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Abstract: Often, the claims reserves exceed the available equity of non-life insurance companies and
a change in the claims reserves by a small percentage has a large impact on the annual accounts.
Therefore, it is of vital importance for any non-life insurer to handle claims reserving appropriately.
Although claims data are time series data, the majority of the proposed (stochastic) claims reserving
methods is not based on time series models. Among the time series models, state space models com-
bined with Kalman filter learning algorithms have proven to be very advantageous as they provide
high flexibility in modeling and an accurate detection of the temporal dynamics of a system. Against
this backdrop, this paper aims to provide a comprehensive review of stochastic claims reserving
methods that have been developed and analyzed in the context of state space representations. For
this purpose, relevant articles are collected and categorized, and the contents are explained in detail
and subjected to a conceptual comparison.

Keywords: adaptive learning; dependence modeling; evolutionary models; insurance; Kalman filter;
machine learning; multivariate analysis; quantitative risk management; state space models; time
series forecasting

1. Introduction
1.1. The Importance of Claims Reserving in Non-Life Insurance

The insurance industry offers a multi-faceted range of numerous products that enable
policyholders to insure themselves against almost any form of loss. Insurance companies
therefore differentiate their products according to various criteria. In this paper, we focus
on the problem of claims reserving for a branch of insurance products known as Non-
Life Insurance (Continental Europe), General Insurance (United Kingdom) and Property and
Casualty Insurance (USA). While this branch encompasses all insurance products that are
different from life insurance, life insurance includes only life-related products and disability
insurance (see Wüthrich and Merz 2008). This is due to the following reasons. On the one
hand, life and non-life products differ reasonably, which is mainly reflected in the contract
terms, types of claims and risk drivers. This also explains why different stochastic models
and methods are used in both these branches. On the other hand, in many countries (such
as Germany or Switzerland), there is a strict legal separation between life and non-life. A
non-life insurer is therefore prohibited from offering life products, and vice versa. For this
reason, it is not uncommon for insurance corporations to establish different companies
and thus sell products from both branches. The following lines of business belong to the
non-life insurance branch: motor/car insurance, property insurance, liability insurance,
accident insurance, health insurance, marine insurance, and other insurance products such
as aviation, credit insurance, epidemic insurance, legal protection, travel insurance, and so
on (see Wüthrich and Merz 2008).

The amount of money that a policyholder has to pay to the insurer for insurance
coverage is called the premium. By paying a premium, the policyholder under an insurance
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policy transfers the risk to the insurer (risk transfer), who has to compensate/settle the
potential loss occurring under the contract via corresponding claims payments (in whole
or in part). This practice represents the insurance principle of non-life insurance. Thus, in
contrast to life insurance, non-life insurance is loss insurance, i.e., payments are made by the
insurer to the policyholder only in the event of a specific loss.

At the end of each fiscal year, the insurer is confronted with the situation in which the
premiums are known, but the claim amount is unknown. This uncertainty of the total loss
liabilities is mainly due to (1) a reporting delay, (2) a long-lasting claim settlement, and
(3) the unexpected re-opening of a closed claim (see Wüthrich and Merz 2008). Therefore,
appropriate claims reserves for the outstanding loss liabilities have to be calculated by the
responsible actuary. Since these loss reserves are often the largest share on the liability
side of the balance sheet, adequate claims reserving is required, that is, forecasting these
liabilities and quantifying their uncertainty is a key actuarial issue (see Chukhrova and
Johannssen 2021).

Although claims data are time series data, the majority of the proposed (stochastic)
claims reserving methods is not based on time series models. Among the time series
models, state space models combined with Kalman filter learning algorithms have proven
to be very advantageous as they provide high flexibility in modeling and an accurate
detection of the temporal dynamics of a system (see Chukhrova and Johannssen 2021).
Against this backdrop, this paper aims to provide a comprehensive review of stochastic
claims reserving methods that have been developed and analyzed in the context of state
space representations. For this purpose, relevant articles are collected and categorized, the
contents are explained in detail and subjected to a conceptual comparison.

1.2. State Space Models in the Claims Reserving Literature

The actuarial literature contains various articles in which state space models and
the Kalman filter learning algorithms are applied to improve stochastic claims reserving
(see Johannssen 2016). As a pioneer, De Jong and Zehnwirth (1983) constructed a state
space model for the payment stream of incremental payments, took business volume and
inflation indices into account, and presented a method to estimate the states underlying
the observations of the upper triangle and to predict the outstanding loss liabilities of
the lower triangle. Afterwards, Verrall (1989) used the relationship between the two-way
ANOVA and the Chain Ladder (CL) method to establish a state space model for the so-
called linear CL model. Wright (1990) constructed a model for incremental payments and
employed the state space approach to model variations in parameters across different
accident years. Verrall (1994) extended the state space model of Verrall (1989) to weaken
the homogeneity property of the CL method, which allows for development factors that do
not necessarily have to be identical across all accident years. Zehnwirth (1997) considered
different recursive representations, including state space models based on the general form
introduced by De Jong and Zehnwirth (1983) and discussed calendar year effects in claims
development triangles.

Ntzoufras and Dellaportas (2002) presented four models for Reported But Not Settled
(RBNS) claims, including state space models following Verrall (1989, and 1994). Alpuim and
Ribeiro (2003) proposed a univariate distribution-free state space model, where incremental
payments are modeled as a function of payments of the first development year, i.e., the
accident year itself. Taylor et al. (2003) discussed a generalized Kalman filter that accounts
for non-linearities in the observation equation. De Jong (2005) considered the so-called
development correlation model, which is a (state space) model that accounts for correlations
between individual development factors in the first two development years. In addition,
De Jong (2006) not only discussed the development correlation model, but two further
approaches taking correlations related to accident and calendar years into account.

Li (2006) compared various claims reserving methods including the state space model
of Verrall (1989). A completely different approach from the previous articles is taken by
Atherino et al. (2010), who did not model the Incurred But Not Reported (IBNR) run-off data
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in chronological form, but as a univariate time series with missing observations. Pang and
He (2012) combined the approach of Verrall (1989) and Taylor et al. (2003) and included an
additional lag of the state vector into the state equation. Chukhrova and Johannssen (2017)
presented a scalar state space model for cumulative payments. Most recently, Costa and
Pizzinga (2020) and Hendrych and Cipra (2021) extended the row-wise stacking approach
from Atherino et al. (2010) through the inclusion of tail effects and multivariate considera-
tions that allow for dependency modeling between correlated lines of business, respectively.

1.3. Categorization of Articles and Organization of the Paper

Figure 1 shows the history of the considered articles in stochastic claims reserving.
Thereby, all articles are ordered chronologically and are classified into five categories
considering their similarities in terms of contents: “Parametric evolution”, “Log-normal
model”, “Correlation models”, “Univariate models”, and “Row-wise stacking”. These cate-
gories need not be taken as mutually exclusive, but the choice of the appropriate category
is made considering the main approach used in the respective paper. The first category
includes the articles by De Jong and Zehnwirth (1983), Wright (1990), Zehnwirth (1997),
Taylor et al. (2003), and Pang and He (2012), as they are based on the assumption of a
parametric evolution of the run-off data across the development years. The second category
includes the articles by Verrall (1989, 1994), Ntzoufras and Dellaportas (2002), Li (2006)
because of the considered log-normal model for incremental payments. The third category
consists of the articles by De Jong (2005, and 2006) who discusses three types of models that
incorporate correlations within claims development triangles. In the fourth category, there
are the articles by Alpuim and Ribeiro (2003) and Chukhrova and Johannssen (2017), where
models are presented that avoid complex matrix-based structures. Finally, the fifth category
include the articles by Atherino et al. (2010), Costa and Pizzinga (2020), and Hendrych and
Cipra (2021), who propose a row-wise stacking of the claims data and associated state space
representations. The solid arrows in Figure 1 represent the contentual similarities among
the papers in their modeling approaches. The dashed arrows indicate, however, that the
respective state space models are included in papers where different stochastic claims
reserving methods are compared (see England and Verrall 2002; Verrall 2004). In addition,
state space models and the Kalman learning algorithms are discussed in the context of
stochastic claims reserving in standard text books such as Wüthrich and Merz (2008).

In the following, a category-guided presentation of the articles is performed. Within
each of five categories, a chronological order is followed to present the individual articles.
For the sake of consistency, a unified notation is used throughout the paper. Since this
paper is devoted to state space representations, all essential contents concerning state
space models are presented in the following, whereas less relevant contents are omitted or
referred to. In particular, the state space representations given in the articles are developed
in full detail, often much more detailed than in the original papers.

The paper is organized as follows. In Section 2, articles are discussed that are based
on the assumption of a parametric evolution of the claims data across development years
(Category 1). Section 3 presents articles in which incremental payments are assumed to be
log-normally distributed and are modeled using a log-normal model (Category 2). Section 4
includes articles where correlation models are considered (Category 3). In Section 5, state
space models are presented that have a scalar structure (Category 4). Section 6 contains
articles where the row-wise stacking approach is considered to re-organize the claims data
(Category 5). Subsequently, Section 7 provides a conceptual comparison of the presented
approaches and state space representations. In Section 8, concluding remarks are given.
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Figure 1. Chronology and categorization of the papers.

2. Parametric Evolution of Claims Data (Category 1)

In this section, we present papers that are based on the assumption of a parametric
evolution of the claims data across development years:

I De Jong and Zehnwirth (1983): Claims Reserving, State-Space Models and the Kalman Filter;
B Wright (1990): A Stochastic Method for Claims Reserving in General Insurance;
B Zehnwirth (1997): Kalman Filters with Applications to Loss Reserving;
I Taylor et al. (2003): Loss Reserving: Past, Present and Future;
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I Pang and He (2012): Application of State Space Model in Outstanding Claims Reserve.

Three articles marked with I are mainly based on the use of state space models and
the Kalman filter learning theory, and thus are presented in detail, while the models of the
other two articles marked with B are treated in a more brief form, as state space models
are not the focus of their methodologies.

2.1. Claims Reserving, State Space Models and the Kalman Filter

De Jong and Zehnwirth (1983) laid the foundation for the use of state space models
and the Kalman filter in stochastic claims reserving with their article “Claims Reserving,
State-Space Models and the Kalman Filter”. The proposed state space model is constructed
for the payment stream of the incremental payments and presumes known, time-varying
system matrices.

B Modeling the payment stream of incremental payments

The modeling is based on claims development triangles in which incremental pay-
ments Xi,j are given for accident years i = 1, . . . , I and development years j = 0, . . . , I − 1.
The payment stream of incremental payments is modeled with increasing development
year j = 0, . . . , t− 1 and decreasing accident year i = t, t− 1, . . . , 1 for a fixed calendar year
t = i + j via

Xi,j = m(t− j, j) + uj(t), (1)

see also Figure 2. Here, the quantity m(t− j, j) = m(i, j) is generally the expected claim
payment to be made in accident year i and development year j of the t-th calendar year,
and uj(t) is a noise term with E[uj(t)] = 0.

y0(1) y1(2) y2(3) . . . ys−1(s)

y0(2) y1(3) . . . ys−2(s)

y0(3) ... . .
.

...
y1(s)

y0(s)

1

2

3

...

I

0 1 2 . . . I − 1

X1,0 X1,1 X1,2 . . . X1,I−1

X2,0 X2,1 . . .
. .
.

X3,0
... . .

.

... . .
.

XI,0i

j

Figure 2. Modeling the payment stream of incremental payments.

De Jong and Zehnwirth (1983) propose an optional modification of (1) by including
additional information such as the volume of business transacted in each accident year and
the inflation factor for each calendar year. To this end, let n(i) denote an appropriate index
for the volume of business transacted in accident year i and λ(t) denote an appropriate
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price index for payments in the t-th calendar year. Using both these quantities, (1) can be
extended to

Xi,j = n(t− j)λ(t)m(t− j, j) + uj(t), (2)

where n(t− j)λ(t)m(t− j, j) is the expected value of the inflation-adjusted and volume-
weighted incremental payments in accident year i and development year j of calendar
year t.

B Development of an appropriate state space representation

The modeling of the payment stream via (1) and (2) is promising with respect to
the construction of an appropriate observation and state equation of a state space model,
respectively. The following discussion in this regard is based on (1), but can be applied
to (2) with minor modifications. In the first step of modeling the observation equation,
(1) is transferred into a vector representation in such a way that yt represents the vector of
observations Xi,j of the t-th calendar year, ft forms the vector of expected claims payments
m(t − j, j), and wt is the vector of noise terms uj(t) with j = 0, . . . , t − 1. Thus, the
incremental payments made in calendar year t can be specified via

Xt,0
Xt−1,1

...
X1,t−1

 =


m(t, 0)

m(t− 1, 1)
...

m(1, t− 1)

+


u0(t)
u1(t)

...
ut−1(t)

 (3)

or briefly as yt = ft + wt. In the second step, the vector ft is to be modeled in such a way
that it is obtained by the product of a system matrix Gt and a state vector xt. For this
purpose, De Jong and Zehnwirth (1983) take m(i, j) for a given accident year i as a function
depending on the development year j and thus construct for each accident year a distributed
lag model of the form

m(i, j) =
p

∑
k=1

φk(j)bk(i), (4)

where φk(j) are known functions in j and bk(i) are unknown parameters depending on
the respective accident year i. De Jong and Zehnwirth (1983) justified the approach (4)
by an overall smooth evolution of m(i, j) characterized by a firstly increasing and then
decreasing behavior in j for a given accident year i. A variation of (4) for p = 1 is the
so-called Hoerl curve

m(i, j) = b(i)(j + 1)e−j, (5)

which De Jong and Zehnwirth (1983) use in their empirical application example. In addition,
(4) can be easily transferred into vector notation by using

φ(j) =


φ1(j)
φ2(j)

...
φp(j)

 and b(i) =


b1(i)
b2(i)

...
bp(i)

 (6)

as follows:

m(i, j) = φT(j)b(i) (7)
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Substituting (7) into (3) then gives
Xt,0

Xt−1,1
...

X1,t−1

=


φT(0)b(t)

φT(1)b(t− 1)
...

φT(t− 1)b(1)

+


u0(t)
u1(t)

...
ut−1(t)



=


φT(0) 0T . . . 0T

0T φT(1)
...

...
. . . 0T

0T . . . 0T φT(t− 1)




b(t)
b(t− 1)

...
b(1)

+


u0(t)
u1(t)

...
ut−1(t)


(8)

or in a more compact form

yt = Gtxt + wt (observation equation) (9)

with E[wt] = 0 and

E
[
wswT

t

]
=

{
Rt if s = t
O otherwise

for all s, t = 1, . . . , I. Thus, given φ(j), j = 0, . . . , t− 1, the system matrix Gt is a known
time-varying diagonal matrix, and the state vector xt contains unknown parameter vectors
b(i) for i = 1, . . . , t. Assuming a Hoerl curve according to (5), the observation Equation (9)
of the t-th calendar year results in (due to p = 1):


Xt,0

Xt−1,1
...

X1,t−1

 =


1 0 . . . 0

0 2e−1 ...
...

. . .
...

0 . . . 0 te1−t




b(t)
b(t− 1)

...
b(1)

+


u0(t)
u1(t)

...
ut−1(t)


Subsequently, De Jong and Zehnwirth (1983) specify an appropriate state equation,

in which they establish a connection between the state vector xt of the t-th calendar year
and the state vector xt−1 of the (t− 1)-th calendar year. The basic idea is again to model
a smooth evolution, but in a slightly different form than in (4). The starting point is the
sequence m(i, j), but with the difference that for a fixed development year j the accident
years i are varied, whereas before for a fixed calendar year t the development years j varied
(see Figure 3).

For a given development year j, De Jong and Zehnwirth (1983) propose modeling
m(i, j) via

m(i, j) = E[m(i, j)|m(i− 1, j), . . . , m(i− q, j)] + η(i, j) (10)

with q = 1, . . . , i − 1, where η(i, j) is a noise term with E[η(i, j)] = 0. Thus, in contrast
to (4), m(i, j) is not modeled in a deterministic way but as a random variable. Further, they
assume that the conditional expected value on the right-hand side of (10) is a polynomial
in i of degree q− 1 that passes through m(i− 1, j), . . . , m(i− q, j). This leads to

m(i, j) =
q

∑
k=1

a(k)m(i− k, j) + η(i, j) (11)

with known

a(k) =
(

q
k

)
(−1)k−1
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m(1, 0) m(1, 1) m(1, 2) . . . m(1, I−1)

m(2, 0) m(2, 1) . . . . . .

m(3, 0) ... . . .

...
m(I−1, 1)

m(I, 0)

m(i, 0) m(i, 1)

1

2

3

...

I

0 1 2 . . . I − 1

m(1, 0) m(1, 1) m(1, 2) . . . m(1, I−1)

m(2, 0) m(2, 1) . . . . . .

m(3, 0) ... . . .

...
m(I−1, 1)

m(I, 0)i

j

Figure 3. Sequences m(i, j) for a given development year j.

for k = 1, . . . , q. Substituting (7) on both sides into (11) for j = j1, j2, . . . , jp yields

Φb(i) =
q

∑
k=1

a(k)Φb(i− k) + vi, (12)

where the (p× p)-dimensional matrix Φ and the p-dimensional vector vi are given by

Φ =


φT(j1)
φT(j2)

...
φT(jp)

 and vi =


η(i, j1)
η(i, j2)

...
η(i, jp)

,

respectively. If both sides of Equation (12) are multiplied from the left by the inverse
Φ−1 = Ψ of the matrix Φ (the existence of the inverse is ensured, see De Jong and
Zehnwirth 1983), one obtains

b(i) =
q

∑
k=1

a(k)b(i− k) + Ψvi. (13)

Transferring (13) into matrix notation, we obtain


b(t)

b(t− 1)
...

b(1)

 =



a(1)I . . . a(q)I . . . O
I . . . O . . . O
...

. . .
...

...
O I O
...

...
. . .

...
O . . . O . . . I





b(t− 1)
...

b(t− q)
...

b(1)

+


Ψ

O
...

O

vt (14)

or in a more compact fom

xt = Ftxt−1 + Btvt (state equation) (15)
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with E[vt] = 0 and

E
[
vsvT

t

]
=

{
Qt if s = t
O otherwise

as well as E
[
vswT

t
]
= O for all s, t = 1, . . . , I. The identity matrices I, zero matrices O and

scalar matrices a(k)I with k = 1, . . . , q in (14) are each of dimension p× p. Note also that
the system matrices Ft and Bt are known in the state Equation (15).

A variation of the state Equation (15) is given for p = 1 (i.e., assuming a Hoerl curve
as in (5)) and the parameters b(i) of different accident years i = 2, . . . , I are connected by a
random walk

b(i) = b(i− 1) + vi, (16)

that is, q = 1, a(1) = 1, Ψ = 1. Since we have Φ = φT(j) = φ(j) = (j + 1)e−j, the relation
Ψ = ej

j+1 holds. For this reason, De Jong and Zehnwirth (1983) aim to obtain Ψ = 1 and
thus a state equation in the form of the random walk (16), i.e., they choose without loss of
generality the fixed development year j = 0.

With respect to (10) and (13), the use of (16) implies

E[m(i, j)|m(i− 1, j), . . . , m(i− q, j)] = E[m(i, j)|m(i− 1, j)] = m(i− 1, j)

for all j = 0, . . . , I − 1. Accordingly, it follows for the system matrix Ft that it has the value
one at positions (1, 1), (2, 1), (3, 2), . . . , (t, t− 1) and zeros otherwise, while Bt corresponds
to a t-dimensional unit vector with the value one at position (1, 1). The state Equation (15)
thus simplifies to:


b(t)

b(t− 1)
...

b(1)

 =



1 0 . . . 0
1 0 . . . 0
...

. . .
...

... 1 0
0 . . . 0 1




b(t− 1)
b(t− 2)

...
b(1)

+


1
0
...
0

vt

Table 1 gives an overview of the dimensions of vectors and matrices in the state space
model of De Jong and Zehnwirth (1983).

Table 1. Dimensions in the state space model of De Jong and Zehnwirth (1983).

Vectors Matrices

yt t× 1 Gt t× tp
xt tp× 1 Ft tp× (t− 1)p
wt t× 1 Bt tp× p
vt p× 1 Rt t× t

Qt p× p

If one intends to model the observation and state equations by using (2) instead of
(1), there are only changes in the observation Equation (9), while the state Equation (15)
remains unchanged: each row k = 1, . . . , t of the system matrix Gt has to be multiplied by
a weighting factor consisting of volume and inflation indices, i.e., by n(t− k + 1)λ(t).

B Forecasting the outstanding loss liabilities

As the system matrices Gt, Ft, Bt are assumed to be known for all t = 1, . . . , I, the
outstanding loss liabilities for individual and aggregated accident years can be predicted
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by using x̂I|I and PI|I = Cov
(

xI − x̂I|I
)

in a straightforward way. To this end, all future
incremental payments are collected in the vector

yI+1 =
(
XI,1 XI−1,2 . . . X2,I−1 XI,2 . . . X3,I−1 . . . XI,I−1

)T .

All these future observations belong to one of the accident years i = 2, . . . , I, and
therefore, they are based on the corresponding state b(2), . . . , b(I). Accordingly, the state
vector xI+1 corresponds to the vector xI of the current calendar year I, which is why the
state Equation (15) is given by xI+1 = xI (i.e., FI+1 = I, QI+1 = O). The system matrix
GI+1 of the observation equation is obtained on the basis of (1) similar to that in (8), i.e.,
it consists mostly of zero vectors, and the entries φT(j) with j = 1, . . . , I − 1 are ordered
such that they are multiplied by the states b(i) from xI of the corresponding accident year
i = 1, . . . , I of Xi,j from yI+1. Thus, the future observations can be predicted via

ŷI+1|I = GI+1x̂I|I

(given by (9)) and



X̂I,1
X̂I−1,2

...
X̂2,I−1

X̂I,2
...

X̂3,I−1
...

X̂I,I−1


=



φT(1) 0T . . . . . . 0T

0T φT(2)
...

...
. . .

...

0T . . . 0T φT(I − 1)
...

φT(2) 0T . . . . . .
...

...
. . .

...

0T . . . φT(I − 1) 0T ...
...

...
φT(I − 1) 0T . . . . . . 0T




b̂(I)

b̂(I − 1)
...

b̂(1)

,

respectively. The variance–covariance matrix of the prediction error
(
yI+1 − ŷI+1|I

)
is

given by:

∆I+1 = Cov
(
yI+1 − ŷI+1|I

)
= GI+1PI|IG

T
I+1

Since x̂I|I , PI|I , GI+1 are known at time t = I, a prediction of the outstanding loss
liabilities for individual and aggregated accident years is straightforward. With respect to
the aggregated accident years, all components from ŷI+1|I are to be added to the total loss
reserve, while for individual accident years only those components from ŷI+1|I related to
the respective accident year i = 2, . . . , I are to be added. An extraction of these components
can be carried out via a diagonal matrix A, which has a value of one at the respective
positions and otherwise zeros. The variance–covariance matrix belonging to AŷI+1|I is thus

Cov
(
AyI+1 −AŷI+1|I

)
= A∆I+1AT .

However, if the modified payment stream according to (2) is used, additional un-
certainty is induced via the inflation index λ(t) of future calendar years t > I, which is
unknown at time t = I. This is due to the unknown entries n(i)λ(i + j)φT(j) for i + j > I
instead of the known entries φT(j) in the system matrix GI+1.

2.2. A Stochastic Method for Claims Reserving in General Insurance

Wright (1990) primarily establishes a model for incremental payments that includes
a state space approach, where the variation of the parameters is modeled over different
accident years. Thus, although the model of Wright (1990) is not mainly based on state
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space models and the Kalman filter theory, it embeds them in a model framework as one
component. In the following, therefore, the model for incremental payments and the state
space model are presented (for further details, see Wright 1990).

B Construction of the model for claims payments

The modeling is built on development triangles that include incremental payments Xi,j
in accident years i = 1, . . . , I and development years j = 0, . . . , I − 1. The proposed model
is based on the assumption that incremental payments Xi,j are composed of the sum of
Ni,j independent and identically distributed (i.i.d.) payments Xk

i,j (which are stochastically

independent of Ni,j), that is, Xi,j = ∑
Ni,j
k=1 Xk

i,j. Thus, Wright (1990) uses the collective risk
model and Xi,j has a mixture distribution (see, e.g., Kaas et al. 2009). The lags j of individual
incremental payments Xk

i,j between the accident year of the claim and the actual payment

are modeled as i.i.d. random variables, which is why pi,j with ∑I−1
j=0 pi,j = 1 is defined as

the probability of payments regarding claims of accident year i in a given development
year j. Let the number Ni,j of payments for claims of accident year i in development year
j be Poisson-distributed with parameter εi pi,j, i.e., Ni,j ∼ P

(
εi pi,j

)
; then, the incremental

payments Xi,j follow a mixture Poisson distribution. Following the convolution property of
the Poisson distribution, the total number of claims payments Ni = ∑I−1

j=0 Ni,j of an accident
year i also follows a Poisson distribution with parameter

εi =
I−1

∑
j=0

εi pi,j,

where the Ni,j for different j are assumed to be stochastically independent random variables
and the parameter εi serves as a measure for the exposure of accident year i. As for modeling
of the probability pi,j, Wright (1990) gives two alternatives, the stochastic CL and the
Hoerl curve model. While in the first alternative it is assumed that the probabilities pi,j
are identical over all accident years i, the second alternative (preferred by Wright 1990)
provides a modeling via a Hoerl curve of the form

pi,j = αjκi j′Ai e−Bi j′ (17)

with constants κi, Ai and Bi to be estimated and αj and j′ as functions depending on j.
Using (17), the expected value and variance of Ni,j are as follows:

E
[
Ni,j
]
= Var

(
Ni,j
)
= εi pi,j = εiαjκi j′Ai e−Bi j′ (18)

In addition to the number Ni,j of payments, Wright (1990) also models the amount
of individual payments Xk

i,j for claims of an accident year i in the j-th development year,
which, like the Ni,j, are also assumed to be stochastically independent for various j. The
first two moments of Xk

i,j are modeled distribution-free with help of

E
[

Xk
i,j

]
= eδt Kj′λ and Var

(
Xk

i,j

)
= ρ2E

[
Xk

i,j

]2
(19)

with proper (unknown) constants K > 0, λ, ρ and inflation parameter δt. While such a
modeling of the expected value with different λ and K provides a variety of possibilities,
the modeling of the variance results from the assumption that the coefficient of variation

CV =

√
Var
(

Xk
i,j

)
E
[

Xk
i,j

]
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is time-invariant and corresponds to ρ. The optional term eδt in (19) with

δt =
t

∑
k=1

τk

and τk as the average annual inflation rate between calendar years k− 1 and k, on the other
hand, are used to account for inflation; i.e., eδt reflects the inflation factor from the first
calendar year to calendar year t = i + j. However, Wright (1990) proposes using

δt =
t

∑
k=1

τ = tτ = (i + j)τ ≈ (i + j′)τ, (20)

and therefore assumes a constant inflation rate τ.
Considering (18)–(20), and using the moments of the mixture Poisson distribution, the

expected value and variance of the incremental payments Xi,j in (i, j) are obtained via

E
[
Xi,j
]
= E

[
Ni,j
]
E
[

Xk
i,j

]
= εi pi,je(i+j′)τKj′λ (21)

and

Var
(
Xi,j
)
= E

[
Ni,j
]
E
[(

Xk
i,j

)2
]

= E
[
Ni,j
](

E
[

Xk
i,j

]2
+ Var

(
Xk

i,j

))
= E

[
Ni,j
](

1 + ρ2
)
E
[

Xk
i,j

]2

= εi pi,j

(
1 + ρ2

)
e2τ(i+j′)K2 j′2λ, (22)

where Xi,j are stochastically independent for different j due to the assumptions regarding
Ni,j and Xk

i,j. Moreover, Wright (1990) normalizes the incremental payments Xi,j with the
help of

X′i,j =
Xi,j

ε̃iαj
(23)

with exposure defined by

εi = ε̃iε
′
i. (24)

By using (17), (21), (23), (24), the expected value E[X′i,j] = µ′i,j of the normalized
incremental payments X′i,j can be stated as follows:

µ′i,j =
1

ε̃iαj
E
[
Xi,j
]

=
1

ε̃iαj
εi pi,je(i+j′)τKj′λ (25)

=
1

ε̃iαj
εiαjκi j′Ai e−Bi j′ e(i+j′)τKj′λ

= eiτε′iκiKj′(Ai+λ)e−(Bi−τ)j′

= eβi,1 j′βi,2 e−βi,3 j′
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with

βi,1 = iτ + ln
(
ε′iκiK

)
βi,2 = Ai + λ

βi,3 = Bi − τ

Considering (22), (23), (25), the variance of X′i,j is

Var
(

X′i,j
)
=

1(
ε̃iαj

)2 Var
(
Xi,j
)

=
1(

ε̃iαj
)2 εi pi,j

(
1 + ρ2

)
e2τ(i+j′)K2 j′2λ

= µ′i,j
1

ε̃iαj

(
1 + ρ2

)
e(i+j′)τKj′λ

= µ′i,jφiψj

with

φi =
K(1 + ρ2)eiτ

ε̃i
and ψj =

j′λej′τ

αj
.

Assuming that φi and ψj are known, one obtains a generalized linear model of the form

X′i,j = µ′i,j + ei,j = exp
(

xT
j βi

)
+ ei,j

with the exponential response function h−1, linear predictor xT
j βi consisting of

xj =

 1
ln(j′)
−j′

 and βi =

βi,1
βi,2
βi,3


and noise term ei,j with

E
[
ei,j
]
= 0 and Var

(
ei,j
)
= µ′i,jφiψj,

where the parameter estimators β̂i and variance–covariance matrices Ri can be determined

for all i using the Fisher scoring algorithm such that βi ∼ N
(

β̂i; Ri

)
is approximately

satisfied. However, since φi and ψj are usually unknown, Wright (1990) proposes an
iterative approach using parameter initializations to determine initial values for φi and
ψj. Considering this approach, all accident years are run sequentially and the results of
all accident years are subsequently used to obtain new estimates of the parameters for the
next run.

B Modeling the parameter variation via a state space model

To increase the reliability of the estimators β̂i, Wright (1990) models the variation in
the parameters βi for different accident years i via

βi = βi−1 +

τ
0
0

+ ωi (26)



Risks 2021, 9, 198 14 of 55

with

ωi =

ωi,1
ωi,2
ωi,3

, E[ωi] = 0 and Cov(ωi) =

u2
1 0 0

0 u2
2 0

0 0 u2
3

.

By defining xi with the help of

xi =
(
τ βi,1 βi,2 βi,3

)T (27)

and by using (26), (27) can be written as

xi = Fixi−1 + vi (state equation) (28)

with

Fi =


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

, xi−1 =


τ

βi−1,1
βi−1,2
βi−1,3

 and vi =


0

ωi,1
ωi,2
ωi,3

,

where E[vi] = 0 and

E
[
vhvT

i

]
=

{
Qi if h = i
O otherwise

hold for all h, i = 1, . . . , I. Thus, Equation (28) forms the state equation of a state space
model. Considering the estimators β̂i as observations yi, the associated observation equa-
tion can be obtained via

yi = Gixi + wi (observation equation) (29)

with

yi =

β̂i,1
β̂i,2
β̂i,3

, Gi =

0 1 0 0
0 0 1 0
0 0 0 1

, wi =

εi,1
εi,2
εi,3


and E[wi] = 0,

E
[
whwT

i

]
=

{
Ri if h = i
O otherwise

and E
[
vhwT

i
]
= O for all h, i = 1, . . . , I. Accordingly, a complete state space model with

w = 3 and v = 4 is specified via Equations (28) and (29).

2.3. Kalman Filters with Applications to Loss Reserving

Zehnwirth (1997) states that this article arose from various lecture notes on statistics
and actuarial science and should be viewed primarily as an introduction to Kalman filter
theory and ordinary least squares (OLS) estimation and their close relationship to Bayes
estimation. Thus, Zehnwirth (1997) derives Kalman recursions for (multiple) linear regres-
sion models and the local level model, shows the connections of sample-based updates
with Bayes updates in OLS estimators, and discusses state space models and the general
Kalman filter algorithms.

The focus in the experimental and empirical applications is primarily not on an
application of the Kalman filter, but on an investigation of the trend properties within
claims development triangles. In the experimental application, a simulation of incremental
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payments Xi,j in accident years i = 1, . . . , I and development years j = 0, . . . , I − 1 is
performed via

Xi,j = eα−0.2j, (30)

i.e., a variation of the Hoerl curve. The factor eα reflects the basic level of incremental
payments, while the factor e−0.2j describes their decreasing behavior over the development
years. Based on this, calendar year effects (in the form of inflation factors) are illustrated
and the problem of overparameterization is addressed, which arises, e.g., when there are
too many parameters for the individual accident years, but can be remedied by recursively
evolving parameters. However, no specific state space representation is developed.

2.4. Loss Reserving: Past, Present and Future

Taylor et al. (2003) give a classification scheme for claims reserving methods whose
higher-level criteria make a division between static and dynamic methods. In the frame-
work of this taxonomic classification and especially with respect to the dynamic methods,
they discuss a generalized Kalman filter, which allows for non-linearities in the observation
equation and noise terms following a distribution of the Exponential Dispersion Family
(EDF). They present two modeling approaches based on different types of claims data and
state space representations constructed specifically for these data.

B Accident year-based state space modeling

In the first modeling approach, an accident year-based state space representation
is constructed, which is based on Payments Per Claim Incurred (PPCI) of a workers’
compensation insurance policy as claims data. The PPCI of an accident year i = 0, . . . , I
in the development year j = 0, . . . , I are denoted by Yi,j and belong to the (t = i + j)-th
calendar year with t = 0, . . . , I.

The state space model considered by Taylor et al. (2003) is based on a linear state
equation of the form

xi+1 = Fixi + vi (state equation) (31)

with five-dimensional random vectors xi, vi, transition matrix Fi ∈ R5×5, E[vi] = 0 and

E
[
vivT

k

]
=

{
Qi if i = k
O otherwise

for i, k = 0, . . . , I − 1, while the observation equation

yi = h−1(Gixi) + wi (observation equation) (32)

with (I − i + 1)-dimensional random vectors yi, wi, system matrix Gi ∈ R(I−i+1)×5,
E[wi] = 0 and

E
[
wiwT

k

]
=

{
Ri if i = k
O otherwise

is based on a generalized linear model with link function h (i.e., response function h−1)
and linear predictor Gixi for all i, k = 0, . . . , I. Moreover, E

[
viwT

k
]
= O holds for all

i, k = 0, . . . , I, the initial state x0 is uncorrelated with vi and wi for all i = 0, . . . , I and wi
is assumed to be EDF-distributed for all i = 0, . . . , I. Thus, any strictly monotonic and
differentiable link function h (such as a logarithm function) can be used to link the EDF-
distributed observations yi and the systematic component Gixi. The resulting recursive
equations Taylor et al. (2003) refer to as the EDF filter, which include the Kalman filter as
a special case, namely for the identity function as link function and normally distributed
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noise terms wi. The observation vector yi in (32) includes all PPCIs of an accident year
i = 0, . . . , I of the upper claims development triangle (see Figure 4).

Y0,0 Y0,1 Y0,2 Y0,I

Y1,0 Y1,1 Y1,I−1

Y2,0

YI−1,1

YI,0

. . .

. . .

...

...

0 1 2 . . . I

0

1

2

I

. .
.

y0

y1

yI

...

Y0,0 Y0,1 Y0,2 Y0,I

Y1,0 Y1,1 Y1,I−1

YI,0

i

j

Figure 4. Accident year-based modeling of the observation vector.

Taylor et al. (2003) propose a logarithm function as a link function, the noise terms wi
are assumed to be gamma-distributed and the (j + 1)-th row of the linear predictor Gixi
for an accident year i = 0, . . . , I is given by

βi,0 + βi,1(j + 1) +
βi,2

j + 1
+

βi,3

(j + 1)2 + βi,4δj,0 (33)

with respect to the development year j = 0, . . . , I. Here, δj,0 denotes the Kronecker delta,

δj,0 =

{
1 if j = 0
0 if j > 0

,

which can be used to model the peak in development year j = 0. Thus, the observation
Equation (32) of accident year i = 0, . . . , I can be stated as follows:



Yi,0
Yi,1

...
Yi,j

...
Yi,I−i


= exp





1 1 1 1 1
1 2 1

2
1
4 0

...
...

...
...

...
1 j + 1 1

j+1
1

(j+1)2 0
...

...
...

...
...

1 I − i + 1 1
I−i+1

1
(I−i+1)2 0




βi,0
βi,1
βi,2
βi,3
βi,4




+



wi,0
wi,1

...
wi,j

...
wi,I−i


On the other hand, Taylor et al. (2003) do not provide any information on the concrete

form of the state Equation (31). Taylor et al. (2003) model the evolution of the PPCI over
the development years according to (33) in a similar way to De Jong and Zehnwirth (1983),
Wright (1990) and Zehnwirth (1997), who specify the evolution of incremental payments
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over the development years with the help of a Hoerl curve. Taylor et al. (2003) apply
this approach to the PPCI, as their evolution over the development years is similar to
that of incremental payments: They reach their peak in development year j = 0 and
then drop relatively quickly to zero. This evolution of the PPCI is also the justification
of Taylor et al. (2003) for the choice of the logarithm function as a link function and the
assumption of a gamma distribution for the measurement noise.

B Calendar year-based state space modeling

For the second modeling approach, Taylor et al. (2003) use a data set from Taylor (2000)
that consists of motor vehicle bodily injury claim closure rates. Here, rather than collecting
the observations from each accident year, they stack the observations from each calendar
year into observation vectors. This is due to the fact that claim closure rates are relatively
flat across development years, but are subject to calendar year effects.

The state space model proposed by Taylor et al. (2003) provides a linear state equation
and an observation equation in the form of a generalized linear model, but differs from
the first approach by the time index (calendar years t instead of accident years i) and by
the matrix dimensions. They consider the following state space model consisting of the
state equation

xt+1 = Ftxt + vt (state equation) (34)

with (3t + 9)-dimensional random vectors xt+1, vt, a (3t + 6)-dimensional random vector xt
and transition matrix Ft ∈ R(3t+9)×(3t+6) for t = 0, . . . , I − 1, and the observation equation
of the t-th calendar year

yt = h−1(Gtxt) + wt (observation equation) (35)

with (t + 1)-dimensional random vectors yt, wt, and (t + 1)× (3t + 6)-dimensional system
matrix Gt for t = 0, . . . , I, where the assumptions concerning the noise terms correspond
to those of the first approach (transferred to calendar years).

Taylor et al. (2003) choose the identity function as a link function and the measure-
ment noise is assumed to be normally distributed, which is why one obtains an ordinary
linear observation equation and the usual linear Kalman filter can be used. This choice
is motivated by the sufficiently high number of claims closures in the underlying claims
data, and the assumption of an approximate normal distribution is justified by the central
limit theorem, although the assumption of a discrete probability distribution such as the
binomial distribution would be more appropriate. As for the development of the expected
claim closure rate E

[
Zi,j
]

with respect to the claims of an accident year i = 0, . . . , I over the
development years j = 0, . . . , I, Taylor et al. (2003) assume

E
[
Zi,j
]
= βi,0 +

βi,1

j + 1
+

βi,2

(j + 1)2 + γtδi+j,t (36)

with γt as effect of the t-th calendar year and Kronecker Delta δi+j,t. The observation vector

yt =
(
Z0,t Z1,t−1 Z2,t−2 . . . Zt,0

)T

of the t-th calendar year with t = 0, . . . , I contains all t + 1 claim closure rates Zi,j of the
respective calendar year t = i + j (see Figure 5), which is why the (3t + 6)-dimensional
state vector can be stated as

xt =
(

β∗0 β∗1 . . . β∗t γt
)T

with

β∗i =
(

βi,0 βi,1 βi,2
)T (37)
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γt =
(
γt 0 0

)T (38)

for i = 0, . . . , t.

Z0,0 Z0,1 Z0,2 . . . Z0,I

Z1,0 Z1,1 . . . Z1,I−1

Z2,0
... . .

.

...
ZI−1,1

ZI,0

y2

yI

0

1

2

...

I

y0

y1

0 1 2 . . . I

Z0,0 Z0,1 Z0,2 . . . Z0,I

Z1,0 Z1,1 . . . Z1,I−1

Z2,0
... . .

.

...
ZI−1,1

ZI,0

i

j

Figure 5. Calendar year-based modeling of the observation vector.

While the state vector xi in the first modeling approach only contains the parameters of
the i-th accident year, the state vector xt contains all parameters up to the t-th accident year
plus the corresponding calendar year effect. This is due to the fact that the observations
of the t-th calendar year pass through all accident years i = 0, . . . , t. The observation
Equation (35) is thus given by

Z0,t
Z1,t−1
Z2,t−2

...
Zt,0

 =


αT

t 0T . . . 0T eT

0T αT
t−1

...
...

...
. . . 0T ...

0T . . . 0T αT
0 eT




β∗0
β∗1
...

β∗t
γt

+


w0,t

w1,t−1
w2,t−2

...
wt,0


with

αj =
(

1 1
j+1

1
(j+1)2

)T
,

e =
(
1 0 0

)T ,

β∗i according to (37) and γt according to (38) for all i, j = 0, . . . , t as well as three-dimensional
zero vectors 0. The state Equation (34) is then
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
β∗0
...

β∗t
β∗t+1
γt+1

 =



I O . . . O

O
. . .

...
... I

...
... I O

O . . . O I




β∗0
β∗1
...

β∗t
γt

+



0
...
0

v(β)
t

v(γ)
t


where I and O in Ft are identity and zero matrices of dimensions 3× 3, respectively, 0 in vt

are three-dimensional zero vectors and v(β)
t , v(γ)

t are given as follows:

v(β)
t =

(
vt,0 vt,1 vt,2

)T

v(γ)
t =

(
v(γ)t 0 0

)T

Thus, the state equation involves a dynamic estimation of the parameters β∗t+1 and
γt+1 via

β∗t+1 = β∗t + v(β)
t

γt+1 = γt + v(γ)t

for t = 0, . . . , I − 1. Finally, Table 2 gives an overview of the dimensions of vectors and
matrices in the state space models of Taylor et al. (2003).

Table 2. Dimensions in the state space models of Taylor et al. (2003).

Accident Year-Based Model Calendar Year-Based Model

yi (I − i + 1)× 1 yt (t + 1)× 1
xi+1 5× 1 xt+1 (3t + 9)× 1
xi 5× 1 xt (3t + 6)× 1
wi (I − i + 1)× 1 wt (t + 1)× 1
vi 5× 1 vt (3t + 9)× 1
Gi (I − i + 1)× 5 Gt (t + 1)× (3t + 6)
Fi 5× 5 Ft (3t + 9)× (3t + 6)
Ri (I − i + 1)× (I − i + 1) Rt (t + 1)× (t + 1)
Qi 5× 5 Qt (3t + 9)× (3t + 9)

2.5. The Application of State Space Model in Outstanding Claims Reserve

Pang and He (2012) largely adopt the second modeling approach from Taylor et al. (2003),
but without integrating calendar year effects. They extend the state equation by including a
further lag of the state vector. Accordingly, the state space model they consider is given by

yt = Gtxt + wt (observation equation) (39)

xt+1 = Ftxt + Htxt−1 + vt (state equation) (40)

with E[wt] = 0, E[vt] = 0,

E
[
wswT

t

]
=

{
Rt if s = t
O otherwise

and E
[
vsvT

t

]
=

{
Qt if s = t
O otherwise

for all s, t = 1, . . . , I. Table 3 gives an overview of the dimensions of vectors and matrices
in the state space model of Pang and He (2012).
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Table 3. Dimensions in the state space model of Pang and He (2012).

Vectors Matrices

yt t× 1 Gt t× 4t
xt 4t× 1 Ft (4t + 4)× 4t
wt t× 1 Ht (4t + 4)× (4t− 4)
vt (4t + 4)× 1 Rt t× t

Qt (4t + 4)× (4t + 4)

The observation vector yt contains all observations Xi,j of the t-th calendar year, i.e.,
all Xi,j with i + j− 1 = t. However, the nature of the claims data is not obvious and the
authors refer to it only as “times of compensation”. Therefore, in view of the magnitude of
the observations and their modeling, claims data are assumed to be incremental payments.
The expected incremental payments of an accident year i = 1, . . . , I are assumed to have a
parametric evolution over the development years j = 1, . . . , I similar to (33) via

E
[
Xi,j
]
= θi,1(j + 1) +

θi,2

j + 1
+

θi,3

(j + 1)2 + θi,4δj,1 (41)

with Kronecker Delta δj,1. Thus, the observation Equation (39) of the t-th calendar year
(t = 1, . . . , I) results in a similar form as achieved within the second modeling approach of
Taylor et al. (2003),


X1,t

X2,t−1
...

Xt,1

 =


αT

t 0T . . . 0T

0T αT
t−1

...
...

. . . 0T

0T . . . 0T αT
1




θ∗1
θ∗2
...

θ∗t

+


w1,t

w2,t−1
...

wt,1


with

αj =
(

j + 1 1
j+1

1
(j+1)2 δj,1

)T

0 =
(
0 0 0 0

)T

θ∗i =
(
θi,1 θi,2 θi,3 θi,4

)T

for all i, j = 1, . . . , I. Pang and He (2012) do not give the general representation of the state
equation according to (40), but the reduced form

θ∗t+1 = F∗t θ∗t + H∗t θ∗t−1 + v∗t (42)

which solely contains the last four rows of (40) that are of interest. For the remaining (4× 4)-
dimensional parameter matrices, they assume scalar matrices F∗t = µtI and H∗t = ηtI for
all t = 1, . . . , I, which is why the state Equation (42) is given by:

θt+1,1
θt+1,2
θt+1,3
θt+1,4

 =


µt 0 0 0
0 µt 0 0
0 0 µt 0
0 0 0 µt




θt,1
θt,2
θt,3
θt,4

+


ηt 0 0 0
0 ηt 0 0
0 0 ηt 0
0 0 0 ηt




θt−1,1
θt−1,2
θt−1,3
θt−1,4

+


vt,1
vt,2
vt,3
vt,4


If, on the other hand, one intends to express the state equation in the form (40), the

upper (4t× 4t)-dimensional part of Ft corresponds to an identity matrix, while the last four
rows in the last four columns of Ft form the scalar matrix F∗t = µtI and otherwise contain
zeros. The parameter matrix Ht has only zeros in the (4t× (4t− 4))-dimensional upper
part and also in the last four rows except for the last four columns, which correspond to the
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(4× 4)-dimensional scalar matrix H∗t = ηtI. The noise vector vt is equal to a zero vector in
the first 4t rows and to the vector v∗t in the remaining rows.

3. Log-Normal Models for Incremental Payments (Category 2)

This section presents articles in which incremental payments are assumed to be log-
normally distributed and are modeled using a log-normal model:

I Verrall (1989): A State Space Representation of the Chain Ladder Linear Model;
I Verrall (1994): A Method for Modelling varying Run-Off Evolutions in Claims Reserving;
B Ntzoufras and Dellaportas (2002): Bayesian Modelling of Outstanding Liabilities incorpo-

rating Claim Count Uncertainty;
B Li (2006): Comparison of Stochastic Reserving Methods.

The articles of Verrall (1989, 1994) are presented in detail due to the fact that they
are mainly based on the use of state space models and the Kalman filter learning theory
(marked in the above listing with I), while the models in the papers of Ntzoufras and
Dellaportas (2002) and Li (2006) are treated in a more concise form (marked in the above
listing with B).

3.1. A State Space Representation of the Chain Ladder Linear Model

Verrall (1989) discusses various state space representations based on the model of a
two-way ANOVA, and thus follows Kremer (1982), who shows a close connection between
the CL method and the two-way ANOVA. In addition to a dynamic estimation of the
parameters by means of the Kalman filter algorithms, Verrall (1989) also considers static
models without and with prior information.

B The linear Chain Ladder model

The modeling is based on increments Xi,j > 0 with i, j = 1, . . . , I. The restriction to
positive values is necessary against the backdrop of a logarithmic transformation of Xi,j. In
practice, the model of Verrall (1989) can be applied to paid data, but not to incurred data.
For the increments Xi,j, a multiplicative model

Xi,j = uisjri,j (43)

with ui as a parameter of the accident year i, sj as a parameter of the development year j and
ri,j as noise term with E[ri,j] = 1 for all i, j = 1, . . . , I is assumed. Further, the increments
are presumed to follow a log-normal distribution, so a logarithmic transformation of
the increments is performed, i.e., Yi,j = log

(
Xi,j
)
. Thus, the variables Yi,j are normally

distributed. If both sides of (43) of the multiplicative model are logarithmized, this leads to
the (additive) model of the two-way ANOVA with normally distributed residuals

Yi,j = µ + αi + β j + wi,j (44)

with population mean µ, row parameter αi, column parameter β j and wi,j ∼WN
(
0; σ2) for

all i, j = 1, . . . , I. As for the model parameters, Verrall (1989) assumes α1 = β1 = 0 and

αi = log(ui)− log(u1)

β j = log
(
sj
)
− log(s1)

µ = log(u1) + log(s1)

with i, j = 2, . . . , I, and it holds wi,j = log(ri,j) for all i, j = 1, . . . , I. Due to the fact that (44)
is a model for logarithmized increments, it is referred to in the actuarial literature as log-
normal model. Verrall (1989), on the other hand, chooses to refer to it as linear CL model
because it is very similar to the CL method (in an additive representation). Kremer (1982)
shows this similarity of the classical CL method to the two-way ANOVA by estimating
the parameters of the model (44) via OLS estimation for the two-way ANOVA and then
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reversing the logarithmic transformations. The predictor for the ultimate claim of an
accident year i = 1, . . . , I,

Ĉi,I = eµ̂eα̂i
I

∏
j=1

eβ̂ j , (45)

is similar to the CL predictor except for a different parameterization. However, Verrall (1989)
argues that (45) is neither an MLE nor an unbiased estimator of the expected ultimate
claim, so he proposes using Bayes estimators instead. In addition, Verrall (1989) develops
several state space representations of the linear CL model (44), which are in the focus in
the following.

B Development of an appropriate state space representation

In order to specify a state space representation and to be able to use dynamic estimation
methods, the linear CL model has to be specified in a recursive form. For this purpose,
Verrall (1989) collected the incremental payments of a calendar year t = 1, . . . , I in the
t-dimensional vector yt. However, different from De Jong and Zehnwirth (1983), he did
not use the available observations Xi,j, but the logarithmized observations Yi,j = log

(
Xi,j
)
:

yt =
(
Y1,t Y2,t−1 Y3,t−2 . . . Yt−1,2 Yt,1

)T

Hence, the entries Yi,j, i + j− 1 = t, of the t-th diagonal are arranged in the observation
vector of the t-th calendar year from top right to bottom left (i.e., opposite to De Jong and
Zehnwirth 1983); see Figure 6.

Y1,1 Y1,2 Y1,3 . . . Y1,I

Y2,1 Y2,2 . . . Y2,I−1

Y3,1
... . .

.

...
YI−1,2

YI,1

y3

yI

1

2

3

...

I

y1

y2

1 2 3 . . . I

Y1,1 Y1,2 Y1,3 . . . Y1,I

Y2,1 Y2,2 . . . Y2,I−1

Y3,1
... . .

.

...
YI−1,2

YI,1

i

j

Figure 6. Modeling the observation vector in Verrall (1989).
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Using a state vector containing the model parameters µ, α2, . . . , αt, β2, . . . , βt up to
the t-th accident and development year, an appropriate observation equation for the t-th
calendar year based on (44) can be stated as



Y1,t
Y2,t−1
Y3,t−2

...
Yt−1,2

Yt,1


=



1 0 . . . . . . 0 1
1 1 0 . . . . . . 0 1 0 0
1 0 0 1 0 . . . 0 1 0 0 0 0
...

. . .
...

...
. . .

...
1 0 1 0 . . . . . . 0 1 0 0 0
1 0 . . . . . . 0 1 0





µ
α2
β2
...

αt
βt


+



w1,t
w2,t−1
w3,t−2

...
wt−1,2

wt,1



or in a more compact form as

yt = Gtxt + wt (observation equation) (46)

with t-dimensional observation vector yt, system matrix Gt ∈ Rt×(2t−1), (2t− 1)-dimensional
state vector xt, and t-dimensional Gaussian white noise process (wt)t=1,...,I with E[wt] = 0 and

E
[
wswT

t

]
=

{
Rt if s = t
O otherwise

for all s, t = 1, . . . , I. For the third calendar year, for instance, (46) results in:

Y1,3
Y2,2
Y3,1

 =

1 0 0 0 1
1 1 1 0 0
1 0 0 1 0




µ
α2
β2
α3
β3

+

w1,3
w2,2
w3,1

 (47)

For the state equation, Verrall (1989) gives several alternatives, where the most general
variant is

xt+1 = Ftxt + Btut + vt (state equation) (48)

with system matrices Ft ∈ R(2t+1)×(2t−1), Bt ∈ R(2t+1)×u, the u-dimensional stochastic
input vector ut ∼ N(ût; Ut) as well as the (2t + 1)-dimensional Gaussian white noise
process (vt)t=1,...,I with E[vt] = 0 and

E
[
vsvT

t

]
=

{
Qt if s = t
O otherwise

for s, t = 1, . . . , I − 1. Here, wt, vt, ut are pairwise stochastically independent for all
t = 1, . . . , I and the input vector ut is independent of the state vector xt. Table 4 gives
an overview of the dimensions of the vectors and matrices in the state space model of
Verrall (1989).

Table 4. Dimensions in the state space model of Verrall (1989).

Vectors Matrices

yt t× 1 Gt t× (2t− 1)
xt (2t− 1)× 1 Ft (2t + 1)× (2t− 1)
ut u× 1 Bt (2t + 1)× u
wt t× 1 Rt t× t
vt (2t + 1)× 1 Qt (2t + 1)× (2t + 1)
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The dynamics of the system depend on the matrices Ft, Qt and the distribution of the
input vector ut in the state Equation (48). The simplest case is when ut and vt are zero
vectors for all t = 1, . . . , I and the parameters at time t + 1 are the same as those at time t.
Then, (48) is given by:

xt+1 =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
0 . . . 1 0
0 . . . 0 1


xt (49)

If, on the other hand, one wants to realize different parameters at time t + 1 and t, the
following variant of the state Equation (48) can be used:

xt+1 =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
0 . . . . . . 0
0 . . . . . . 0


xt +


0 0
...

...
0 0
1 0
0 1


(

αt+1
βt+1

)
(50)

The variation of the state Equation (50) means that already determined parameters
remain unchanged and the new parameters are considered as stochastic inputs. While
static parameter estimation is performed in the cases (49) and (50), dynamic parameter
estimation can be achieved using the Kalman filter when a stochastic noise term vt is added.
For dynamic modeling, Verrall (1989) proposes state equations for two cases, for a dynamic
estimation of the row parameters and for a dynamic estimation of both row and column
parameters simultaneously. A dynamic estimation of the row parameters with help of the
random walk αt+1 = αt + vt can be achieved via the following state equation:

xt+1 =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
0 . . . 1 0
0 . . . . . . 0


xt +



0
...
0
0
0
1


βt+1 +



0
...
0
0
vt
0


(51)

If, on the other hand, a dynamic estimation of both the row and column parameters
according to the random walks

αt+1 = αt + vt

βt+1 = βt + wt
(52)

is intended, an input vector is obsolete and a reasonable state equation can be stated
as follows:
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xt+1 =



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
0 . . . 1 0
0 . . . 0 1


xt +



0
...
0
0
vt
wt


(53)

Thus, dynamic parameter estimation is just between the identical and the different
parameter cases, where the parameters in t + 1 are related to the parameters in t, but do not
necessarily have to match. The state Equation (53), which allows for a dynamic estimation
of both row and column parameters, is also exemplarily given for t = 3:

x4 =



µ
α2
β2
α3
β3
α4
β4


=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 1




µ
α2
β2
α3
β3

+



0
0
0
0
0
v3
w3


3.2. A Method for Modelling Varying Run-Off Evolutions in Claims Reserving

Verrall (1994) adopts the state space model presented in the work of Verrall (1989)
with the aim to model a not necessarily homogeneous run-off evolution across the accident
years within the CL method. With this approach, he addresses one of the main criticisms of
the CL method, the homogeneity property. Since the state space model from Verrall (1989)
is a linear CL model according to (44), Verrall (1994) shows how this model can be adjusted
when there is a varying development pattern across accident years.

B Connection between CL factors and column parameters

A possible method to model a not necessarily homogeneous run-off evolution across
the accident years is, for example, to use the individual CL factors Fi,j for all i, j instead of the
CL development factors f j. Such modeling would allow for deviating development factors
in different accident years, but comes with the disadvantage of overparameterization. It is
therefore reasonable to strike a balance between both these extremes, i.e., between the CL
development factors that are identical across the accident years and individual CL factors.
For this purpose, Verrall (1994) uses the connection

f j−1 = 1 +
eβ j

∑
j−1
k=1 eβk

(54)

between the CL factors and the column parameters β j in the linear CL model (44) (see
Verrall 1991) to be able to indirectly relax the homogeneity property of the CL method via
modifications to the linear CL model.

B Development of an appropriate state space representation

Verrall (1994) modifies the linear CL model of Verrall (1989) such that the column
parameters β j with j = 2, . . . , I need not to be identical across all accident years. He
differentiates the parameters β j by accident years i = 1, . . . , I via an extension of the
notation to βi,j, where βi,j corresponds to the column parameter β j in the i-th accident year.
Verrall (1994) does not give general definitions of the observation and state equations, but
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in the following we provide such representations. As for the observation equation in the
t-th calendar year, it can be given in general form as follows:



Y1,t
Y2,t−1
Y3,t−2

...
Yt−1,2

Yt,1


=



1 0 . . . . . . 0 1
1 1 0 . . . . . . 0 1 0 0
1 0 0 1 0 . . . 0 1 0 0 0 0
...

. . .
...

...
. . .

...
1 0 1 0 . . . . . . 0 1 0 0 0
1 0 . . . . . . 0 1 0





µ
α2

βt−1,2
...

αt
β1,t


+



w1,t
w2,t−1
w3,t−2

...
wt−1,2

wt,1



As an example, the observation equation in t = 3 results in:

Y1,3
Y2,2
Y3,1

 =

1 0 0 0 1
1 1 1 0 0
1 0 0 1 0




µ
α2

β2,2
α3

β1,3

+

w1,3
w2,2
w3,1



A connection between the parameters of successive accident years can be established
by the state Equation (48). In this regard, a dynamic estimation of the row parameters can
be achieved via

αi+1 = αi + vi (55)

with α1 = 0 and E[vi] = 0 for all i = 1, . . . , I − 1 to avoid overparameterization of the
model. The column parameters βi,j of a development year j are supposed to be connected
across accident years i in such a way that they follow a random walk

βi,j = βi−1,j + vi,j (56)

with βi,1 = 0, β0,j = 0 and E[vi,j] = 0 for all i = 1, . . . , I and j = 2, . . . , I. In this manner, it
is found that the parameters related to a specific development year are similar for different
accident years or can be identical, but do not necessarily have to be identical. If one assumes
a variance of zero for the noise terms vi,j for all i, j, one obtains the state Equation (51) from
Verrall (1989), i.e., the column parameters βi,j of development year j are identical across all
considered accident years i and correspond to the column parameter β j of the linear CL
model (44). The larger the variance of the noise terms vi,j chosen, the larger the variation
in the parameters βi,j can be across different accident years. Accordingly, the variances
of the individual noise terms can be used to account for the indicators of changes in the
development pattern.

Thus, the state equation is obtained using (55) and (56):

µ
α2
βt,2
α3

βt−1,3
...

αt
β2,t
αt+1

β1,t+1


=



1 0 . . . . . . 0
0 1 0 . . . . . . 0
0 0 1 0 . . . . . . 0
0 0 0 1 0 . . . . . . 0
0 0 0 0 1 0 . . . 0
...

. . .
...

0 . . . . . . 0 1 0
0 . . . . . . 0 0 1
0 . . . . . . 0 1 0
0 . . . . . . 0 0 0





µ
α2

βt−1,2
α3

βt−2,3
...

αt−1
β2,t−1

αt
β1,t


+



0
0
0
0
0
...
0
0
0
1


β1,t+1 +



0
0

vt,2
0

vt−1,3
...
0

v2,t
vt
0


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Considering t = 3, the state equation is exemplarily given by:

µ
α2

β3,2
α3

β2,3
α4

β1,4


=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0




µ
α2

β2,2
α3

β1,3

+



0
0
0
0
0
0
1


β1,4 +



0
0

v3,2
0

v2,3
v3
0


Finally, when estimates of the column parameters βi,j for all i, j are obtained (deter-

mined by means of the Kalman filter), the individual CL factors Fi,j can be determined
separately for individual accident years via

Fi,j−1 = 1 +
eβi,j

∑
j−1
k=1 eβi,k

according to (54) for j = 2, . . . , I. In this manner, a not necessarily homogeneous run-
off evolution across all accident years can be modeled within the CL method and the
problem of overparameterization is avoided due to the recursive development of the
column parameters. Furthermore, it should be emphasized that a dynamic estimation of
the parameters has a considerable advantage over the static CL estimation: the observations
of more recent accident years have a higher weight with respect to the prediction of the
outstanding loss liabilities, whereas CL assigns the same weight to all the observations.

3.3. Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty

Ntzoufras and Dellaportas (2002) consider four models based on claims development
triangles that include incremental payments and claim counts for RBNS claims. They
assume that claims are settled via one-off payments. They justify this assumption by means
of their empirical application example, in which they use run-off data from a large Greek
motor insurance company, where claims must be reported within three working days
according to Greek legislation and are usually settled in the form of a one-off payment.
The proportion of claims that are paid in more than one installment of claims payments is
minimal, and therefore is neglected by Ntzoufras and Dellaportas (2002).

Two models are based solely on incremental payments, while the other two models
incorporate incremental payments and claim counts, thus using Payments Per Claim
Finalized (PPCF). Ntzoufras and Dellaportas (2002) adjust the incremental payments Xi,j
by the inflation index νi,j ≥ 1 of the corresponding calendar year t = i + j− 1 and log-
transform the inflation-adjusted incremental payments that are assumed to be log-normally
distributed via

Yi,j = log

(
Xi,j

νi,j

)
,

such that Yi,j ∼ N
(
µi,j; σ2) for all i, j = 1, . . . , I. The definition of E[Yi,j] = µi,j is different

for the four models under consideration:

B Log-normal model for incremental payments (Model 1);
B Log-normal model for PPCF (Model 2);
B State space model for incremental payments (Model 3);
B State space model for PPCF (Model 4).

but it is generally based on the two-way ANOVA model and thus also on the linear CL
model from Verrall (1989, 1994) according to (44). In the framework of models 3 and 4,
Ntzoufras and Dellaportas (2002) consider state space models; however, they only specify
the ANOVA model, recursive relationships of the parameters and model extensions with-
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out developing a specific state space representation. The reason for this is that they do not
employ the Kalman filter to fit the model and to predict the outstanding loss liabilities, but
instead they use a Bayesian approach in combination with Markov Chain Monte Carlo
(MCMC). As the article by Ntzoufras and Dellaportas (2002) does not mainly rely on
state space models and the Kalman filter theory, the models are presented briefly, and, in
particular, details on the Bayesian approach are omitted.

B Log-normal model for incremental payments (Model 1)

The log-normal model for incremental payments, where the expected value µi,j is
given by

µi,j = µ + αi + β j (57)

for all i, j = 1, . . . , I with α1 = β1 = 0, is already considered by various authors. That is, the
expected incremental payments µi,j for claims of the i-th accident year that are paid with
a lag of j− 1 years are modeled via a linear predictor. This predictor consists of the sum
of µ (expected inflation- and log-adjusted claims payments of the first accident year that
are settled in the same development year), αi (row parameter reflecting expected changes
in the ith accident year), and β j (column parameter reflecting expected changes in the jth
development year). According to Ntzoufras and Dellaportas (2002), the ANOVA model
has the disadvantage that it includes only one source of information (i.e., incremental
payments) and omits claims counts. For example, this model would not be able to take
into account a strong increase in incremental payments due to a surprising increase in the
claim counts.

B Log-normal model for PPCF (Model 2)

The log-normal model for PPCF extends the first model by additionally considering
claim counts in the modeling. For this purpose, Ntzoufras and Dellaportas (2002) give a
two-stage model, where the first stage is related to incremental payments,

µi,j = µ + αi + β j + log(Ni,j) (58)

with α1 = β1 = 0 and claim counts Ni,j > 0 for all i, j = 1, . . . , I. Compared with model
1, the ANOVA model (57) was additively extended by the term log(Ni,j), which is why µ
in (58) can be interpreted as the logarithmized expected PPCF of the first accident year in
the first development year, and the parameters αi and β j can be considered as expected
deviations from µ in the later accident and development years, respectively. The second
stage of the model is related to the claim counts Ni,j ∼ P

(
λi,j
)

with λi,j > 0. It is given by
the log-linear model

log(λi,j) = µ∗ + α∗i + β∗j

with constraints ∑I
j=1 Ni,j = Ti, ∑I

j=1 λi,j = Ti for all i, j = 1, . . . , I, hyper-parameters µ∗

and α∗i , and β∗j = log
(

πj
π1

)
, where α∗1 = β∗1 = 0 holds, 0 < πj < 1 is the probability that a

claim will be settled with a lag of j− 1 years, and Ti denotes the total number of claims
for a given accident year i. In this model, an increase in incremental payments induced by
higher claim counts is accounted for.

B State space model for incremental payments (Model 3)

The state space model for incremental payments is based on the discussion of
Verrall (1989) and the extension of the column parameters β j to βi,j as proposed by
Verrall (1994):

µi,j = µ + αi + βi,j
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Here, the row and column parameters αi and βi,j follow the recursions

αi = αi−1 + hi (59)

βi,j = βi−1,j + vi (60)

with hi ∼ N
(
0; σ2

h
)

and vi ∼ N
(
0; σ2

v
)

as well as α1 = βi,1 = 0 for all i, j = 2, . . . , I. Thus,
for the variance of the individual log-transformed and inflation-adjusted incremental
payments Yi,j, Var(Yi,j) = σ2 holds for i = 1 or j = 1 and Var(Yi,j) = σ2 + (i− 1)

(
σ2

v + σ2
h
)

holds for i, j = 2, . . . , I, as in each subsequent accident year after accident year i = 1,
the weighted sum of the variance terms σ2

v , σ2
h (see recursions (59) and (60)) is added to

the variance term σ2. That is, this model differs from model 1 in two ways: the column
parameters β j are extended to βi,j, and both row and column parameters evolve recursively.
The recursions (59) and (60) are thereby decisively affected by the variances σ2

h and σ2
v of

their noise terms: If σ2
h is assumed to be close to zero, all row parameters tend to zero due

to α1 = 0. If, on the other hand, σ2
v = 0 is assumed, models 1 and 3 are identical (except for

the α-recursion) because the column parameters are the same across all accident years, i.e.,
βi,j = β j holds for all i.

B State space model for PPCF (Model 4)

The state space model for PPCF extends model 3 by incorporating claim counts.
Like the second model, it is designed as a two-stage model, with stage 1 related to incre-
mental payments and stage 2 related to claim counts. Thus, the first stage of model 4 is
described via

µi,j = µ + αi + βi,j + log(Ni,j)

for all i, j = 1, . . . , I with recursions (59) and (60), and the second stage is identical to the
second stage of model 2. Hence, like models 1 and 3, models 2 and 4 differ in other column
parameters and in the recursive relationships of row and column parameters.

3.4. Comparison of Stochastic Reserving Methods

Li (2006) compares some methods in stochastic claims reserving, including a state
space model, in terms of forecasting the outstanding loss liabilities. The considered state
space model

yt = Gtxt + wt (observation equation) (61)

xt = Ftxt−1 + vt (state equation) (62)

is based on the common assumptions regarding the noise terms (as, for example, in De Jong
and Zehnwirth 1983), and it is constructed in analogy to Verrall (1989) via the log-normal
model for incremental payments and the linear CL model (44), respectively: the observation
vector yt includes all logarithmized incremental payments Yi,j = log

(
Xi,j
)

with Xi,j > 0
of the t-th calendar year (t = i + j− 1 with i, j = 1, . . . , I), where the Yi,j have an expected
value of E[Yi,j] = µ + αi + β j with α1 = β1 = 0. The measurement noise wi,j that overlays
the expected logarithmized incremental payments follows a Gaussian white noise process
(wi,j ∼WN

(
0; σ2

w
)
). The state vector xt includes µ, row parameters α2, . . . , αt, and column

parameters β2, . . . , β I ; thus, unlike Verrall (1989), column parameters beyond j = t for
t < I are also included. Table 5 gives an overview of the dimensions of the vectors and
matrices in the state space model of Li (2006).
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Table 5. Dimensions in the state space model of Li (2006).

Vectors Matrices

yt t× 1 Gt t× (t + I − 1)
xt (t + I − 1)× 1 Ft (t + I − 1)× (t + I − 2)
wt t× 1 Rt t× t
vt (t + I − 1)× 1 Qt (t + I − 1)× (t + I − 1)

The observation Equation (61) of the t-th calendar year can be stated as:


Y1,t

Y2,t−1
...

Yt,1

 =



1 0 . . . . . . . . . . . . . . . 0 1 0 . . .

1
. . . ... 0 0 . . .

...
. . . ...

... 0 . . .

1
. . . ... 0 0 . . .

1 0 . . . 0 1 0 . . . 0 0 0 . . .





µ
α2
...

αt
β2
...

β I


+


w1,t

w2,t−1
...

wt,1



The part on the left-hand side of the vertical line in the system matrix Gt is generally of
dimensions t× (2t− 1), and the part on the right-hand side consists of (I− t) zero columns
for all t = 1, . . . , I. Thus, if t = I, Gt only includes the (I × (2I − 1))-dimensional part on
the left-hand side of the vertical line and no zero columns. As for the state Equation (62),
Li (2006) proposes a dynamic estimation of the row parameters according to αt = αt−1 + vt
with vt ∼WN

(
0; σ2

v
)

for t ≥ 2:



µ
α2
...

αt
β2
...

β I


=



1 0 . . . . . . 0

0
. . .

...
... 1

1

1
...

...
. . . 0

0 . . . . . . 0 1





µ
α2
...

αt−1
β2
...

β I


+



0
...
0
vt
0
...
0


(63)

For t ≥ 3, the (t− 1)-th column of Ft thus contains in the rows t− 1 and t the value
one and otherwise only zeros. In the case t = 2, however, Ft deviates from (63) by having
only zeros in the second row because of α2 = v2. The noise term vt corresponds in each
case to the t-th component of the vector vt.

4. Correlation Models (Category 3)

This section presents two articles:

B De Jong (2005): State Space Models in Actuarial Science;
I De Jong (2006): Forecasting Runoff Triangles.

Here, correlations regarding the different dimensions of claims development triangles
are considered. As the conference paper by De Jong (2005) can be seen as a preprint of De
Jong (2006) (with respect to the remarks on claims reserving), it is briefly presented, while
De Jong (2006) is highlighted in the listing (as in the previous sections) with I since it is
significantly based on state space models and Kalman filter learning theory.

4.1. State Space Models in Actuarial Science

De Jong (2005) discusses two applications of state space models in actuarial sciences,
in relation to mortality and in relation to cumulative payments in run-off triangles. As
for the latter one, he extends the model of Hertig (1985) and proposes the so-called de-
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velopment correlation model. This model is already presented in a prior working paper by
De Jong (2004), where two additional models, the accident correlation model and the calendar
correlation model, are proposed, but without discussing their state space representations.
This extension, i.e., an embedding of the three models into state space representations and
model fitting via Kalman filter, is carried out in the work of De Jong (2006). Thus, with
respect to applications of state space models in claims reserving, De Jong (2005) is a variant
of De Jong (2006), which only deals with one of the correlation models. For this reason, we
refer to the following subsection, in which the article of De Jong (2006) is presented.

4.2. Forecasting Runoff Triangles

De Jong (2006) aims to predict the outstanding loss liabilities using three different
models that can account for correlations within the claims data. In each case, De Jong (2006)
gives state space representations for these models in order to be able to apply the Kalman
filter to predict the claims reserves and to quantify their precision. Based on these results,
he simulates the complete shape of the liability distribution. In the following, the focus is
mainly on the state space representations of the considered models.

The proposed correlation models in the work of De Jong (2006) are generally based on
a model of Hertig (1985), which is extended in such a way that correlations between the
individual accident, development or calendar years can be incorporated into the modeling.
The models consider the logarithmized individual development factors

δi,j = ln

(
Ci,j

Ci,j−1

)
(64)

with i = 1, . . . , I, j = 1, . . . , I − 1 and δi,0 = ln(Ci,0). Using the individual development fac-
tors (64), the future growth rate gi of cumulative payments in each accident year i = 2, . . . , I
can be decomposed as follows:

gi = ln
(

Ci,I−1

Ci,I−i

)
= ln

(
Ci,I−i+1

Ci,I−i
· Ci,I−i+2

Ci,I−i+1
· · · Ci,I−1

Ci,I−2

)
= ln

(
Ci,I−i+1

Ci,I−i

)
+ ln

(
Ci,I−i+2

Ci,I−i+1

)
+ . . . + ln

(
Ci,I−1

Ci,I−2

)
= δi,I−i+1 + . . . + δi,I−1

(65)

Considering (65), the outstanding loss liabilities Ri = Ci,I−1 − Ci,I−i of an accident
year i = 2, . . . , I are given by:

Ri = Ci,I−i(egi − 1) (66)

An aggregation of (66) across all accident years yields the total outstanding loss liabilities:

R =
I

∑
i=2

Ri =
I

∑
i=2

Ci,I−i(egi − 1) (67)

Thus, in order to predict the outstanding loss liabilities, it is necessary to estimate
the growth rates g2, . . . , gI according to (65) and the future logarithmized individual
development factors δi,j for i + j > I, respectively. For this purpose, De Jong (2006)
considers three extended variants of the model proposed by Hertig (1985). The model of
Hertig (1985),

δi,j = µj + hjεi,j (68)
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with h0 = 1, E
[
εi,j
]
= 0 and Var

(
εi,j
)
= σ2, is a simple model for logarithmized individual

development factors in which the δi,j are assumed to be uncorrelated for all i = 1, . . . , I,
j = 0, . . . , I − 1. Here, E

[
δi,j
]
= µj and Var

(
δi,j
)
= h2

j σ2, i.e., expected value and variance
of the logarithmized individual development factors δi,j only depend on the development
year j.

With the goal to incorporate correlations of the logarithmized individual development
factors into the model of Hertig (1985), De Jong (2006) presents the development, accident,
and calendar correlation models, each considering correlations between development years
j, accident years i, and calendar years t = i + j, respectively. In order to achieve appropriate
state space representations of these models, De Jong (2006) generally suggests the state
space model

yt = Gtxt + Htu + Mtwt (observation equation) (69)

xt+1 = Ftxt + Btu + Ntwt (state equation) (70)

with t = 1, . . . , I, where the t-dimensional observation vector yt = (δ1,t−1, . . . , δt,0)
T con-

tains the logarithmized individual development factors δi,j of the t-th calendar year (see
Figure 7).

δ1,0 δ1,1 δ1,2 . . . δ1,I−1

δ2,0 δ2,1 . . . δ2,I−2

δ3,0 ... . .
.

...
δI−1,1

δI,0

y3

yI

1

2

3

...

I

y1

y2

0 1 2 . . . I − 1

δ1,0 δ1,1 δ1,2 . . . δ1,I−1

δ2,0 δ2,1 . . . δ2,I−2

δ3,0 ... . .
.

...
δI−1,1

δI,0

i

j

Figure 7. Modeling of the observation vector in De Jong (2006).

Due to the fact that De Jong (2006) aims to embed all three models into the same general
state space model, the state space representations obtained in this way are excessive in
their complexity. This is in contrast to the underlying compact models, in particular the
development correlation model with only one model equation.
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B Development correlation model

The development correlation model allows to model correlations of δi,j across devel-
opment years j = 0, . . . , I − 1 for a given accident year i = 1, . . . , I and is defined by

δi,j = µj + hj
(
εi,j + θjεi,j−1

)
(71)

with E
[
εi,jεi,j−1

]
= 0 for i = 1, . . . , I and j = 1, . . . , I − 1. Here, the correlation between

development years j and j− 1 (i.e., between δi,j and δi,j−1) is modeled via θj. Based on
empirical evidence, De Jong (2006) argues that only correlations between the first two
development years are relevant, so only the correlation between δi,0 and δi,1 is considered.
Thus, the correlation coefficient between δi,0 and δi,1 results in

ρ(δi,0, δi,1) =
Cov(δi,0, δi,1)√

Var(δi,0)
√

Var(δi,1)
=

E
[
εi,0h1εi,1 + h1θ1ε2

i,0

]
√

σ2
√

h2
1σ2 + h2

1θ2
1σ2

=
h1θ1σ2√

σ4h2
1(1 + θ2

1)
=

θ1√
1 + θ2

1

,

i.e., the correlation between δi,0 and δi,1 is based solely on θ1. Thus, if θ1 = 0, then δi,0 and
δi,1 are uncorrelated as in the model of Hertig (1985). Furthermore, setting θj = 0 in (71) for
all j = 1, . . . , I − 1 results in the original model of Hertig (1985).

The development correlation model (71) can be transferred into a state space represen-
tation with the observation equation


δ1,t−1
δ2,t−2

...
δt,0

 = I


µt−1

...
µ1 + h1θ1εt−1,0

µ0

+ O


µ0
µ1
...

µI−1

+


ht−1 0 . . . 0

0
. . .

...
... h1 0
0 . . . 0 1




ε1,t−1
ε2,t−2

...
εt,0


and state equation

µt
...

µ1 + h1θ1εt,0
µ0

 = O


µt−1

...
µ1 + h1θ1εt−1,0

µ0

+


0 . . . 0 1 0 . . .
...

... 0 0 . . .

0
...

... 0 . . .
1 0 . . . 0 0 . . .




µ0
µ1
...

µI−1



+


0 . . . 0 0
...

. . .
...

0 . . . 0 0
0 . . . 0 h1θ1
0 . . . 0 0




ε1,t−1
ε2,t−2

...
εt,0


by using (69) and (70). The matrix Bt consists of the last t + 1 rows of the row-permuted
identity matrix I ∈ RI×I ; that is, Bt corresponds to the row-permuted identity matrix on
the left-hand side of the vertical line for t = I − 1, and it reduces by one row for each t
before the (I − 1)-th calendar year. Considering, for example, t = 3 and I = 5, the state
space representation of the development correlation model (71) is given by:δ1,2

δ2,1
δ3,0

 =

1 0 0
0 1 0
0 0 1

 µ2
µ1 + h1θ1ε2,0

µ0

+

h2 0 0
0 h1 0
0 0 1

ε1,2
ε2,1
ε3,0





Risks 2021, 9, 198 34 of 55


µ3
µ2

µ1 + h1θ1ε3,0
µ0

 =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




µ0
µ1
µ2
µ3
µ4

+


0 0 0
0 0 0
0 0 h1θ1
0 0 0


ε1,2

ε2,1
ε3,0



B Accident correlation model

The accident correlation model allows for correlations between accident years and
implies that more recent accident years receive a higher weight for prediction. To achieve
this goal, the expected value µj in (68) is extended by a row index i to µi,j and a random
walk is assumed across the accident years (i = 1, . . . , I, j = 0, . . . , I − 1):

δi,j = µi,j + hjεi,j
µi+1,j = µi,j + λjηi,j

(72)

Here, E
[
ηi,j
]
= 0, Var

(
ηi,j
)
= σ2

η and E
[
εi,jηi,j

]
= 0 hold for all i, j. Thus, the expected

value µi,j of a development year can change slowly across accident years. This change is
influenced by the parameter λj: the larger λj, the higher the weight of µi,j of more recent
accident years. Setting λj equal to zero for all j, the accident correlation model corresponds
to the model of Hertig (1985), since the expected value µi,j of a development year is identical
across all accident years. The accident correlation model (72) can be transferred into a state
space representation with the observation equationδ1,t−1

...
δt,0

 = I

µ1,t−1
...

µt,0

+ O

 µ1,0
...

µ1,I−1



+


ht−1 0 . . . 0 0 . . . . . . 0

0
. . .

...
...

. . .
...

... h1 0
...

. . .
...

0 . . . 0 1 0 . . . . . . 0





ε1,t−1
...

εt,0
η1,t−1

...
ηt,0


and state equation

 µ1,t
...

µt+1,0

 =



0 . . . . . . 0
1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1


µ1,t−1

...
µt,0

+


0 . . . 0 1 0 . . .
... 0 0 0 . . .
...

...
... 0 . . .

0 . . . . . . 0 0 . . .


 µ1,0

...
µ1,I−1



+



0 . . . . . . . . . 0 . . . . . . . . . 0
...

. . .
... λt−1

...
...

. . .
...

. . .
...

...
. . .

...
. . . 0

0 . . . . . . . . . 0 . . . . . . 0 λ0





ε1,t−1
...

εt,0
η1,t−1

...
ηt,0


by using (69) and (70). The matrix Bt consists exclusively of zeros, apart from the value
of one at position (1, t + 1). Thus, for t = I − 1 it corresponds to the entire ((I × I)-
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dimensional) part on the left-hand side of the vertical line. Considering, for example, t = 3
and I = 5, the state space representation of the accident correlation model (72) is given by:

δ1,2
δ2,1
δ3,0

 =

1 0 0
0 1 0
0 0 1

µ1,2
µ2,1
µ3,0

+

h2 0 0 0 0 0
0 h1 0 0 0 0
0 0 1 0 0 0




ε1,2
ε2,1
ε3,0
η1,2
η2,1
η3,0




µ1,3
µ2,2
µ3,1
µ4,0

 =


0 0 0
1 0 0
0 1 0
0 0 1


µ1,2

µ2,1
µ3,0

+


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




µ1,0
µ1,1
µ1,2
µ1,3
µ1,4



+


0 0 0 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ1 0
0 0 0 0 0 λ0




ε1,2
ε2,1
ε3,0
η1,2
η2,1
η3,0



B Calendar correlation model

The calendar correlation model

δi,j = µj + hj
(
τi+j + εi,j

)
τi+j+1 = τi+j + κηi+j

(73)

with E
[
ηi+j

]
= 0, Var

(
ηi+j

)
= σ2

η and E
[
εi,jηi+j

]
= 0 for all i = 1, . . . , I, j = 0, . . . , I − 1

is appropriate to consider correlations between calendar years t = i + j. The calendar
year effects τt are modeled as a random walk across calendar years, which is why all
logarithmized individual development factors δi,j of a given calendar year change equally.
The effect of τt on individual development factors is measured by hj and it is modeled
proportionally to the standard deviation of εi,j. Setting κ = 0, the calendar correlation
model (73) corresponds to model (68), since the effects τt are the same for all calendar
years t = 1, . . . , I and the term hjτi+j is considered as part of µj. The calendar correlation
model (73) can be transferred into a state space representation with the observation equation

δ1,t−1
...

δt,0

 =


1 0 . . . 0 ht−1

0
. . .

...
...

...
. . . 0 h1

0 . . . 0 1 1




µt−1
...

µ0
τt

+ O

 µ0
...

µI−1



+


ht−1 0 . . . 0 0

0
. . .

...
...

... h1 0
...

0 . . . 0 1 0




ε1,t−1
...

εt,0
ηt


and the state equation
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
µt
...

µ0
τt+1

 =



0 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 0
0 . . . 0 1




µt−1
...

µ0
τt

+



0 . . . 0 1 0 . . .
...

... 0 0 . . .

0
...

... 0 . . .
1 0 . . . 0 0 . . .
0 . . . . . . 0 0 . . .


 µ0

...
µI−1



+



0 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 0
0 . . . 0 κ




ε1,t−1
...

εt,0
ηt


by using (69) and (70). The matrix Bt contains the last t + 1 rows of the row-permuted
identity matrix I ∈ RI×I and a row of zeros as the last row, i.e., for t = I − 1 it corresponds
to the entire (((I + 1) × I)-dimensional) part on the left-hand side of the vertical line,
and for each t before the (I − 1)-th calendar year it reduces by one row. Considering,
for example, t = 3 and I = 5, the state space representation of the calendar correlation
model (73) is given by:

δ1,2
δ2,1
δ3,0

 =

1 0 0 h2
0 1 0 h1
0 0 1 1




µ2
µ1
µ0
τ3

+

h2 0 0 0
0 h1 0 0
0 0 1 0




ε1,2
ε2,1
ε3,0
η3




µ3
µ2
µ1
µ0
τ4

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




µ2
µ1
µ0
τ3

+


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 0




µ0
µ1
µ2
µ3
µ4

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 κ




ε1,2
ε2,1
ε3,0
η3


Finally, Table 6 gives an overview of the dimensions of vectors and matrices in the

above three state space models of De Jong (2006).

Table 6. Dimensions in the state space models of De Jong (2006).

Dev. Corr. Model Acc. Corr. Model Cal. Corr. Model

yt t× 1 t× 1 t× 1
xt t× 1 t× 1 (t + 1)× 1
u I × 1 I × 1 I × 1
wt t× 1 2t× 1 (t + 1)× 1
Gt t× t t× t t× (t + 1)
Ft (t + 1)× t (t + 1)× t (t + 2)× (t + 1)
Ht t× I t× I t× I
Bt (t + 1)× I (t + 1)× I (t + 2)× I
Mt t× t t× 2t t× (t + 1)
Nt (t + 1)× t (t + 1)× 2t (t + 2)× (t + 1)

5. Univariate State Space Models (Category 4)

In this section, we present articles where univariate state space models are proposed:

I Alpuim and Ribeiro (2003): A State Space Model for Run-Off Triangles;
I Chukhrova and Johannssen (2017): State Space Models and the Kalman Filter in Stochastic

Claims Reserving: Forecasting, Filtering and Smoothing.

Both articles are mainly devoted to state space models and the Kalman filter learning
algorithms, so they are highlighted with I in the above listing.
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5.1. A State Space Model for Run-Off Triangles

Alpuim and Ribeiro (2003) present a univariate distribution-free state space model
for incremental payments to predict claims reserves and to calculate their precision. They
assume that the incremental payments of more recent development years are not related to
the respective payments of the previous development year, but to the payments made in
the accident year. This is in contrast to the common CL method, which is based on the as-
sumption that cumulative payments in more recent development years are proportional to
the cumulative payments of the previous development year, with the proportionality factor
being assumed to be constant across all accident years under consideration (homogeneity
property). Alpuim and Ribeiro (2003), on the other hand, assume that the proportionality
factor linking the incremental payments of more recent development years to the value
of the 0th development year may also vary across accident years, so they do not require
the common assumption of independent accident years often found in stochastic claims
reserving methods.

The observation equation thus links the incremental payments Xi,j of the ith accident
year (i = 1, . . . , I) in the jth development year (j = 1, . . . , J − 1 and J = I) via factor βi,j to
the payments Xi,0 that already occurred in accident year i (see also Figure 8):

Xi,j = βi,jXi,0 + wi,j (observation equation) (74)

X1,0 X1,1 X1,2 X1,J−1

...
...

...
...

...
...

...
...

...
...

...
...

XI,0 XI,1 XI,2 XI,J−1

·βi,1

·βi,2

·βi,J−1

accident
year i

1

...

...

...

I

0 1 2 . . . J − 1

development year j

...
...

...
...

...
...

...
...

...
...

...
...

X1,0 X1,1 X1,2 . . . X1,J−1

XI,0 XI,1 XI,2 XI,J−1

Figure 8. Modeling of the incremental payments in the work of Alpuim and Ribeiro (2003).

Here, the incremental payments Xi,j act as observations, while the βi,j for all i, j
correspond to the unknown states. The state equation is constructed as an AR(1) model
with the expected value µj and βi,j as a function of βi−1,j:

βi,j = µj + φj(βi−1,j − µj) + vi,j (state equation) (75)

As for the noise terms, they are assumed as white noise processes with

E[wi,j] = 0 and E[wi,jwk,l ] =

{
ri,j if i = k and j = l
0 otherwise

E[vi,j] = 0 and E[vi,jvk,l ] =

{
qi,j if i = k and j = l
0 otherwise
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as well as E[vi,jwk,l ] = 0 for all i, k = 1, . . . , I and j, l = 1, . . . , J− 1. The strictest assumption
of the model is that the incremental payments of more recent development years depend
on the payments of the 0th development year, whereas the columns for j = 1, . . . , J are
independent of each other.

Setting the variances qi,j and the coefficients φj equal to zero for all i, j, (75) simplifies
to βi,j = µj, i.e., βi,j is constant across all accident years and corresponds to the expected
value µj of the j-th development year. In this case, the observation Equation (74) results
in Xi,j = µjXi,0 + wi,j. On the other hand, if the coefficients φ1, . . . , φJ−1 are all set equal
to one and qi,j = 0 also holds for all i, j, then the state equation is βi,j = βi−1,j, which is
why the coefficients are constant over all accident years, and the observation equation
results in Xi,j = β0,jXi,0 + wi,j. The state equation would thus be obsolete in both cases and
the state space modeling would simplify to a regression model. Thus, the general model
(see (74) and (75)) can be seen as a simple regression model of each Xi,j on Xi,0, where the
time-varying parameters βi,j follow an AR(1) process.

5.2. State Space Models and the Kalman Filter in Stochastic Claims Reserving: Forecasting,
Filtering and Smoothing

Chukhrova and Johannssen (2017) propose a scalar state space model for cumulative
payments to employ the Kalman filter for calculating the claims reserves and for measuring
their precision. It is assumed that there are unobservable states Ci,j underlying the observed
cumulative payments Cobs

i,j with i + j ≤ I for i, j = 0, . . . , I, i.e., the “real cumulative
payments” are modeled as latent variables and there may be a potential observation error
in the claims data. The introduced state space model then allows to determine the entire
unobservable upper and lower run-off triangles, that is, forecasting, filtering and smoothing
of all states Ci,j with i, j = 0, . . . , I (see Figure 9).
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Figure 9. Unobservable states, observations and Kalman smoothings (i + j < I), filterings (i + j = I)
and predictions (i + j > I).

The authors consider a linear state space model, which consists of the observa-
tion equation

Cobs
i,j = gjCi,j + wi,j (observation equation) (76)

with gj > 0, wi,j ∼ WN
(
0; σ2

w
)

and σ2
w > 0 for i = 0, . . . , I, j = 0, . . . , J as well as the

state equation

Ci,j+1 = f jCi,j + vi,j (state equation) (77)

with f j > 0, vi,j ∼WN
(
0; σ2

v
)

and σ2
v > 0 for i = 0, . . . , I, j = 0, . . . , J − 1. The white noise

processes (wi,j)
i=0,...,I
j=0,...,J and (vi,j)

i=0,...,I
j=0,...,J−1 are uncorrelated, i.e., E[vi,jwk,l ] = 0 holds for all

i, k = 0, . . . , I, j = 0, . . . , J − 1 and l = 0, . . . , J. This assumption is due to the fact that
there is no reason to assume a systematic relationship between the measurement noise
(wi,j)

i=0,...,I
j=0,...,J and the process noise (vi,j)

i=0,...,I
j=0,...,J−1.



Risks 2021, 9, 198 39 of 55

The state Equation (77) and the observation Equation (76) can also be given as follows:

Ci,j = f j−1Ci,j−1 + vi,j−1 = . . . = ai,j(Ci,0, vi,0, . . . , vi,j−2, vi,j−1) (78)

Cobs
i,j = gjCi,j + wi,j = . . . = bi,j(Ci,0, vi,0, . . . , vi,j−2, vi,j−1, wi,j) (79)

In (78) and (79), ai,j and bi,j with i = 0, . . . , I and j = 0, . . . , J are appropriate linear
functions. As a consequence of the model assumptions,

E[Ci,jvi,l ] = 0 and E[Ci,jwi,k] = 0

hold for all j, k = 0, . . . , J, l = 0, . . . , J − 1 with j ≤ k, j ≤ l. Thus, the initial state Ci,0 of an
accident year i = 0, . . . , I is uncorrelated with vi,j and wi,j for all j.

As for the prediction of the future cumulative payments Ci,j with i + j > I for
i = 1, . . . , I, j = 1, . . . , J in the lower triangle, the Kalman learning algorithms for one-
and h-step predictions (h ≥ 2) can be used. Considering the underlying states Ci,j of the
observations Cobs

i,j in the upper triangle, the Kalman learning algorithms for filtering (for
i + j = I) and the Kalman learning algorithms for smoothing (for i + j < I) can be applied
to identify outliers in the observations and to replace them by filtered or by smoothed
observations as well as to quantify outlier effects. Another key application of smoothing
and filtering algorithms is the interpolation of missing values in the upper run-off triangle
(e.g., resulting from a merger).

6. Row-Wise Stacking Approaches (Category 5)

In this section, we discuss articles where the claims data is stacked row-wise:

I Atherino et al. (2010): A row-wise Stacking of the Runoff Triangle: State Space Alternatives
for IBNR Reserve Prediction;

I Costa and Pizzinga (2020): State space models for predicting IBNR reserve in row-wise
ordered runoff triangles: Calendar year IBNR reserves and tail effects;

I Hendrych and Cipra (2021): Applying State Space Models to Stochastic Claims Reserving.

These articles are all marked with I because the proposed methods are mainly based
on state space models and the Kalman filter learning algorithms.

6.1. A Row-Wise Stacking of the Runoff Triangle: State Space Alternatives for IBNR
Reserve Prediction

In contrast to most of the above approaches, Atherino et al. (2010) do not stack the ob-
servations of individual accident, development or calendar years in a vector representation,
but consider the claims data as a univariate time series with various missing observations.
The time series is then modeled using a structural model in a state space representation. As
for the prediction of the claims reserves and the estimation of the corresponding MSEP for
individual and aggregated accident years, Atherino et al. (2010) present two approaches,
the blocks method and the cumulating method. Although both approaches differ in some
aspects, they provide the same numerical results.

B Development of an appropriate state space representation

Atherino et al. (2010) consider claims development triangles that include incremental
payments Xi,j in accident years i = 1, . . . , J and development years j = 0, . . . , J − 1. They
put the incremental payments into a representation as univariate time series by simply
stacking the observations of more recent accident years to the observations of the first
accident year. Thus, the common double indexing i, j is omitted and replaced by the simple
index t, which, however, cannot be interpreted in chronological form as usual for time
series. The time series yt constructed in this way, with t = 1, . . . , J2, has more and more
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missing observations for increasing t, which lead to the outstanding loss liabilities for
aggregated accident years as follows:

R =
J

∑
i=2

i−2

∑
v=0

yi(J−1)+2+v

Figure 10 shows the row-wise “stacked” incremental payments using the notation
yt instead of Xi,j, where the observed time series values correspond to those of the upper
triangle and the missing values to those of the lower triangle.

y1 y2 y3 . . . yJ

yJ+1 yJ+2 . . . y2J−1 y2J

y2J+1 y2J+2 . . . y3J−1 y3J

...
... . . .

...
...

y(J−1)J+1 y(J−1)J+2 . . . yJ2−1 yJ2

1

2

3

...

J

0 1 2 . . . J − 1

i

j
observations

outstanding
loss

liabilities

Figure 10. Row-wise stacked incremental payments in the work of Atherino et al. (2010).

Atherino et al. (2010) model the row-wise stacked incremental payments yt via a
structural model that includes a level component µt, a periodic component γt, and a
regression term hT

t u. Hence, they obtain

yt = µt + γt + hT
t u + εt (80)

µt+1 = µt + ξt (81)

γt+1 = −
J−1

∑
d=1

γt+1−d + ωt (t = J − 1, J, . . .) (82)

with εt ∼ N
(
0, σ2

ε

)
, ξt ∼ N

(
0, σ2

ξ

)
and ωt ∼ N

(
0, σ2

ω

)
. Here, the level component captures

the mean level of incremental payments, while the periodic component reflects the column
effect (i.e., the development pattern) and the regression term is incorporated to address
intervention effects (related to outliers in the observations).

To represent the structural model consisting of Equations (80)–(82) as a state space
model, Atherino et al. (2010) consider the general state space model

yt = Gtxt + Htu + wt (observation equation)

xt+1 = Ftxt + Btvt (state equation)

with normal assumptions

wt ∼ N(0, Rt), vt ∼ N(0, Qt) and x1 ∼ N
(

x̂1|0, P1|0
)
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for t = 1, . . . , J2. As for the noise terms wt and vt, it is assumed that E
[
wswT

t
]
= O,

E
[
vsvT

t
]
= O for s 6= t and E

[
wsvT

t
]
= O for all s, t = 1, . . . , J2. Moreover, the initial state

x1 is proposed to be independent of wt and vt for all t. Incorporating the structural model
into a state space representation, the observation equation results in

yt =
(
1 1 0 . . . 0

)


µt
γt

γt−1
...

γt−J+2

+ hT
t u + εt (83)

with yt = yt, Gt = gT
t , Ht = hT

t , wt = εt and Rt = σ2
ε and the state equation is given by

µt+1
γt+1

γt
...

γt−J+3

 =


1 0 0 . . . 0
0 −1 −1 . . . −1
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0




µt
γt

γt−1
...

γt−J+2

+


1 0
0 1
0 0
...

...
0 0


(

ξt
ωt

)
(84)

with

Qt =

(
σ2

ξ 0
0 σ2

ω

)
.

Table 7 gives an overview of the dimensions of vectors and matrices in the state space
model of Atherino et al. (2010).

Table 7. Dimensions in the state space model of Atherino et al. (2010).

Vectors Matrices

yt 1× 1 Gt 1× J
xt J × 1 Ft J × J
u k× 1 Ht 1× k
wt 1× 1 Rt 1× 1
vt 2× 1 Qt 2× 2

Bt J × 2

In the following, the cumulating method, one of the two approaches proposed by
Atherino et al. (2010) to predict the loss reserves and to estimate their MSEP for individual
and aggregated accident years, is presented.

B Cumulating method

The cumulating method adds additional components to the state vector that accumu-
lates estimates of the missing observations in the lower triangle so that the MSEP of the
claims reserves can directly be determined using Kalman filter. In the following, I denotes
an index set containing all t-indices belonging to observations yt, and (T) stands for total,
i.e., for aggregated accident years. If one is interested only in the claims reserves along with
the MSEP for aggregated accident years, the state vector can be extended by the additional
component δ

(T)
t that accumulates all estimates of missing observations across all accident

years. The state space model is then given by

yt =
(
gT

t 0
)︸ ︷︷ ︸

1×(J+1)

(
xt

δ
(T)
t

)
︸ ︷︷ ︸
(J+1)×1

+ hT
t u + εt (observation equation)
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(
xt+1

δ
(T)
t+1

)
︸ ︷︷ ︸
(J+1)×1

=

(
Ft 0

β
(T)
t 1

)
︸ ︷︷ ︸
(J+1)×(J+1)

(
xt

δ
(T)
t

)
︸ ︷︷ ︸
(J+1)×1

+

(
Bt
0T

)
︸ ︷︷ ︸
(J+1)×2

vt (state equation)

with δ
(T)
1 = 0, the J-dimensional zero vector 0 in the transition matrix, the two-dimensional

zero vector 0T and the J-dimensional row vector

β
(T)
t =

{
gT

t if t /∈ I
0T otherwise

(85)

where the changes in the dimensions within the system compared to (83) and (84) are given,
while gT

t , xt, xt+1, Ft, Bt, vt remain unchanged. If one is also interested in individual acci-
dent years, further components corresponding to the respective accident years i = 2, . . . , J
have to be added to the state vector. This leads to the inclusion of the J-dimensional vector

δt =
(

δ
(2)
t , . . . , δ

(J)
t , δ

(T)
t

)T
, (86)

in which the component δ
(T)
t related to aggregated accident years is also included. The

modified state space model is then be given by

yt =
(
gT

t 0T)︸ ︷︷ ︸
1×2J

(
xt
δt

)
︸ ︷︷ ︸
2J×1

+ hT
t u + εt (observation equation) (87)

(
xt+1
δt+1

)
︸ ︷︷ ︸

2J×1

=

(
Ft O
Xt I

)
︸ ︷︷ ︸

2J×2J

(
xt
δt

)
︸ ︷︷ ︸
2J×1

+

(
Bt
O

)
︸ ︷︷ ︸

2J×2

vt (state equation) (88)

with δ1 = 0, the (J × J)-dimensional zero matrix O and identity matrix I in the transi-
tion matrix, the (J × 2)-dimensional zero matrix O and the (J × J)-dimensional matrix

Xt =
(

β
(2)
t , . . . , β

(J)
t , β

(T)
t

)T
with J − 1 components

β
(i)
t =

{
gT

t if t /∈ I and t from row i = 2, . . . , J
0T otherwise

as well as component β
(T)
t according to (85). Thus, the vector δJ2+1 includes the claims

reserves for individual and aggregated accident years, but without taking into account the
effects of the regression terms hT

t u with t /∈ I , which are excluded from the accumulation
process and therefore have to be added separately.

6.2. State Space Models for Predicting IBNR Reserve in Row-Wise Ordered Runoff Triangles:
Calendar Year IBNR Reserves and Tail Effects

Costa and Pizzinga (2020) extend the row-wise stacking approach of Atherino et al. (2010)
and the corresponding state space representation of the structural model by implementing
(1) a calendar year IBNR reserve prediction and (2) tail effects for the row-wise ordered
triangle. In this way they intend (1) to improve the possibilities of an insurance company
to predict short-term IBNR reserves and (2) to make IBNR predictions more conservative
and thus more effective to protect insurance companies from insolvency risks.

As for the first extension, Costa and Pizzinga (2020) consider the cumulating method
proposed by Atherino et al. (2010) and simply add a further cumulating entry to the state
vector, in particular, to the vector (86). The additional cumulating entry δ

(C)
t is related

to the calendar year IBNR reserve and accumulates all estimates of missing observations
associated with a specific calendar year.
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As for the second extension, Costa and Pizzinga (2020) consider both a one-step ahead
column and row tail effects in the claims development triangle. Thus, the triangle is
extended by an additional row for the (J + 1)-th accident year and an additional column
for the J∗-th development year. Following Costa and Pizzinga (2020), this short period
for the tail effects does not lead to a reasonable loss of generality as it was empirically
shown that the last column payments are expected to be lower than the first ones. In
order to incorporate the tail effects into the structural model, Costa and Pizzinga (2020)
assume that yJ∗ , y2J∗ , . . . , yJ∗2 , yJ∗2+J∗ have the same periodicity behavior (i.e., “saisonality”)
as the respective previous observation of the time series. Against this backdrop, the
following changes are made to the system matrices of the state space representation
(see (87) and (88)):

gT
t =

{ (
1 1 0 0 . . . 0

)
if t /∈ {J∗, 2J∗, . . . , J∗2 + J∗}(

1 0 1 0 . . . 0
)

otherwise

Ft−1 =




1 0 0 . . . 0
0 −1 −1 . . . −1
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0

 if t /∈ {J∗, 2J∗, . . . , J∗2 + J∗}

I otherwise

That is, the modified state space representation for the cumulating method is the
same as in the work of Atherino et al. (2010) for the observations that are not affected by a
column tail effect. As for the observations with the tail effect, the above modifications force
the periodicity component to be exactly the same as those from the preceding observations.

6.3. Applying State Space Models to Stochastic Claims Reserving

Hendrych and Cipra (2021) discuss and compare various common approaches in
stochastic claims reserving such as log-normal models or Hoerl curve approaches in
the framework of state space models. In particular, the authors use the approach of a
row-wise stacking of the claims development data ordered as a time series proposed by
Atherino et al. (2010) to handle common claims reserving methods via unified state space
representations and the Kalman filter learning algorithms. This approach has the benefit
that all the different models can be handled within the same framework and the results can
be easily compared. As the row-wise stacking approach in a state space representation has
practical advantages over other state space approaches, Hendrych and Cipra (2021) transfer
its benefits for handling different approaches within the same state space framework.

In the following, the log-normal model for incremental payments according to (44)
investigated by Verrall (1989) and other authors is considered (see Section 3). This model
is converted into a state space representation following the row-wise stacking approach.
In the first step, Yi,j for all i, j = 0, . . . , I are row-wise stacked (as proposed in the work of
Atherino et al. (2010)), and the common time series notation via yt with t = i · I + j is used.
In contrast to Verrall (1989), Hendrych and Cipra (2021) take the observations of the first
column (Yi,0 for all i) for each accident year as initial values in the observation equation.
This is conducted before the backdrop so that the initial level for the recursions is set in a
more appropriate way, which has a positive impact on the calculations when there are few
data and especially when there are missing values. Thus, the row-wise stacked log-normal
model for incremental payments can be stated as

yt −Yi,0 = βt + wt

βt+1 = βt−I+1 + vt

with wt ∼ N
(
0, σ2

w
)
, vt ∼ N

(
0, σ2

v
)
. The corresponding state space representation with

state vector
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xt =
(

βt βt−1 . . . βt−I+1
)T

can then be given as follows:

yt −Yi,0 =
(
1 0 . . . 0

)
xt + wt (observation equation)

xt+1 =



0 0 . . . 0 1
1 0 . . . 0 0

0
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0

xt +



1
0
...
...
0

vt (state equation)

In addition, Hendrych and Cipra (2021) consider the multivariate case for all the
discussed approaches. This leads to a further benefit of state space models in claims
reserving as it becomes possible to incorporate claims activity dynamics and to model
dependencies between correlated lines of business. This does not require any additional
effort by the practitioner, since multivariate modelings can be implemented by state space
models in a simple way and are largely analogous to the univariate case.

In the following, the multivariate log-normal model for incremental payments is
considered in a state space representation. In addition to the unknown parameters in the
above univariate case (σ2

w, σ2
v ), there are further parameters describing the correlations

between the run-off triangles in the multivariate setting. Hence, considering N run-off
triangles, the Yi,j(h) for all i, j and h = 1, . . . , N are modeled via the log-normal model for
incremental payments in a row-wise stacked manner as follows

yt(h)−Yi,0(h) = βt(h) + wt(h)

βt+1(h) = βt−I+1(h) + v(h)

with wt ∼ N(0, σw(h, h)), vt ∼ N(0, σv(h, h)). As for achieving a suitable state space
representation, the vectors

yt =
(
yt(1) . . . yt(N)

)T

Yi,0 =
(
Yi,0(1) . . . Yi,0(N)

)T

xt =
(

βt(1) βt−1(1) . . . βt−I+1(1) . . . βt(N) βt−1(N) . . . βt−I+1(N)
)T

wt =
(
wt(1) . . . wt(N)

)T

vt =
(
vt(1) 0 . . . 0 vt(N) 0 . . . 0

)T

can be used, and the variance–covariance matrices Rt = (σw(m, h))m,h=1,...,N and
Qt = (σv(m, h))m,h=1,...,N contain the correlation parameters that have to be estimated.
Therefore, the following state space representation for the multivariate log-normal model
for incremental payments is obtained:

yt − Yi,0 =


1 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 . . . 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 1 0 . . . 0

xt + wt (observation equation)
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xt+1 =



0 0 . . . 0 1 0 0 . . . 0 0
1 0 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 0 . . . 1 0 0 0 . . . 0 0

. . .
0 0 . . . 0 0 0 0 . . . 0 1
0 0 . . . 0 0 1 0 . . . 0 0
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 0 . . . 1 0


xt

+



1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 0 . . . 0 0

. . .
0 0 . . . 0 0 1 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 0 . . . 0 0


vt (state equation)

Finally, Table 8 gives an overview of the dimensions of vectors and matrices in the
above exemplary state space models of Hendrych and Cipra (2021).

Table 8. Dimensions in the state space models of Hendrych and Cipra (2021).

Univariate Case Multivariate Case

yt 1× 1 N × 1
xt I × 1 NI × 1
wt 1× 1 N × 1
vt 1× 1 NI × 1
Gt 1× I N × NI
Ft I × I NI × NI
Bt I × 1 NI × NI
Rt 1× 1 N × N
Qt 1× 1 NI × NI

7. Conceptual Comparison

In this section, a conceptual comparison of the proposed methods is conducted. In
particular, we compare the objectives behind the methods, the modeling approaches for
claims data, and the state space representations. Further, we give insights from practical
applications discussed in the papers.

7.1. Objectives and Claims Data

The vast majority of articles (Verrall 1989; Wright 1990; Ntzoufras and Dellaportas 2002;
Alpuim and Ribeiro 2003; Li 2006; Atherino et al. 2010; Chukhrova and Johannssen 2017;
Costa and Pizzinga 2020; Hendrych and Cipra 2021) aim to forecast the outstanding loss
liabilities and to calculate the corresponding prediction error. In addition, there are deviant
objectives such as an estimation of the underlying states of the observations in the upper
triangle (De Jong and Zehnwirth 1983; Chukhrova and Johannssen 2017), an extension of
the CL method to not necessarily homogeneous development patterns across accident years
(Verrall (1994)), an illustration of calendar year effects (Zehnwirth (1997)), or a simulation
of the shape of the liability distribution (De Jong 2006; Hendrych and Cipra 2021).
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While most models are based on incremental payments, e.g., the log-normal mod-
els (see Verrall 1989, 1994; Ntzoufras and Dellaportas 2002; Li 2006), the Hoerl curve
approaches (see De Jong and Zehnwirth 1983; Wright 1990; Zehnwirth 1997) as well as
the methods presented in the work of Alpuim and Ribeiro (2003), Atherino et al. (2010),
Pang and He (2012), Costa and Pizzinga (2020), Hendrych and Cipra (2021), there are
also models constructed for other data situations, such as cumulative payments (De Jong
2005, 2006; Chukhrova and Johannssen 2017), incurred incremental data (Wright 1990),
PPCF (Ntzoufras and Dellaportas 2002), claim closure rates (Taylor et al. 2003), and PPCI
(Taylor et al. 2003). Some models also incorporate additional information such as infla-
tion indices (De Jong and Zehnwirth 1983; Wright 1990; Ntzoufras and Dellaportas 2002),
business volume (De Jong and Zehnwirth 1983), or exposure (Wright 1990).

Often, the claims data are directly embedded in the objective and thus are an es-
sential component of the modeling. For example, log-normal models for incremental
data require strictly positive claims data, which is why they are unsuitable for incurred
incremental data. Additionally, modeling via a Hoerl curve needs incremental payments
and cannot be easily applied to incurred incremental data. In some articles, such as
Ntzoufras and Dellaportas (2002) and Taylor et al. (2003), the claims data even form the
foundation of the modeling, i.e., the state space representations are motivated by and
constructed specifically for the underlying claims data.

7.2. Modeling of Claims Data

The categories “Parametric evolution of claims data” and “Log-normal models for
incremental payments” include the most common modeling approaches for claims data.

Within the first category, De Jong and Zehnwirth (1983), Wright (1990), and Zehnwirth
(1997) assume that incremental payments are subject to a very fast increase in early devel-
opment years and an exponentially decrease over the following development years, which
is why they model incremental payments via a Hoerl curve (see (5), (17) and (30)). The
general exponential-logarithmic Hoerl curve is given by

β j = exp(κ j + δ log j) (89)

with development year parameter β j for all j = 0, . . . , J and κ, δ ∈ R. An advantage of
treating development time j as a continuous covariate is that extrapolation is possible
beyond the range of development times observed (see, e.g., Chukhrova and Johannssen
2017). The Hoerl curve is the most popular parametric form used for modeling the evolution
of incremental payments over development years j, since it behaves very similar to the
typical run-off of incremental payments: it rises very quickly to its peak and then tends to
zero at an exponential speed. Following the Hoerl curve approach, De Jong and Zehnwirth
(1983), Wright (1990), and Zehnwirth (1997) propose modeling the expected incremental
payments in i, j by means of variations of (89) as follows (see (5), (21) and (30)):

E[Xi,j] = b(i)(j + 1)e−j (De Jong and Zehnwirth 1983)

E[Xi,j] = εi pi,je(i+j′)τKj′λ (Wright 1990)

E[Xi,j] = eα−0.2j (Zehnwirth 1997)

In addition, by implementing state space models, De Jong and Zehnwirth (1983) and
Wright (1990) allow the accident year parameters to evolve recursively over the accident
years, see (16) and (26), i.e., they implement dynamic estimation of the parameters that has
the advantage of avoiding overparameterization of the model.

Since the evolution of incremental payments can be applied in a similar way to PPCI
and claim closure rates, Taylor et al. (2003) also use a parametric approach to model the
evolution over the development years in a suitable way. For this purpose, however, they
do not choose a variant of the Hoerl curve, but approaches similar to discounting. In



Risks 2021, 9, 198 47 of 55

particular, Taylor et al. (2003) calculate the expected PPCI E[Yi,j] and the expected claim
closure rate E[Zi,j] via

E[Yi,j] = exp
(

βi,0 + βi,1(j + 1) +
βi,2

j + 1
+

βi,3

(j + 1)2 + βi,4δj,0

)
(Taylor et al. 2003)

E[Zi,j] = βi,0 +
βi,1

j + 1
+

βi,2

(j + 1)2 + γtδi+j,t (Taylor et al. 2003)

for a given accident year i = 0, . . . , I over the development years j = 0, . . . , I (see (33),
(36)). Pang and He (2012) follow the modeling approach of the linear predictor for the
PPCI according to (33) in the work of Taylor et al. (2003) and adopt their approach for
incremental payments (see (41)):

E[Xi,j] = θi,1(j + 1) +
θi,2

j + 1
+

θi,3

(j + 1)2 + θi,4δj,1 (Pang and He 2012)

For the most part, the modeling approaches in these articles do not require any
distributional assumptions. The only exceptions are Wright (1990), where the number of
payments is assumed to be Poisson-distributed, and Taylor et al. (2003), where the noise
terms and thus the observations are assumed to be EDF-distributed.

Considering the second category “Log-normal models for incremental payments”,
all the models are based on explicit distributional assumptions, since the incremental
payments are assumed to be log-normally distributed. The logarithmized incremental
payments Yi,j in i, j are then specified via the log-normal model for incremental payments
(also called the linear CL model, following Verrall 1989). In particular, Verrall (1989) and Li
(2006) use the common basic model (see (44))

Yi,j = µ + αi + β j + wi,j (Verrall 1989; Li 2006)

whereas Verrall (1994) and Ntzoufras and Dellaportas (2002) suggest a variant of this model
that allows for variations in the column parameters across accident years,

Yi,j = µ + αi + βi,j + wi,j (Verrall 1994; Ntzoufras and Dellaportas 2002)

where the column parameters βi,j may evolve according to (56). In addition to incremental
payments, Ntzoufras and Dellaportas (2002) also incorporate claim counts, and therefore
consider PPCF as claims data. In compliance with the approaches of the first category
and also by utilizing state space models, the authors implement recursions for the model
parameters to achieve dynamic estimation and to avoid the overparameterization of the
model (see, e.g., (52)).

In contrast to the above approaches, there are other ways of modeling the claims
data: De Jong (2006) (and to some extent also De Jong 2005) presents correlation models
where correlations between accident, development or calendar years are considered (see
(71)–(73)), Alpuim and Ribeiro (2003) and Chukhrova and Johannssen (2017) propose
univariate state space models (see (74), (75) as well as (76), (77)), and Atherino et al. (2010),
Costa and Pizzinga (2020), and Hendrych and Cipra (2021) discuss row-wise stacking
approaches for the claims data to get a univariate time series (see, e.g., the structural model
(80)–(82)).

In particular, De Jong (2006) extends the model δi,j = µj + hjεi,j (i = 1, . . . , I, j =
0, . . . , I − 1) for logarithmized individual development factors (64) from Hertig (1985) by
including correlations of δi,j across development years, accident years or calendar years
(see (71)–(73)):

δi,j = µj + hj
(
εi,j + θjεi,j−1

)
δi,j = µi,j + hjεi,j with µi+1,j = µi,j + λjηi,j (De Jong 2006)
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δi,j = µj + hj
(
τi+j + εi,j

)
with τi+j+1 = τi+j + κηi+j

In Alpuim and Ribeiro (2003), it is proposed to model the incremental payments Xi,j in
i, j as a function of the payments Xi,0 of the respective accident year i = 1, . . . , I by means of

Xi,j = λi,jXi,0 + wi,j, (Alpuim and Ribeiro 2003)

see (74). Thus, the total amount of claims incurred in accident year i that has been paid j
years later is proportional to the claims incurred and paid in accident year i. This proportion
varies randomly with i and j, which is why Alpuim and Ribeiro (2003) consider the AR(1)
process λi,j = µj + φj(λi−1,j − µj) + vi,j, see (75). By applying this approach, the common
assumption of independent accident years is not required.

Chukhrova and Johannssen (2017) propose to model the observed cumulative pay-
ments Cobs

i,j as a function of unobservable latent variables Ci,j, i, j = 0, . . . , I. Against this
backdrop, they presume the relationship

Cobs
i,j = gjCi,j + wi,j (Chukhrova and Johannssen 2017)

according to (76), where Ci,j is additionally assumed to follow the recursion Ci,j+1 =
f jCi,j + vi,j (see (77)) that is implemented by using a state space model. The approach by
Chukhrova and Johannssen (2017) therefore addresses potential observation errors in the
claims data.

The authors Atherino et al. (2010) and Costa and Pizzinga (2020) discuss a structural
model for incremental payments with a local level component µt, a stochastic periodic
component γt and a regression term hT

t u,

yt = µt + γt + hT
t u + εt

µt+1 = µt + ξt (Atherino et al. 2010; Costa and Pizzinga 2020)

γt+1 = −
J−1

∑
d=1

γt+1−d + ωt

see (80)–(82). This approach is inspired by the nature of the claims process: The level
component shall respond for the mean value of claims in each accident year, while the
periodic component is supposed to capture the development year effect. The regression
term is mainly motivated by the need of intervention effects due to the presence of outliers.
That is, the approach of Atherino et al. (2010), and hence also of Costa and Pizzinga (2020)
and Hendrych and Cipra (2021), differs from other proposals by using a modeling approach
that is not directly based on claims data with the usual double indexing, but instead, the
claims data is modeled in its whole as a univariate time series. This allows the use of tools
that are available for time series, and thus considerably expands the modeling spectrum
including diagnostic checking and model selection criteria.

7.3. Modeling Approaches of State Space Representations

Most of the state space representations are based on the approach of a calendar year-
based modeling, in which the claims data of the individual calendar years are stacked into
separate observation vectors. Similar approaches are an accident year-based modeling (see
Taylor et al. 2003) or a development year-based modeling (see De Jong and Zehnwirth
1983) of the observation vectors. Beyond these most common approaches, there are
univariate state space representations and state space models based on the row-wise
stacking approach.

The popularity of the approaches that are aligned to the dimensions of claims devel-
opment triangles (see Figure 11) is to be seen in the fact that they enable for modeling
effects related to accident, development or calendar years. Because of the relationship of
calendar years t = i + j to accident years i = 0, . . . , I and development years j = 0, . . . , J,
it is clear that only two of these three directions (diagonal, vertical, horizontal) are “in-
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dependent” of each other. While the vertical direction captures trends across accident
years and the horizontal direction captures trends across development years, the diagonal
direction reflects trends across calendar years (see Figure 12, left-hand side). The vertical
and horizontal directions are orthogonal to each other, i.e., trends in one direction are not
projected to the other. However, the diagonal direction is not orthogonal to either of the
other two directions, i.e., trends in calendar years are projected onto both the horizontal
and vertical directions. Accordingly, diagonal or calendar year effects at a level of x% are
equivalent in their effect to a combined vertical and horizontal effect each at a level of x%
(see Figure 12, right-hand side). Calendar year effects include trend and structural breaks
(e.g., due to extraordinary events such as floods, hurricanes, terrorist attacks, etc.), changes
in the inflation rate, in individual case reserving, in the underwriting policy, in legislation,
and organizational changes such as the implementation of new claims processing systems
or the emergence of new phenomena (see, e.g., Zehnwirth 1997).
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Figure 11. Modeling approaches of the state space representations.
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Figure 12. Trend properties of claims development triangles.

Following the above explanations, an adequate embedding of calendar year effects into
claims reserving models is essential. This also accounts for the fact that these approaches
are the most widespread. Moreover, the calendar year-based approach can be justified as
follows (see Chukhrova and Johannssen 2017):

• It corresponds to a natural modeling of the claims data, as annually added observa-
tions build up a new diagonal in the run-off triangle.
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• As for estimation and prediction, more recent observations should get a higher weight
compared to past observations. The recursive and dynamic nature of the Kalman filter
learning algorithms complies with this requirement, especially with respect to the
calendar year-based approach.

In the following, an exemplary calendar year-based state space representation from
the category “Log-normal models for incremental payments” is given. This state space
representation is based on the linear CL model discussed by Verrall (1989) and can also
be found in a similar form in the work of Verrall (1994) and Li (2006). It consists of the
observation equation



Y1,t
Y2,t−1
Y3,t−2

...
Yt−1,2

Yt,1


︸ ︷︷ ︸
observation

vector

=



1 0 . . . . . . 0 1
1 1 0 . . . . . . 0 1 0 0
1 0 0 1 0 . . . 0 1 0 0 0 0
...

. . .
...

...
. . .

...
1 0 1 0 . . . . . . 0 1 0 0 0
1 0 . . . . . . 0 1 0


︸ ︷︷ ︸

system matrix



µ
α2
β2
...

αt
βt


︸ ︷︷ ︸

state
vector

in t

+



w1,t
w2,t−1
w3,t−2

...
wt−1,2

wt,1


︸ ︷︷ ︸
measurement

noise
vector

corresponding to calendar year t = i + j that implies (44) for each Yi,j of calendar year t,
and the state equation



µ
α2
β2
...

αt+1
βt+1


︸ ︷︷ ︸

state
vector
in t+1

=



1 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 1
0 . . . 1 0
0 . . . 0 1


︸ ︷︷ ︸

transition matrix



µ
α2
β2
...

αt
βt


︸ ︷︷ ︸

state
vector

in t

+



0
...
0
0
vt
wt


︸ ︷︷ ︸
process
noise
vector

that allows dynamic estimation of the accident and development year parameters via (52).
However, the approaches shown in Figure 11 have the drawback that the dimensions

of the vectors and matrices in the corresponding state space representations are time-
variant. Considering the calendar year-based approach, this is due to the fact that with
proceeding calendar years, complete diagonals are added to the run-off triangle, which
have one more observation than the previous calendar year. Thus, the current calendar year
has the most observations before the number of future observations in the lower triangle
decreases with proceeding calendar years (when considering claims development triangles).
Depending on the modeling (e.g., via a Hoerl curve or the log-normal model), these
additional observations induce correspondingly increasing state vectors, system matrices,
hyper-parameters and noise terms. This can complicate parameter estimation, practical
handling, and simultaneous involvement of multiple run-off triangles considerably (see
Chukhrova and Johannssen 2021).

The above drawbacks can be avoided by choosing state space models based on the
row-wise stacking approach (Atherino et al. 2010; Costa and Pizzinga 2020; Hendrych and
Cipra 2021), which enable a unified framework to handle different models. Further, as
demonstrated by Hendrych and Cipra (2021), the row-wise stacking approach allows to
incorporate claims activity dynamics and to model dependencies between correlated lines
of business. It should also be noted that although the row-wise stacking approach is not a
calendar year-based modeling approach, calendar year effects can be modeled within the
row-wise stacking approach by adding an additional component to the structural model.
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There are a few articles where a Bayesian approach is employed for estimation, alter-
natively or in addition to the Kalman filter (see Verrall 1989; Zehnwirth 1997; Ntzoufras
and Dellaportas 2002). This is because both approaches are related to each other. As is
well known, the Kalman filter is based on two basic ideas: First, the idea of using new
information to update estimators based on previous observations. Second, the idea of
filtering, i.e., separating signals from noise. On the other hand, Bayes (1763) was the first
to show how new observations can be used to update previous estimators. In the usual
Bayesian approach, a posterior density is first generated from the prior density and the
current observation, and this posterior density is then updated to the prior density for
the next step. This process is then repeated sequentially for all upcoming observations
(see, e.g., Barker et al. 1995). The particular benefit of Bayesian estimation is that it allows
the practitioner/researcher to incorporate prior information from other sources (see, e.g.,
Verrall 1989). Following Ntzoufras and Dellaportas (2002), the Bayesian approach also
increases the computational flexibility, and MCMC sampling strategies can be used to
generate samples for each posterior distribution of interest.

Finally, it is worth mentioning that most of the state space representations considered
in the articles of this review are linear state space models, i.e., they consist of a linear obser-
vation equation and a linear state equation. This directly implies linear system properties
and the limitation to linear processes. An exception is given by Taylor et al. (2003), who
consider a non-linear observation equation and EDF-distributed measurement noise, that
is, a generalized linear model. This approach enables for any kind of strictly monotonic and
differentiable link functions (e.g., logarithm functions). However, linear system properties
are not a principal drawback, as every non-linear system can be converted into a linear
system by linearizing the system equations. This directly leads to the extended Kalman
filter (see, e.g., Julier and Uhlmann 2004).

7.4. Insights from Practical Applications

In the following, some selected implications of empirical applications discussed in the
above papers are given in chronological order:

• De Jong and Zehnwirth (1983) present a simple illustrative example based on a data
set from a UK general insurance company (1970–1974), where volume and inflation
indices are also available. They give estimated states for the observations of the upper
triangle and predicted future incremental payments of the lower triangle. De Jong and
Zehnwirth (1983) conclude that the results confirm the regular nature of the data and
therefore the appropriateness of the “constant” transition model for b(i) according
to (16). Further, the projected future incremental payments decline smoothly to zero
with increasing delay due to the Hoerl curve approach (5).

• Verrall (1989) performs comprehensive practical applications using the benchmark
data set from Taylor and Ashe (1983) that includes data from the motor bodily injury
class of business in one Australian state (1972–1981). In particular, he compares static
models with recursive Bayesian estimation and dynamic models, where row and
column parameters are estimated dynamically. The results show that the Kalman filter
and empirical Bayes methods outperform the OLS (i.e., uninformative prior) approach:
the estimates of row (and column) parameters are smoother and the standard errors are
lower. This is due to the fact that more information is used for parameter estimation.

• Verrall (1994) considers the data set from Taylor and Ashe (1983) for an illustrative
example and emphasizes that comprehensive examples covering all possibilities are
not feasible. In particular, Verrall (1994) focuses solely on the development parameters
and shows that the proposed model allows them to evolve over time.

• The modeling approaches in the work of Ntzoufras and Dellaportas (2002) are moti-
vated by their RBNS data set from a major Greek motor insurance company. The data
are characterized by claims that are reported within three working days according
to Greek legislation and are usually settled by a one-off payment. By comparing the
predictive performance of the proposed models, Ntzoufras and Dellaportas (2002)
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state that the predictive ability of models 1 and 2 seems to be better compared to
models 3 and 4 for the considered data set.

• As for the accident year-based approach, Taylor et al. (2003) discuss a practical appli-
cation based on a workers’ compensation portfolio, in which benefits are dominated
by payments of weekly compensation. The data show a strong upward movement
of the PPCI at the beginning and a steady slow decrease in later years. Based on this
evolution, Taylor et al. (2003) decide for a logarithm function as link function and
a gamma distribution for the measurement noise. As for the calendar year-based
approach, they use motor vehicle bodily injury data from Taylor (2000). The claim
closure rates are relatively flat over the development years, but there are shocks that
tend to affect whole calendar years. The filtered results follow the data closely at
their general level, that is, there is minor smoothing of the calendar year effects but
considerable smoothing across development years.

• Alpuim and Ribeiro (2003) discuss two application examples based on real data sets:
paid claims from the motor branch of a Portuguese insurance company (1984–1996)
and the data set from Taylor and Ashe (1983). The authors compare various claims
reserving methods and conclude that Hoerl curve approaches lead to the largest MSEP
of the claims reserves. Further, they suppose that the log-normal transformation of
the data results in larger values of the MSEP, and therefore, the original observations
should be used unless there is strong evidence of log-normal distributed data. For
both data sets, however, the state space model proposed by Alpuim and Ribeiro (2003)
leads to reserves with the smallest MSEP.

• De Jong (2006) performs a case study for the development correlation model using
a data set from the Historical Loss Development Study that includes cumulative
payments related to Automatic Facultative General (AFG) liability (1981–1990). In the
first step, he applies the model of Hertig (1985) to the AFG data and concludes that it
is not suitable to adequately represent the data, mainly due to remaining (negative)
correlations in the standardized residuals regarding the development years zero and
one. For this reason, De Jong (2006) uses the development correlation model (71) in the
second step, which considers the correlation between the first both development years.
Then, the residuals no longer contain any correlations and the correlation between the
first both development years can be explained via the development correlation model.

• Atherino et al. (2010) also use the AFG data set and especially discuss three results
of their analysis regarding the row-wise stacking approach. First, it provides com-
putational feasibility and efficiency. Second, the accuracy of the reserve prediction is
increased. Third, the approach is flexible with respect to IBNR modeling possibili-
ties. As a particularly interesting aspect, they highlight that blocks and cumulating
methods yield the same numerical results.

• Chukhrova and Johannssen (2017) provide a comparison of various claims reserving
methods with state space representations (Verrall 1989; Alpuim and Ribeiro 2003; Li
2006; Atherino et al. 2010) and popular methods such as CL, Bornhuetter–Ferguson
(BF) and overdispersed Poisson using the data set from Taylor and Ashe (1983).
Considering the claims reserves, their MSEP and the coefficient of variation, no model
can be identified that provides the best or the worst results for the given data set.

• Costa and Pizzinga (2020) perform a practical example based on the data set from
Taylor and Ashe (1983) and compare their extended row-wise stacking approach with
a modified CL approach and heteroskedastic regression models. For the given data set,
their proposed method outperforms the three competitors with respect to IBNR reserve
prediction. In particular, by applying the competitors, the insurance company might
overestimate the claims reserves (thus leading to overpriced insurance contracts). On
the other hand, by employing the original approach by Atherino et al. (2010), this
would lead to underestimated reserves.

• The most comprehensive empirical comparison of various state space models is
conducted by Hendrych and Cipra (2021), who consider five data sets, including data
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sets from Taylor and Ashe (1983), from a Belgian insurance industry, and the data
set from Alpuim and Ribeiro (2003). They compare their introduced models with the
models proposed by Alpuim and Ribeiro (2003), Atherino et al. (2010), and Chukhrova
and Johannssen (2017) as well as CL and BF methods. Following Hendrych and Cipra
(2021), their presented state space models are adequate for routine actuarial situations.
Further, they give information about the distribution of the predicted claims reserves.

It is obvious that the empirical application examples are heterogeneous, they often
show only facets of the presented methods and the results are not consistently compared
with other methods. There is no empirical comparison of different state space models that
include, even approximately, all methods introduced up to now; the most comprehensive
empirical comparisons can be found in the works of Alpuim and Ribeiro (2003), Li (2006),
Chukhrova and Johannssen (2017), and Hendrych and Cipra (2021). However, it is also
evident that a larger-scale empirical comparison of all the models presented is narrowly
limited. This is due to several factors, such as different objectives, different claims data or
the inclusion of additional information. Since the run-off data are often closely integrated
in the model building and the objectives in the articles sometimes differ considerably (see
Section 7.1), it is not possible to perform an empirical comparison of all the models that
could do them justice. Otherwise, models would be applied to claims data and objectives
for which they were not constructed. Moreover, some models require the incorporation of
further information, such as inflation or volume indices, the availability of which cannot
generally be assured (and, in the case of the benchmark data set from Taylor and Ashe
1983, is not available), but the omission of which would counteract the idea behind model
building. Likewise, no recommendation can be formulated as to which model is best suited
for actuarial practice. The decision for a specific model depends on numerous factors and
should mainly rely on the verification of the model assumptions on the underlying data.

8. Conclusions

In this paper, we have provided a comprehensive review on the topic of stochastic
claims reserving methods with state space representations. We have identified 16 relevant
articles in this field and grouped them into five categories considering their key content
similarities. Most of the articles fall into categories “Parametric evolution” (#5) and “Log-
normal models” (#4), but there are also articles devoted to “Correlation models” (#2),
“Univariate models” (#2), and “Row-wise stacking” (#3). Moreover, models for incremental
payments (#12) and the calendar year-based state space modeling approach (#8) are the
most prevalent.

Our main intentions were to identify where state space models have been used for
improving stochastic claims reserving and to consolidate the topic in order to aid new
researchers in this area. Out of these objectives, we have structured and categorized the
relevant articles. Ideally, this sound basis would assist researchers currently focused on
state space models in stochastic claims reserving and lead to fruitful future research in
this area.

As for promising directions for future research in the field of stochastic claims re-
serving based on state space models, we mainly suggest to conduct micro-level claims
reserving and to implement non-linear systems (see Chukhrova and Johannssen (2021)).
Moreover, using state space models and beyond, we would like to emphasize the use of
granular models as well as of machine learning and soft computing techniques in future
research projects. Although models based on aggregate data are widely used, especially in
actuarial practice, they are often characterized by rather simple model assumptions that
are inadequate for the underlying data. Thus, there is the need for more flexible models
which are able to deal appropriately with data where the common model assumptions are
violated (see Taylor (2019)).



Risks 2021, 9, 198 54 of 55

Author Contributions: Conceptualization, N.C. and A.J.; methodology, N.C. and A.J.; formal analy-
sis, N.C. and A.J.; investigation, N.C. and A.J.; writing—original draft preparation, A.J.; writing—
review and editing, N.C.; project administration, A.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank both anonymous reviewers for their valuable
feedback and suggestions, which were helpful in further improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
Alpuim, Teresa, and Isabel Ribeiro. 2003. A State Space Model for Run-Off Triangles. Applied Stochastic Models in Business and Industry

19: 105–20. [CrossRef]
Atherino, Rodrigo, Adrian Pizzinga, and Cristiano Fernandes. 2010. A row-wise Stacking of the Runoff Triangle: State Space

Alternatives for IBNR Reserve Prediction. ASTIN Bulletin 40: 917–46.
Barker, Allen L., Donald E. Brown, and Worthy N. Martin. 1995. Bayesian estimation and the Kalman filter. Computers & Mathematics

with Applications 30: 55–77.
Bayes, Thomas. 1763. Essay towards solving a problem in the doctrine of chances. Biometrika 45: 293–315. [CrossRef]
Chukhrova, Nataliya, and Arne Johannssen. 2017. State Space Models and the Kalman-Filter in Stochastic Claims Reserving:

Forecasting, Filtering and Smoothing. Risks 5: 30. [CrossRef]
Chukhrova, Nataliya, and Arne Johannssen. 2021. Kalman Filter Learning Algorithms and State Space Representations for Stochastic

Claims Reserving. Risks 9: 112. [CrossRef]
Costa, Leonardo, and Adrian Pizzinga. 2020. State-space models for predicting IBNR reserve in row-wise ordered runoff triangles:

Calendar year IBNR reserves & tail effects. Journal of Forecasting 39: 438–48.
De Jong, Piet, and Ben Zehnwirth. 1983. Claims Reserving, State-Space Models and the Kalman Filter. Journal of the Institute of Actuaries

110: 157–81. [CrossRef]
De Jong, Piet. 2004. Forecasting General Insurance Liabilities. Research Paper No. 2004/03. Sydney: Division of Economic and Financial

Studies, Macquarie University.
De Jong, Piet. 2005. State Space Models in Actuarial Science. Paper presented at the Second Brazilian Conference on Statistical

Modelling in Insurance, Institute of Mathematics and Statistics, University of São Paulo, Maresias, Brazil, August 28–September 3.
De Jong, Piet. 2006. Forecasting Runoff Triangles. North American Actuarial Journal 10: 28–38. [CrossRef]
England, Peter D., and Richard J. Verrall. 2002. Stochastic Claims Reserving in General Insurance. British Actuarial Journal 8: 443–518.

[CrossRef]
Hendrych, Radek, and Tomas Cipra. 2021. Applying State Space Models to Stochastic Claims Reserving. ASTIN Bulletin 51: 267–301.

[CrossRef]
Hertig, Joakim. 1985. A Statistical Approach to IBNR-Reserves in Marine Reinsurance. ASTIN Bulletin 15: 171–83. [CrossRef]
Johannssen, Arne. 2016. Stochastische Schadenreservierung unter Verwendung von Zustandsraummodellen und des Kalman-Filters. Hamburg:

Dr. Kovac.
Julier, Simon J., and Jeffrey K. Uhlmann. 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE 92: 401–22.

[CrossRef]
Kaas, Rob, Marc Goovaerts, Jan Dhaene, and Michel Denuit. 2009. Modern Actuarial Risk Theory—Using R, 2nd ed. Berlin: Springer.
Kremer, Erhard. 1982. IBNR-Claims and the Two-Way Model of ANOVA. Scandinavian Actuarial Journal 1982: 47–55. [CrossRef]
Li, Jackie. 2006. Comparison of Stochastic Reserving Methods. Australian Actuarial Journal 12: 489–569.
Ntzoufras, Ioannis, and Petros Dellaportas. 2002. Bayesian Modelling of Outstanding Liabilities incorporating Claim Count Uncertainty.

North American Actuarial Journal 6: 113–28. [CrossRef]
Pang, Liyan, and Siqi He. 2012. The Application of State-Space Model in Outstanding Claims Reserve. Paper presented at the 2012

International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), Sanya, China,
October 20–21; pp. 271–74.

Taylor, Greg C. 2000. Loss Reserving: An Actuarial Perspective. Boston: Kluwer Academic Publishers.
Taylor, Greg C. 2019. Loss Reserving Models: Granular and Machine Learning Forms. Risks 7: 82. [CrossRef]
Taylor, Greg C., and Frank R. Ashe. 1983. Second Moments of Estimates of Outstanding Claims. Journal of Econometrics 23: 37–61.

[CrossRef]
Taylor, Greg C., Gráinne McGuire, and Alan Greenfield. 2003. Loss Reserving: Past, Present and Future. Research Paper No. 109.

Melbourne: University of Melbourne.
Verrall, Richard J. 1989. A State Space Representation of the Chain Ladder Linear Model. Journal of the Institute of Actuaries 116: 589–610.

[CrossRef]
Verrall, Richard J. 1991. Chain Ladder and Maximum Likelihood. Journal of the Institute of Actuaries 118: 489–99. [CrossRef]
Verrall, Richard J. 1994. A Method for Modelling Varying Run-off Evolutions in Claims Reserving. ASTIN Bulletin 24: 325–32. [CrossRef]

http://doi.org/10.1002/asmb.484
http://dx.doi.org/10.1093/biomet/45.3-4.296
http://dx.doi.org/10.3390/risks5020030
http://dx.doi.org/10.3390/risks9060112
http://dx.doi.org/10.1017/S0020268100041287
http://dx.doi.org/10.1080/10920277.2006.10596246
http://dx.doi.org/10.1017/S1357321700003809
http://dx.doi.org/10.1017/asb.2020.38
http://dx.doi.org/10.2143/AST.15.2.2015027
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1080/03461238.1982.10405432
http://dx.doi.org/10.1080/10920277.2002.10596032
http://dx.doi.org/10.3390/risks7030082
http://dx.doi.org/10.1016/0304-4076(83)90074-X
http://dx.doi.org/10.1017/S0020268100036714
http://dx.doi.org/10.1017/S0020268100019545
http://dx.doi.org/10.2143/AST.24.2.2005074


Risks 2021, 9, 198 55 of 55

Verrall, Richard J. 2004. Kalman Filter, Reserving Methods. In Encyclopedia of Actuarial Science. Edited by Jozef L. Teugels and Bjørn
Sundt. Chichester: John Wiley & Sons, vol. 1, pp. 952–55.

Wright, Thomas S. 1990. A Stochastic Method for Claims Reserving in General Insurance. Journal of the Institute of Actuaries 117: 677–731.
[CrossRef]

Wüthrich, Mario V., and Michael Merz. 2008. Stochastic Claims Reserving Methods in Insurance. Chichester: John Wiley & Sons.
Zehnwirth, Ben. 1997. Kalman Filters with Applications to Loss Reserving. Working Paper.

http://dx.doi.org/10.1017/S0020268100043262

	Introduction
	The Importance of Claims Reserving in Non-Life Insurance
	State Space Models in the Claims Reserving Literature
	Categorization of Articles and Organization of the Paper

	Parametric Evolution of Claims Data (Category 1)
	Claims Reserving, State Space Models and the Kalman Filter
	A Stochastic Method for Claims Reserving in General Insurance
	Kalman Filters with Applications to Loss Reserving
	Loss Reserving: Past, Present and Future
	The Application of State Space Model in Outstanding Claims Reserve

	Log-Normal Models for Incremental Payments (Category 2)
	A State Space Representation of the Chain Ladder Linear Model
	A Method for Modelling Varying Run-Off Evolutions in Claims Reserving
	Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty
	Comparison of Stochastic Reserving Methods

	Correlation Models (Category 3)
	State Space Models in Actuarial Science
	Forecasting Runoff Triangles

	Univariate State Space Models (Category 4)
	A State Space Model for Run-Off Triangles
	State Space Models and the Kalman Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing

	Row-Wise Stacking Approaches (Category 5)
	A Row-Wise Stacking of the Runoff Triangle: State Space Alternatives for IBNR Reserve Prediction
	State Space Models for Predicting IBNR Reserve in Row-Wise Ordered Runoff Triangles: Calendar Year IBNR Reserves and Tail Effects
	Applying State Space Models to Stochastic Claims Reserving

	Conceptual Comparison
	Objectives and Claims Data
	Modeling of Claims Data
	Modeling Approaches of State Space Representations
	Insights from Practical Applications

	Conclusions
	References

