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Abstract: Nat Cat risks are not insurable by traditional insurance mainly because of producing highly
correlated losses. The source of such correlation among buildings of a region subject to a natural
hazard is discussed. A decomposition method is proposed to split Nat Cat risk into idiosyncratic
(and hence insurable) risk and systematic risk (carrying the correlated part). It is explained that the
systematic risk can be transferred to capital markets using a set of parametric CAT bonds. Premium
calculation is presented for insuring the decomposed risk. Portfolio risk-return trade-off measures
for investing on the parametric CAT bond are derived. Multi-regional and multi-hazard parametric
CAT bonds are introduced to reduce the risk of the investment. The methodology is applied on a
region with about 3000 residential buildings subject to flood hazards.

Keywords: Nat Cat risk; insurability; CAT bond; risk decomposition; parametric bond; correlated
risk; systematic risk; catastrophe risk management

1. Introduction

Natural Catastrophe (Nat Cat) risks have been argued to be uninsurable as they
do not allow the law of large numbers to be exploited for insurance purposes (Grossi
2005). The law of large numbers is a fundamental principle for insurance that requires
randomness of the loss occurrence in both time and magnitude. Nat Cat risks violate this
criterion by affecting many properties at the same time and causing losses with magnitudes
proportional to the event intensity. Thus, the produced losses are highly correlated which
violate the condition for the law of large numbers. This correlation issue is the root of
creating a heavy tail distribution for Nat Cat losses which means higher maximum possible
aggregate loss, higher expected loss, and higher dispersion in the loss distribution. These
issues demand insurers to provide large capital (Charpentier and Le Maux 2014), limit
their exposure Zanjani (2006), and charge premiums significantly above actuarial fair value
(Banks 2005) which ultimately lead to low insurance take-up rates.

As traditional insurance failed to provide the necessary capital to cover Nat Cat losses,
insurers have invented other instruments to transfer and carry the risk imposed by the
nature. Those instruments enable insurers to share risk and capital with other entities.
Three major sources of capital include insurers/reinsurers, investment funds, and financial
institutions. Reinsurance policies have been used to share risk and capital among peer
licensed insurers/reinsurers. A variety of financial instruments have been used to provide
insurers a direct access to the capital market and a capability to exchange risk and capital
with investment funds and financial institutions. However, only large insurance companies
can offer catastrophe coverage, because they have easier access to capital and can pool the
risk with independent risks from other regions (Charpentier and Le Maux 2014). Inability
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to diversify a risk makes managing it so costly that many insurance companies prefer to
limit their exposure as the case for California earthquake risk described by Zanjani (2006).

Although the alternative risk transfer instruments have helped insurers to cover Nat
Cat risks, their limitations and constraints prevent them from being a reliable solution. The
reinsurance process involves some challenges including pricing difficulties, earnings and
capital volatility, lack of penetration, and capacity constraints. In reinsurance agreements,
historical premiums appear to be 1.5 to 5 times the expected losses for a given layer
(Banks 2005). Maintaining large reserves have challenges such as accounting prohibition,
tax inefficiency, and conflict of interest with reinsurers’ shareholders (Banks 2005; Doherty
1997; Niehaus 2002). The reinsurance markets have a finite capital at their disposal, and
such capital constraint becomes more evident in the market contraction periods after a
major disaster such as the Northridge earthquake and Hurricane Andrew (Carpenter
2006; Enz 2002). Instruments providing direct access to capital markets such as catastrophe
futures and options, catastrophe bonds, sidecars, and catastrophe equity put options are
subject to low trading volume (Jaffee and Russell 1997), low transparency (Cummins 2008),
and substantial basis risk (Cummins 2012).

In this paper, we investigate the source of correlation among Nat Cat losses. We
demonstrate how the correlation is mainly related to the intensity of the event in the
region. Based on this understanding, we propose an innovative method to decompose
Nat Cat risks into systematic risk (carrying the correlated part) and idiosyncratic risk
(insurable part). We propose to transfer the systematic risk into capital markets using a set
of parametric CAT bonds. Premium calculation is explained for insuring buildings against
a Nat Cat risk using such decomposition and transfer method. Portfolio measures for
risk-return trade-off of investing on such parametric CAT bond are derived. Multi-regional
and multi-hazard parametric CAT bonds are introduced and shown to be able to reduce
the risk of investment for the bond holders.

The proposed risk decomposition method is applied to the city of Seaside, Oregon for
about three thousand residential buildings subject to flood hazard. The results show that
the residual risk after the decomposition is idiosyncratic as expected and follows a normal
distribution with an average at zero when aggregating them together. The calculated
insurance premium for each building and detailed results for each individual building are
presented using an interactive web app.

The paper is organized into six sections (this introduction included). The next section
is the methodology which discusses insurability issues of Nat Cat risks, explains the risk
decomposition method, and introduces the concept of multi-regional and multi-hazard
parametric CAT bond. The explanation of the risk decomposition method includes a
demonstration of the source of the correlation, elaboration of the risk decomposition
method, presentation of the Nat Cat premium calculation, and derivation of the CAT bond
portfolio measures. The third section contains an illustrative example that describes how
the proposed methodology is applied to a selected region. The purpose of this section is to
illustrate how the proposed theory performs in practice. The fourth section presents the
results of the illustrative example to show how the decomposition method could transform
the risk for the entire region as well as the individual buildings. Furthermore, the results
include an estimate of the required premium for the individual buildings based on some
assumptions. The fifth section is the discussion of the results, and the last section is the
conclusion as the summary of the paper and the findings.

2. Methodology
2.1. Nat Cat Risk and Insurability

A type of risk is not insurable unless it meets certain criteria which are referred to
as insurability criteria. We categorize the insurance criteria into three classes: actuarial,
market, and societal criteria (Biener and Eling 2012). Table 1 summarizes these classes with
their associated criteria and requirements. If a type of risk passes the requirements of all
the criteria, it is considered to be insurable, and insurers may offer coverage for that risk.
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For a complete discussion on these criteria and their requirements, interested readers are
referred to Berliner (1982); Biener and Eling (2012); SwissRe (2005).

Table 1. Insurability criteria and their requirements.

Insurability Criteria Requirements

Actuarial (1) Randomness (of loss occurrence) Measurable and independent
(2) Maximum possible loss Manageable
(3) Average loss amount and loss frequency Moderate average loss amount and low loss frequency
(4) Loss exposure Loss exposure must be large
(5) Information asymmetry Moral hazard and adverse selection not excessive

Market (6) Insurance premium Cost recovery and affordable
(7) Cover limits Acceptable

Societal (8) Public policy Consistent with societal values and availability of services
(9) Legal restrictions Allow the coverage

Nat Cat risks are considered uninsurable as they easily violate the insurability criteria
of a risk. Nat Cat losses do not occur independently in both time and magnitude. If a
building experiences a loss in an event, it is highly likely that its neighbors also sustain
losses of a similar size. An individual building can produce a loss with thousands of dollars
in size. The large size of the loss per se does not make the risk uninsurable. For instance,
the same building is offered fire coverage from many insurers; while flood coverage might
be available from only a few private insurers (if any) at a significantly higher cost. The
simultaneity of such large losses is the issue as it makes the average total loss of a Nat
Cat and its maximum possible loss to be too large to be manageable by most insurers. In
fact, only large insurance companies can offer catastrophe coverage, because they have
easier access to capital and can pool the risk with independent risks from other regions
(Charpentier and Le Maux 2014). Table 2 has comments on the insurability criteria of Nat
Cat risks and clarifies their status regarding the satisfaction of the requirements of each
criterion.

Table 2. Insurability criteria for natural catastrophes.

Insurability Criteria Status Comment

Actuarial (1) Randomness (of loss occurrence) NOT Satisfied Dependent claim size and simultanous occurrence
(2) Maximum possible loss NOT Satisfied Not manageable for most insurers
(3) Average loss amount and loss frequency NOT Satisfied Hard to estimate and with a significant high uncertainty
(4) Loss exposure NOT Satisfied LLN is not applicable and low take-up rate
(5) Information asymmetry Satisfied Insurers have superior understanding about the risk

Market (6) Insurance premium NOT Satisfied Premiums are too high
(7) Cover limits NOT Satisfied Using limits cannot solve the insurability issue

Societal (8) Public policy Satisfied No conflict with societal values
(9) Legal restrictions NOT Satisfied Solvency regulations inhibit many insurers to offer coverage

Producing positively correlated losses is the main reason that Nat Cat risks become
uninsurable. The correlation among the losses does not allow insurers to use the law of
large numbers and reduce loss variability around its expected value by selling more policies.
In addition, the positive correlation increases the likelihood of observing extremely large
losses in an event which creates a heavy-tail loss distribution for a Nat Cat risk. Industry
regulations require insurers to maintain a reserve with an amount commensurate with
the risk they carry. Thus, a Nat Cat risk with a heavy-tail distribution is unfavorable for
insurers to carry as it can easily increase the required reserve by a significant amount.

2.2. Nat Cat Property Loss and Risk Decomposition

Natural catastrophes impact society in various forms including financial losses of
the order of hundreds of billions of dollars, population dislocation, and loss of lives. The
impacts are categorized into direct and indirect as well as tangible and intangible. Direct
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impacts are those caused directly by the physical forces of the event and happen at the
time of the disaster or within a short period of time after. Indirect impacts are caused as
the consequence of the direct impacts and may occur in a different time and space than
the event. Tangible impacts are those that can be monetized; while, intangible impacts
cannot be converted into a monetary value. For example, damage to a flooded building is
a direct and tangible impact; loss of life in flood is a direct and intangible impact; delay in
transporting goods because of a flooded main road is an indirect and tangible impact; loss
of trust in authorities is an indirect and intangible impact. In this paper, we are focusing on
direct impacts of Nat Cats on buildings that relate to property and casualty type insurance
(P&C). In other words, we are investigating property losses as the result of natural events
such as floods, earthquakes, hurricane, etc.

The size of the loss for an individual building in a Nat Cat event dependents on the
physical characteristics of the building (structural properties, construction material, floor
plan, etc.) and the hazard intensity at the building location (magnitude of energy and
forces applied to the structure). For a specific type of building (a building with specific
physical characteristics), the loss estimation function presents the relationship between the
loss size of a building and the intensity of a specific natural hazard at the property location.
In a loss estimation function, the loss size is defined as the ratio of the loss to the total value
of the property (relative loss). The physical characteristics are captured by categorizing
buildings into different classes with a similar response to the hazard. One or more intensity
measures of the hazard are used to describe how the loss ratio changes as the intensity
increases at the property location.

For instance, the loss estimation function for flood is called depth-damage function
as the depth of flood at the building location is commonly used as the sole intensity
measure for flood damage estimation (Marvi 2020). The depth-damage function describes
how flood damage (relative to the property value) increases as the flood water height
increases at the building location. Different depth-damage functions have been developed
for different types of buildings to capture the role of physical characteristics. Figure 1
illustrates examples of loss estimation functions for flood, earthquake, and hurricane.

The loss estimation function of a building is composed of two parts: (1) a deterministic
non-decreasing trend which is the function of the hazard intensity at the building location,
g(X); (2) a stochastic term with a variance that may change by the hazard intensity, σX ε.
Here, X represents the intensity of a natural hazard that the loss estimation function of
the building is constructed for. Since the intensity of a natural hazard varies in a region,
note that X is the local evaluation of the intensity measure at the property location. For
simplicity, we follow the general assumption that the random variable ε has a standard
normal distribution, and σX is the standard deviation of the loss given the intensity of X
around its average value or g(X). Thus, for a specific natural hazard, the building i in a
region will have a random loss of Li as

Li = gi(X i) + σX i ε, (1)

when the intensity measures of the hazard are evaluated as the vector X i at the property
location.

2.2.1. Source of Correlation

Intensity of a natural hazard varies spatially, yet is correlated. The variability of
the intensity in a region can be described by the physics model governing the natural
phenomenon and the event parameters as the initial values and/or boundary conditions of
such a model. For example, flood water height, as an intensity of flood, can be determined
in an entire region by the governing hydraulic model calibrated for that specific region,
and the river water level at the upstream of the region is the only event parameter required
in this model. In this example, the intensity measure of the hazard and the event parameter
are from the same quantity; both are height and measured by the same unit. However, the
intensity measure and the event parameters can be different in number and quantity. The
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physics model specifies the event parameters required for the estimation of the intensity in
a region. As the natural phenomenon occurs with random magnitude, the event parameters
representing such magnitude will be a set of random variables.
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Figure 1. Loss estimation functions for different hazards. (a) Flood hazard, (adopted from Nofal and van de Lindt 2020).
(b) Earthquake hazard, (adopted from Ramirez 2009). (c) Hurricane hazard, (adopted from Vickery et al. 2006).

The calibrated hazard model determines the intensity in any part of the region includ-
ing at building locations using some event parameters. Assume that the hazard model
calibrated for a region is known and denoted by a deterministic function D; the event
parameters required for the hazard model are denoted by the vector Θ; and, the location of
the building i in the region is used in the hazard model in the form of the vector zi. Thus,
X i can be determined by

X i = D(zi; Θ), (2)

where the X i’s are all dependent on the event parameters Θ through the deterministic
physics model D and the buildings’ fixed geographical location zi. Note that D for any
zi’s is non-decreasing as Θ changes to the event parameters representing a less frequent
event (an event with lower exceedance probability). Thus, X i’s and consequently gi(X i)’s
become correlated. Note that the functions gi(.) are non-decreasing. Furthermore, X i’s
are non-decreasing as the intensity of the hazard increases. Thus, the correlation among
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building losses are positive and can be traced back to the event intensity which is captured
by parameters in Θ. Given a specific hazard intensity (X i), the part gi(X i) is a deterministic
term of the building loss which we call it systematic loss. The stochastic term of the building
loss, σX i ε, is uncorrelated among the buildings of the region, and we call it residual loss.
Thus, the residual risk is idiosyncratic and insurable.

The correlated systematic part of the loss for the individual buildings can be aggre-
gated and considered the systematic loss of the region as

Ls = ∑N
i=1gi(X i) = ∑N

i=1gi(D(zi; Θ)) = G(Θ), (3)

where Ls represents the systematic loss of the region assuming that there are N buildings
in the region (or in our portfolio). Since the location of the buildings (zi), their structural
characteristics (captured by gi(.)), and the hazard model of the region (captured by D(.))
do not change, the Ls is a deterministic function of Θ. So, we can simplify Equation (3)
to Ls = G(Θ). Likewise, the residual loss of the region (Lr) is defined by the sum of the
residual losses of the buildings in the region as in

Lr = ∑N
i=1σX i ε ∼ N

(
0,

√
∑N

i=1σ2
X i

)
or N (0, σΘ). (4)

Note that Lr is a random variable which is a sum of N normally distributed random
variables. Thus, Lr is a normal random variable with E(Lr) = 0 and Var(Lr) = ∑N

i=1
(
σX i

)2.
For simplicity, we use σΘ to show the standard deviation of Lr. The total loss of the region
(L) is the sum of the losses for all the buildings in the region which is equal to the sum of
the systematic and the idiosyncratic residual loss of the region as explained in

L = ∑N
i=1Li = ∑N

i=1gi(X i) + ∑N
i=1σX i ε = Ls + Lr. (5)

2.2.2. Risk Decomposition

The systematic part of the natural catastrophe risk, Ls, can be transferred to the capital
markets by issuing parametric CAT bonds. For this reason, the range of Θ is divided into J
mutually exclusive and collectively exhaustive subdomains, Θj for j = 1, . . . , J. The subdo-
mains are constructed in a way that any event in Θk has an annual exceedance probability
less than any event in Θh if and only if k > h. The annual exceedance probability of the
natural phenomenon is assumed to be known in the region using historical measurements
of Θ and statistical estimation methods such as extreme value theory. For the subdomain
Θj, a parametric CAT bond Bj is issued with a total principal as its collected asset invested
in a trust which is equal to bj described in

bj =

{
E[G(Θ)|Θ ∈ Θ1 ], j = 1,
E
[
G(Θ)

∣∣Θ ∈ Θj
]
− bj−1, j 6= 1,

for j = 1, . . . , J. (6)

Like other bonds, the parametric CAT bond pays interest in the form of coupons;
however, the principal and maybe the interest will be withdrawn if the triggering event
occurs. Here, we assume that the parametric CAT bond Bj is paying interest with an
annual rate of αj, and the whole principal will be withdrawn in case the bond is triggered.
An event with the intensity Θ0 triggers the parametric CAT bond Bj, if there exists at
least one event in Θj with the annual exceedance probability greater than the annual
exceedance probability of Θ0. Since the annual exceedance probability for Θ is known with
a consensus among the involved parties (insurer and investors), and Θ0 is measured fairly
quickly by objective third parties (such as government agencies like USGS and NOAA),
the involved parties will have an identical recognition in a short time whether the bond
has been triggered or not. This increases transparency and helps to release the bond asset
quickly to cover the losses from the event.
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By transferring the systematic risk to the capital markets, the remaining part of the
risk (the residual risk) becomes idiosyncratic and hence insurable. Assume that the event
with Θ0 triggers the parametric CAT bonds B1, . . . , Bs. The total fund provided by the
triggered bonds equals to

b0 = ∑s
i=1bi = E[G(Θ)|Θ ∈ Θs ]. (7)

Thus, the remaining part of the loss is [G(Θ0)− b0] + Lr. It is assumed that Θj’s are
small enough that the variability of [G(Θ0)− b0] is negligible compare to the variability
of Lr. In other words, the total loss (L) is not sensitive to the variability of G(Θ) around
its conditional average E[G(Θ)|Θ ∈ Θs ]. As shown in Equation (4), conditional on the
realization of Θ, the residual risk has a normal distribution with standard deviation σΘ.
Thus, the residual risk, denoted by Lr, has a compound normal distribution as described in

Lr ∼ N (0, σΘ),
Pr(σΘ) is known through Pr(Θ),

(8)

Instead of using a compound distribution, a conservative or risk averse option is to
use the maximum σΘ over possible Θ as the standard deviation of the residual risk Lr.
One can add an extra dispersion to σΘ for considering the variability of G(Θ) around its
conditional average over Θj’s intervals. In that case, the modified standard deviation (σm

Θ)
used for the normal distribution of Lr is calculated by

σm
Θ =

√
σ2

Θ + ∑k
j=1Var

[
G(Θ)

∣∣Θ ∈ Θj
]
, (9)

where k is the highest index of the bonds triggered if an event with the intensity of Θ

occurs.

2.2.3. Nat Cat Premium Calculation

Premium collected from individual buildings needs to cover the costs including a
portion of the CAT bond interest, the residual risk, and the underwriting gain. Those
costs should be distributed fairly among the individual buildings. The CAT bond interest
is partially provided from low-risk investments such as government or AAA corporate
bonds and partially from the insureds’ premium. Assume that Ij is the total interest that
needs to be provided from insurance premiums for the CAT bond Bj. As the CAT bond is
issued to cover the systematic part of the risk, it would be fair if Ij is distributed among
the individual buildings proportional to their average systematic risk within Θj. Thus, we
define cI

ij as the portion of Ij paid by the property i, and calculate cI
ij using

cI
ij =


E[gi(D(zi ;Θ))|Θ∈Θ1 ]

b1
, j = 1,

E[gi(D(zi ;Θ))|Θ∈Θj ]−E[gi(D(zi ;Θ))|Θ∈Θj−1 ]
bj

, j 6= 1,
for i = 1, . . . , N and j = 1, . . . , J. (10)

The residual risk is managed by the insurer based on variety of factors including
the industry regulations, market competition, and company’s risk appetite. Based on all
factors and the residual risk distribution mentioned in Equation (8), assume that the insurer
decides to collect the total of V amount from the insured buildings to cover the residual
risk. As the residual risk is more induced by the dispersion of the loss around its average, a
fair practice to distribute V among the insureds is to find the contribution of each property
to the total dispersion. Thus, we propose to use cV

i as the portion of V paid by the property
i which is explained by

cV
i =

1

Pr
(

Θ ∈ ∪J
1Θj

)E

[
σ2

X i

σ2
Θ

]
=

1

Pr
(

Θ ∈ ∪J
1Θj

)E

[
σ2

gi(D(zi ;Θ))

σ2
Θ

]
. (11)
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The underwriting gain is assumed to be a fixed rate of each policy. Assume that U is
the total underwriting gain, and qi is the total portion of the premium paid by the building
i for the CAT bond interest and its residual risk. So, the portion of U paid by the building i
is denoted by cU

i and calculated using

cU
i = qi

∑N
i=1qi

qi = ∑J
j=1cI

ij Ij + cV
i V

for i = 1, . . . , N. (12)

Ultimately, the total premium needs to be collected from the building i is the sum of
its portions from the CAT bond interest, residual risk, and underwriting gain. The total
premium is denoted by Qi and calculated as

Qi = ∑J
j=1cI

ij Ij + cV
i V + cU

i U = qi

(
1 +

U

∑N
i=1qi

)
(13)

2.2.4. CAT Bond Portfolio Measures

As a risky investment, the parametric CAT bonds are compared with other investment
opportunities using their risk-return trade-off. Expected return and standard deviation of
the returns are commonly used in risk-return trade-off to compare risky investments and
quantify their risk. From two investments with the same expected return, the one with
lower standard deviation (lower risk) is more favorable. Likewise, from two investments
with the same standard deviation (same risk), the one with higher expected return is more
favorable. The parametric CAT bond Bj with a total principal of a generates a stochastic
returns with their associated probabilities as

R1/β =

{
a(1 + α), 1− β,
−a(1− δα), β.

(14)

Here, α is the bond’s annual interest rate; δ determines the portion of the interest that
is paid if the triggering event occurs. Note that δ = 0 if nothing is paid when the triggering
event occurs, and δ = 1 if full interest is paid no matter the triggering event occurs. Finally,
β is the highest annual exceedance probability of the events in Bj. This means that any
event with an annual exceedance probability less than β will trigger the bond Bj. Thus,
the bond Bj can be named as β-bond or, with using return period instead of β, it can be
named as 1/β-year bond. For example, Bj corresponding to β = 0.005 is called 200-year
bond. One can describe R using a Bernoulli random variable W with P(W = 0) = β and
P(W = 1) = 1− β as presented by

R1/β = a(1 + α)W − a(1− δα)(1−W) = a[2 + (1− δ)α]W − a(1− δα). (15)

The expected value and standard deviation of the stochastic return R1/β is presented as

µR1/β
= a[1 + α− [2 + (1− δ)α]β],

σR1/β
= a[2 + (1− δ)α]

√
β(1− β).

(16)

Thus, the results for special cases of δ = 0 and δ = 1 are derived, respectively, as
follows

µR1/β
= a[1 + α− [2 + α]β],

σR1/β
= a[2 + α]

√
β(1− β).

for δ = 0 (17)

µR1/β
= a[1 + α− 2β],

σR1/β
= 2a

√
β(1− β).

for δ = 1 (18)
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CAT bond interest is paid by a set of coupons of the same amount throughout the year.
For example, a bond with principal value of a, annual interest rate α, and quarterly-paid
coupons pays (1/4)aα at the end of each quarter. In the case of a CAT bond, the payment
is made if the bond had not been triggered before the coupon is due. As soon as the
triggering event occurs, the bond releases the fund to cover the losses, and there would
be no asset to generate interest anymore; consequently, the remaining coupon payments
will be canceled. Assume an investor is holding a CAT bond with the maturity of one year,
the annual interest rate of α, and the interest paid by T coupon payments during the year.
In the case that the triggering event occurs, the total interest received by the investor can
have T different amounts depending on when the triggering event occurs and cancels the
remaining coupons. Table 3 describes the total interest an investor receives based on the
time the triggering event occurs during the CAT bond’s maturity year. The equivalent δ for
each case is also presented in Table 3.

Table 3. Interest received by the investors if the triggering event occurs.

Earliest Coupon Canceled 1st 2nd · · · tth · · · Tth

Total interest received 0 (1/T)a1α · · · ((t−1)/T)a1α · · · ((T−1)/T)a1α
Equivalent δ 0 1/T · · · (t−1)/T · · · (T−1)/T

If the investor has a belief that the triggering event occurs with a certain likelihood
throughout the year, their view for the expected value and standard deviation of the
returns of the parametric CAT bond can be updated accordingly. Assume that the investor
believes if the triggering event occurs, it occurs at a time between (t− 1)th and tth coupon
payments with the probability of Pr(δt), for t = 1, . . . , T and the 0th coupon payment as
the beginning of the CAT bond contract. So, the investor’s updated view can be described
by

µR1/β
= ∑T

t=1

(
µR1/β |δt

)
Pr(δt) = a[1 + α− [2 + (1− µδ)α]β],

σR1/β
=

√
∑T

t=1

(
σ2

R1/β |δt

)
Pr(δt) = a

(√
[2 + (1− µδ)α]

2 + σ2
δ α2
)√

β(1− β).
(19)

2.3. Multi-Regional Parametric CAT Bond

The proposed parametric CAT bonds of different regions can be combined together
and offered to investors as a single bond. Assume M different regions (m = 1, . . . , M) are
exposed to natural hazards, and each region constructs parametric CAT bonds of Bm

j . The
bonds with the same corresponding β can form a single 1/β-year bond (B1/β) if the natural
hazard occurs in any region independently from the others. Note that the natural hazards
do not need to be of the same type; the parametric CAT bonds of the regions need to have
the same β. The investment returns from such parametric CAT bond B1/β is explained by

R1/β = ∑M
m=1

(
R1/β

)
m = ∑M

m=1[am[2 + (1− δm)αm]Wm − am(1− δmαm)], (20)

where Wm’s are i.i.d Bernoulli random variables. As
(

R1/β

)
m’s are portfolios with the same

risk β, it is logical to assume that they have the same reward αm = α. For simplicity, let us
assume δm is constant and equal to δ for now. Since the bonds Bm

j ’s should provide different
amount of funds in case they are triggered, a unit investment in B1/β needs to be distributed
unevenly among the regions. If it is triggered, the bond Bm

j will withdraw ηm = bm
0 /∑M

m=1 bm
0

of the total fund collected by B1/β. Note that the coefficients ηm, where ∑M
m=1ηm = 1,

are the same for all investors and determined by the CAT bonds Bm
j ’s constructing B1/β.

Thus, an investor holding the parametric CAT bond B1/β with the principal value of a has
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contributions to Bm
j equal to am = ηma. Based on these assumptions and clarifications,

Equation (20) can be simplified to

R1/β = a[2 + (1− δ)α]∑M
m=1[ηmWm]− a(1− δα). (21)

Similar to the individual parametric CAT bonds, investors are interested to know the
expected return and standard deviation of the returns for their investment on B1/β. An
investor holding B1/β with the principal value of a can calculate the expected value and
standard deviation of their investment as

µR1/β
= a[1 + α− [2 + (1− δ)α]β],

σR1/β
= a[2 + (1− δ)α]

√
β(1− β)

√
∑M

m=1η2
m.

(22)

Since ηm < 1 for m = 1, . . . , n, we can conclude that η2
m < ηm < 1 which means√

∑M
m=1η2

m <
√

∑M
m=1ηm = 1. Comparing R1/β with R1/β, no surprise, the expected returns

are the same; however, the standard deviation of R1/β is less than the one for R1/β by the

factor
√

∑M
m=1η2

m. According to Chebyshev’s sum inequality,
√

∑M
m=1η2

m reaches its lowest
value at 1/

√
M when ηm’s are all equal which means ηm = 1/M for m = 1, . . . , n. Investment

on B1/β with returns R1/β is more favorable than B1/β with returns R1/β due to its lower
standard deviation of the returns.

If an investor has a belief about when, during the year, the triggering events may
occur in the regions of the parametric CAT bond, the assumption about δm being constant
and equal for all m’s can be relaxed, and the expected return and standard deviation
of the returns can be updated accordingly. Given a set of δm’s and considering ξm =
[2 + (1− δm)α], Equation (21) can be written as

R1/β|δm = a∑M
m=1[ξmηmWm]− a

(
1− α∑M

m=1δm

)
. (23)

Assume ∆ includes all possible combinations for δm with their associated probabilities.
Hence, µR1/β

and σR1/β
can be derived using

µR1/β
= ∑∆

[
R1/β|δm

]
Pr(δm),

σR1/β
=

√
∑∆
[
R1/β|δm

]2 Pr(δm)− µ2
R1/β

.
(24)

2.4. Multi-Hazard Parametric CAT Bond

As different natural events, such as floods and earthquakes, occur independently in a
region, their parametric CAT bonds can form a single portfolio similar to the CAT bonds of
multiple regions. Like multi-regional parametric CAT bond, the parametric CAT bonds
of different hazards in a region can construct a single bond as long as they have the same
β. The expected return and standard deviation of the returns can be derived by the same
logic and formulas explained for multi-regional parametric CAT bond.

As more regions and hazards are added, the parametric CAT bond becomes more
diversified. Diversity helps to reduce the probability that a large number of the involved
bonds are triggered. This allows the issuer to invest a portion of the collected principles in
riskier investments than AAA government bonds for a higher return. It is even possible to
collect less principle for the entire bond as the probability if all (or majority) of the bonds
are triggered becomes extremely low. In addition, investors will accept lower interest
rates as the parametric CAT bond becomes more diversified and thus less risky. So, the
premiums can be reduced even more.

The probability distribution governing the parametric CAT bond R1/β can be esti-
mated using saddle-point approximation method (Butler 2007). The cumulant generating
function (CGF) of R1/β is required for saddle-point approximation which can be derived
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from Equation (21) or Equation (23). Thus, the CGF and its first three derivatives can be
calculated as

K(t) = Mβ−Ψt + (1− β)∑M
m=1eγmt,

K′(t) = −Ψ + (1− β)∑M
m=1γmeγmt,

K′′(t) = (1− β)∑M
m=1γ2

meγmt,
K′′′(t) = (1− β)∑M

m=1γ3
meγmt,

(25)

where

Ψ =

{
a(1− δα), for R1/β,

a
(

1− α∑M
m=1δm

)
, for R1/β|δm ,

and

γm =

{
a[2 + (1− δ)α]ηm, for R1/β,
aξmηm, for R1/β|δm .

The saddle-point approximation for PDF and CDF of R1/β at x are denoted by f̂ (x)
and F̂(x) presented, respectively, as follows

f̂ (x) =
1√

2πK′′(ŝ)
exp(K(ŝ)− ŝx), (26)

F̂(x) =


Φ(ω̂) + φ(ω̂)

(
1
ω̂ −

1
û

)
, for x 6= µ,

1
2 + K′′′(0)

6
√

2πK′′(0)3/2 = 1
2 +

(1−β)∑M
m=1γ3

m

6
√

2π(1−β)
3/2(∑M

m=1γ2
m)

3/2 , for x = µ,
(27)

where ŝ is the solution to K′(ŝ) = x, ω̂ = sgn ŝ
√

2(ŝx− K(ŝ)), and û = ŝ
√

K′′(ŝ).
For the case that δm’s are not the same, the Equations (26) and (27) can be considered

as the conditional PDF and CDF with respect to a set of δm. Thus, the PDF and CDF of R1/β

can be determined using total probability rule over ∆ as follows:

f̂ (x) = ∑∆ f̂ (x|δm )Pr(δm),
F̂(x) = ∑∆ F̂(x|δm )Pr(δm).

(28)

3. Illustrative Example

A part of the city of Seaside, Oregon is chosen to apply the proposed methodology
for residential buildings subject to flood hazard. The city is in Clatsop County, the north
east of Oregon State in the US. The location of the city on the US map is shown in Figure 2.
The city has a total area of 3.92 sq mi and serves about 6892 residents (estimate for 2019)
(US Census Bureau 2019). Necanicum river and Neawanna creek flow through the city and
divide it into three parts: west (of Necanicum river), middle (between the river and the
creek), and east (of the Neawanna creek). Flood risk for the residential buildings in the
west and middle regions is studied in this example.

Building information required to estimate flood risk includes location (zi), total value,
and depth-damage function as the loss estimation function (which means X i is the flood
water depth at the location of building i or simply X i → hi). The information can be
acquired from various public and private sources such as municipal authorities and struc-
tural engineering firms. In this example, the location data is scraped from OpenStreetMap
for some buildings in the study region, and the missing buildings are replaced using
Google Satellite View. The buildings’ location and layout are stored as GIS polygon data
in shapefile format which provides floor area of the buildings, too. A property value is
assigned to each building based on its floor area in which buildings with larger areas are
assumed to be more valuable. The assigned values are selected as to preserve the property
value distribution of Seaside reported by Data USA (2021). This distribution is presented
in Figure 3.
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Seaside, OR

Figure 2. Location of Seaside, Oregon on the US map.
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Figure 3. Property value distribution of Seaside, OR (Data USA 2021).

Depth-damage functions are chosen based on the type of building. In this study, we
assume that the buildings in our risk portfolio are one of three types: (1) F1: One-story
single-family residential building, (2) F2: One-story multi-family residential building, and
(3) F3: Two-story single-family residential building. A type of building is assigned to each
building, and its corresponding depth-damage function is adopted from Nofal and van de
Lindt (2020). Figure 4 presents the histogram of building types and the distribution of
building values in each type.

Flood risk for each building and the entire portfolio is calculated using a Monte Carlo
simulation. Flood scenarios used in this study have return periods greater than or equal
to 100 years. Losses from floods with a return period less than 100 years are supposed to
be minimized by imposing restrictive building codes such as Flood Resistant Design and
Construction (ASCE 2014). In addition, the US National Flood Insurance Program (NFIP)
does not cover losses from floods with return periods less than 100 years (NFIP 2021). Thus,
it is logical to only consider the losses generated from floods with return periods higher or
equal to 100 years.
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Figure 4. Building types and values in the studied risk portfolio.

Flood scenarios are produced using water level at the upstream of Necanicum river. We
assume that a streamgaging station exists at the upstream of Necanicum river which obtains a
continuous record of the river water level. The location of this imaginary station is illustrated
in Figure 5. It is common to calibrate a Generalized Extreme Value (GEV) distribution to
characterize the exceedance probability distribution of a long-term (usually annual) water
level of a river (Zervas 2013). Here, we assume that the annual exceedance probability of the
river water level (h) follows a type II extreme value distribution (Fréchet) as

F(h; µ, σ, ξ) =

{
exp(−y−α), y > 0
0, y ≤ 0,

(29)

where ξ = 1/α > 0 and y = 1 + ξ(h−µ)/σ with the parameters assumed as µ = 2.7840,
σ = 0.31275, and ξ = 0.176. Based on this assumption, the corresponding water level
for any return period can be derived. In this example, flood scenarios with return period
greater than 100 years (equivalent to 5.0 (m) water level at the station) are concerned. For a
Monte Carlo simulation with 100,000 year variants, the 5.0 (m) water level at the station
would be exceeded in 1000 of the year variants. The return period of the events used in
this study, their corresponding water levels, and their number of simulation in the Monte
Carlo process are presented in Table 4.

Table 4. The return period of the events, their corresponding water levels, and their number of simulations used in the
study.

Return Period (yr) 100 115 132 151 172 195(≈200) 221 250 281 316 355

Water Level (m) 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
No. of Simulation 131 111 94 81 70 60 52 46 39 34 30

Cont’d 397 443 494(≈500) 549 610 676 747 825 909 1000 1205 1576

Cont’d 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.2 7.5
Cont’d 26 24 20 18 16 14 13 11 10 17 20 63

We assume that four parametric CAT bonds (B1, B2, B3, and B4) corresponding to
the events with return periods of 100, 200, 500, and 1000 years, respectively, are used to
decompose the risk in this region. Flood extension and depth of flood water in the entire
study region can be derived using hydraulic modeling of the water flow in the river based
on the water level at the station. Based on Equation (2), the hydraulic flow model represents
D(.) that can determine the flood depth as the intensity of the flood at the location of the
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buildings zi by using the river water level at the station as the event parameter Θ → h.
The flood extension and the buildings flooded in each event are illustrated in Figure 5. To
reduce the size of the calculations, we only consider the buildings in the west and middle
parts of Seaside; a total of 2929 buildings.

Streamgaging Station

Buildings
Residential

Non-residential

Flood Extent
1000 - year

  500 - year

  200 - year

  100 - year

Figure 5. Flood extension corresponding to the parametric CAT bonds used in this study, location of buildings, and the
streamgaging station in the region.

A Monte Carlo simulation is conducted based on the flood events presented in Table 4.
Based on Equation (2), for each flood event, the water depth around each building is
determined using the flood map of the event, hi = D(zi, h). Based on Equation (1), a set of
possible losses for the building is randomly generated using the water depth (hi) and the
depth-damage function of the building. The number of the random losses in each event for
each building is equal to the number of simulation mentioned in Table 4.

The total principal for each parametric CAT bond is calculated based on the realized
losses using Equation (6). In this regard, b1 is the average of the losses for the flood events
with return periods 100, 115, 132, 151, and 172 years; b2 is the average of the losses for the
flood events with return periods 200, 221, 250, 281, 316, 355, 397, and 443 years subtracted
by b1; b3 is the average of the losses for the flood events with return periods 500, 549, 610,
676, 747, 825, and 909 years subtracted by b2; b4 is the average of the losses for the flood
events with return periods 1000, 1205, and 1576 years subtracted by b3.

The residual risk of the losses for the region is calculated by finding b0. For each
event, b0 is calculated using Equation (7). The total losses in each simulation subtracted
by its corresponding b0 gives the residual loss of that simulation. The distribution of the
total losses and residual losses are the flood risk and the residual risk of the region. The
same procedure can be applied for each individual building to obtain its flood risk and
residual risk.

4. Results

The simulation of the 1000 year variants produced 1000 total losses for each year. The
histogram of those losses are considered as the conditional distribution of the flood loss
given the return period of greater than 100 years. Figure 6 presents this distribution which
is a heavy-tail exponential-like distribution as we expected. The average of the losses
occurred around USD 113.8 million (the vertical dashed line in Figure 6) and the standard
deviation was USD 85.7 million.
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Figure 6. The conditional distribution of flood loss. (flood risk before decomposition)

Based on the realized losses, the principal of the parametric CAT bonds were calculated
and presented in Table 5. CAT bond interest can be divided into two parts: (1) the interest
generated from the bond principle investing on a trust which is governed by risk-free rate,
and (2) the spread of the catastrophe bond which is paid to the investors to compensate the
involved risk. The bond spread is the portion of the interest that is covered by the insureds’
premium. To calculate this part for each building, an interest rate for each bond’s spread
was assumed in this example which is presented in Table 5. The riskier the investment
(or the lower the return period of the underlying catastrophe of the bond) the higher the
interest. Each bond’s total spread was calculated according to the assumed spread interest
rate and the total bond’s principal. The total spread for each bond is presented in Table 5.

Table 5. The calculated CAT bond principals.

CAT Bond B1 B2 B3 B4

Bond principal (bi) $51.9 million $61.9 million $97.0 million $105.0 million
Spread interest rate 4% 3% 2% 1%
Bond total spread $2.1 million $1.9 million $1.9 million $1.0 million

The residual losses for the simulated 1000 year variants were calculated by subtracting
the triggered bi’s from the total losses. The distribution of the residual losses is presented
in Figure 7. The average of the residual losses occurred around zero (the vertical dashed
line in Figure 7) and the standard deviation was USD 20.6 million. The red dashed curve in
Figure 7 shows a fitted normal density to the histogram of the residual losses. The Q-Q
plot illustrated in Figure 7 verifies the normality of the residual losses.

The insurance premium for each building was calculated based on the results of this
Monte Carlo simulation. The coefficients cI

ij’s were calculated using Equation (10), and the
bonds’ total spread were split and allocated to each building accordingly. We assumed
that the total amount collected from the insureds to cover the residual risk is equivalent
to the 70% percentile of the residual risk distribution which was V = USD 10.8 million.
The coefficients cV

i ’s were calculated using Equation (11), and V was distributed among
the buildings according to cV

i ’s. Using Equation (12), qi’s were calculated, and an assumed
underwriting gain of U = USD 1 million were distributed among the buildings accordingly.
Following Equation (13), Qi was derived as the total premium paid by each building.
Figure 8 presents the histogram of the monthly premiums for each building as a dollar
value and a percentage of the property value. The average dollar value of the monthly
premiums was USD 230 with standard deviation USD 300, and the average percentage is
0.07% with standard deviation 0.07%. A more detailed report for each building is accessible
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using a web app at https://mortezatm.shinyapps.io/RiskDecomposition/ (accessed on 16
November 2021).
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Figure 7. The conditional distribution and Q-Q plot of the residual losses.
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Figure 8. The histogram of the calculated premiums for each building.

5. Discussion

The result of the example demonstrates that the proposed methodology is able to fulfill
its purposes including to transform the total loss distribution from a heavy-tail distribution
into a normal distribution, and to provide an affordable insurance against a natural hazard
to the households. To discuss those achievements, the distribution of the losses before and
after decomposition are compared, and the affordability of the calculated premiums are
investigated.

Comparing Figure 6 with Figure 7 shows that the decomposition could successfully
transform the heavy-tail distribution of the total losses to the residual losses with a normal
distribution. The losses before decomposition varies from USD 37.5 million to USD 337.5
million; while, the residual losses after decomposition varies from USD −50.4 million to
USD 50.4 million. This is a significant improvement to the loss distribution regarding
insurance purposes.

The residual losses after the decomposition follow a normal distribution as shown
in Figure 7; while, the losses before decomposition has a heavy-tail exponential-like dis-
tribution. As discussed in Section 2.1, losses with heavy-tail distributions are considered
uninsurable. Thus, this example shows that the proposed decomposition is capable of
making improvements to the loss distribution in this aspect as well.

The calculated monthly premiums for the buildings, based on the aforementioned
assumptions, are within an affordable range for the households. The average monthly
premiums for the households is around USD 230 as shown in Figure 8. The median
household income for Seaside, OR is reported to be USD 46, 500 in a year (Data USA 2021).

https://mortezatm.shinyapps.io/RiskDecomposition/
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This means that the proposed flood insurance would cost less than 6% of the income for
the majority of the households. In addition, the monthly premiums are less than 0.06% of
the total property value for majority of the households as shown in Figure 8. This means
that the households are insuring their assets (buildings) against an event with occurrence
probability of 0.01 for less than 1% of their asset value as the annual cost which is highly
economical.

As the results show, the methodology is capable of transforming loss distribution from
a heavy-tail distribution into a normal distribution by decomposing the risk and taking out
the correlated part. The correlated part can be transferred into capital markets using a set of
parametric CAT bonds. The calculated insurance premiums based on such decomposition
and risk transfer turn out to be affordable and economical for the households.

6. Conclusions

Insurability criteria of a risk were briefly discussed. Based on the insurability crite-
ria, natural catastrophe risks were explained to be uninsurable as they cannot fulfill the
requirements of many criteria. Producing correlated losses was identified as the main issue
for the insurability of Nat Cat risks. The correlation among building losses was shown
to be positive and be traced back to the event intensity. Using the event intensity, we
demonstrated how Nat Cat risks can be decomposed into systematic risk and idiosyncratic
risk. The systematic risk was proposed to be transferred to the capital markets by a set of
parametric CAT bonds based on the event intensity. The residual risk was shown to be
idiosyncratic and thus insurable by its nature.

The calculation of the premium for individual buildings was explained by dividing
it into three parts. The first part was a portion of the CAT bond interest called spread.
The second part was the building share to cover the residual risk. The third part was the
share of the building to provide an underwriting gain to the insurer. We argued that our
proposed way of calculation of each part is a fair practice. The total premium needs to be
paid by an individual building was shown to be the sum of those three parts.

The risk-return trade-off for an investment on such parametric CAT bond was dis-
cussed. The distribution of the stochastic returns generated from the parametric CAT bond
was explained. The average return and the standard deviation of the returns were derived.
Multi-regional and multi-hazard parametric CAT bonds were introduced as methods to
lower the risk of investment on the parametric CAT bond. The average return and the
standard deviation of the returns for each of those two methods were derived. How saddle-
point approximation can be implemented to find the distribution of the returns for those
methods was explained.

The proposed Nat Cat risk decomposition was applied to the city of Seaside, Oregon.
Floods with 100-year return period or higher were studied as the natural hazard. Four
types of residential buildings were chosen to be the asset at risk. A Monte Carlo simulation
was implemented to find flood risk before and after decomposition. The result showed
that the residual risk after the decomposition follows a normal distribution with average at
zero. The insurance premium for each building was calculated. A detailed result of this
study example was presented using an interactive web app created with R-Shiny package.

The proposed Nat Cat risk decomposition is beneficial to all stakeholders: insurers,
insureds, and investors. Insurers do not need to diversify their portfolio geographically;
and they can enjoy the advantages of parametric CAT bonds including access to securitized
capital, transparent triggers, and fast transaction time. Insureds need to pay considerably
less insurance premiums. Investors benefits from receiving returns uncorrelated to eco-
nomic performance and stock market moves; a return generated from an investment with
a transparent, easy-to-understand, and easy-to-assess underlying risk driver.
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