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Abstract: Since late 2019, during one of the largest pandemics in history, COVID-19, global economic
recession has continued. Therefore, investors seek an alternative investment that generates profits
during this financially risky situation. Cryptocurrency, such as Bitcoin, has become a new currency
tool for speculators and investors, and it is expected to be used in future exchanges. Therefore, this
paper uses a Value at Risk (VaR) model to measure the risk of investment in Bitcoin. In this paper, we
showed the results of the predicted daily loss of investment by using the historical simulation VaR
model, the delta-normal VaR model, and the Monte Carlo simulation VaR model with the confidence
levels of 99%, 95%, and 90%. This paper displayed backtesting methods to investigate the accuracy
of VaR models, which consisted of the Kupiec’s POF and the Kupiec’s TUFF statistical testing results.
Finally, Christoffersen’s independence test and Christoffersen’s interval forecasts evaluation showed
effectiveness in the predictions for the robustness of VaR models for each confidence level.

Keywords: risk measures; value at risk; COVID-19; cryptocurrency; bitcoin; backtesting; Monte-
Carlo simulation

1. Introduction

Currently, the trend of alternative investment in digital currency or cryptocurrency is
undertaken by investors and company owners. They believe that these cryptocurrencies
will become a future global currency. The well-known cryptocurrency, Bitcoin (BTC), is the
first digital currency and was introduced in 2008 (Wright 2008). BTC created a widespread
interest during the great economic recession caused by the COVID-19 pandemic. The
COVID-19 pandemic is an unprecedented event that has caused a slowdown in every
sector of the world economy (Sohrabi et al. 2020). Investors in financial markets are limiting
their investments and want to escape from traditional investments, which are depreciating.
Therefore, investors seek new approaches to provide successful returns to compensate for
such an adverse risk. They believe that BTC is a new financial instrument and an alternative
investment (Sukamulja and Sikora 2018). The price of BTC, however, cannot be described
by classical financial theories (Kristoufek 2015). The study by Vukovic et al. (2021) found
that the COVID-19 pandemic had a positive impact on the efficiency of the cryptocurrency
market. Investors reacted positively to the cryptocurrency market, in which BTC’s price
exceeded USD 60,000 in April 2020 during the outbreak of the pandemic. Cryptocurrencies
have presented many periods of pronounced price volatility during their rapid growth
and development. There is evidence to suggest that cryptocurrencies played a new role
as potential safe-haven currencies during periods of substantial financial market stress
(Corbet et al. 2021).

In this paper, we attempt to conduct a scientific impact assessment of the pandemic
on the BTC market in terms of risk. In financial risk management, we can measure a
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market risk by standard deviation, beta, and value-at-risk (VaR), etc. These measures can
be used to distinguish a different dimension of risk. The standard deviation method shows
the dispersion of returns of an asset; Baur and Dimpfl (2017) revealed that the standard
deviation for measuring the volatility of BTC’s daily returns could be used. The beta shows
a systematic risk of the asset; Mehta and Afzelius (2017) demonstrated that the beta of
Bitcoin cannot be a significant risk measurement. VaR is an important player in determining
capital requirements, which were proposed by the Basel Committee (Cuoco and Liu 2006).
Das and Rout (2020) analyzed the impact of COVID-19 on the stock market indices by
using VaR. They found that COVID-19 significantly affected the volatility of stock markets.
Furthermore, the market correlation was the highest in the COVID-19 period. Corbet et al.
(2019) stated before the COVID-19 pandemic that BTC and the prices and dynamics of other
cryptocurrencies had a high volatility. During the pre-COVID-19 era, Likitratcharoen et al.
(2018) found that VaR could be used as a risk measurement tool for cryptocurrencies, which
shows the probable losses for a given horizontal time and probability. Although VaR is
useful, the situation was changed by the COVID-19 pandemic, since the pandemic caused
market stress. After the COVID-19 outbreak, Corbet et al. (2021) identified significant
and substantial interactions between cryptocurrency prices and liquidity effects. Before
the COVID-19 outbreak, the shocks determined through liquidity shifts had significant
effects on the volatility of price changes. Therefore, VaR is likely violated because of the
market condition. This paper focuses on the fluctuation of BTC during the COVID-19
pandemic to investigate whether VaR can still be used to quantify the number of adverse
losses. We collaborate with a historical simulation VaR model, a delta-normal VaR model,
and a Monte Carlo simulation VaR model by using the logarithmic daily return.

2. Literature Review

This literature review is divided into three parts: cryptocurrency market efficiency,
market risk and the VaR model, and COVID-19 and the BTC market.

2.1. Cryptocurrency Markets Efficiency: Anomalies, Predictability, Weak-Form Efficient Testing

As the efficient market hypothesis is a popular study in the financial literature, there
are also many studies covering topics that criticize this hypothesis, such as the bandwagon
effect, information asymmetry, market overreaction and underreaction, etc. Some studies
also related that returns are predictable (Rudolf et al. 2021); Malkiel (2003) summarized
the predictable returns of the stock market. The paper mentioned that there is short-term
momentum in the market, which is caused by the psychological process of investment.
Giudici and Pagnottoni (2019) presented the dynamic nature of returns over time. Resta
et al. (2020) recommended the use of intraday and daily trading rules to estimate the
Bitcoin price series. Chen et al. (2020) examined the temporal and spatial effect on Bitcoin
trading volumes.

According to the hypothesis of an efficient market of Bitcoin (BTC), there were a
number of recent studies, which discovered that the Bitcoin market was not an efficient
market because it was more predictable than the stock markets (Latif et al. 2017). Kurihara
and Fukushima (2017) showed that the Bitcoin (BTC) market was not a weak-form market
since the price did not behave randomly. Empirical evidence also showed that there might
be speculative bubbles in the cryptocurrencies market, which can be categorized as either
rational or irrational (Dale et al. 2005; Agosto and Cafferata 2020). Cheah and Fry (2015)
explained that rational bubbles are from the self-fulfilling, mispricing of fundamentals,
and the endowment of irrelevant exogenous variables with asset pricing value. Irrational
bubbles are formed by psychological factors unrelated to the asset’s fundamental value.
In contrast, Nadarajah and Chu (2017) studied the weak-form efficiency of Bitcoin. The
results revealed that there is no serial correlation of Bitcoin’s return—in other words, the
market is weak-form efficient. In addition, Bartos (2015) found that the Bitcoin market is
efficient because the price can reflect all known information immediately, and no one could
outperform by using the same information.
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2.2. Market Risk and VaR Model

A recent study by Bouri et al. (2020) examined the safe-haven property and the
hedging of the downside risk of commodities considering Bitcoin, gold, and a commodity
index by using a wavelet coherency approach for specific stock market indices. The results
showed overall weak dependence among all, with Bitcoin being the least dependent.
The study examined the diversification benefits through wavelet value-at-risk (VaR) and
revealed the superior position of Bitcoin over both gold and commodities. Conlon et al.
(2020) studied the safe-haven characteristics of Bitcoin (BTC), Ethereum (ETH), and Tether
(USDT) cryptocurrencies. They found the inclusion of BTC, and ETH increases portfolio
downside risk or VaR, proving that these assets were not a safe-haven for the majority of
international equity markets during the COVID-19 pandemic. Conlon and McGee (2020)
investigated the safe-haven properties of BTC for a US investor investing domestically
during the COVID-19 pandemic and found that a portfolio allocation to BTC increased
rather than decreased downside risk exposure.

According to the market risk measures, market risk and VaR models are used to
measure a distinct characteristic of risk. Stock markets seem to negatively react to the news
of the COVID-19 outbreak where investors have been facing with adverse losses. Olsen
(1997) emphasized that a primary concern of investors is the potential for extreme losses
from an investment or downside risk. Downside risk has been shown to be priced in the
marketplace, with investors requiring higher returns on stocks exhibiting greater downside
risk (Ang et al. 2006). VaR is used to measure the downside risk which was proposed
by JP Morgan in 1994 and became a popular method for risk measurements. The model
determines the potential loss of an investment that might happen with a given probability
and time-period. The interpretation of the model is how much the expected maximum loss
on investment should be subject to a confidence level.

Bouri et al. (2017) explained that Bitcoin has limited hedging properties and has safe-
haven characteristics for Asian stocks only. Baur et al. (2018) demonstrated that Bitcoin is
mainly employed as a speculative investment. BTC prices have a high volatility among
other assets such as commodities or stocks (Rudolf et al. 2021). Its standard deviation is 100
times higher than fiat currencies in FX markets. For these reasons, many participants in the
market treat Bitcoin likely as a speculative asset than a currency (Baur and Dimpfl 2017).
An extreme volatility may generate a satisfying return for investors or speculators, but it
may also result in extreme losses. Hence, this paper will use VaR model to be a downside
risk measure of BTC. The previous study the pre-COVID-19 pandemic showed that VaR
can be an appropriate risk measurement for cryptocurrency markets (Likitratcharoen et al.
2018). The overall results of the study discovered that the historical simulation VaR and the
delta-normal VaR models are appropriate risk measurement methods, while the historical
simulation VaR model provides more accuracy than the delta-normal VaR model. This
paper aims to add the Monte Carlo simulation VaR model that is far the most flexible and
powerful, rather than assuming the linearity of the delta-normal VaR model. This model
can apply over longer holding periods, underly risk factors, and incorporate all desirable
distributional properties.

2.3. COVID-19 and BTC Market

The COVID-19 pandemic is directly the main cause of global economic recession. It
has led to panics and the temporary closure of businesses in most economies as the number
of positive coronavirus cases has increased (Okorie and Lin 2021). Governments have
implemented lockdowns to stop the spreading of the virus in which has economically
different effects on each productive type (Sadowski et al. 2021).

Dow Jones and S&P500 had undergone as much as a 30% decrease in values during
March 2020 (Iqbal et al. 2021). However, BTC has reacted opposite to the news of the
COVID-19 outbreak and seems to outperform other assets (Iqbal et al. 2021). Goodell and
Goutte (2021) indicated that such pandemic positively affects BTC prices. Mariana et al.
(2021) found that BTC returns are negatively correlated with S&P500 returns. Béjaoui et al.
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(2021) studied the short- and long-term evidence of the nexus between BTC price, social
media metrics and the intensity of the COVID-19 pandemic. They found that the COVID-19
health crisis has significantly influenced social media networks and BTC prices.

Lahmiri and Bekiros (2020) found that the level of stability in cryptocurrency markets
has significantly diminished while the irregularity level significantly augmented. Cryp-
tocurrencies thus became more volatile, more instability, and more irregularity during the
COVID-19 pandemic compared to stock markets. They stated that cryptocurrencies could
be considered riskier as opposed to equities. Moreover, Vojtko and Cisár (2020) concluded
that BTC prices are not stable because of its high volatility. Kayal and Rohilla (2021) found
that BTC prices have more volatile than other currencies, particularly for US dollars, Euros,
and Yen. To examine its volatility, Rudolf et al. (2021) studied volatility stability based
on the return levels of each Bitcoin on major indexes traded with BTC and gold by using
GARCH model. Castillo et al. (2021) studied the impact of the COVID-19 pandemic
on the conditional variance of stock returns by using the EGARCH-D-ST model. They
showed the VaR-backtesting performance comparison between the EGARCH-D-ST model.
They concluded that the sudden changes in volatility are accounted for the persistence in
volatility diminishes considerably. The EGARCH-D-ST model delivered realized number
of exceptions closer to expected number of exceptions.

3. Data and Methodology
3.1. Data

First, the data of BTCs daily closed price between 28 April 2020 and 30 April 2021
were collected from Yahoo Finance as shown in Figure 1. It indicated that the price has
risen against the stock indices during the COVID-19 pandemic which WHO announced it
on 11 March 2020.
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Second, the daily logarithmic return of BTC is calculated. It can be expressed by

Rt = ln
(

Pt

Pt−1

)
(1)

where pt and pt−1 = prices on day t and t–1, respectively.
These daily logarithmic returns are used for testing the VaR models. Figure 2 shows

the noise of the one-year daily return between 28 April 2020 and 30 April 2021. It ranges
between −0.10 and 0.10.
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3.1.1. Historical Simulation Value at Risk

The historical simulation VaR model simply arranges the return data together and
calculates the percentile value for each given confidence level (alpha). This model hypothe-
sizes that the behavior of future returns on investment should be replicated with historical
data. The VaR value is defined by

VaR1−α
t+1 = Qα

(
{Rit}n

t=1
)

(2)

where VaR1−α
t+1 = a value at risk at 1− α for time t + 1;

Qα
(
{Rit}n

t=1
)

= a quantile at α of {Rit}n
t=1;

{Rit}n
t=1 = a return of asset i;

when the time equals to t between t = 1 to n.
The historical simulation VaR model uses unconditional data where focuses on the

left tail and therefore the sharp of distributed return is not concerned.

3.1.2. Delta-Normal Value at Risk

The delta-normal VaR model or variance-covariance VaR model uses historical data to
calculate the main parameters: the mean, the standard deviation, and the correlation. This
model is assumed that the distribution of collected data is symmetrical normal distribution
where the skewness is zero and the kurtosis is three. However, the model might lack
prediction if the log-returns of data used to predict the investment are not normally
distributed. Although the delta-normal VaR model has a flaw which is incorporated with
normal distribution, its simplicity is an advantage of this model. We can mathematically
express the form as

VaR1−α = m + ZαS (3)

where VaR1−α = value at risk at 1− α;
m = an average historical log-returns on investment;
Zα = a standardized score of normal distribution at α;
S = a standard deviation of log-returns on investment.

3.1.3. Monte Carlo Simulation Value at Risk

The Monte Carlo simulation expects that the movements of risk factors are generated
by drawings from some prespecified distribution. The method consists of sampling pseudo-
random numbers which are sorted to produce the desired VaR. This method is the most
flexible but requires an enormous computational burden and assumptions of the stochastic
process (Jorion 2011). In this paper, the Monte Carlo simulation for N = 1, 000, 000 times
will be performed to approach the central limit theorem.
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Assume the behavior of price, St, at time t is following a geometric Brownian motion
where µ and σ are constants and its process is determined as

dSt = µStdt + σStdWt (4)

where µ is the drift, σ is the volatility, and Wt ∼ N(0, t) is a Wiener process.
By Itô’s Lemma, a price return process is following

d ln St =

(
µ− 1

2
σ2
)

dt + σdWt (5)

Equation (5) is used to do the Monte Carlo simulation. Since Wt is assumed by
normal distribution, we can standardize to be Wt =

√
tZt where Zt ∼ N(0, 1). We use the

mathematical programming language, MATLAB, for this simulation.

3.2. The Backtesting
3.2.1. Kupiec’s POF Test

The Kupiec’s POF test is also known as the proportion of failure. It is applied to
VaR models to prove that the proportion of failure is statistically equal to the suggested
proportion of failure of the confidence interval. In other words, if the observed rate of
failure from a model differs significantly from the suggested rate of failure, test results
would reject the null hypothesis which means that the model is inaccurate. However, in
case that the test results are accepted, it indicates that a model is accurate (Halilbegovic
and Vehabovic 2016). The null hypothesis of the test can be written as

H0 : p = p̂
H1 : p = p̂

where p = proportion of failure suggested by a certain confidence interval;
p̂ = observed failure rate.
The formula of this test can be expressed by

LRPOF = −2ln

(
(1− p)n−X px(

1−
( x

n
))n−x( x

n
)x

)
(6)

where LRPOF = a likelihood ratio of proportion of failure test statistic;
p = probability of expected exceptions;
n = number of observations;
x = number of realized exceptions.

3.2.2. Kupiec’s TUFF Test

The Kupiec’s TUFF test is similar to the Kupiec’s POF test. It concerns whether the
probability of expected exceptions is equal to the inverse of the time until first exception,
which should also be equal the observed rate of failure (Halilbegovic et al. 2020). If the
first error has happened too early, the test result would reject the model as the model
underestimated the risks. Additionally, if the first exception occurs with delay, it would
mean that the model overestimated the risks. The hypothesis of this test can be written as

H0 : p = 1
v

H1 : p 6= 1
v

where p = probability of expected exceptions;
v = time until first exception.
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The formula of this test can be expressed by

LRTUFF = −2 ln

 p(1− p)v−1(
1
v

)(
1− 1

v

)v−1

 (7)

where LRTUFF = a likelihood ratio of time until first failure.

3.2.3. Christoffersen’s Independence Test

The Christoffersen’s independence test sets up an indicated function. If there is an
exception occurs in that day, then the value of the indicator is 1. In contrast, if there is no
exception in that day, then the value of the indicator is 0 (Christoffersen 1998).

LRind =

{
0 i f VaRα is not breached,
1 otherwise

(8)

where LRind = a test indicator;
Rit = return of asset i on time t;
VaRα = value at risk at a given α.
Hence, we construct the LRind table with the 2 consecutive days. Each day has two

possible states: 0 and 1 as shown in Table 1. We obtain 4 conditions which are 00, 01, 10,
and 11.

Table 1. Contingency table of independence test indicator (Halilbegovic et al. 2020).

Indicator Test LRind,t−1 = 0 LRind,t−1 = 1

LRind,t = 0 n00 n10 n00 + n10
LRind,t = 1 n01 n11 n01 + n11

n00 + n01 n10 + n11 N

where LRind,t = a test indicator on day t.
nLRind,t−1,LRind,t = numbers of days when two conditions are met for day t and day t− 1.
The formula of the test statistic is

LRM = −2ln

(
(1− π)n00+n01 + πn01+n11

(1− π0)
n00 π0n01(1− π1)

n10 π1
n11

)
(9)

where LRM = an independence test statistic;
nLRind,t−1,LRind,t = numbers of days when two conditions are met for day t and day t− 1.
π0 = probability of 01 occurring when LRind,t−1 is 0, which follows

π0 =
n01

n00 + n01

π1 = probability of α11 = 1 occurring when LRind,t−1 is 1, which follows

π1 =
n11

n10 + n11

π = probability of having an exception in the previous day

π =
n11

n10 + n11
.

3.2.4. Christoffersen’s Interval Forecasts or Joint Test

The Christoffersen’s interval forecasts or joint test is a combination of the indepen-
dence statistic with Kupiec’s POF test. This test measures not only the correct failure
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rate but also the independence of violations. This method can solve the aforementioned
accuracy problem. This test will show both the unconditional coverage and independence
properties. Its capacity to detect a VaR measure that just violates one of the two characteris-
tics is, however, limited. The joint test finds it more difficult to discover the inadequacy of
the VaR measure if one of the two conditions is satisfied. This test combines LRPOF and
LRM to be LRCC with Chi-squared critical value with 2 degrees of freedom.

LRCC = LRPOF + LRM (10)

where LRCC = Christoffersen’s interval forecasts test statistics;
LRPOF = Kupiec’s POF-test statistics;
LRM = the independence test statistics.

4. Results

The results from three models are presented here.

4.1. Historical Simulation VaR Model

First, we show the noise of the daily log-return of BTC, which is compared with lines
of daily historical simulation VaR value in Figure 3. The interpretation of this figure is
that if the noise is over the reference VaR line, it means those days have losses over the
VaR model, and it is counted to be the number of extreme losses or the realized number of
exceptions that occur. These results will be used to be a parameter for Kupiec’s POF test in
Table 2.
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Table 2. Historical simulation VaR Kupiec’s POF-test.

Kupiec’s POF Test

Confidence
Level

Number
of Obser-
vations

Expected
Number of
Exceptions

Realized
Number of
Exceptions

Test
Statistic
LRPOF

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1

Test
Result χ2

0.95,1
Test

Result χ2
0.90,1

Test
Result

0.99 365 4 4 0.0329 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 18 19 0.0320 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.90 365 37 37 0.0076 6.6349 Accept 3.8415 Accept 2.7055 Accept

In Table 2, we obtain test statistic by Chi-squared test to examine the occurrence of
realized extreme losses. If the number of extreme losses approaches to the expected number
of exceptions, then the historical simulation VaR model will be useful to capture the losses
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during the COVID-19 pandemic. The results shows that daily loss of BTC can be predicted
for all confidence levels of the historical simulation VaR model, which measures a risk on
BTC during the COVID-19 pandemic. In addition, Table 3 shows the performance of the
historical simulation VaR of BTC. The Kupiec’s TUFF test is another method to test VaR
models. The statistical results LRTUFF claimed with χ2

1−α,ν that the historical simulation VaR
model on BTC can be the risk measurement. Both results from Tables 1 and 2 emphasize
that the historical simulation VaR model can be used to predict the extreme losses occurring
during the pandemic.

Table 3. Historical simulation VaR Kupiec’s TUFF-test.

Kupiec’s TUFF Test

Confidence
Level

Number of
Observa-

tions

Time Until
First

Failure

Test
Statistic
LRTUFF

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1 Test Result χ2

0.95,1 Test Result χ2
0.90,1 Test Result

0.99 365 66 0.1528 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 12 0.2359 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.90 365 8 0.0519 6.6349 Accept 3.8415 Accept 2.7055 Accept

Table 4 shows the results of the independence test of historical simulation VaR model.
The results proved that for all confidence levels historical simulation VaR models are
statistically accepted. We can interpret that those extreme losses do not occur dependably.
These results will incorporate Kupiec’s POF results to test the model effectiveness by
Christoffersen’s interval forecasts.

Table 4. Historical simulation VaR independence test.

Independence Test

Confidence
Level

Number of
Observa-

tions

Realized
Number of
Exceptions

Test
Statistic

LRM

Critical Value χ2

(Chi-Squared) (1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1 Test Result χ2

0.95,1 Test Result χ2
0.90,1 Test Result

0.99 365 4 0.0886 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 19 3.1149 6.6349 Accept 3.8415 Accept 2.7055 Reject

0.90 365 37 0.4767 6.6349 Accept 3.8415 Accept 2.7055 Accept

The results from Christoffersen’s interval forecasts are shown in Table 5 where LRCC =
LRPOF + LRM. Overall, the Chi-squared tests are all accepted, which means that historical
simulation VaR model is effective to use for predicting losses on BTC’s investment during
the COVID-19 pandemic. On the other hand, the historical simulation VaR model on BTC’s
investment is effective and robust.

Table 5. Historical simulation Christoffersen’s Interval Forecast Test.

Independence Test

Confidence
Level

Number
of Obser-
vations

Realized
Number
of Excep-

tions

Test
Statistic
LRPOF

Test
Statistic

LRM

Test
Statistic

LRCC

Critical Value χ2

(Chi-Squared)
(2;0.99)

Critical Value χ2

(Chi-Squared)
(2;0.95)

Critical Value χ2

(Chi-Squared)
(2;0.90)

χ2
0.99,1

Test
Result χ2

0.95,1
Test

Result χ2
0.90,1

Test
Result

0.99 365 4 0.0329 0.0886 0.1215 9.2103 Accept 5.9915 Accept 4.6052 Accept

0.95 365 19 0.0320 3.1149 3.1470 9.2103 Accept 5.9915 Accept 4.6052 Accept

0.9 365 37 0.0076 0.4767 0.4843 9.2103 Accept 5.9915 Accept 4.6052 Accept
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4.2. Delta-Normal VaR Model

Similarly, Figure 4 shows the noise of the daily log-return of BTC which is compared
with lines of daily delta-normal VaR value.
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The results from Table 6 imply that the 90% delta-normal VaR is not the most accurate
risk measurement method for BTC investments during the COVID-19 pandemic as the
test result for all confidence levels rejected it since the model overestimated the negative
risks of BTC which causes the realized number of failure to be significantly lower than
the expected number of failure. However, we found out that the 99% delta-normal VaR is
an accurate risk measurement tool for BTC since the Kupiec’s POF had accepted at it all
statistical confidence. This means that the model is accurate because it did not overestimate
or underestimate the risks.

Table 6. Delta-Normal VaR Kupiec’s POF-test.

Kupiec’s POF Test

Confidence
Level

Number
of Obser-
vations

Expected
Number of
Exceptions

Realized
Number of
Exceptions

Test
Statistic
LRPOF

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1

Test
Result χ2

0.95,1
Test

Result χ2
0.90,1

Test
Result

0.99 365 4 4 0.0329 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 18 9 6.0197 6.6349 Accept 3.8415 Reject 2.7055 Reject

0.90 365 37 19 11.1070 6.6349 Reject 3.8415 Reject 2.7055 Reject

Nevertheless, as shown in Table 7 the delta-normal VaR models accept the null hy-
pothesis of Kupiec’s TUFF test for all confidence levels in which the results proved that the
delta-normal model is accurate for all confidence levels. Therefore, it is doubtful whether
the measurement at 95% and 90% has accuracy due to the contrary results between Kupiec’s
POF and Kupiec’s TUFF tests. However, the 99% delta-normal VaR was proven that it is
an accurate risk measurement method due to the consistent results of Kupiec’s POF and
Kupiec’s TUFF tests.

Table 8 shows independent properties results of exception in the delta-normal VaR
models. All Chi-squared tests are accepted, that is all exceptions of each model have
independent properties. In other words, there is no replicated pattern occurring in the
exceptional cases. Therefore, the delta-normal VaR model is efficient to predict losses of
investment on BTC except for the 90% delta-normal VaR at 90% statistical confidence level
in which the results are rejected. It would be implied that independence properties of
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exceptions from the 90% delta-normal VaR are violated at 90% confidence level which
indicating that it is not the best confidence level for the model.

Table 7. Delta-Normal VaR Kupiec’s TUFF-test.

Independence Test

Confidence
Level

Number of
Observa-

tions

Time Until
First

Failure

Test
Statistic
LRTUFF

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1 Test Result χ2

0.95,1 Test Result χ2
0.90,1 Test Result

0.99 365 12 2.5474 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 12 0.2359 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.90 365 8 0.0519 6.6349 Accept 3.8415 Accept 2.7055 Accept

Table 8. Independence test on Delta-Normal VaR.

Independence Test

Confidence
Level

Number of
Observa-

tions

Realized
Number of
Exceptions

Test
Statistic

LRM

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1 Test Result χ2

0.95,1 Test Result χ2
0.90,1 Test Result

0.99 365 4 0.0886 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 9 0.4551 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.90 365 19 3.1149 6.6349 Accept 3.8415 Accept 2.7055 Reject

Table 9 shows the results of Christoffersen’s interval forecasts of the delta-normal VaR
at each confidence level. The Chi-squared test of the 90% delta-normal VaR were rejected
for all statistical confidence levels. We can conclude that 90% delta normal VaR is not the
best for measuring risks of Bitcoin. Likewise, the results of the 95% delta-normal VaR were
also rejected at 95% and 90% statistical confidence levels. This shows that it may not be
the most robust method for risk measurement on BTC during the COVID-19 pandemic.
The model overestimated the risks, and the independence properties were violated at 95%
and 90% confidence levels, but the model is robust at the 99% statistical confidence level.
However, the test results at all statistical confidence levels for the 99% delta-normal VaR
revealed that it is effective as the results were all accepted.

Table 9. Christoffersen’s Interval Forecast test on Delta-Normal VaR.

Joint Test—Christoffersen’s Interval Forecast Test

Confidence
Level

Number of
Observa-

tions

Realized
Number of
Exceptions

Test
Statistic
LRPOF

Test
Statistic

LRM

Test
Statistic

LRCC

Critical Value χ2

(Chi-Squared)
(2;0.99)

Critical Value χ2

(Chi-Squared)
(2;0.95)

Critical Value χ2

(Chi-Squared)
(2;0.90)

χ2
0.99,1

Test
Result χ2

0.95,1
Test

Result χ2
0.90,1

Test
Result

0.99 365 4 0.0329 0.0886 0.1215 9.2103 Accept 5.9915 Accept 4.6052 Accept

0.95 365 9 6.0197 1.0064 6.4748 9.2103 Accept 5.9915 Reject 4.6052 Reject

0.90 365 19 11.1070 2.4795 14.2219 9.2103 Reject 5.9915 Reject 4.6052 Reject

4.3. Monte Carlo Simulation VaR Model

In this final section, we simulate the daily returns 1,000,000 times to calculate the
Monte Carlo simulation VaR. The simulation uses pseudo-random numbers through the
normal distribution where the mean is average historical daily log-return, the standard
deviation is historical daily volatility, and the price process follows a geometric Brownian
motion. Figure 5 shows the noise of the daily log-return of BTC, which is compared with
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lines of daily Monte Carlo simulation VaR value. The graph showed 17 exceptions of 90%
VaR, 8 exceptions of 95% VaR, and 4 exceptions of 99% VaR.
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Table 10 shows the results of Kupiec’s POF test. The results proved that the 99% Monte
Carlo simulation VAR provides the best accuracy since the results were all accepted for
each confidence level. In contrast, the 95% and 90% Monte Carlo simulation VaR are all
rejected. The reason they were rejected was because the risks were overestimated at these
confidence levels, resulting in an incorrect failure rate. In other words, the estimation is too
conservative for the risk of BTC’s prices during the pandemic.

Table 10. Monte Carlo simulation VaR Kupiec’s POF-test.

Kupiec’s POF-TEST

Confidence
Level

Number
of Obser-
vations

Expected
Number of
Exceptions

Realized
Number of
Exceptions

Test
Statistic
LRPOF

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1

Test
Result χ2

0.95,1
Test

Result χ2
0.90,1

Test
Result

0.99 365 4 4 0.0329 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 18 8 7.6045 6.6349 Reject 3.8415 Reject 2.7055 Reject

0.90 365 37 17 14.1559 6.6349 Reject 3.8415 Reject 2.7055 Reject

Next, we performed the Kupiec’s TUFF test which emphasizes on the first failure.
The results are presented in Table 11. The results revealed that the VaR calculated from
the Monte Carlo simulation method is accurate as the test results are all accepted. As
mentioned earlier, the test only concerns about the time until first failure, it ignores a lot of
information.

Table 11. Monte Carlo simulation VaR Kupiec’s TUFF-test.

Kupiec’s TUFF-TEST

Confidence
Level

Number of
Observa-

tions

Time Until
First

Failure

Test
Statistic
LRTUFF

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1 Test Result χ2

0.95,1 Test Result χ2
0.90,1 Test Result

0.99 365 13 2.4006 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 13 0.1716 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.90 365 9 0.0120 6.6349 Accept 3.8415 Accept 2.7055 Accept
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The independent properties of exceptions of the Monte Carlo simulation VaR models
are again tested by the independence test shown in Table 12. The results showed that each
exception is independent for all confidence levels of the Monte Carlo simulation VaR and
Chi-squared test. These mean that the exceptions from the model on any given day is
not dependent on the outcome of the previous day. Therefore, it means that the model is
reliable due to the independence test results.

Table 12. Monte Carlo simulation VaR Independence Test.

Independence Test

Confidence
Level

Number of
Observa-

tions

Realized
Number of
Exceptions

Test
Statistic

LRM

Critical Value χ2

(Chi-Squared)
(1;0.99)

Critical Value χ2

(Chi-Squared)
(1;0.95)

Critical Value χ2

(Chi-Squared)
(1;0.90)

χ2
0.99,1 Test Result χ2

0.95,1 Test Result χ2
0.90,1 Test Result

0.99 365 4 0.0889 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.95 365 8 0.3596 6.6349 Accept 3.8415 Accept 2.7055 Accept

0.90 365 17 1.4719 6.6349 Accept 3.8415 Accept 2.7055 Accept

Finally, Christoffersen’s interval forecasts adjusted the error from Kupiec’s POF test
which could be failed to reject the null hypothesis because of unconditional data, as shown
in Table 13. The test proved that the 99% Monte Carlo simulation VaR is an appropriate risk
measurement considering that the model has the correct failure rate, and the independence
properties are not violated. Nonetheless, the results of the 95% Monte Carlo simulation
VaR were rejected at χ2

0.95,1 and χ2
0.90,1 but it was accepted at χ2

0.99,1. This means that the
95% Monte Carlo simulation VaR is not reliable at 95% and 90% statistical confidence levels,
but it is reliable at 99% confidence level. Moreover, the 90% Monte Carlo simulation were
rejected by the Chi-squared test statistics for all confidence levels which means that the
model is not robust for BTC’s daily return during the pandemic due to the failure rate and
the independence properties of the failures.

Table 13. Monte Carlo simulation VaR Christoffersen’s Interval Forecast test.

Joint Test—Christoffersen’s Interval Forecast Test

Confidence
Level

Number of
Observa-

tions

Realized
Number of
Exceptions

Test
Statistic
LRPOF

Test
Statistic

LRM

Test
Statistic

LRCC

Critical Value χ2

(Chi-Squared)
(2;0.99)

Critical Value χ2

(Chi-Squared)
(2;0.95)

Critical Value χ2

(Chi-Squared)
(2;0.90)

χ2
0.99,1

Test
Result χ2

0.95,1
Test

Result χ2
0.90,1

Test
Result

0.99 365 4 0.0329 0.0889 0.1218 9.2103 Accept 5.9915 Accept 4.6052 Accept

0.95 365 8 7.6045 0.3596 7.9641 9.2103 Accept 5.9915 Reject 4.6052 Reject

0.90 365 17 14.1559 1.4719 15.6278 9.2103 Reject 5.9915 Reject 4.6052 Reject

5. Discussion

The COVID-19 pandemic has caused the world’s economy to slow down significantly
due to lockdown policy (Sohrabi et al. 2020; Okorie and Lin 2021). Global financial markets
reacted unprecedentedly to the pandemic news. In contrast, BTC reacted positively to the
pandemic (Iqbal et al. 2021; Goodell and Goutte 2021) and it was proven to have positive
correlations with the S&P500 during the pandemic (Mariana et al. 2021). As a result, BTC
can generate excessive returns and outperform other classes of asset. Nevertheless, greater
returns come along with greater risks. Therefore, we attempt to investigate that the VaR
can be a risk quantifier for BTC during the COVID-19 pandemic.

This paper studies the accuracy and effectiveness of VaR models on BTC market
during the COVID-19 pandemic. We use three VaR models: the historical simulation VaR
model, the delta-normal VaR model, and the Monte Carlo simulation VaR model. The
accuracy is tested by Kupiec’s POF and Kupiec’s TUFF tests where they provide the number
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of extreme losses that occur during the study period and the first day where the extreme
losses occur, respectively. The study period is one year between 28 April 2020 and 30 April
2021 where each VaR period contains 356 days. Hence, the realized number of the extreme
losses for 99%, 95%, and 90% VaR should not significantly distinguish from 4, 18, and 37,
respectively. We then investigate the independence property of those extreme losses. If the
losses are not independent, the VaR model will fail to be the effectiveness model. Finally,
we combine both Kupiec’s POF results and independence results to be Christoffersen’s
interval forecasts. This test can interpret whether VaR model is effective or not to predict
the extreme losses during the COVID-19 pandemic.

We test the appropriate measure of downside risk of VaR during the COVID-19
pandemic. We found different results from the pre-COVID. The historical simulation VaR
model is still a useful measure of the downside risk of BTC, but the delta-normal VaR and
Monte Carlo simulation VaR models fail to capture the downside risk at 95% and 90%
confidence levels (Tables 9 and 13). However, this failure is from Kupiec’s POF test since the
realized numbers of exceptions are less than the expected numbers. It means that there are
a few downside risks of BTC during the COVID-19 pandemic. Therefore, this study agrees
with Vukovic et al. (2021) that the COVID-19 pandemic has a positive impact on the BTC
market. On the other hand, both VaR models are overestimated the extreme losses at 95%
and 90% confidence levels. At 99% confidence level, investors should, however, tradeoff
between accepting the losses at 99% where is enormous but accurate or maintaining cutoff
losses at 95% and 90% confidence levels.

6. Conclusions

During the COVID-19 pandemic, many investors or market participants have been
greedily exploring new investments especially on the cryptocurrency markets. Bitcoin
(BTC) is the most famous cryptocurrency which accounts for around 70 percent of the cryp-
tocurrency markets. To determine whether the VaR models can be a risk measurement tool
for BTC, and whether they are reliable, we tested three types of VaR models: the historical
simulation VaR model, the delta-normal VaR model, and the Monte Carlo simulation VaR
model with 99%, 95%, and 90% confidence levels, respectively.

The unconditional tests, Kupiec’s POF test showed that the historical simulation VaR
method is the most effective among all three models. The results showed that it has the
correct failure rate. In other words, it neither overestimates nor underestimates the price
risk of BTC for VaR at all confidence levels. The test results for the delta-normal VaR and
the Monte Carlo simulation VaR methods proved that they provide the best estimates at
99% confidence level. The results of Kupiec’s TUFF test showed that all these models are
reliable. However, for some problem of accuracy that cannot be concluded, we suggested
that it could find solutions from other VaR tests.

Furthermore, we discussed the independent properties of these exceptions, which
should follow the Markovian process. The independence test of VaR models showed that
almost all results are independent except for the 95% historical simulation VaR which was
rejected at χ2

0.90,1. It means that the independence properties of the model were doubted at
90% statistical confidence level. Note that the independence test results of Monte Carlo
simulation VaR model must be all accepted because we generated the pseudo-random
number with independent and identically distributed property which is one of assumptions
of Markovian process.

Finally, we tried to manage errors from the unconditional data with Christoffersen’s
interval forecasts. The test results implied that historical simulation VaR model is the most
effective risk measurement. For the delta-normal VaR and Monte Carlo simulation VaR
models, the test proved that they are effective at 99% confidence level.

In conclusion, all three types of the VaR models are almost accurate and effective to
be the risk measurement of extreme losses for BTC during the COVID-19 pandemic. The
historical simulation VaR method provides the best performance at all confidence levels in
which are the most accurate among three methods. The delta-normal VaR method provides



Risks 2021, 9, 222 15 of 16

the most accurate result at 99% confidence level. The results for the Monte Carlo simulation
VaR method are similar to the delta-normal VaR method, which were proven to be excellent
at 99% confidence level. Users should realize that the models are studied especially special
world event at the fixed time horizon. If the situation changes, then the data could be
different, and the performance of these three models would probably change. However,
we suggested that the unflawed models should be selected to predict those losses that
could occur by market anomalies with user’s decision and other tools. Furthermore, if we
consider an Expected Shortfall (ES) model which calculates average losses that are above a
confidence level, it will give number of rejections more than VaR since the realized number
of exceptions are likely lower than the expected number of exceptions.
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