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Abstract: The paper features an examination of the link between the behaviour of the FTSE 100 and
S&P500 Indexes in both an autoregressive distributed lag ARDL, plus a nonlinear autoregressive
distributed lag NARDL framework. The attraction of NARDL is that it represents the simplest
method available of modelling combined short- and long-run asymmetries. The bounds testing
framework adopted means that it can be applied to stationary and non-stationary time series vectors,
or combinations of both. The data comprise a daily FTSE adjusted price series, commencing in April
2009 and terminating in March 2021, and a corresponding daily S&P500 Index adjusted-price series
obtained from Yahoo Finance. The data period includes all the gyrations caused by the Brexit vote
in the UK, beginning with the vote to leave in 2016 and culminating in the actual agreement to
withdraw in January 2020. It was then followed by the impact of the global spread of COVID-19 from
the beginning of 2020. The results of the analysis suggest that movements in the contemporaneous
levels of daily S&P500 Index levels have very significant effects on the behaviour of the levels of
the daily FTSE 100 Index. They also suggest that negative movements have larger impacts than do
positive movements in S&P500 levels, and that long-term multiplier impacts take about 10 days to
take effect. These effects are supported by the results of quantile regression analysis. A key result is
that weak form market efficiency does not apply in the second period.

Keywords: NARDL; bounds tests; ARDL; FTSE; asymmetries; multiplier effects; S&P500

JEL Classification: C22; G12

1. Introduction

The paper explores the link between the S&P500 and FTSE 100 Indexes in a nonlinear
autoregressive distributed lag (NARDL) framework. Shin et al. (2014) suggested a method
for modelling asymmetric cointegration and dynamic multipliers in a NARDL framework.
The approach introduces short- and long-run nonlinearities via positive and negative
partial sum decompositions of the explanatory variables. Shin et al. (2014) demonstrate
that their model is estimable by OLS, and that reliable long-run inference can be achieved
by bounds-testing, regardless of the integration orders of the variables.

Shin et al. (2014) begin by drawing attention to the vast literature that has developed
around the analysis of non-stationary variables, which commenced with the work of
(Dickey and Fuller 1979; Engle and Granger 1987; Johansen 1988; Kwiatkowski et al. 1992),
Phillips and Hansen (1990), which represent major theoretical landmarks.
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Since the mid-1990s, a substantial body of work has considered the joint issues of
nonstationarity and nonlinearity. Three regime-switching models have had a dominant in-
fluence: the threshold ECM associated with Balke and Fomby (1997), the Markov-switching
ECM of Psaradakis et al. (2004), and the smooth transition regression ECM developed by
Kapetanios et al. (2006).

The approach reflects a general concern that simple linear adjustment processes
may be excessively restrictive in a wide range of economically interesting situations.
Shin et al. (2014) note that there is not a great deal of work on nonlinear cointegration.
One exception is provided by (Schorderet 2001, 2003), who proposed a bivariate asymmet-
ric cointegrating regression of unemployment on output, in which output is decomposed
into partial sum processes of positive and negative changes.

Granger and Yoon (2002) suggested that the cointegrating relationship may be defined
between the positive and negative components of the underlying variables, an effect that
they termed ‘hidden cointegration’. They note that variables are cointegrated because they
respond to shocks together displaying common stochastic trends. (Granger and Yoon 2002,
p. 5) query what would be the implications if they respond differently to positive and
negative shocks. They suggest that there may be cointegration between the nonstationary
components of a data series, which they refer to as being ’hidden cointegration’, and
suggest that standard cointegration is a special case of hidden cointegration, which is a
simple example of nonlinear cointegration.

Shin et al. (2014) extend the work in this area and develop a simple and flexible
nonlinear dynamic framework that is capable of simultaneously and coherently modelling
asymmetries both in the underlying long-run relationship and in the patterns of dynamic
adjustment. They derive the dynamic error correction representation associated with the
asymmetric long-run cointegrating regression, resulting in the nonlinear autoregressive
distributed lag (NARDL) model.

They follow Pesaran et al. (2001) and use a bounds testing approach to test for the
existence of a stable long-run relationship, which is valid irrespective of whether the
underlying regressors are I(0), I(1), or mutually cointegrated. The two sets of critical values,
as suggested by Pesaran et al. (2001), provide a band covering all these three possible
classifications. They also derive asymmetric cumulative dynamic multipliers that permit
the display of the asymmetric adjustment patterns following positive and negative shocks
to the explanatory variables.

Prior to the development of this flexible approach suggested by Shin et al. (2014),
there had been a few other studies that employed a NARDL framework. Van Treeck (2008)
used a NARDL model to analyse asymmetric wealth effects on US consumption. (Delatte
and López-Villavicencio 2010, 2011) used a NARDL technique in their analysis of long-run
asymmetries in the pass-through from exchange rates to consumer prices in developed
economies. Nguyen and Shin (2010) applied NARDL models to high frequency exchange
rate data, to explore patterns of asymmetry in the pricing impacts of the order flow.

Allen and McAleer (2020) in a parallel study apply a NARDL analysis of cointegration
between the inflation-adjusted levels of the DOWJONES Index and the WEST TEXAS IN-
TERMEDIATE Crude oil price series. In this paper, we examine the link between the S&P500
and FTSE Indexes in a nonlinear autoregressive distributed lag (NARDL) framework.

The sample time frame is of interest because it covers the impact of Brexit in the
UK, and then the massive dislocation in the two markets caused by the global spread of
COVID-19 commencing in January 2020. For this reason, we decided to split the sample,
which commenced in April 2009 into two segments, pre-Brexit which runs up to 2016, and
then post-Brexit and COVID-19, which runs from 2016 to date.

The paper is divided into four sections: Section 2 reviews the literature and econometric
method employed. Section 3 presents the results, and Section 4 gives concluding comments.
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2. Previous Work and Econometric Models
2.1. The Transmission of Shocks across Markets and Economies

The United States and the United Kingdom are the world’s first and fifth largest
economies who trade over $260 billion worth of goods and services each year, according to
the US Department of State (https://www.state.gov/u-s-relations-with-united-kingdom/,
accessed 3 April 2021). The United States is the UK’s largest trading partner, and accounted
for over 14 percent of its total trade in 2020. It is therefore not surprising that economic and
financial shocks are likely to be transmitted between these two economies.

The manner in which these shocks are assessed depends on the economic or financial
time series used. Many recent studies have adopted a cointegration framework since
Engle and Granger (1987) developed the concept, and helped promote awareness of the
dangers of combining stationary and non-stationary series. Taylor and Tonks (1989) used
cointegration to show links between markets in the USA, Germany, the Netherlands and
Japan, over the period October 1979–June 1986. Another early study, by Kasa (1992), used
dividend series to provide evidence of a common stochastic trend driving the equity
markets of the USA, Japan, England, Germany and Canada. Wong et al. (2005) used frac-
tional cointegration and reported linkages between India and the USA, the UK and Japan.
Caporale et al. (2016) examined the long-memory properties of US and European stock
indices, as well as their linkages, using fractional integration and fractional cointegration
techniques, and reported that the relationships changed over time. They suggested that
this might be caused by various factors, such as diverging growth and monetary policy.

Guerron-Quintana (2013) uses an estimated dynamic stochastic general equilibrium
model, to show that shocks to a common international stochastic trend explain on average
about 10% of the variability of output in several small developed economies but suggests
that country-specific disturbances account for the bulk of the volatility in the data. Their
research motivation is partly drawn from a desire to explore whether there is a common
component to international business cycles that affects most economies to a degree.

It may be the case that information about exchange rate movements, commodity price
changes, stock market cycles, or various political and economic global events, all contribute
to change expectations about individual company prospects. These changes in expected
risks or projected cash flows will have impacts on company share prices. Stock market
indices are mere weighted aggregations of the price behaviour of the company share prices
that make up their constituents. Thus, factors that affect company share prices will also
potentially impact stock market indices.

Chen et al. (2018) use pairwise Engle–Granger cointegration tests to examine Granger
causality between each pair of US, UK and Eurozone stock markets from 1980 to 2015
using a rolling-window technique. They conclude that the potential for diversifying risk
by investing in the US, UK and Eurozone stock markets is limited during the periods of
economic, financial and political shocks because they exhibit high degrees of correlation
during periods of shocks.

This study will also adopt a cointegration and autoregressive distributed lag approach
to examine the recent relationship between the US and UK financial markets, and explore
the extent to which it has varied across the two distinct time periods: pre-Brexit which runs
from April 2009 up to December 2015, and then post-Brexit and the COVID-19 pandemic,
which runs from January 2016 to 11 March 2021.

2.2. Stock Price Changes and Volatility Changes

One of the frequently occurring empirical regularities in equity markets is the inverse
relationship between stock prices and volatility, first documented by Black (1976), who sug-
gested it reflected the effects of financial leverage. If a company has any debt in its capital
structure, when a company’s stock price declines, it becomes more highly leveraged given
a fixed level of debt, and this increase in leverage produces higher equity-return volatility.

Black (1976) proposes two possible explanations for this relationship. In an argument
he refers to as ’direct causation’, he suggests there is a causal relation from stock returns to

https://www.state.gov/u-s-relations-with-united-kingdom/
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volatility changes. If the firm’s equity value drops, the change in value of the firm’s equity
will cause a negative return on its stock and will increase the leverage of the stock. In effect,
its debt/equity ratio will rise. The increase in the debt/equity ratio will lead to a rise in the
volatility of the stock.

Black (1976) provides a second explanation he calls the “reverse causation” effect. In
this case, the causality runs from volatility changes to stock returns. Black suggests that
changes in tastes and technology may lead to an increase in the uncertainty about the
expected payoffs from investments. If there is an increase in future volatility, it will cause
stock prices to fall. It follows that the expected return from the stock must rise to induce
investors to continue to hold it.

Many other authors have reported on this effect, and early studies include (Braun et al.
1995; Christie 1982; Glosten et al. 1992; Schwert 1989), to mention a few.

Other studies have questioned whether it is a genuine ’leverage’ effect. For example,
Figlewski and Wang (2000) examine whether the effects apply to the individual stocks
in the S&P100 (OEX) index, and to the index itself. They report a strong “leverage effect”
associated with falling stock prices, but also numerous anomalies that they suggest call
into question leverage changes as the explanation. They cite the fact that, in their study,
the effect is much weaker or nonexistent when positive stock returns reduce leverage; it
is too small with measured leverage for individual firms, but much too large for OEX
implied volatilities. They report that the volatility change associated with a given change
in leverage seems to die out over a few months; moreover, there is no apparent effect on
volatility when leverage changes because of a change in outstanding debt or shares, and it
is only apparent when stock prices change. Thus, Figlewski and Wang (2000) conclude that
the “leverage effect” is really a “down market effect” that may have little direct connection
to firm leverage.

A similar conclusion is made by Hasanhodzic and Lo (2011), who investigate a sample
of all-equity-financed companies from January 1972 to December 2008, and report that
the leverage effect is just as strong if not stronger, implying that the inverse relationship
between price and volatility is not driven by financial leverage.

The current study examines the relationship between the movements of two major
national stock market indices using the recently developed NARDL framework. The
advantage of using the NARDL approach, as opposed to that of using a standard VAR
approach using differenced series, which in this case would be returns on the two indices,
is that it loses any information that may be captured in relationships between the levels of
the series, as revealed by cointegration. One of the attractions of the NARDL approach is
that it reveals differences in the responses to positive and negative changes, and also how
these change in the short and long term.

The adoption of the bounds test also means that it can capture relationships between
both stationary and non-stationary variables, as explained in the next sub-section. However,
we will also use quantile regression to explore whether the ’leverage’ effect is apparent
across the extreme quantiles. This means we can explore, at the index level, whether
responses to stock index level movements are symmetric. If they are not, this will provide
further evidence that the effect is a ’down-market’ effect as opposed to a leverage one, as
discussed above.

In the next two sections, we will discuss the bounds testing approach to the testing of
levels relationships, as first suggested by Pesaran et al. (2001), and then the NARL approach.

2.3. Bounds Tests

Pesaran et al. (2001) developed a novel approach to the problem of testing the existence
of a level relationship between a dependent variable and a set of regressors, when it is
not known with certainty whether regressors are trend- or first-difference stationary. Two
sets of asymptotic critical values are provided for the two polar cases which assume the
regressors are, on the one hand, purely I(1) and, on the other, purely I(0). Since the two sets
of critical values provide bounds for all classifications of the regressors in I(1), purely I(0)
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or mutually cointegrated, we propose a bounds testing procedure. If the Wald or F-statistic
falls outside the critical value bounds, a conclusive inference can be drawn without needing
to know the integration/cointegration status of the underlying regressors.

In the empirical analysis that follows, we apply the bounds testing procedure using
am R library package Dynamac developed by Jordan and Philips (2020). They stress that
autoregressive distributed lag (ARDL) models are a useful tool for estimating scientific
processes over time. However, as the models become more complex by adding richness in
dynamic specifications (through multiple lags of variables, either in levels or differences,
or lags of the dependent variable), it becomes more difficult to draw meaningful inferences
from coefficients alone. The Dynamac program uses the estimated model coefficients to
simulate the impact of a shock to one of the variables in the regression. This “shock” means
that, at a time specified, the value of an x variable will move to some level. If the variable
is in levels or lagged levels, this means that its new value becomes the pre-shock average
plus whatever the shock value is. If the variable is in differences or lagged differences, the
shock lasts for one period (as a permanent change in a differenced variable would imply
that it is changing every period!).

We fit an ARDL model to the two market index series, and simulate the impact
of shocks to the US market and the resultant impacts on the UK market in the two
time periods.

2.4. NARDL Approach

Shin et al. (2014) commence by considering an asymmetric long-run regression:

yt = β+xt + β−xt + ut, (1)

4xt = νt, (2)

where yt and xt are scalar I(1) variables, and xt is decomposed as xt = x0 + x+t + x−t , where
x+t and x−t are partial sum processes of positive and negative changes in xt :

x+t =
t

∑
j=1
4x+j =

t

∑
j=1

max(4xj, 0), x−t =
t

∑
j=1
4x−j =

t

∑
j=1

min(4xj, 0). (3)

The above provides a simple approach for modelling asymmetric cointegration based
on partial sum decompositions. Schorderet (2001) generalizes this concept and defines the
following stationary linear combination of the partial sum components:

zt = β+
0 y+t + β−0 y−t + β+

1 x+t + β−1 x−t . (4)

If zt is stationary, then yt and xt are said to be ‘asymmetrically cointegrated’. It
follows that standard linear (symmetric) cointegration is a special case of (4), obtained
only if β+

0 = β−0 and β+
1 = β−1 . Shin et al. (2014) consider the case where the following

restriction holds: β+
0 = β−0 = β0. In expression (4), this implies that β+ = −β+

1 /β0 and
β− = −β−1 /β0.

Shin et al. (2014) use this foundation to propose the following nonlinear ARDL (p,q)
model:

yt =
p

∑
j=1

φjyt−j +
q

∑
j=0

(θ+
′

j x+t−j + θ−
′

j x−t−j) + εt, (5)

where xt is a k× 1 vector of multiple regressors, defined such that xt = x0 + x+t + x−t , θj is
the autoregressive parameter, θ+i and θ−j are the asymmetric distributed lag parameters,

and εt is an i.i.d. process with zero mean and constant variance, σ2
ε . Shin et al. (2014) focus

on the case in which xt is decomposed into x+t and x−t around a threshold of zero, thereby
distinguishing between positive and negative changes in the rate of growth of xt.
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They follow Pesaran et al. (2001), and write (5) in the error correction form as:

4yt = ρyt−1 + θ+
′
x+t−1 + θ−

′
x−t−1 +

p−1

∑
j=1

γj4yt−j +
q−1

∑
j=0

(ϕ+′
j 4x+t−j + ϕ−

′
j 4x−t−j)

= ρξt−1 +
p−1

∑
j=1

γj4yt−j +
q−1

∑
j=0

(ϕ+′
j 4x+t−j + ϕ−

′
j 4x−t−j), (6)

where ρ = ∑
p
j=1 φj−1, γj = −∑

p
i=j+1 φi for j = 1, . . . . . . , p − 1, θ+ = ∑

q
j=0 θ+j ,θ− =

∑
q
j=0 θ−j ,ϕ+

0 = θ+0 ,ϕ+
j = −∑

q
i=j+1 θ+j ,for j = 1, . . . , q− 1, ϕ−0 = θ−0 , ϕ−j = −∑

q
i=j+1 θ−j for

j = 1, . . . . . . , p− 1, and ξt = yt − β+′x+t − β−
′
x−t is the nonlinear error correction term,

where β+ = −θ+/ρ and β− = −θ−/ρ are the associated asymmetric long-run parameters.
In order to deal with the possibility of non-zero contemporaneous correlation between

the regressors and the residuals in (6), Shin et al. (2014) propose the following reduced
form data generation process for4xt:

4xt =
q−1

∑
j=1

Λj4xt−j + υt, (7)

where υt ∼ iid(0, ∑ν), with ∑ν being a k× k positive definite covariance matrix. In terms
of their focus on conditional modelling, they express εt in terms of υt as:

εt = ω′υt + et = ω′(4xt −
q−1

∑
j=1

Λj∆xt−j) + et, (8)

where et is uncorrelated with νt, by construction. If we substitute (8) into (6) and rearrange,
we obtain a nonlinear conditional ECM:

4yt = ρξt−1 +
p−1

∑
j

γj∆yt−j +
q−1

∑
j=0

(π+′
j 4

+
t−j + π−

′
j 4

−
t−j) + et, (9)

where π+
0 = θ+0 + ω, π−0 = θ−0 + ω,π+

j = ϕ+
j + ω′Λj, and π−j = ϕ−j + ω′Λj for j =

1, . . . , q− 1.
It is clear that (9) corrects for the weak endogeneity of any nonstationary explanatory

variables, and that the choice of an appropriate lag structure will free the model from
any residual correlation. The model is capable of explaining both long-run and short-run
asymmetries and, as it is linear in all the parameters, can be estimated by OLS.

2.5. Quantile Regression

Koenker and Hallock (2001, p. 145) note that quantiles seem inseparably linked to
the operations of ordering and sorting the sample observations that are usually used to
define them: ‘The symmetry of the piecewise linear absolute value function implies that
the minimization of the sum of absolute residuals must equate the number of positive and
negative residuals, thus assuring that there are the same number of observations above
and below the median’.

They then ask about the other quantiles? Since the symmetry of the absolute value
yields the median, it follows that minimizing the sum of asymmetrically weighted absolute
residual by simply giving differing weights to positive and negative residuals provides the
other quantiles. The solution to:

Min
ξ∈R ∑ ρτ(yi − ξ), (10)
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where the function ρτ(·) is the titled absolute value function, shown in Figure 1, gives the
τth sample quantile function as its solution.

Figure 1. Quantile Regression ρ function.

An estimate of the conditional median function can be obtained by replacing the scalar
ξ in Equation (10) by the parametric function ξ(xi, β), and setting τ to 1/2. Estimates of the
other conditional quantile functions can be obtained by replacing the absolute values by
ρτ(·), and solving expression (11) by linear programming:

min
β∈Rp

∑ ρτ(yi − ξ(xi, β). (11)

We apply quantile regression to investigate the relationship between the logarithmic
differences, or continuously compounded returns, on the FTSE and S&P500 Indexes.

3. Results of the Analysis
3.1. Preliminary Analysis

The sample data set consists of approximately thirteen years of daily data for the
S&P500 and the FTSE 100 Indexes from 24 April 2009 through to 11 March 2021, sourced
from Yahoo Finance via the R quantmod library. This was divided into two components, a
pre-Brexit and COVID-19 period, the former running from 24 April 2009 until 31 December
2015, a total of 1659 observations. The second component of the sample ran from 4 January
2016 until 11 March 2021 and comprises 1290 observations, while the total sample comprises
2949 observations. The Brexit vote took place on 23 June 2016 and, on the following day,
the British Prime Minister David Cameron announced his resignation. This immediately
led to greater uncertainty in the UK financial market.

The plots of the two series in Figure 2 show that they initially appear to trend together.
At the end of 2015, around observation 1660, the UK stock market starts to reflect the
uncertainties associated with the Brexit vote. Both appear to be suitable for NARDL
analysis in that they do not embody uniformly positive or negative changes. However,
a strong upward trend in both markets is evident after their recovery from the Global
Financial Crisis of 2007–2008. Things changed in 2016 in the UK following the Brexit vote,
the start of the Global Pandemic of COVID-19 at the beginning of 2020, and the onset of
massive shocks to the two economies in the form of lockdowns that led to slumps in stock
market prices.



Risks 2021, 9, 195 8 of 20

Figure 2. Plots of daily values of the S&P500 and FTSE Indexes.

Traditionally, cointegration analysis is undertaken with levels of series that are I(1).
However, if we are going to make suggestions about the relative volatility of our two
base series, in different periods of time, it makes no sense to use the levels of the series
which may display infinite variances. We therefore analyse the relative variances of the
continuously compounded returns of the two series. These are obtained by calculating
their respective logarithmic differences.

Summary statistics for the continuously compounded on the two series, for various
sub-samples, are presented in Table 1. In the first sub-period, from 24 April 2009 until
31 December 2015, the mean value of the daily continuously compounded return on the
S&P500 index series is 0.00050218, and the corresponding mean value of the daily level of
the FTSE 100 index, in period 1, is 0.00021978. The standard deviation of the continuously
compounded return on the S&P500 in the first period, is 0.010271, while the standard
deviation of the FTSE 100 index, in the first period is 0.010517. In the second period, the
mean value of the S&P500 return is 0.00053136, while the corresponding mean value of
the return on the FTSE is 7.9112× 10−5. The standard deviations of the two return series
in the second period are 0.012454, for the S&P500, and 0.010834 for the FTSE, respectively.
It is noteworthy that both the standard deviations of the S&P500 and of the FTSE returns
increase in the second period, but the S&P500 return variance shows a relatively greater
increase. This was contrary to our expectations. Our prior was that the prospect of Brexit
would have been accompanied by increased uncertainty which would have resulted in
relatively increased volatility. The results of ANOVA tests of the equality of variances for
the two series across the two periods, reported at the bottom of Table 1, show that the
differences in their respective variances across the two periods, are significant at the one
percent level, in two-tailed tests for the S&P500 return, but are not significantly different
for the FTSE return variance.

We estimated these tests using a pre-COVID-19 sample period up to the end of 2019,
and post COVID from January 2020 on, and found that the variances of both return series
were significantly different in the pre-and post COVID periods, but this would have left
only 386 daily observations for the post-COVID sample period. (Results available from
the authors on request). We decided to stick with the pre and post-Brexit periods which
afforded a relatively larger sample in the second period.
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The Augmented Dickey–Fuller (ADF) test results shown in Table 2, for the two sub-
periods, which are undertaken with both a constant, and a constant and a trend, uniformly
fail to reject the null hypothesis of a unit root, in both periods in the case of the S&P500,
and in the second period for the FTSE 100 Index, as indicated by the asymptotic probability
values in parentheses. However, if both a constant, and a constant and trend, are included,
the null hypothesis of a unit root is rejected in the first period for the FTSE 100 Index.
Thus, the adoption of a bounds testing procedure appears to be justified on the basis of
the differences in the results of the unit root tests on the levels of the two series in the two
sub-periods.

Table 1. Descriptive Statistics for the continuously compounded returns on the S&P500 and FTSE100
indices and analysis of variance tests.

S&P500

Period 1: 2009-04-24–2015-12-31 Number of Observations1776
Mean 0.00050218

Median 0.00067228
Minimum −0.068958
Maximum 0.046317

Standard deviation 0.010271
Period 2: 2016-01-01–2022-03-11 Number of Observations 1172

Mean 0.00053136
Median 0.00075748

Minimum −0.12765
Maximum 0.089683

Standard deviation 0.012454

FTSE100

Period 1: 2009-04-24–2015-12-31 Number of Observations1776
Mean 0.00021978

Median 0.00056958
Minimum 0.047798
Maximum 0.050323

Standard deviation 0.010834
Period 2: 2016-01-01–2022-03-11 Number of Observations 1172

Mean 7.9112× 10−5

Median 0.00052255
Minimum −0.11512
Maximum 0.086668

Standard deviation 0.010834

Test of Equality of Variance between the two periods: Pre and Post-Brexit

S&P500

Sample 1, n = 1776. variance = 0.010271 Sample 2, n = 1172, variance = 0.012454
Test Statistic: F(1171, 1176) = 1.21254

Two-tailed p-value = 0.0002681 ***

FTSE100

Sample 1, n = 1776. variance = 0.010517 Sample 2, n = 1172, variance = 0.010834
Test statistic: F(1744, 1203) = 1.03014

Two-tailed p-value = Two-tailed p-value = 0.5742
Note: *** Indicates Significant at 1%.
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Table 2. Augmented Dickey–Fuller (ADF) Tests.

Period 1: April 2009 to December 2015

ADF test with constant ADF test with constant and trend

SP500 −1.00892 (0.75) −2.79693 (0.20)
FTSE −2.85173 (0.05) −3.46467 (0.04)

Period 2: January 2016–March 2021

ADF test with constant ADF test with constant and trend

SP500 −0.3379 (0.92) −3.15656 (0.09)
FTSE −2.42549 (0.13) −2.54632 (0.31)

Note: Asymptotic Probability Values in Parentheses.

Table 3 presents the results of simple Engle–Granger tests of cointegration between
the two series, using models with a constant, and with a constant and trend. The results in
Table 3 appear promising, in that most of the coefficients estimated in the Engle–Granger
two-step cointegration test procedure appear to be highly significant, whether the equation
includes a constant, or a constant and a time trend, apart from period 2, in which the test
with a constant rejects the existence of cointegration, and does not reject the null of a unit
root in the residuals. Otherwise, the other three unit root tests on the residuals from the
two sets of regressions all reject the null hypothesis of a unit root, which suggests that the
two series are cointegrated.

Table 3. Engle–Granger Tests of Cointegration.

Period 1: April 2009 to December 2015

Coefficient Std. Error t-Ratio p-Value

Test with constant
Constant 3548.82 29.97 118.4 0.00
S&P500 1.60271 0.019 83.29 0.00

Test for unit root residuals −4.31864 0.00
Test with Constant and Trend

Constant 3044.99 73.52 41.42 0.00
S&P500 2.19491 0.0814 26.97 0.00

Time −0.472097 0.0631 −7.48 0.00
Test for unit root residuals −4.6544 0.003

Period 2: January 2016–March 2021

Coefficient Std. Error t-Ratio p-Value

Test with constant
Constant 6951.66 97.86 71.04 0.00
S&P500 −0.00243523 0.03535 −0.069 0.95

Test for unit root residuals −2.48 0.29
Test with Constant and Trend

Constant 3044.99 73.52 41.42 0.00
S&P500 2.1949 0.0814 26.97 0.00

Time −0.4720 0.0631 −7.48 0.00
Test for unit root residuals −4.654 0.003

However, Shin et al. (2014) note that they develop a simple and flexible nonlinear dy-
namic framework capable of simultaneously and coherently modelling asymmetries, both
in the underlying long-run relationship and in the patterns of dynamic adjustment. They
claim that the approach makes four contributions: the first is the derivation of a dynamic
error correction representation associated with the asymmetric long-run cointegrating
regression, resulting in the nonlinear autoregressive distributed lag (NARDL) model.
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The second is that, in the process, they employ a pragmatic bounds-testing procedure
for the existence of a stable long-run relationship, which is valid irrespective of whether
the underlying regressors are I(0), I(1), or are mutually cointegrated.

Their third contribution is that they derive asymmetric cumulative dynamic multipli-
ers that permit the tracing out of the asymmetric adjustment patterns following positive
and negative shocks to the explanatory variables. Their approach is sufficiently flexible to
accommodate the four general combinations of long- and short-run asymmetry.

Finally, by means of Monte Carlo experiments, they validate their estimation and
inferential framework, and reveal little bias in estimation and considerable power in the
key test statistics. They also compute empirical p-values for the cointegration tests and
confidence intervals for the dynamic multipliers by means of a non-parametric bootstrap.
Thus, their approach is sufficiently general to permit its application to our two series and
will be valid whether or not the two series are cointegrated.

3.2. ARDL Analysis

We commence the analysis using autoregressive distributed lag models (ARDL). For
the initial analysis, we use a R package by Jordan and Philips (2020) called Dynamac. They
suggest that, in a typical ARDL model, the number of lags of the dependent variable in
levels is given by p, the number of lags of the dependent variable in differences is given by
m, the number of lags of the independent variables in levels is given by l, and the number
of lags of the independent variables in differences is given by q. If we restricted all but the
contemporaneous and first lag of each series to be zero, a simple ARDL model could be
written as:

yt = α0 + φ1yt−1 + θ1,0x1,t−1 + θ1,1x1,t−1 + . . . θk,0xk,t−1 + β ∗ T + εt, (12)

where α0 is a constant and β ∗ T is a trend term. The usual convention is to add sufficient
lags to the system to whiten the residuals.

There are a number of R library packages which undertake cointegration analysis
using the bounds testing approach, including Natsiopoulos and Tzeremes (2021) ARDL,
ECM and Bounds-Test for Cointegration (ARDL) package, plus Sun’s asymmetric price
transmission R package (Sun 2020), which facilitates the assessment of asymmetric price
transmissions between two time series, and includes several functions for linear and
nonlinear threshold cointegration analysis.

The R package dynamac provides a means to use the coefficients from an estimated
model to simulate meaningful responses in the dependent variable to counterfactual
changes in an independent variable, x, allowing the change, y, to filter through the various
forms of the x variable in the model, as well as different forms of the y variable (like
differences and lagged levels) that might be included. We fit an ARDL model in ECM form
using the bounds approach, and then simulate the impact of one standard deviation shocks
to the variable in question.

The results of the analysis using dynamac are shown in Table 4 and suggests that
the models for both period 1, 2009–2015, and period 2, 2016 to 2021 are significant and
successfully capture the relationship between the two indices. In the first period, a constant,
plus lagged values of the FTSE in levels, the S&P500 in differences and trend variable, are
highly significant. The adjusted R-squared is 0.017, which is low, but is consistent with
Fama (1970) concept of market efficiency. If the market is weak-form efficient, it should not
be possible to predict price movements in London by changes in prices in New York.

The results for period 2 in Table 4 suggest that the intercept, the lagged FTSE in
levels and two lags of the S&P500 in differences are significant. In this model, the esti-
mate of the trend variable is not significant. The Breusch–Godfrey LM Test test suggests
that autocorrelation is not a problem in the model estimates in either period, although
the Shapiro–Wilk test results suggest that the residuals do not conform to a Gaussian
distribution in either period.
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Table 4. Dynamic analysis using Dynamac.

Period 1: 2009–2015

Variables Coefficients Std. Error t Value

intercept 87.414927 21.589016 4.049 ***
FTSE(−1) −0.013315 0.005094 −2.614 ***

S&P500(diff) 0.424579 0.100060 4.243 ***
S&P500(−1) −0.019356 0.020183 −0.959

S&P500(diff, −1) 0.035495 0.020183 0.358
Trendvar 0.026740 0.013212 2.024 **

Adjusted R-squared 0.01734
F Statistic 6.845 ***

Breusch-Godfrey LM Test 0.267 p-value: 0.605
Shapiro-Wilk Test 0.981 p-value: 0

Period 2: 2016–2021

Variables Coefficients Std. Error t Value

intercept 62.674903 25.525247 2.455 **
FTSE(−1) −0.008025 0.003207 −2.502 **

S&P500(diff) 0.939819 0.053684 17.506 ***
S&P500(−1) −0.001318 0.011459 −0.115

S&P500(diff, −1) 0.266686 0.053847 4.953 ***
Trendvar −0.006951 0.014569 −0.477

Adjusted R-squared 0.1959
F Statistic 63.71 ***

Breusch-Godfrey LM Test 1.034 p-value: 0.309
Shapiro-Wilk Test 0.974 p-value: 0

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

A startling result for the second period is the very high value of the adjusted R-
squared of 19.59 per cent, which is not consistent with the Fama (1970) concept of weak
form market efficiency. It should not be possible to explain 20 percent of the variation in the
value of one market index by movements in the other. This suggests that the relationship
between FTSE and S&P500 changed dramatically in the period marked by Brexit and the
COVID-19 pandemic.

The plots in Figure 3 present the results of a one standard deviation shock to the
level of the S$P500. The graph at the top left-hand-side of the figure displays the level of
the FTSE, and the middle plot in the figure shows changes from the mean value of the
dependent variable, in this case the level of FTSE. The final plot on the top line of Figure 3
shows changes in the level of FTSE. The lower set of plots in the figure show on the L.H.S
the size of the shock, the cumulative change in FTSE, and finally the cumulative absolute
change in FTSE. The window has been set to represent the changes through the following
30 days.

The plots suggest that it takes about ten days for a shock to work through the system.
The impact of a shock seems to be greater in the second period. One thousand simula-
tions are used to produce the plots, and 95 percent confidence intervals are included in
the graphs.

The most notable feature of the two sets of simulations is the increase in the size of
the response in the second period, and the fact that explanatory power of the model, as
measured by the adjusted R-squared values, is greatly increased.

As a further check, we ran a regression of the continuously compounded returns on
FTSE on those of S&P500 in this period. The results are shown in Table 5. The results in
the first period are consistent with weak form efficiency in that the adjusted R-squared
coefficient is 0.026, indicating that changes in S&P500 returns explain only 2.6% of FTSE
returns. The picture changes dramatically in the second period, which captures the uncer-
tainties associated with the BREXIT process and the COVID-19 pandemic. In this period,



Risks 2021, 9, 195 13 of 20

the adjusted R-squared of the regression jumps to over 19% which is not at all consistent
with weak form market efficiency.

Period 1: 2009–2015

Period 2: 2016–2021

Figure 3. Dynamac simulations.

Table 5. Tests of weak-form efficiency.

Period 1: 2009–2015

OLS, using observations 2009-04-27–2015-12-31 (T = 1658)
Dependent variable: ld_FTSEAdjusted

Coefficient Std. Error t-Ratio p-Value

const 0.000144605 0.000250097 0.5782 0.5632
ld_GSPCAdjusted 0.162625 0.0241800 6.726 0.0000
Mean dependent var 0.000229 S.D. dependent var 0.010306
Sum squared resid 0.171305 S.E. of regression 0.010171
R2 0.026589 Adjusted R2 0.026001
F(1, 1656) 45.23380 p-value(F) 2.40× 10−11

Log-likelihood 5255.693 Akaike criterion −10507.39
Schwarz criterion −10,496.56 Hannan–Quinn −10503.37
ρ̂ 0.002305 Durbin–Watson 1.994813
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Table 5. Cont.

Period 2: 2016–2021

OLS, using observations 2016-01-04–2021-03-11 (T = 1289)
Dependent variable: ld_FTSEAdjusted

Coefficient Std. Error t-Ratio p-Value

const −0.000112716 0.000276583 −0.4075 0.6837
ld_GSPCAdjusted 0.400293 0.0226603 17.66 0.0000
Mean dependent var 0.000096 S.D. dependent var 0.011054
Sum squared resid 0.126675 S.E. of regression 0.009921
R2 0.195148 Adjusted R2 0.194522
F(1, 1287) 312.0508 P-value(F) 1.07× 10−62

Log-likelihood 4118.274 Akaike criterion −8232.548
Schwarz criterion −8222.225 Hannan–Quinn −8228.673
ρ̂ 0.023553 Durbin–Watson 1.952382

3.3. NARDL Analysis

We applied the R package ’nardl’ by Zaghdoudi (2021) to implement the estimation
procedures for the nonlinear relationship between the daily levels of S&P500 and FTSE
over the two periods. The results of estimation are shown in Table 6.

The results in Table 6 suggest that the NARDL model successfully captures asymme-
tries in the response of the level of the FTSE index to changes in the levels of the S&P500
index. In period 1, the response to lagged negative changes is not significant, whereas the
responses to lagged positive changes are. This is apparent in the values of the long-run
coefficients presented in the RHS of Table 4, in which the coefficient of the lagged positive
change in S&P500 (GSPC.Adjusted_p_1) is 52.54374, the coefficient of the second lag is
negative, but smaller with a value of−45.84362, while the coefficient of the lagged negative
change in S&P500 (GSPC.Adjusted_n_1) is approximately−0.68924, which is much smaller
and insignificant. The long term trend coefficient is positive and significant. The Wald
test of asymmetry suggests that there is a signifcant difference between the responses
to positive and negative movements. The upper bound terminates at an F value of 6.36,
whereas the F value of 6.85 shows that there is significant evidence of cointegration.

We tried a number of alternative specifications for the model, but including a constant
and trend seemed to be optimal. The adjusted R-squared for the fitted model for the first
period is 0.024, and the F statistic for the model is highly significant. The Jarque–Bera
(JB) test rejects the hypothesis that the residuals conform to a Gaussian distribution, the
Lagrange Multiplier (LM) test finds no evidence of serial correlation, while the ARCH test
shows the presence of autoregressive conditional heteroscedasticity.

It has to be borne in mind that we are regressing the levels of a major market index,
FTSE, on those of another one, S&P500. The regression is significant, but the Adjusted
R-square is small. This is not surprising, and is also consistent with empirical work on
market efficiency, for example Fama (1965). If we could predict the level of FTSE efficiently,
we would have a money-making machine, which would not be consistent with the concept
of market efficiency. It also has to be borne in mind that Summers (1986) demonstrated that
traditional tests of market efficiency typically have low power. He was referring to tests
based on returns, not level regressions. The use of cointegration and the error correction
mechanism does have the power of super-consistency, but, even so, his cautions have to be
borne in mind.
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Table 6. NARDL Analysis.

Period 1: 2009–2015

Estimates Long Run Coefficients

Coefficients Estimate St. Error t Value Estimate St. Error t Value

Const 80.07220 30.46668 2.628 ***
FTSE.Adjusted_1 −0.01636 0.00625 −2.617 ***
GSPC.Adjusted_p 0.85942 0.16947 5.071 *** 52.54374 23.05575 2.2790 **
GSPC.Adjusted_p_1 −0.74983 0.23290 −3.220 *** −45.84362 22.80100 −2.0106 **
GSPC.Adjusted_p_2 −0.41464 0.23269 −1.782 * −25.35061 17.25858 −1.4689
GSPC.Adjusted_p_3 0.26798 0.16826 1.593 16.38378 11.89128 1.3778
GSPC.Adjusted_n −0.01127 0.02030 −0.555 −0.68924 1.40084 −0.4920
Trend 0.16325 0.08560 1.907 * 9.98092 4.51825 2.2090 **
Adjusted R-Squared 0.02418
F-statistic 0.02418 ***
Model Diagnostic tests
JB test 9.808146 ***
LM test ( 1 lag ) 0.3440852
ARCH test (4 lag) 5.117118 ***
Long-Run Asymmetry test
W. Statistic 210,664.6 ***
Bounds F Test <.......I(0)...................I(1)...>
1% Critical Value 5.15..............6.36
F Value 6.85 ***

Period 2: 2016–2021

Estimates Long Run Coefficients

Coefficients Estimate St. Error t Value Estimate St. Error t Value

Const 160.443173 51.074665 3.141 ***
FTSE.Adjusted_1 0.005375 0.027765 0.194
FTSE.Adjusted_2 −0.095398 0.039504 −2.415 *** 17.7480 86.4987 0.2052
FTSE.Adjusted_3 −0.048372 0.038373 −1.261 8.9992 47.7393 0.1885
FTSE.Adjusted_4 0.115227 0.026474 4.352 *** −21.4370 111.2749 −0.1926
GSPC.Adjusted_p 0.794214 0.108815 7.299*** −147.7565 761.8276 −0.1940
GSPC.Adjusted_p_1 −0.633554 0.153346 −4.132 *** 117.8672 604.3643 0.1950
GSPC.Adjusted_p_2 −0.428697 0.141188 −3.036 *** 79.7553 414.9075 0.1922
GSPC.Adjusted_p_3 0.268331 0.101340 2.648 *** −49.9206 257.2427 −0.1941
GSPC.Adjusted_n 1.199090 0.089650 13.375 *** −223.0801 1152.7959 −0.1935
GSPC.Adjusted_n_1 −0.864588 0.141390 −6.115 *** 160.8490 825.7917 0.1948
GSPC.Adjusted_n_2 −0.326815 0.097825 −3.341 *** 60.8012 320.2803 0.1898
Trend 0.061648 0.029695 2.076 ** −11.4690 59.8123 −0.1918
Adjusted R-Squared 0.2212
F-statistic 31.42 ***
Model Diagnostic tests
JB test 0.9761 ***
LM test ( 4 lag ) 2.6369
ARCH test (4 lag) 100.89 ***
Long-Run Asymmetry test
W. Statistic 210,664.6 ***
Bounds F Test <.......I(0)...................I(1)...>
1% Critical Value 5.15..............6.36
F Value 31.42 ***

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

The estimates for period 2 are more puzzling. The coefficients on positive lags of
levels of the S&P500 net out to zero, as do the coefficients on negative lags of the levels. All
the coefficients in the short run are highly significant, but not in the long run. The trend
coefficient is significant in the short run but not in the long run. The adjusted R-squared
is very high with a value of 0.22, which, as noted in the previous analysis reported in the
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paper, is not consistent with the existence of market efficiency. Once again, the Jarque–Bera
(JB) test rejects the hypothesis that the residuals conform to a Gaussian distribution, but
the Lagrange Multiplier (LM) test finds no evidence of serial correlation, while the ARCH
test shows the presence of autoregressive conditional heteroscedasticity. The Wald test
suggests the presence of long-run asymmetry, while the F statistic with a value of 34.42 is
well outside the bound of 6.36, suggesting the existence of cointegation.

Figure 4 plots the CUSUM test of the residuals, which reveals that, as the model
progresses through the observations of the total sample of daily values in the two periods,
the residuals remain well within the red borderline boundary at the 5% level, which
suggests they are stationary. The simple Engle–Granger tests of cointegration, whether
with a constant, or with a constant and trend, did not reject the null of cointegration
between the two series.

Similarly, the CUSUM Sum of Squares test, as shown in Figure 4, also suggests that
the residuals from the model are stationary. The conclusion drawn from these tests is
that something strange was happening to the relationship between FTSE and S&P500 in
the BREXIT and COVID-19 periods, which was inconsistent with market efficiency and
suggests that movements in FTSE could be predicted in this period.

Shin et al. (2014) note the well-established power dominance of the ECM-based
tests, which arises from their inclusion of potentially valuable information relating to the
correlation between the regressors and the underlying disturbances, as opposed to the
simple Engle–Granger test. In support, they cite the work of (Banerjee et al. 1998; Hansen
1995; Kremers et al. 1992; Pesaran et al. 2001). Thus, the NARDL specification, as used in
this paper, can even detect evidence in support of cointegration in circumstances in which
the simple Engle–Granger approach might fail to do so, but this is not the case with this
data set, as the Engle–Granger tests confirmed the existence of cointegration between the
two series.

Period 1: 2009–2015

Period 2: 2016–2021

Figure 4. CUSUM and CUSUM of squares tests.

One of the advantages of the NARDL framework, as used in this paper, is that it
has the merit of including both the levels and differences of the relevant series, and that
the bounds testing framework means that it can accommodate I(0) and I(1) sequences
of variables, or combinations of both. It is consistent but is more powerful than efficient
market tests that only use differences or returns series.

However, the results of the NARDL analysis could be consistent with both leverage
effects, and the previously mentioned ’downmarket’ effects, mentioned by Figlewski and
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Wang (2000). To further explore this issue, we undertake some quantile regression analysis
on the differences of the series, which are reported in the next subsection.

3.4. Quantile Regression Results

The results of quantile regressions, of the continuously compounded return on FTSE on
the continuously compounded return on S&P500, for both periods, are reported in Table 7.
In both periods, the slope coefficients on S&P500 are the highest in the 95% quantile, with
values of 0.361510 and 0.479784, respectively, and are both significant at the 1 percent
level. The coefficients fall continuously as we move across the quantiles, but remain highly
significant, apart from period 1 in the 95th quantile. In this case, in the 95 percent quantile,
which represents the highest returns, the slope coefficient is only 0.0154164 and is not
significant. This is consistent with the ’down market’ hypothesis, since the leverage effect
would imply a significant effect right across the quantiles.

Table 7. Quantile regression results of regression of FTSE on S&P500.

Period 1: 2009–2015

Quantile estimates, using observations 2009-04-27–2015-12-31 (T = 1659) Dependent
variable: ld_FTSEAdjusted, Asymptotic standard errors assuming IID errors

Tau Coefficient Std. Error t-Ratio

Constant 0.05 −0.0162232 0.000593580 −27.3312 ***
0.25 −0.00539134 0.000277723 −19.4127 ***
0.50 0.000344003 0.000242072 1.42107
0.75 0.00584020 0.000352873 16.5505 ***
0.95 0.0166363 0.000756901 21.9795***

ld_GSPCAdjusted 0.05 0.361510 0.0573889 6.29931 ***
0.25 0.238989 0.0268510 8.90058 ***
0.50 0.157727 0.0234042 6.73927 ***
0.75 0.134198 0.0341167 3.93349 ***
0.95 0.0715642 0.0731792 0.977930

Period 2: 2016–2021

Quantile estimates, using observations 2016-01-04–2021-03-11 (T = 1290) Dependent
variable: ld_FTSEAdjusted, Asymptotic standard errors assuming IID errors

Tau Coefficient Std. Error t-Ratio

Constant 0.05 −0.0157834 0.000883658 −17.8615 ***
0.25 −0.00491128 0.000305907 −16.0548 ***
0.50 0.000178811 0.000234350 0.763010
0.75 0.00492406 0.000319208 15.4259 ***
0.95 0.0154164 0.00106163 14.5215

ld_GSPCAdjusted 0.05 0.479784 0.0723975 6.62708 ***
0.25 0.335508 0.0250627 13.3867 ***
0.50 0.286440 0.0192001 14.9187 ***
0.75 0.265986 0.0261525 10.1706
0.95 0.237152 0.0869783 2.72656 ***

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels.

Figure 5 shows the behaviour of the coefficients of S&P500 as we move across the
quantiles. These quantile regression results suggest that there is a larger response to nega-
tive returns than to positive ones, and both are consistent with Figlewski and Wang (2000)
and the ‘down-market’ hypothesis.
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Period 1.

Period 2

Figure 5. Tau Sequence—Quantile Regression.

4. Conclusions

The paper featured an examination of the link between the behaviour of the S&P500
and FTSE Indexes in both a linear ARDL and a nonlinear autoregressive distributed lag
NARDL framework, as suggested by Shin et al. (2014). The attraction of NARDL is that
it represents the simplest method available of modelling combined short- and long-run
asymmetries. As mentioned previously, the bounds testing framework means that it can be
applied to stationary and non-stationary time series vectors, or combinations of both. The
results reported in the paper suggest that movements in the levels of daily S&P500 index
levels have very significant effects on the behaviour of the FTSE Index. They also suggest
that long-term multiplier impacts take about 10 days to take effect.

The results of the quantile regressions also support these findings and further suggest
that downward movements in S&P500 have a larger impact on FTSE than upward move-
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ments do. The results appear to support Figlewski and Wang (2000) and the concept of
’down-market’ effects, as opposed to leverage effects.

The most striking result of the analysis, whether they be undertaken in a cointegration
framework using levels of indices, or in a simple linear regression format using continu-
ously compounded returns, is that the hypothesis of simple weak form market efficiency
appears to be rejected in the second sample period, namely 2016 to 2021. The observance
of increased correlation between markets in times of crisis is consistent with the findings of
Chen et al. (2018).
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