extended to a version introduced by Van Oirbeek
et al. (2021):

Cv) = P(m*(X) > (X)) | ¥ = F = v), ®)

where v > 0. Furthermore, 71°(-) refers to the predicted claim size of the severity model
and Y? to the observed claim size. In other words, the claims that are to be considered are
those of which the claim size has a difference of at least a value v. Hereby, pairs of claims
that makes more sense from a business point of view are selected. Also, a (v,C(v)) plot can
be constructed where different values for the threshold v are chosen, as to investigate the
influence of v on (8). Interestingly, C(0) corresponds to a global version of the concordance
probability (as expressed by definition (2)), while any value of v > 0 results in a more local
version of the concordance probability.

Focusing on the datasets introduced in Section 2, we determine the value of v such
that x% of the pairwise absolute differences of the observed values is smaller than v, with
x € {0,20,40}. Note that v equal to zero is not a popular choice in business, since they are
not interested in comparing claims that are nearly identical. The size of the considered test
sets still allow to consider all possible pairs between the observations in order to determine
the absolute differences between observations belonging to the same pair. However, this is
no longer the case for the bootstrapped versions, since this would result in 499,999,500,000
pairs and corresponding differences. Since the observations are all sampled from the
original test sets, we know that the number of unique values is much lower than 1,000,000.
Hence, we can use the technique discussed in Van Oirbeek et al. (2021), resulting in a fast
calculation of the values of v represented in Table 1. As can be seen, the difference between
the values for v determined on the original test set or on the bootstrapped dataset is very
small. Therefore, we will from here on only focus on the bootstrapped versions of the
test sets.
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Table 1. The values for v such that x% of the absolute differences between the observed values is
smaller than v. This is done for the original test set and the bootstrap version, for the datasets of both
the 2015 and 2016 pricing game.

(a) 2015 Pricing Game (b) 2016 Pricing Game
x x
0% 20% 40% 0% 20% 40%
test 0.0000 844.11 2395.93 test 0.0000 377.83 825.09

bootstrap 0.0000 841.44 2391.00 bootstrap 0.0000 376.63 823.88

4. Time-Efficient Computation
For a sample of size 7, the general concordance probability is typically estimated as:
ot M _ S Y (7 (%) > 72(%), vi > v5)
ne Tt g LI Y 1(7(x) # 7(xg), vi > yj)

)

corresponding to the ratio of the number of concordant pairs 1. over the total number of
comparable pairs ;. The value 7T, (7;) refers to the estimated probability that a comparable
pair is concordant (discordant) respectively and I(-) to the indicator function. Note that
the extra condition 77(x;) # 7(x;) is added to the denominator to ensure that no ties in the
predictions are taken into account (Yan and Greene 2008).

Since this estimation method is not possible for large datasets, Van Oirbeek et al. (2021)
introduced several algorithms to approximate the concordance probability in an accurate
and time-efficient way. We also refer to that article for detailed information and an
extensive simulation study. However, new algorithms need to be developed for the
frequency setting to approximate the concordance probability dealing with the exposure,
and this will be the subject of Section 4.1. For the completeness, we apply the original
algorithms of Van Oirbeek et al. (2021) on the severity models in Section 4.2.

In this section, the approximations will be applied to the concordance probability for
the models discussed in Section 2.2. More specifically, we will use the bootstrap version
such that we have 1,000,000 pairs of observations and predictions to consider.

4.1. Frequency

The goal of this section is to approximate the concordance probability Cg’;, (0.05), as
defined in (5), in a fast and accurate way. This will be done for the frequency models of
Section 2.2, using the 1,000,000 bootstrapped pairs of observations and predictions. Note
that the same reasoning can be used for the other concordance probabilities defined in (5).

Before we can determine the bias of the concordance probability estimates, we need
to know its exact value. This can be determined by first splitting the considered dataset
in the O-group and the 1-group, as defined in Section 3.1. For the rough grid approach,
we iterate over the elements of the 1-group. In each iteration, we count the number of
predictions in the O-group that are smaller than the prediction of the considered element
of the 1-group. Summing up all these counts, divided by the number of considered pairs,
results in the exact concordance probability. Contrarily, we iterate over the elements of the
O-group for the fine grid approach. In each iteration, we count the number of predictions
in the 1-group that are larger than the prediction of the considered element of the 1-group.
Summing up all these counts, divided by the number of considered pairs, results in the
exact concordance probability.

In Table 2, one can see the timings that were necessary to calculate the exact value of
Co14 (0.05), which is 0.6670 (0.5905) for the bootstrap version of the 2015 (2016) pricing
game test set. The same was done for Cg; , (0.10), and hence, we can compare both to see
the effect of the parameter 7 on the run times. We cannot precisely draw a conclusion on
the effect of ¥ on the exact value of the concordance probability, since the exact value of
Co1, (0.10) equals 0.6658 (0.5925) for the bootstrap version of the 2015 (2016) pricing game
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test set. However, for the run times we see clearly larger run times when v is 0.10. This
can be explained by the fact that a larger value for  implies that we allow more pairs to
be compared. Moreover, the run times for the dataset of the 2015 pricing game are clearly
larger than the ones for the dataset of 2016. This can be explained by the fact that 73% of
the 2015 dataset are observations with an exposure equal to 1. Hence, these observations
belong to many comparable pairs. For comparison, only 14% of the observations of the
2016 pricing game dataset have an exposure equal to 1. This is confirmed by Table 3, which
shows the number of comparable pairs. From this table, one can also see that the number
of comparable pairs for the rough and fine grid approach are equal to each other. This was
expected since both approaches result in the exact same global concordance probability. A
final note on Table 2 is that it also contains the time to construct the weighted-mean-plot for
C(')N‘,l (7). Since this plot is constructed as the weighted mean of the fine and the rough grid
plot, the time to construct it equals the time to construct both the fine and rough grid plot.

Table 2. Computing time (s) to calculate the exact concordance probability Cg’; , (7) for the frequency
model on the 2015 and 2016 pricing game dataset. This is done for the fine grid, rough grid and
weighted-mean-plot approach.

Pricing Weighted-Mean-

% Game Fine Grid Rough Grid Plot
0.05 2015 264.58 320.46 585.04
’ 2016 73.42 80.12 153.54
0.10 2015 286.73 331.85 618.58
) 2016 115.86 132.15 248.00

Table 3. The number of comparable pairs that are used to exactly calculate Cg’; , (7) for the frequency
model on the 2015 and 2016 pricing game dataset. This is done for the fine grid, rough grid and
weighted-mean-plot approach.

Pricing . . . Weighted-Mean-
v Game Fine Grid Rough Grid Plot
0.05 2015 26,539,269,735 26,539,269,735 53,078,539,470
) 2016 5,631,834,056 5,631,834,056 11,263,668,112
0.10 2015 28,067,838,660 28,067,838,660 56,135,677,320
) 2016 9,023,978,424 9,023,978,424 18,047,956,848

4.1.1. Marginal Approximation

A first approximation for Cg;, (0.05) is based on the marginal approximation for
discrete variables of Van Oirbeek et al. (2021). More specifically, when we focus f.e. on the
fine grid approach, we approximate each local concordance probability Cg’; , (1;,0.05) by
its marginal approximation, with A; representing the unique exposures of the O-group.
These local approximations are denoted by CT/I,O,l +(A4,0.05), such that the first approxi-
mation for the global concordance probability Cg’;  (0.05) is obtained by C;LOJ 1+(0.05) =
Y wiC;LO,l +(A4,0.05), with w; representing the same weights as used in (7). A similar rea-
soning can be used to obtain a marginal approximation for the rough grid approach. Hence,
combining both as explained in Section 3.1 results in the weighted-mean-plot approach.

Such a marginal approximation CT,LOJ 1 (0.05) takes advantage of the fact that the
bivariate distribution of the predictions for considered elements of the O-group and the
1-group, Frx, (7o, 1), is equal to the product of Fr, (7o) and Fr, (717). Hence, when
a grid with the same g boundary values T = (1p = —oo, 13, .. ST Tyl = +oc0) for the
marginal distribution of both groups is placed on top of the latter bivariate distribution,
the probability that a pair belongs to any of the delineated regions only depends on the
marginal distributions F, (77p) and Fr, (7r1). Important to note is that Van Oirbeek et al.
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(2021) took the same g boundary values for each group. These boundary values were a set
of evenly spaced quantiles of the empirical distribution of the predictions of both the O-
group and the 1-group jointly. An extension on this idea is that we allow to have different
boundary values for each group. Hence, the boundary values of the O-group (1-group)
equal the quantiles of the empirical distribution of its predictions. This way of working
allows to consider the distribution of each group separately, but the disadvantage is that it
will increase the run time. The reason for this increment is that it will be more difficult to
determine which region of the grid contains concordant pairs, as can be seen in Figure 4.
Therefore, we will compare the original and the extended marginal approximation of the
concordance probability C, (0.05) for the frequency models of Section 2.2, using the
1,000,000 bootstrapped pairs of observations and predictions.

g 3
) >
1 i
B B
8 8
a T

03 04 05 06

Predictions 0-group Predictions 0-group
(a) Original (b) Extension

Figure 4. The different regions of the grid in which the concordant pairs (downward dashed region,
in green), the discordant pairs (upward dashed region, in red) and incomparable pairs (upward and
downward dashed region, in grey) are highlighted. This is done for the original and the extended
marginal approximation.

Table 4 shows the results of the original marginal approximation, hence using the
same boundary values for the considered O- and 1-group when calculating CT/LOJ 1 (0.05).
The bias clearly decreases for a higher number of boundary values, but, of course, this
coincides with a larger run time. Remarkably, the bias and run time for the marginal
approximation of Cg’y , (0.05) on the bootstrap of the predictions and observations of the
2016 pricing game dataset, are lower than the ones on the 2015 pricing game dataset. A
final conclusion on the run times is that, compared to the results in Table 2, the original
marginal approximation reduces the run time with at least 50%.

Table 5 shows the results of the extended marginal approximation (weighted-mean-
plot approach), hence allowing to have different boundary values for each group. In
Appendix C, we see similar results in Tables A1l and A2 for the fine and rough grid
approach respectively. A first conclusion is that when each group has the same number
of boundary values, the biases are higher than the ones of the original marginal method.
Figure 4 reveals a possible cause, since we clearly see an increase of regions containing
incomparable pairs for the extended approach. As a result, the concordance probability is
based on fewer comparable pairs, which is confirmed in Table 6. In this situation, we also
notice that the run times for the extended marginal approach are comparable with the ones
for the original marginal approach, as long as the number of boundary values is smaller
than 5000. For a larger number of boundary values, the extended marginal approximation
has a higher run time than the original one. In general, we may conclude from Tables 5, A1
and A2 that the bias decreases for a higher number of boundaries, which coincides with a
higher run time.
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Table 4. Bias and run time (s), the latter between brackets, for the original marginal approximation of

C{1+(0.05) on the 2015 and 2016 pricing game dataset. This is given for the fine grid, rough grid and

weighted-mean-plot approach, all for several different numbers of boundary values.

(a) 2015 Pricing Game
Fine Grid Rough Grid Weighted Mean
50 0.0032 (2.61) 0.0033 (5.82) 0.0033 (8.43)
100 0.0017 (2.83) 0.0017 (5.90) 0.0017 (8.73)
500 0.0003 (6.11) 0.0004 (7.42) 0.0004 (13.53)
1000 0.0002 (10.43) 0.0002 (9.00) 0.0002 (19.43)
5000 0.0000 (49.08) 0.0001 (25.58) 0.0001 (74.66)
10,000 0.0000 (100.64) 0.0001 (47.00) 0.0001 (147.64)
(b) 2016 Pricing Game
Fine Grid Rough Grid Weighted Mean
50 0.0018 (1.38) 0.0019 (3.18) 0.0018 (4.56)
100 0.0009 (1.28) 0.0009 (3.17) 0.0009 (4.45)
500 0.0002 (2.30) 0.0002 (4.29) 0.0002 (6.59)
1000 0.0001 (3.89) 0.0001 (5.61) 0.0001 (9.50)
5000 0.0001 (18.01) 0.0001 (17.27) 0.0000 (35.28)
10,000 0.0000 (34.46) 0.0000 (32.63) 0.0000 (67.09)

Finally, we also construct an approximation of the weighted-mean-plot for g’ , (A,0.05)

based on the original and extended marginal approximation, respectively shown in
Figures 5 and 6. These Figures show the result on the dataset of the 2015 and 2016
pricing game, using 50 boundary values for each group. In Appendix C, one can see
nearly identical results in Figures A1l and A2 while using the number of boundary values
that resulted in the lowest bias (in case of multiple scenarios, the one with the lowest run
time). Comparing these plots with the original ones shown in Figure 3, we see that both
the original and the extended marginal approximation give a weighted-mean-plot that
is almost the same as the exact one. Based on these plots, the bias and the run time, we
have a slight preference for the original marginal approximation where we use the same
boundary values for the O-group and the 1-group.

Table 5. Bias and run time (s), the latter between brackets, for the extended marginal approximation of C;l +(0.05) on the
2015 and 2016 pricing game dataset. This is given for the weighted-mean-plot approach and for several different numbers
of boundary values for the O- and 1-group.

(a) 2015 Pricing Game
1-Group
O-Group
50 100 500 1000 5000 10,000
50 0.0068 (8.09) 0.0045 (8.01) 0.0037 (9.37) 0.0035 (11.25) 0.0034 (25.85) 0.0033 (47.10)
100 0.0048 (8.60) 0.0032 (8.87) 0.0020 (10.00) 0.0018 (12.04) 0.0017 (28.37) 0.0017 (51.79)
500 0.0036 (11.95) 0.0021 (11.52) 0.0007 (12.96) 0.0005 (15.45) 0.0004 (40.01) 0.0003 (70.26)
1000 0.0035 (15.16) 0.0019 (14.13) 0.0005 (16.36) 0.0003 (19.52) 0.0002 (53.04) 0.0002 (89.64)
5000 0.0033 (48.17) 0.0017 (43.53) 0.0004 (43.84) 0.0002 (48.00) 0.0001 (140.12) 0.0000 (255.79)
10,000 0.0033 (87.43) 0.0017 (77.67) 0.0003 (80.44) 0.0002 (83.57) 0.0001 (180.38) 0.0000 (442.94)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500 1000 5000 10,000
50 0.0031 (4.33) 0.0026 (4.32) 0.0020 (4.84) 0.0019 (5.51) 0.0018 (10.61) 0.0018 (17.59)
100 0.0027 (4.45) 0.0018 (4.64) 0.0011 (4.76) 0.0010 (5.50) 0.0009 (10.89) 0.0009 (18.61)
500 0.0019 (5.56) 0.0011 (5.68) 0.0004 (6.35) 0.0003 (7.29) 0.0002 (15.14) 0.0002 (26.00)
1000 0.0018 (7.20) 0.0010 (6.99) 0.0003 (7.49) 0.0002 (9.03) 0.0001 (20.05) 0.0001 (33.66)
5000 0.0018 (18.34) 0.0009 (16.99) 0.0002 (18.31) 0.0001 (18.80) 0.0000 (48.38) 0.0000 (91.20)
10,000 0.0018 (32.46) 0.0009 (29.51) 0.0002 (30.66) 0.0001 (31.73) 0.0001 (68.76) 0.0000 (152.62)
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Table 6. Number of comparable pairs used in the original and extended marginal approximation of

C{1.+ (0.05) on the bootstrap of the predictions and observations of the 2015 and 2016 pricing game

dataset. This is done for several different numbers of boundary values.

(a) 2015 Pricing Game (b) 2016 Pricing Game
Original Extended

50 26,370,518,133 25,831,089,271 50 5,282,878,933 5,175,036,361
100 26,633,484,294 26,360,949,926 100 5,335,780,675 5,281,182,645
500 26,843,801,543 26,788,712,306 500 5,378,070,475 5,366,876,818
1000 26,870,083,565 26,842,431,537 1000 5,383,349,280 5,377,637,107
5000 26,891,057,651 26,885,420,717 5000 5,387,563,752 5,386,254,164
10,000 26,893,659,347 26,890,793,882 10,000 5,388,075,313 5,387,331,03
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Figure 5. Weighted-mean-plot for CT/LOJ 1 (A,0.05) based on the dataset of the 2015 and 2016 pricing
game. It is obtained by the original marginal approximation, using the same 50 boundary values for

the O- and 1-group.
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Figure 6. Weighted-mean-plot for CT/LOJ 1 (A,0.05) based on the dataset of the 2015 and 2016 pricing
game. It is obtained by the extended marginal approximation, using 50 boundary values that can

differ for the O- and 1-group.
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4.1.2. k-Means Approximation

Another approximation for Cg; , (0.05) is based on the k-means approximation for
discrete variables of Van Oirbeek et al. (2021). More specifically, when we focus for
example on the fine grid version, we approximate each local concordance probability
Co14 (Ai,0.05) by its k-means approximation, with A; representing the unique exposures
of the O-group. These local approximations are denoted by Czk M1+ (Ai,0.05), such that
the first approximation for the global concordance probability Cg’j, (0.05) is obtained
by C:leoll +(0.05) =Y winMlorl +(A4,0.05), with w; representing the same weights as
used in (7). A similar reasoning can be used to obtain a k-means approximation for the
rough grid version. Hence, combining both as explained in Section 3.1 results in the
weighted-mean-plot approach.

Such a k-means approximation CTM’OJ +(0.05) applies within both groups a k-means
clustering algorithm on the considered predictions. Once the clustering algorithms are
applied, only the cluster centroids are used to determine CkzM,O,l 1 (0.05). Hence, a more
precise estimate will be obtained as k increases. Important to note is that Van Oirbeek et al.
(2021) took the same number of clusters for each group. An extension on this idea is that we
allow to have a different number of clusters for each group. The results of this extended ap-
proximation can be found in Table 7 for the weighted-mean-plot approach. In Appendix D,
Tables A3 and A4 show the results for the fine and rough grid approach respectively. A first
conclusion regarding the bias is that it is very low for all considered number of clusters,
since a maximum bias of 0.14% was observed over all considered scenarios. This is clearly
lower than the comparable bias of the original marginal approximation. However, due
to the randomness and the very small values, we do not always see a lower bias for a
higher number of clusters. The run time, however, clearly increases for a higher number of
clusters. Moreover, these run times are much higher than the ones of the original marginal
approximation. Sometimes, they are even higher than the run times to exactly calculate the
concordance probability. Despite the rather high run times, the weighted-mean-plots are
very close to the exact ones as can be seen in Figures 7 and A3, the latter in Appendix D.
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(a) 2015 pricing game (b) 2016 pricing game

Figure 7. Weighted-mean-plot for CEM,OJ 1 (A,0.05) based on the dataset of the 2015 and 2016 pricing
game. It is obtained by using the number of clusters that resulted in the highest bias.

A final approximation for Cg;, (0.05) is denoted by C(:a,kM,O,l . (0.05) and is con-
structed to have an approximation based on the k-means approximation for discrete vari-
ables of Van Oirbeek et al. (2021), without having the high run times as for C:M,O,l 4+ (0.05).
These high run times were the result of applying two k-means clustering algorithms for
each considered exposure A;. To determine this new approximation C?p,kM,O,l ,(0.05), a
k-means clustering algorithm is only applied twice within both groups: first on the expo-
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sures and afterwards on the predictions. Hence, only four k-means clustering algorithms
are applied. Finally, C;,k M,0,1+ (0.05) is obtained by applying Equation (7) on the cluster
centroids instead of on the exact exposures and predictions. The results of this third ap-
proximation can be found in Table 8 for the weighted-mean-plot approach. In Appendix D,
Tables A5 and A6 show the results for the fine and rough grid approach respectively.

Table 7. Bias and run time (s), the latter between brackets, for the approximation CfM,OJ 1 (0.05) on
the 2015 and 2016 pricing game dataset. This is given for the weighted-mean-plot approach and for
several different numbers of clusters for the O- and 1-group.

(a) 2015 Pricing Game
1-Group
O-Group
50 100 500
50 —0.0014 (36.82) 0.0002 (47.30) —0.0002 (116.86)
100 —0.0001 (55.46) 0.0000 (77.34) 0.0000 (207.16)
500 0.0001 (196.77) 0.0000 (292.98) 0.0000 (932.22)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500
50 0.0001 (18.36) —0.0001 (22.24) —0.0001 (54.84)
100 —0.0002 (26.15) 0.0000 (36.26) 0.0000 (100.79)
500 0.0000 (100.5) 0.0000 (152.16) 0.0000 (467.72)

Table 8. Bias and run time (s), the latter between brackets, for the approximation C;,k M0+ (0.05) on
the 2015 and 2016 pricing game dataset. This is given for the weighted-mean-plot approach and for
several different numbers of clusters for the ©- and 1-group.

(a) 2015 Pricing Game

1-Group
O-Group
50 100 500
50 —0.0009 (6.43) —0.0002 (9.93) —0.0001 (21.64)
100 0.0011 (10.93) —0.0005 (19.34) —0.0002 (56.21)
500 —0.0001 (67.26) 0.0003 (131.77) 0.0000 (500.61)
(b) 2016 pricing game
1-Group
O-Group
50 100 500
50 —0.0026 (5.16) 0.0001 (8.46) —0.0015 (20.65)
100 0.0003 (8.16) —0.0001 (15.21) —0.0005 (47.98)
500 0.0003 (28.77) —0.0005 (62.42) —0.0004 (226.05)

A first important remark is that there are only 275 (93) unique exposures in the 2015
(2016) pricing game dataset. Hence, for a larger number of clusters on the exposures, we
have no gain in the run time since we are looping again over all unique exposures. Due
to the randomness of selecting the clusters, there is not always a lower bias for a larger
number of clusters. Nevertheless, the bias for all considered approximations is very low.
More specifically, it is slightly higher than the bias of the corresponding Cyjy; 0,14 (0.05)
approximation, but still smaller than the one of the original marginal approximation.
Finally, we do see an increase in the run time for a larger number of clusters. These run
times are clearly smaller than the ones of the corresponding C:M,O,l +(0.05) approximation,
but still larger than the ones of the original marginal approximation. The weighted-mean-
plots are shown in Figures 8 and A4, the latter in Appendix D. Most of these approximations
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are very close to the exact weighted-mean-plot, apart from the one shown in Figure 8a.
There we see that the values around an exposure equal to 0.8 are a bit higher estimated
than they should be.

Since the bias of the original marginal approximation is already very low, we do not
recommend the k-means algorithm resulting in a lower bias but coinciding with a larger run
time. Another important reason for this recommendation, is the fact that more boundary
values imply a lower bias for the original marginal approximation, which is not the case
for the k-means approximation and its clusters.
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(a) 2015 pricing game (b) 2016 pricing game

Figure 8. Weighted-mean-plot for ('\Z:,,k M,0,1+ (A, 0.05) based on the dataset of the 2015 and 2016
pricing game. It is obtained by using the number of clusters that resulted in the highest bias.

4.2. Severity

The goal of this section is to approximate the concordance probability (8) in a fast and
accurate way for the severity model of Section 2.2, using the 1,000,000 bootstrapped pairs
of observations and predictions.

Before we can determine the bias of the concordance probability estimates, we need to
know its exact value. This can be determined by looping over all observations and selecting
each time the rows with an observation strictly larger than the considered observation
added up with v. In each iteration, we store the number of selected rows in u. Next, v
represents the number of predictions in this selection that are larger than the prediction
of the considered element. Finally, the exact concordance probability can be obtained by
dividing ¥ by @. Important note for this way of working is that we cannot take advantage
anymore of the small number of unique values in the observations, since their predictions
can differ.

For all considered values of v, the exact concordance probability is calculated and
represented in Table 9 together with its run time. As can be seen for larger values of
v, the concordance probability increases, but the run time decreases. The latter can be
explained by the fact that a larger value for v coincides with fewer comparable pairs. A
general conclusion is that it takes a tremendous amount of time to precisely calculate
the concordance probability, which is why we will try to approximate these values in a
faster way.



Risks 2021, 9, 178 17 of 26

Table 9. The exact concordance probabilities together with the computing times (s) for different
values for v. The upper (lower) part focuses on the bootstrap version of the test set of the 2015 (2016)
pricing game.

(a) 2015 Pricing Game
v
0 841.44 2391.00
C 0.5175 0.5202 0.5242
run time 18,420.86 16,403.20 13,190.45
(b) 2016 Pricing Game
v
0 376.63 823.88
C 0.5165 0.5214 0.5291
run time 17,998.00 16,091.08 14,088.95

4.2.1. Marginal Approximation

A first approximation is the marginal approximation, where a grid is placed on the
(Y5, (X)) space. The g boundary values T = (1) = —0, T4, ..., Ty, Ty41 = +00) are evenly
spaced percentiles from the empirical distribution of the observed values for Y° and the
same set of boundary values is used for dimension 77(X). As explained by Van Oirbeek et al.
(2021), the marginal approximation of the concordance probability (8) can be computed as:

q+1q+1
Z Z Cj
i=1 j=1 l]
q+1g+1 g+1 g+1

= Z Zl(lg‘%]gw Z Z I(Ti+U§Tk—1)nTjj,Tk1/
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where T;; corresponds to the rectangle with values YS € [Ti-1, ;| and values

n(X) € [1j_1,7j[. Furthermore, nam(v) (ng,fl_j(v)) equals the number of concordant

(discordant) comparisons for region 7j, and 71, g, is the product of the number of elements
in regions 7; and .

4.2.2. k-Means Approximation

Another approximation introduced by Van Oirbeek et al. (2021), is the k-means ap-
proximation. For this approximation, the dataset is reduced to a smaller set of clusters that
are jointly constructed based on their observed outcomes and predictions. As a result, (8)
can be approximated as:
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where >/ and 7! are the observed outcome and the prediction of the representation of
the I-th cluster respectively; which is the centroid in case of k-means. w' is the weight of
the [-th cluster that is determined by the percentage of observations that pertain to the
Ith cluster.

The results of the aforementioned approximations can be found in Table 10. There is
clearly a smaller bias for a larger number of boundary values or clusters. The disadvantage
is that this coincides with a larger run time. There is no considerable connection between
the bias and the chosen value for v. Nevertheless, we do see a shorter run time for higher
values of v, which was already noticed during the exact calculations of the concordance
probability and can be explained by the smaller number of comparable pairs. For severity
models, we prefer the k-means approximation due to a much smaller run time, combined
with a very small bias.

Table 10. The bias and run time (s), the latter between brackets, for the marginal approximation and
the k-means approximation of the concordance probability, both for the dataset of the 2015 (a) and
2016 (b) pricing game their severity model.

(a) 2015 Pricing Game

Marginal v
0.00 841.44 2391.00
50 0.0014 (18.19) 0.0023 (18.48) 0.0032 (19.17)
100 0.0008 (36.16) 0.0012 (37.24) 0.0014 (36.88)
500 0.0001 (186.86) 0.0001 (182.93) 0.0001 (183.34)
1000 0.0001 (367.72) 0.0001 (370.40) 0.0000 (363.45)
v
k-means
0.00 841.44 2391.00
50 0.0078 (1.85) 0.0045 (1.44) 0.0135 (1.41)
100 0.0087 (1.59) 0.0091 (1.59) 0.0150 (1.64)
500 0.0008 (4.75) 0.0017 (4.52) 0.0012 (4.31)
1000 0.0003 (11.34) 0.0005 (10.69) 0.0003 (9.64)
(b) 2016 Pricing Game
v
Marginal
0.00 376.63 823.88
50 0.0010 (16.91) 0.0023 (16.22) 0.0024 (16.38)
100 0.0010 (32.83) 0.0017 (33.01) 0.0020 (32.06)
500 0.0003 (163.61) 0.0005 (154.98) 0.0006 (156.66)
1000 0.0001 (313.95) 0.0002 (316.61) 0.0003 (329.31)
v
k-means
0.00 376.63 823.88
50 0.0140 (1.70) 0.0071 (1.04) 0.0096 (0.79)
100 0.0036 (1.04) 0.0029 (1.30) 0.0030 (1.14)
500 —0.0003 (4.25) 0.0009 (4.28) —0.0007 (4.09)
1000 0.0003 (10.28) —0.0002 (10.00) 0.0006 (9.11)

5. Conclusions

Various discrepancy measures and extensions thereof have already been presented
in the actuarial literature (Denuit et al. 2019). However, the concordance probability is
seldom used in actuarial science, although it is very popular in the machine learning and
statistical literature. In this article, we extend the concordance probability to the needs of
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the frequency and severity data in an insurance context. Both are typically used to calculate
the technical premium of a non-life insurance product. For the frequency model, we adapt
the concordance probability with respect to the exposure and the fact that the number
of claims is not a binary variable. For the severity model, we made sure that claims that
are nearly identical in claim cost are not taken into account. The concordance probability
measures a model’s discriminatory power and expresses its ability to distinguish risks
from each other, a property that is particularly important in non-life insurance. Since it
is very time consuming to estimate the above measures for the sizes of frequency and
severity data that are typically encountered in practice, several approximations based on
computationally efficient algorithms are applied. For the frequency models, we prefer the
so-called original marginal approximation, since it has the smallest run time. For these
frequency models, it is also possible to visualize the introduced concordance probability in
function of the exposure in the so-called weighted-mean-plot. For the severity models, we
prefer the k-means approximation due to a small run time combined with a very small bias.
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Appendix A. Description of the Datasets
For the pgl5training dataset, we selected and renamed the following variables:

¢ CalYear renamed as uwYear: The underwriting year or the year in which the run time
of the policy started. Categorical variable with 2 levels (2009, 2010).

*  Gender renamed as gender: The gender of the car driver. Categorical variable with
2 levels (Male, Female).

®  Type renamed as carType: The car type. Categorical variable with 6 levels (A, B, C, D,
E F).

®  Category renamed as carCat: The car category. Categorical variable with 3 levels
(Small, Medium, Large).

®  Occupation renamed as job: The occupation of the driver. Categorical variable with
5 levels (Employed, Housewife, Retired, Self-employed and Unemployed).

e  Agerenamed as age: The drivers’ age, expressed in years. Categorized variable with
6levels(l,2,...,6).

¢ Groupl renamed as group1: The group of the car. Categorical variable with 20 levels
(integer value ranging from 1 to 20, with jumps of 1).

*  Bonus renamed as bm: The bonus-malus or French no-claim discount:—30 means
a 30 percent bonus while +20 means a 20 percent malus. Categorical variable with
21 levels (integer value ranging from —50 to 150, with jumps of 10).

e Poldur renamed as nYears: The number of years that the policy already exists at the
beginning of the exposure. Categorical variable with 16 levels (integer value ranging
from 0 to 15, with jumps of 1).

®  Value renamed as carVal: The car value in euro. Categorized variable with 6 levels (1,
2,...,6).
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Adind renamed as cover: A dummy variable indicating the material cover. Categorical
variable with 2 levels (0, 1).

Density renamed as density: The population density (number of inhabitants per
square km) in the city that the driver of the car lives in. Categorized variable with
6levels(l,2,...,6).

Exppdays renamed as exposure: Percentage of a full policy year, corresponding to the
run time of the respective policy.

Numtpbi renamed as claimNumb: The number of third-party bodily injury claims.
The policies for which more than two claims were filed during the considered exposure,
the value was set to 2. This adaptation is needed for the measures that are presented
in Section 3.

Indtpbi renamed as claimCharge: The total cost of third-party bodily injury claims,
in euro.

The variables age, carVal and density were originally continuous variables that are

transformed to categorical variables as explained by Van Oirbeek et al. (2021).

For the pglé6trainpol dataset, we selected and renamed the following variables:

Year renamed as covYear: The covering year. Categorical variable with 3 levels (2011,
2012 and 2013).

VehiclPower renamed as vehPower: The vehicle power. Categorical variable with
11 levels (P1, P2, ..., P11).

Deduc renamed as deduc: The deductible category. Categorical variable with 6 levels
(0 euro, 1-200 euro, 201-300 euro, 301-400 euro, 401-600 euro, >600 euro).
BusinessType renamed as businessType: The business type. Categorical variable with
8 levels (B1, B2, ..., B8).

ChannelDist renamed as channelDist: The distribution channel. Categorical variable
with 3 levels (D1, D2, D3).

ClaimNDb renamed as claimNumb: The claim number. The policies for which more
than two claims were filed during the considered exposure, the value was set to 2.
This adaptation is needed for the measures that are presented in Section 3.

Exposure renamed as exposure: Percentage of a full policy year, corresponding to the
run time of the respective policy.

PolicyAgeCateg renamed as age: The category of the policy age. Categorical variable
with 6 levels (0-1 year, 1-2 years, 2-3 years, 3—4 years, 4-5 years, >5 years).
PolicyCateg renamed as polCat: The category of the policy. Categorical variable with
4 levels (C2, C3, C4, C5).

CompanyCreation renamed as compCrea: A dummy indicating if the company has
been created.

FleetMgt renamed as fleet: The fleet management category. Categorical variable with
2 levels (N, P).

FleetSizeCateg renamed as fleetSize: The fleet size category. Categorical variable with
2 levels (S1, S2).

Area renamed as area: The geographical area. Categorical variable with 6 levels (A1,
A2,...,A6).

PayFreq renamed as payFreq: The payment frequency. Categorical variable with
3 levels (quarter, semester, year).

For the pglé6trainclaim dataset, we selected and renamed the following variables:

DirectComp renamed as matDam: As claims correspond only to material damage,
the French claim convention (IDA) was applied. So the insurer may directly refund
the insured (matDam=TRUE) even if the insurer will sue the third-party insurer to
recover the indemnity afterwards.

ClaimCharge renamed as claimCharge: The claim charge.
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Appendix B. The Gamma Distribution

The gamma distribution is together with the log-normal distribution and the inverse
Gaussian distribution one of the most well-known severity distributions (Denuit et al.
2007). Define Yl.? as the cost of the j claim reported by client i, such that YiS =1 YZ.?

is its total claim cost. Let all Yg be independent random variables following a gamma
distribution Gam(y;, k) with the following density:

N 5
s, o 1 (MY AR
Fo iy pirr) = o\ w ) P\ v

with p; being the conditional expected cost E[Yg\Xi] and x is defined such that

(A1)

Var[Yl? |Xi] = pi/x. Since the corresponding moment generating function is defined by

Myg (t) = (1 - t%) _K, it follows directly that the average claim cost of client i follows a

gamma distribution with mean y; and variance ﬁylz, with n; the total number of claims
of client i. This corresponds to a gamma distribution with parameters y; and «, and
weights n;.

Appendix C. Extended and Original Marginal Approximation

Table A1. Bias and run time (s), the latter between brackets, for the extended marginal approximation of Cg’; , (0.05) on the

2015 and 2016 pricing game dataset. This is given for the fine grid version and for several different numbers of boundary

values for the O- and 1-group.

(a) 2015 Pricing Game

1-Group
O-Group
50 100 500 1000 5000 10,000
50  0.0067 (2.47) 0.0045 (2.39) 0.0037 (2.90) 0.0036 (3.75) 0.0034 (10.55) 0.0033 (20.04)
100  0.0049 (2.65) 0.0033 (2.66) 0.0020 (3.28) 0.0019 (4.14) 0.0017 (12.09) 0.0017 (21.82)
500  0.0037 (4.36) 0.0020 (4.15) 0.0007 (4.56) 0.0005 (5.74) 0.0004 (17.11) 0.0004 (32.09)
1000  0.0035 (6.24) 0.0019 (5.70) 0.0005 (7.05) 0.0003 (7.91) 0.0002 (23.57) 0.0002 (42.70)
5000 0.0033 (26.00)  0.0017 (23.61)  0.0004 (23.24)  0.0002 (25.33) ~ 0.0001 (69.28)  0.0001 (129.04)
10,000 0.0033 (49.43)  0.0017 (43.43)  0.0004 (44.55)  0.0002 (46.43)  0.0001 (102.01)  0.0000 (216.58)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500 1000 5000 10,000
50  0.0035(1.13) 0.0028 (1.20) 0.0020 (1.50) 0.0019 (1.60) 0.0018 (3.66) 0.0018 (6.47)
100  0.0029 (1.19) 0.0019 (1.17) 0.0011 (1.33) 0.0010 (1.67) 0.0009 (3.80) 0.0009 (7.02)
500  0.0019 (1.61) 0.0010 (1.78) 0.0004 (1.95) 0.0003 (2.21) 0.0002 (5.89) 0.0002 (10.14)
1000  0.0018 (2.44) 0.0010 (2.20) 0.0003 (2.44) 0.0002 (3.08) 0.0001 (8.06) 0.0001 (13.81)
5000  0.0018 (7.86) 0.0009 (7.06) 0.0002 (7.97) 0.0001 (8.15) 0.0000 (21.27) 0.0000 (41.11)
10,000 0.0018 (15.06)  0.0009 (13.83)  0.0002 (14.35)  0.0001 (14.52)  0.0001 (32.09) 0.0000 (69.49)
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Table A2. Bias and run time (s), the latter between brackets, for the extended marginal approximation of Cg’; , (0.05) on the

2015 and 2016 pricing game dataset. This is given for the rough grid version and for several different numbers of boundary

values for the O- and 1-group.

(a) 2015 Pricing Game

1-Group
O-Group
50 100 500 1000 5000 10,000
50 0.0068 (5.62) 0.0046 (5.62) 0.0038 (6.47) 0.0035 (7.50) 0.0034 (15.30) 0.0033 (27.06)
100 0.0047 (5.95) 0.0032 (6.21) 0.0021 (6.72) 0.0018 (7.90) 0.0017 (16.28) 0.0017 (29.97)
500 0.0036 (7.59) 0.0021 (7.37) 0.0007 (8.40) 0.0005 (9.71) 0.0004 (22.90) 0.0003 (38.17)
1000 0.0034 (8.92) 0.0018 (8.43) 0.0005 (9.31) 0.0003 (11.61) 0.0002 (29.47) 0.0002 (46.94)
5000 0.0033 (22.17) 0.0017 (19.92) 0.0004 (20.60) 0.0002 (22.67) 0.0001 (70.84) 0.0000 (126.75)
10,000 0.0033 (38.00) 0.0017 (34.24) 0.0003 (35.89) 0.0002 (37.14) 0.0000 (78.37) 0.0000 (226.36)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500 1000 5000 10,000
50 0.0028 (3.20) 0.0024 (3.12) 0.0020 (3.34) 0.0019 (3.91) 0.0018 (6.95) 0.0018 (11.12)
100 0.0025 (3.26) 0.0016 (3.47) 0.0011 (3.43) 0.0010 (3.83) 0.0009 (7.09) 0.0009 (11.59)
500 0.0019 (3.95) 0.0011 (3.90) 0.0004 (4.40) 0.0003 (5.08) 0.0002 (9.25) 0.0002 (15.86)
1000 0.0018 (4.76) 0.0010 (4.79) 0.0003 (5.05) 0.0002 (5.95) 0.0001 (11.99) 0.0001 (19.85)
5000 0.0018 (10.48) 0.0009 (9.93) 0.0002 (10.34) 0.0001 (10.65) 0.0000 (27.11) 0.0000 (50.09)
10,000 0.0018 (17.40) 0.0009 (15.68) 0.0002 (16.31) 0.0001 (17.21) 0.0001 (36.67) 0.0000 (83.13)
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(a) 2015 pricing game
Figure A1l. Weighted-mean-plot for C;LOJ 1 (A,0.05) based on the dataset of the 2015 and 2016 pricing
game. It is obtained by the original marginal approximation, using the number of boundary values

(b) 2016 pricing game

that resulted in the lowest bias.
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Figure A2. Weighted-mean-plot for (AZT/LOJ +(A,0.05) based on the dataset of the 2015 and 2016 pricing
game. It is obtained by the extended marginal approximation, using the number of boundary values
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(b) 2016 pricing game

that resulted in the lowest bias.

Appendix D. k-Means Approximation

Table A3. Bias and run time (s), the latter between brackets, for the approximation (A:kzM,O,l 1(0.05)

on the 2015 and 2016 pricing game dataset. This is given for the fine grid approach and for several

different numbers of clusters for the O- and 1-group.

(a) 2015 Pricing Game

1-Group
O-Group
50 100 500
50 —0.0024 (11.20) 0.0003 (20.28) —0.0002 (88.08)
100 —0.0002 (20.37) —0.0001 (37.68) 0.0001 (169.08)
500 0.0003 (89.36) 0.0001 (174.90) 0.0000 (810.69)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500
50 0.0000 (5.17) —0.0001 (7.35) —0.0001 (28.30)
100 0.0000 (7.98) —0.0001 (13.14) 0.0000 (55.22)
500 0.0000 (31.69) 0.0000 (56.58) 0.0000 (261.58)
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Table A4. Bias and run time (s), the latter between brackets, for the approximation C;?M,O,l 1 (0.05) on
the 2015 and 2016 pricing game dataset. This is given for the rough grid approach and for several
different numbers of clusters for the O- and 1-group.

(a) 2015 Pricing Game

1-Group
O-Group
50 100 500
50 —0.0004 (25.62) 0.0000 (27.02) —0.0002 (28.78)
100 0.0000 (35.09) 0.0001 (39.66) —0.0001 (38.08)
500 0.0000 (107.41) —0.0001 (118.08) 0.0000 (121.53)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500
50 0.0002 (13.19) 0.0000 (14.89) —0.0001 (26.54)
100 —0.0004 (18.17) 0.0001 (23.12) 0.0000 (45.57)
500 0.0000 (68.81) 0.0000 (95.58) 0.0000 (206.14)

Table A5. Bias and run time (s), the latter between brackets, for the approximation C:;,k M,0,1+ (0.05)
on the 2015 and 2016 pricing game dataset. This is given for the fine grid approach and for several
different numbers of clusters for the O- and 1-group.

(a) 2015 Pricing Game

1-Group
O-Group
50 100 500
50 —0.0009 (3.10) —0.0002 (5.63) —0.0001 (9.37)
100 0.0011 (6.71) —0.0005 (11.60) —0.0002 (13.84)
500 —0.0001 (53.88) 0.0003 (104.72) 0.0000 (446.11)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500
50 —0.0026 (2.19) 0.0001 (5.35) —0.0018 (10.68)
100 0.0001 (4.46) —0.0003 (7.47) —0.0007 (29.90)
500 0.0005 (17.66) —0.0008 (32.20) —0.0007 (143.61)

Table A6. Bias and run time (s), the latter between brackets, for the approximation C;,/k M,0,1+ (0.05)
on the 2015 and 2016 pricing game dataset. This is given for the rough grid approach and for several
different numbers of clusters for the O- and 1-group.

(a) 2015 Pricing Game
1-Group
O-Group
50 100 500
50 —0.0009 (3.33) —0.0002 (4.30) —0.0001 (12.27)
100 0.0011 (4.22) —0.0005 (7.74) —0.0002 (42.37)
500 —0.0001 (13.38) 0.0003 (27.05) 0.0000 (54.50)
(b) 2016 Pricing Game
1-Group
O-Group
50 100 500
50 —0.0026 (2.97) 0.0001 (3.11) —0.0012 (9.97)
100 0.0004 (3.70) 0.0001 (7.74) —0.0002 (18.08)
500 0.0000 (11.11) —0.0003 (30.22) —0.0002 (82.44)
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(a) 2015 pricing game (b) 2016 pricing game
Figure A3. Weighted-mean-plot for CfMO,l 1 (A,0.05) based on the dataset of the 2015 and 2016
pricing game. It is obtained by using 100 clusters for each group.

1.00 4

0.8 »-

0.75+
0.7

o
o

0.50 4

concProbs
concProbs

o
o

0.25+

0.4

Of4 0‘6 OfB 1{0 0.‘25 O.:SO 0. ‘75 1.60
exps exps
(a) 2015 pricing game (b) 2016 pricing game
Figure A4. Weighted-mean-plot for (Afp,k M,01+ (A, 0.05) based on the dataset of the 2015 and 2016
pricing game. It is obtained by using the number of clusters that resulted in the lowest bias.

Note
L http://cas.uqam.ca, accessed on 24 September 2021.
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