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Abstract: This paper proposes an age-coherent sparse Vector Autoregression mortality model, which
combines the appealing features of existing VAR-based mortality models, to forecast future mortality
rates. In particular, the proposed model utilizes a data-driven method to determine the autoregressive
coefficient matrix, and then employs a rotation algorithm in the projection phase to generate age-
coherent mortality forecasts. In the estimation phase, the age-specific mortality improvement rates are
fitted to a VAR model with dimension reduction algorithms such as the elastic net. In the projection
phase, the projected mortality improvement rates are assumed to follow a short-term fluctuation
component and a long-term force of decay, and will eventually converge to an age-invariant mean in
expectation. The age-invariance of the long-term mean guarantees age-coherent mortality projections.
The proposed model is generalized to multi-population context in a computationally efficient manner.
Using single-age, uni-sex mortality data of the UK and France, we show that the proposed model
is able to generate more reasonable long-term projections, as well as more accurate short-term out-
of-sample forecasts than popular existing mortality models under various settings. Therefore, the
proposed model is expected to be an appealing alternative to existing mortality models in insurance
and demographic analyses.

Keywords: mortality forecasting; age coherent; vector autoregressive; elastic net regularization

1. Introduction

The ongoing improvement of human life expectancy around the world has made
longevity risk, the risk that people live longer than expected, an increasingly important risk
for many demographic, economic, and insurance practices. This has urged the academia
to better understand the driving factors of mortality improvements, and design effective
statistical tools to provide accurate and credible mortality projections.

The past few decades have witnessed rapid developments of mortality forecast-
ing research. Among existing methods, one popular class of model is the so called
factor-based models. These models use factor representations to summarize mortality
patterns of high dimensional data sets by one or few factors. Mortality projections
are then obtained by extrapolating the estimated factors. To date, the most widely
used factor-based models include the Lee—Carter model (Lee and Carter 1992) and
the Cairns—-Blake-Dowd (Cairns et al. 2006) model. Many extensions of these two
models have been proposed in the literature (see, among many others, Booth et al.
2006; Li et al. 2015; Li and Li 2017; Li et al. 2019; Renshaw and Haberman 2006). While
the Lee—Carter and the CBD models have been demonstrated to be effective in mortality
forecasting, they are not able to explicitly model mortality correlations between different
populations, as only one population can be fitted at a time. To address the modeling of
joint mortality dynamics, Li and Lee (Li and Lee 2005) extend the Lee—Carter model to a
multi-population context, in which mortality rates of all populations are assumed to follow
a common systematic trend. In particular, mortality projections generated by the Li-Lee
model is population-coherent, i.e., the projected mortality rates of different populations
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at the same age will not diverge in the long run. Since the Li-Lee model, coherent multi-
population mortality modelling has drawn increasing attention in the literature (see, for
example, Dowd et al. 2011; Hyndman et al. 2013).

While the factor-based models are effective in forecasting mortality rates, especially
when the cross-section dimension (age) of the underlying data is large, there are still
limitations associated with these models. In particular, these models typically have fixed
age effects (i.e., loadings to the factors), and are thus likely to generate diverging mortality
forecast at different ages (Li et al. 2013). In other words, while the Li-Lee model is
population-coherent, it is not age-coherent. Moreover, as argued by Hunt and Blake (2018),
many factors representations suffer from identifiability issue when cohort effects are
included. To address this issue, vector-autoregressive (VAR) models have been proposed to
study and forecast mortality (Guibert et al. 2019; Li and Lu 2017; Li and Shi 2020). Compared
to the factor-based models, VAR models have more flexible parametric structures, and
thus could better capture the potentially complicated mortality patterns underlying the
data. However, the estimation of VAR mortality models is often challenging because
of the high dimension of mortality data sets. In particular, it is often the case that the
cross-section dimension is larger than the time dimension, and thus the estimation of
unconstrained VAR mortality models is impossible. Consequently, dimension reduction
techniques of the coefficient matrix are required. For example, Li and Lu (2017) simplify
the coefficient matrix by allowing for only one nonzero period effect and two cohort effects,
and the resulting model is referred to as the spatial-temporal (STAR) model. Under this
assumption, they derive age-coherent and population-coherent mortality projections, i.e.,
the projected mortality rates of any two ages in any two populations will not diverge in the
long-run. The simple STAR model in Li and Lu (2017) is later extended by many studies,
including Chang and Shi (2020a), Chang and Shi (2020b), and Shi (2020). On the other
hand, Guibert et al. (2019) adopted a pure data-driven approach for mortality modeling
using the sparse VAR model with an elastic-net (ENET) penalty, which we refer to as the
SVAR model. Compared to the STAR model, the SVAR model is more objective, as more
period and cohort effects can be included in the regression, depending on their explanatory
power of the mortality rates modelled. However, the SVAR model focuses on the mortality
improvement rates, instead of the original mortality rates, and hence the co-integration
relations cannot be explicitly addressed. Consequently, mortality projections generated by
the SVAR model are not age-coherent nor population-coherent.

In this paper, we propose a coherent sparse vector-autoregressive (CSVAR) model
which combines the appealing features of both the STAR model and the SVAR model. In
particular, the proposed CSVAR model utilizes the data-driven algorithms, to determine the
period, age, and cohort effects that should be included in each regression, and meanwhile
propose a rotation algorithm of the long-term mean of each age-specific mortality series
to ensure age-coherent projections. The model is estimated in two steps. First, age-
specific mortality improvement rates are fitted to a VAR model with data-driven dimension
reduction techniques, such as LASSO or elastic-net. Then, in the projection phase, the
intercepts (expectations) of mortality improvement rates are assumed to follow a time-series
dynamics and converge to a long-term limit. By letting the long-term limit be age-invariant,
the difference between projected mortality rates of any two ages will be bounded in the
long-term. Hence, projected mortality rates generated by the proposed CSVAR model
are age-coherent. The idea of converging the long-term mean of mortality improvement
rates has the same spirit as the mortality rotation method discussed in Li et al. (2013) and
Li et al. (2018). Furthermore, the proposed CSVAR model can be extended to modeling the
joint mortality dynamics of multiple populations in a computationally efficient manner.
In the latter case, the long-term limit of mortality improvement rates will be assumed
invariant to both age and population, so the projected mortality rates will be both age- and
population-coherent.

In the empirical analysis, the proposed CSVAR model is illustrated using the single-
age, uni-sex mortality data of the UK and France in both the single-population and multi-
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population context. We find that, due to the age-coherent feature, the CSVAR model
generates smoother long-term projection of age-specific mortality rates. In particular, the
projected mortality improvements are more similar across ages—they are more pronounced
for the old ages and less substantial for the very young ages compared to those produced
by the Lee-Carter model and the SVAR model. As a result, the proposed CSVAR generates
higher point forecasts of life expectancy at birth than the Lee-Carter model and the STAR
model at all forecast horizons. Moreover, in the out-of-sample forecast analysis, the
proposed CSVAR model is able to produce more accurate out-of-sample forecasting results
than the Lee—Carter model (and the Li-Lee model in the multi-population case) and the
SVAR model with different choices of sample size and age groups. Furthermore, the
proposed CSVAR model produces projected life expectancy closer to the realized values
over the out-of-sample forecast period in both populations than the Lee—Carter model
and the STAR model. Therefore, it seems that the proposed CSVAR model is able to
generate both the long-term forecasts and the short-term out-of-sample forecasts, and
could therefore be a appealing alternative to the existing models in life insurance and
demographic analysis.

The remainder of the paper is organized as follows. Section 2 reviews the Lee—Carter
model and the Li-Lee model. Section 3 reviews the existing VAR-based mortality models,
especially the SVAR model, and introduces the age-coherent CSVAR model. Section 4
discusses the empirical analysis. Section 5 concludes the paper.

2. The Factor-Based Model

Suppose we have mortality data of N ages, each age with T years of observations. The
Lee—Carter (LC) model (Lee and Carter 1992) summarizes the systematic mortality trends
of the N ages by a common factor. Formally, the log central mortality rate at age x in year ¢,
Yx,t, follows the specification given by:

Yxt = Ay + bxk + Exts (1)

where a, is the mortality level, i.e., the average mortality rate over time at age x, k; is the
period effect, i.e., the systematic mortality trend common to all ages, by is the age effect
at x, i.e., the sensitivity of y, to k¢, and e, is the normal residual term with mean 0 and
variance USZX. As noted by Lee and Carter (1992), Equation (1) is not identifiable without
normalization constraints. For example, one could multiply b, with a constant ¢ and divide
k¢ by the same constant, and reach the same fitting results. In Lee and Carter (1992), the
following normalization constraints are imposed:

Y ki=0,and ) by =1. 3]
t X

Given the first constraint, ay is set to the mean of y, ; over the sample considered. The
Lee—Carter model is then estimated by singular value decomposition (SVD) instead of the
usual ordinary least square approach in the original paper!. Given the estimated a, and
by, k; is adjusted to match the fitted total number of deaths to the observed values in each
year t. This adjustment rebalances the contribution of age-specific mortality by assigning
greater weights to ages with a larger number of death.

While a, and by are assumed to be constant, the period effect is often modelled by a
time-series process. In particular, Lee and Carter (1992) assumes a random walk with drift
specification, which is adopted by many later studies:

ki =ki1+d+e, 3)

1

A maximum likelihood method may also be employed to calibrate the parameters (Renshaw and Haberman 2003).
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where the drift term d measures the average annual change in k¢, and e; ESBN (0,02). Based
on the time-series specification in Equation (3), future mortality rates can be projected by
extrapolating the period effect k;. Specifically, the expected h-step-ahead mean forecasts of
the period effect and the log central death rate are given by:

krin =kr +hd,
" @)

U T4n = ax + bk yy,

where T is last year of the sample.

The Lee—Carter model is a single-population model, i.e., it focuses on the mortality of
one population at a time. This constraint is later relaxed by the Li-Lee model (Li and Lee
2005), which incorporates mortality dynamics of multiple populations simultaneously. The
joint modeling of mortality dynamics of multiple populations are important not only in
demographic analysis (Li et al. 2019), but also for various insurance practices, including the
risk management of insurance policies for small portfolios and the pricing of the innovative
index-based longevity-linked securities and retirement products (Chen et al. 2020; Li
2018; Li et al. 2017; Li and Lu 2018, 2019). In the Li-Lee model, the log central death rates
are represented by a common factor and a population-specific factor. Suppose there are I
populations in total, the log central death rate for the i-th population at age x and year f,
Yy i, follows the specification given by:

Yxti = OQx,i + ByK; + bx,ikt,i + Ex,t,ir i= 1,..,1, (5)

where 4, ; is the average mortality level at age x in the ith population, By and K; represent
the common age effect and period effect, k; ; is the population-specific period effect with
respect to the ith population, and b, ; is the corresponding population-specific age effect.
Finally, €, ; ; is the normal population-specific error term with mean 0 and variance (73“,.

Similarly, a set of normalization constraints are imposed to ensure identifiability:
) Ki=0,and ) By =1,
t x

6
Zkt,i =0, and be,i =1. ( )
t x

Similar to the Lee—Carter model, the common period effect K; can be modelled as a
random walk with drift process. On the other hand, the population-specific period effects
ki, i =1,..,1 are fitted by stationary autoregressive processes to ensure coherent forecasts
in the long term. Specifically, the time-series specifications of the period effects are given

by:

Ki=Ki_1+d+e,
ki = ag; +ayiki—1,; + e,

@)
where a¢ ; and |a; ;| < 1 are the autoregressive parameters and ¢; ; is the Gaussian error term
with mean 0 and variance 0'3]_. Stationarity of the k; ; processes guarantees that deviations
of the projected mortality of each population from each other will not grow infinitely in
the long run. Formally, the projected mortality rates are coherent for different populations
in the long-run if § 71,; — §x, 741, = Op(1) for i # j. We see that this condition is indeed
satisfied if all k; ;s are stationary, as in this case the long-term mortality trends of all ages and
populations are driven by the single common period effect K;, and k; ;s only represent the
short-term fluctuations around the common mortality trend. Therefore, the Li-Lee model
is indeed able to generate coherent mortality projections across populations. However, as
noted by recent studies (for example, Li and Lu 2017), the coherent property only holds for
projected mortality rates of the same age. Specifically, for an arbitrary different age z # x,
the Li-Lee model will not lead to §x 715,; — §.,741j = Op(1) for any i and j. Therefore, the
mortality projections generated by the Li-Lee model is not age-coherent.



Risks 2021, 9, 35

50f19

3. The Vector-Autogression-Based Models

As an alternative to factor-based models, VAR-based mortality models have been a
rapidly emerging class of mortality models in recent literature. Compared to the factor-
based models, the VAR-based are more flexible and thus able to capture more complex
time, age, and cohort mortality dependence (Guibert et al. 2019; Li and Lu 2017). However,
the application of VAR-based models in mortality forecasting leads to new challenge. In
particular, unconstrained VAR models typically have a larger number of parameters to be
estimated, while observations in mortality data are often limited. For example, suppose we
have N age groups and only one population is considered. Even in the simplest VAR(1)
case, if the first order lag of all the N ages are included, then the total number of parameters
will be p = N(N + 1) (including N intercepts), while the total number of observations
is NT. In mortality analysis, we typically have only a few decades of annual data, while
the number of ages could be above 100. Therefore, there are typically more unknown
parameters than observations in the standard VAR framework without any parameter
constraints.

3.1. The Sparse VAR Model

A recent effort to address the curse of dimenisonality issue in the VAR mortality
models is made by Guibert et al. (2019), who employ a sparse VAR (SVAR) model on mor-
tality improvements. First, they model the dynamics of the mortality improvement rates,
AYxt = Yxt — Yxt—1, rather than the mortality rates themselves. Under the assumption
that (yx+) is an I(1) process for all ages, the dependent variables (Ayy )¢ are I(0) and
therefore stationary. As a result, standard VAR models can be used, without the need
to consider co-integration relations within mortality data. Second, using an elastic-net
(ENET) penalty estimation, the SVAR model adopts a pure data-driven method to select
the non-zero coefficients in the estimation process. In this way the coefficient matrix will
be sparse, i.e., the majority of autoregressive coefficients will be set to zero. Formally, when
only the first order lage is considered, the mortality improvement model is given by:

AYt =M+ BAYt_l + &, (8)

where AYi= (Ay1s, Ayay, ..., Ayny)' is the N x 1 vector of mortality improvement rates.
&; is assumed to follow a multi-Gaussian distribution with mean 0. M is an N x 1 vector
estimated by the sample averages of AY;. B is the coefficient matrix, and the sparsity
(frequency and location of zeros) of B is determined by the LASSO (L1) penalty during the
estimation process without any constraints. More specifically, the objective function to be
minimized is given by:

T

— o~

(M,B) = arg mi

N
MeRN BeRNN 2 /= Iy ye-1ll2 2 ‘51]' )

i,j

where §; ; is the ith row jth column element of B, and A is the L1 penalty parameter. A
larger value of A will shrink more f;; to be exactly 0. The selection of A is performed
via the cross validation with ten-fold, and the estimates of parameters are then obtained
accordingly. Details can be found in Friedman et al. (2010). After estimating Model (8), the
forecasting is performed as follows:

AYrip =M+BAY 7, (10)

with it > 1. As a result, it holds that Y1, = YT—l—Z;‘:l AY7,.

In a I-population case, we may let AY¢be an NI x 1vector givenby (Ayy 1, ..., Aynt1),
where Ay, ,; is the mortality improvement rate of the i-th population at age x and year .
Other variables and parameters of Equation (8) can be redefined accordingly in a straight-
forward manner. In all cases, the sparsity of B depends on the tuning parameter A in
the estimation process, which is derived via the usual cross-validation procedure. Given
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Equations (8)—(10), we see that 7, 1+ — Jxtk 741 = Op(1) 4+ Op(h) (1i1x — 11, y) for two
arbitrary ages x and x + k in the SVAR model, because Ay is stationary for any x. As a
result, without any constraints on 1, and 1, , the projected mortality rates of any two
ages will be diverging in the long-run, and thus the projection generated by the SVAR
model is not age-coherent either.

3.2. The Coherent Sparse VAR Model

In this paper we propose a age-coherent extension of the SVAR model introduced
in Section 3.1 by generalizing the intercepts in the projection, i.e., M in Equation (10),
will be extended to a series of stationary time-dependent processes. Specifically, the x-th
element of M, 1i1x, will be generalized to a process (1 x,h)h which varies over the projection
horizon and converges in expectation to a constant universal to all ages, and therefore
the projected mortality rates of all ages will be non-diverging in the long-run. To this
end, many stationary processes can be chosen. In this paper, we illustrate the proposed
method using the hyperbolic decay process. In time-series analysis, the hyperbolic decay
is related to the concept of long memory (Feng and Shi 2017; Gao et al. 2020; Ho and Shi
2020), representing the type of decay with speed slower than that of the short memory
ones, such as the geometric or exponential decay processes (Hosking 1981). An applica-
tion of the hyperbolic decay in the mortality modelling and forecasting can be found in
Feng et al. (2020). Formally, under the assumption of hyperbolic decay, the intercept used
in the h—step ahead forecast, i1, j,, is given by:

Tﬁx,h = 5h(dx>(ﬁ1x - ﬁz*) + m*, (11)

where 11, is defined in the same way as in Equation (8), /i7" is long-term mean of 11 for all
xs, and the hyperbolic parameter 6;,(dy) is defined as:

h—1+dy

O (dX) = k

5h—1<dx) and (SO(dx) =1. (12)

When the hyperbolic parameter d, falls between 0 and 1, it holds that d;(dx) — 0
when h — o0, and 71, j, will eventually converge (decay) to 7iz*. Furthermore, the speed of
decay is slower (resp. faster) for larger (resp. smaller) values of dy. The extension from
a constant M to the hyperbolic decay processes of intercepts then leads to age-coherent
projection of mortality rates. More specifically, for any two ages x and x + k, the distance
between the projected mortality rates & steps ahead is given by:

Gx, 11 — Yxtk, T+
=0p(1) + Op (h) (1 — 1ty 1)
=0p(1) + Op(h) (™ — ™)
=0, (1),

which will stay bounded in the long run. In this paper, we let #1* be the sample mean of all
1ity, and refer to the model with the time-varying intercepts given in Equation (11) as the
coherent SVAR (CSVAR) model.

Despite the aforementioned desirable feature of age-coherent forecasts, the determi-
nation of dy is a non-trivial issue in the CSVAR model. There are two major challenges.
First, without parameter restrictions, the introduction of dy could increase the number of
parameters by N (dy, ..., dy). To address this issue, an appropriate dimensionality reduction
technique is required. In particular, as argued in Li and Lu (2017), mortality changes of
neighboring ages are typically rather smooth. Therefore, it is reasonable to assume that dy
is a smooth function of x for each age to cope with the empirical patterns. Furthermore, it
is argued in existing studies that mortality declined will be lower at older ages (see, for
example, Li et al. 2013). This suggests that appropriate functional forms should be imposed
such that dy is smaller for larger xs, and thus the corresponding 7, ;s will converge to

(13)
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11" more slowly. Second, as the parameters dys only play a role in the projection phase,
there is no data to identify the optimal parametric structure of dy (over x). In particular, the
historical data were already used to estimate M. Thus, in order to identify the parametric
structure of dy, estimation procedures such as cross-validation should be employed.

To deal with the first challenge, in this paper we use the inverse Epanechnikov kernel
evaluated at the last observation to characterize the parametric structure of dy. Inverse
Epanechnikov kernel is a parsimonious approach to construct smooth functions. More
specifically, let T be the scaled index x/N with x € (1,..,N), the (adjusted) inverse
Epanechnikov kernel evaluated at N is determined by 1 — K,(t — 1) = 1 — K(%;!) with
K(t—1) = 0.75[1 — (T — 1)?]. The parameter b, ranging from 0 to 1, is the bandwidth of the
inverse Epanechnikov kernel. For example, consider ages 0-100, the inverse Epanechnikov
kernels evaluated at age 100 is displayed in Figure 1 for b =0.1, 0.25, 0.5, 0.75 and 1. We
see that the estimated kernel 1 — K, (7 — 1) is constant for all ages up to a “cut-off” age,
and then become decreasing afterwards. Specifically, the cut-off age is determined by the
bandwidth parameter b. For example, if b = 0.1, then the cut-off is the 90% percentile of
all ages considered. In other words, the kernel will be constant for the first 90% of ages.
On other other hand, when b = 1, the cut-off age is the first age in the sample, and thus
the kernel will be decreasing over the whole age group. Finally, the kernel will converge
to 0.25, regardless the value of b. Therefore, the inverse Epanechnikov kernel provides a
convenient tool to specify the smooth parametric structures of dy.

1.0
0.81 )
Bandwidth
0.1
0.25
0.61 — 05
— 0.75
1
0.4

0 25 50 75 100
Age

Figure 1. Demonstrations of the inversed Epanechnikov kernel.

Next, we can model dy as d, = d}fK”(FD, so that dy is positive and bounded by 1,
and has a declining speed of convergence over age. All in all, the proposed parametric
structure of dy requires only two additional parameters to be estimated for the CSVAR
model, compared to the SVAR model: the hyperbolic parameter of the first age d1, and the
bandwidth of the inversed Epanechnikov kernel b.

After reducing the number of parameters in the hyperbolic decay process, we now
discuss the estimation of the two parameters (dq, b). Recall that d, only plays a role in the
projection phase, and hence we can treat d; and b as tuning parameters, and estimate these
two parameters using cross-validation (Feng et al. 2020). However, a usual cross-validation
technique for time-series data, such as the expanding-window approach explained in
Hyndman and Athanasopoulos (2018), does not apply to the proposed CSVAR model. The
reason is that the expanding-window approach normally considers a short forecasting
step, while the age-coherent feature proposed in the CSVAR model focuses the long-term
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forecast. Thus, we employ a hold-out-sample approach to select the tuning parameters.
Formally, the following objective function is minimized:

N T/5
RMSFE = T/5 Y N Diar/sin — Viarssen)’ (14)
1:1 h=1

where RMSEFE is the root of mean squared forecasting errors, and the evaluation period is
given by the last fifth ([4T /5, T]) of the data in our study.?

In summary, mortality forecasting with the proposed CSVAR model is generated
with the following procedure. First, we derive the the optimal values of d; and b via a
grid search based on the hold-out-sample cross validation. At this stage, the coefficients
in the SVAR model, M and B, will be estimated using the ENET algorithm and the first
80% of data. Second, with the optimal values of d; and b, the SVAR coefficients M and
B will be estimated again using the full sample. The full-sample estimators will be used
in the projection phase. Finally, after all parameters are estimated, the intercepts in the
projection phase, 1, ;s, are calculated, and future mortality rates are then projected us-
ing Equation (10). Besides the mean forecasts, a simulation strategy may be applied to
investigate uncertainties in the projections. For instance, the prediction interval (PI) of
the estimated life expectancies can be determined via simulation based on the normal
distribution assumption of the residual &;s. More specifically, we use method (I) described
in Li (2014) to implement the simulation, where the 95% PI is composed of the 2.5th and
97.5th percentiles of the simulated results.

The Multi-Population Extension

We now consider a J-population case. Let y;;; be the mortality rate for age i of
population j in year t. Further, y;; be the N x 1 vector containing the mortality rates of
population j in year ¢ for j = 1,2, ..., ], and y; be the JN x 1 vector containing the mortality
rates of all populations at time t. The same procedure of estimating the single-population
CSVAR model may be followed with two modifications. First, 1, ; now follows the
population-specific hyperbolic decay process:

i = Op(dy,j) (1 j — M) + M, (15)

where the parameter d, ; is population dependent, and M* is the sample mean across all
the | populations. Consequentially, each population has its own pair of parameters d ;
and b;. Second, in the original SVAR model, the same penalty parameter A is applied in
the ENET algorithm and only one model is fitted. In this case the same setting used in the
single-population CSVAR case can be applied. In particular, the CSVAR coefficients will be
estimated from the following objective function:

T , I
ly: —M — By, 1[5+ A ) |Bil. (16)
Iy

(M,B) = arg min =
MeR/N, BERIN?IN 2~

The tuning parameters A, and (dl,j/ b]-), j=1,2,.., ] are then determined from minimizing
the hold-out-sample RMSFE of mortality rates of the | populations:

T/5

N ] 2
RMSEFE = TN( T/5 ;; (]?i,j,4T/5+h —yi,j,4T/5+h> : (17)

i=1j=1h=1

2

Note that the choice of the length of test sample (one fifth) is common among existing studies. Adopting other popular alternatives such as the last

third, fourth and tenth sample will lead to robust results.
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However, we may also consider a more flexible framework which allows for population-
dependentA penalty parameters A, j = 1,..., J. More specifically, instead of estimating a
universal B for all populations using the same penalty parameter A, we may fit | pairs
of B j with the penalty parameter A; for each population separately. In other words, the
population-specific regression parameters (M;, B;) are obtained by minimizing the objec-
tive function:

. N N
(M, Bj) = arg Z Iy —M;—Bjy,all5+A; Y Y 1Bl (18)

M; ERN B SRNXIN 2 b |

After all the coefficient matrices are estimated, each pair of (A}, dy ;, b;) will be deter-
mined to minimize the hold-out-sample RMSFE of mortality rates of populatlon j only,

ie.,
N T/5 )
RMSFE; = T/5 ; ;(]/i,jAT/S—i-h - yz‘,j,4T/5+h) . (19)

Based on the estimation procedure above, it is rather efficient to generalize the age-
coherent mortality projections to a large number of populations, since the parameters in
each population-specific system are estimated separately and the number of parameters to
be estimated will just increase linearly with the total number of observations in the data.

4. Empirical Analysis

This paper focuses on mortality data from the Human Mortality Database (2020). In
particular, the proposed CSVAR model is illustrated using uni-sex, single-age mortality
data of the United Kingdom (UK) and France from 1950 to 2016 and ages 0 to 100. The
UK and French mortality data are chosen to illustrate the proposed CSVAR model because
these two countries are both developed countries with similar socioeconomic conditions.
The mortality of such countries are suitable to be modelled simultaneously as suggested by
Li and Lee (2005). Further, the UK and French mortality data have been chosen to illustrate
mortality forecasting models in the existing literature, including Chang and Shi (2020a)
and Chang and Shi (2020b), among many others. The log central death rates are plotted in
Figure 2 across all investigated years. Consistent improvements over time are observed
for both countries. It can also be seen that there are relatively more pronounced mortality
improvements of the oldest ages for the French population, when contrasting data of 1950
and 2016.
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Figure 2. Uni-sex mortality data of the UK and France of age 0-100 and year 1950-2016.

4.1. Long-Term Analysis

We first conduct the long-term analysis with the proposed CSVAR model using the
entire sample period over 1950-2016. The projections generated by the Lee—Carter and
the SVAR model are reported for comparison. First, Figure 3 displays the projected log
mortality rates in 2100 generated by the three models, contrasted against the true rates in
2016. It is observed that, while projected mortality improvements are rather pronounced
for the young and the middle ages, little improvements are gained at old ages for the
forecasts produced by the LC and SVAR model, especially for the UK data. On the contrary,
due to its age-coherent property, forecasts produced by the CSVAR model demonstrate
much smoother mortality improvement across ages. In particular, the projected mortality
improvements are more similar across ages—they are more pronounced for the old ages
and less substantial at the younger ages than the other models. The more balanced projected
mortality improvements are attributed to the decay in 7, j, ;s.
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Figure 3. Projected and actual log central death rates: 2016 vs. 2100.

Next, we investigate the life expectancy projections, which is one of the most important
applications in the mortality forecasting. In this paper, we take the life expectancy at
birth (ep) as an example, as it is a comprehensive measure which incorporates mortality
information of all ages. As argued in Li et al. (2013), without a proper rotation of b, in the
Lee—Carter model, ¢y is likely to be underestimated, especially in the long run. Due to the
lack of age coherence, this issue may also exist in the Lee—Carter and the SVAR model,
as mortality improvements of the elderly could be underestimated. Figure 4 displays the
mean forecasts and the prediction intervals of the life expectancy at birth (eg) for both the
UK and French population up to 2100. As for the point estimates, we can see that the éys
generated by the CSVAR model are uniformly larger than those of the Lee-Carter and the
SVAR model. It is also worth noting that the SVAR model produces lower long-run forecast
of &y than the Lee—Carter model. More specifically, the point forecasts of &, produced by
the Lee—Carter, SVAR, and CSVAR model grow from 81.3, 81.2, and 81.2 (resp. 82.6, 82.6,
and 82.6) as of 2017 to 90.6, 88.4 and 93.5 (resp. 93.7, 92.2, and 95.7) as of 2100 for the UK
(resp. French) data, respectively. Overall, the higher projected life expectancies generated
by the CSVAR model could be attributed to the more pronounced projected mortality
improvement in the old ages, as shown in Figure 3. Additional conclusions can be drawn
from the prediction intervals, which are generated based on the Gaussian-distributed
temporal disturbances with 1000 simulated replicates. Despite the similarity of widths in
early years, the lower bound of the 95% PI of the CSVAR model is higher than the point
estimates of the Lee—Carter and SVAR (resp. SVAR) model for the UK (resp. French) data
as of 2100, implying a significant difference. Furthermore, the widths of PIs produced
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by the SVAR model are wider than those of the Lee-Carter model after around 20-30
years, whereas the CSVAR model leads to the narrowest PIs for both populations. More
specifically, for the UK (resp. French) data, the widths of 95% PIs of the Lee-Carter, SVAR
and CSVAR model as of 2100 are 6.6, 8.0 and 3.9 (resp. 7.5, 10.1 and 5.7) years, respectively.

95

90
Method

LC
— SVAR
— CSVAR

85
01-16

80

2000 2025 2050 2075 2100
Year

(a) UK

95

Method
LC
— SVAR

90

—— CSVAR

01-16
85

80

2000 2025 2050 2075 2100
Year

(b) France
Figure 4. Mean forecast and the 95% prediction intervals vs. actual life expectancy at bitrh: 2001-2100.

4.2. Out-of-Sample Forecast

Next, we consider the out-of-sample forecasting performance of the proposed CSVAR
model. In particular, we compare its forecasting accuracy with those of the Lee-Cater model
and the SVAR model. Following Li and Lu (2017) and Feng et al. (2020), the training sample
is set to 1950-2000, and the remaining data is used as the test sample. The selected tuning
parameters of the SVAR and CSVAR models are reported in Appendix A. For each model,
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we consider the RMSFEs over age groups and at individual time horizons separately and
an overall measure as follows:

1 R
RMSFEx = | 72 Y. (Yx,14n = 740)%
h=1
1 100
RMSFE;, = 101 Y W rin — D rin)? (20)
x=0
RMSFE ;1 = (]/x,T-',—i - yAx,T+i) :
101 x h & =

RMSFEy (resp. RMSFE}) is the RMSFE averaged over all 16 forecasting steps for age
group x (resp. all the 101 ages at forecasting horizon ), and RMSFE; j, is the overall
measure accounting for all ages and forecasting horizons up to .

Firstly, RMSFE,; , and descriptive statistics of RMSFE, are reported in Table 1, where
bold numbers indicate the smallest quantity for each statistic. The mean RMSFE, across
all age groups of the CSVAR model is around 44% and 45% (resp. 5% and 6%) smaller
than that resulting from the Lee—Carter model (resp. SVAR model) for UK and France,
respectively. Moreover, Q1 and Qj3 (the first and third quartiles) support that CSVAR model
performs reasonably well among the three competing models, and standard deviation of
RMSFEy confirms that the RMSFEys of the CSVAR model are more narrowly spread than
those of the Lee-Carter and the SVAR models. Finally, as indicated by RMSE,j; 16, the
overall performance of the proposed CSVAR model is better than the Lee—Carter and the
SVAR model for both populations.

Table 1. Summary of RMSE over age groups. For each column, the smallest number is in bold.

RMSE 41116 Mean Std. Dew. Q1 Qs
Panel A: UK

LC 0.1623 0.1454 0.0726 0.0912 0.1935
SVAR 0.1209 0.1056 0.0592 0.0536 0.1571
CSVAR 0.1106 0.1006 0.0463 0.0647 0.1321

Panel B: France
LC 0.2159 0.1661 0.1387 0.0548 0.2601
SVAR 0.1422 0.1210 0.0750 0.0670 0.1594
CSVAR 0.1358 0.1143 0.0736 0.0584 0.1530

Secondly, Figure 5 plots the RMSFE, at individual forecasting horizons ranging from
1 year (2001) to 16 years (2016). Distinct differences among all the three models can be
observed, especially at larger horizons. In general, the VAR models consistently outperform
the Lee-Carter model in all horizons for both populations. Furthermore, comparing with
the SVAR model, RMSFEj, of the CSVAR model is smaller in the majority of cases. Finally,
with the growth of & (especially from the 8th step onward), the increment in RMSFE}, is
slower for the CSVAR model than Lee—Carter and the SVAR model, suggesting its better
performance in the long run.
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Figure 5. RMSE over forecasting steps.

4.2.1. Robustness Analysis

Steps

12

16

Method
LC

— SVAR
CSVAR

Method
LC

— SVAR
CSVAR

To evaluate the robustness of the forecasting results, we perform the out-of-sample
forecasting analysis under three major variant settings. Firstly, we follow Li et al. (2013)
and Boonen and Li (2017) and model the logged death rates of the five-year ages instead
of the single-year groups. Secondly, we consider a shorter training sample of 1970-2000.
Finally, instead of crude death rates, we consider the smoothed rates using P-splines
(Eilers and Marx 1996), as employed in Hyndman and Ullah (2007). We report the resulting
RMSFEj; 14s in Table 2. It can be seen that the CSVAR model improves the forecasting
results of the LC (resp. SVAR) model by at least 30% and 45% (resp. 7% and 8%) for the UK
and French data, respectively. Therefore, we conclude that the proposed CSVAR model is
able to produce more satisfying forecasting performance compared to the LC and SVAR
model under different settings.

Table 2. Summary of robustness check. For each column, the smallest number is in bold.

UK France
LC SVAR CSVAR LC SVAR CSVAR
Five-year 0.1674 0.1229 0.1150 0.2240 0.1429 0.1199
groups
1970-2016 0.1507 0.1360 0.1163 0.1916 0.1428 0.1324
Smoothed 0.1562 0.1069 0.0987 0.2102 0.1285 0.1140

rates
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4.2.2. The Two-Population Extension

We now investigate the multi-population case by modelling the UK and French data
jointly. As discussed at the end of Section 3.2, we consider the situations of a uniform
penalty term (CSVAR;) and individual penalty terms (CSVAR;). The selected tuning
parameters of the SVAR and the two CSVAR models are reported in Appendix A. The
results of RMSFE, are summarised in Table 3, where the Li-Lee model is fitted to replace
the Lee-Carter model for comparison. The following observations can be made. First, by
jointly modelling the UK and French data, the forecasting results of the Li-Lee model are
considerably improved over those of the Lee—Carter model displayed in Table 1. This, how-
ever, is not the case for SVAR and CSVAR;. Although their performances are comparatively
better than those of the Li-Lee model for both populations, the forecasting results of the
CSVAR; model and the SVAR model are less accurate than those of the single-population
counterparts. For instance, the RMSFE; 14 of the CSVAR;| model increase from 0.1106
and 0.1358 to 0.1159 and 0.1396 for UK and French data, respectively. One possible reason
of the reduced accuracy in the two-population case is that the VAR model may produce
less accurate forecasts when more irrelevant information is included (Feng and Shi 2018).
Therefore, the application of a uniform penalty term may lead to the estimated M and B
that poorly reflect the historical mortality pattern of both populations. In contrast, when
different penalty terms are allowed, the forecasting results of CSVAR; are almost uniformly
better than those of the Li-Lee, SVAR, and CSVAR; model. Furthermore, compared to the
single-population forecasts, CSVAR; leads to 23% improvement over the single-population
CSVAR model of the French data (RMSFE; 14 of 0.1046 vs 0.1358). As for the UK data, the
forecasts of CSVAR; are almost identical to those of the single-population CSVAR model.
This may suggest that the UK mortality improvements may provide additional important
information in the projection of the French improvements, but not vice versa.

Table 3. Summary of two-population results. For each column, the smallest number is in bold.

RMSE ;1116 Mean Std. Dew. 01 Qs
Panel A: UK

LL 0.1241 0.1053 0.0660 0.0530 0.1435
SVAR 0.1207 0.1052 0.0594 0.0512 0.1569
CSVAR, 0.1159 0.1019 0.0555 0.0536 0.1354
CSVAR, 0.1110 0.1012 0.0459 0.0666 0.1348

Panel B: France
LL 0.1559 0.1303 0.0860 0.0630 0.1770
SVAR 0.1442 0.1220 0.0773 0.0664 0.1600
CSVAR; 0.1396 0.1178 0.0754 0.0631 0.1469
CSVAR, 0.1046 0.0906 0.0526 0.0521 0.1172

4.2.3. Forecasting of Life Expectancy of Age 0

We now compare the out-of-sample forecasting accuracy of the CSVAR model, the
SVAR model, and the Lee—Carter model in terms of life expectancy projection. Again, the
life expectancy at birth is used as an illustration. We fit the three models using data from
1950 to 2000, and use the projected log mortality rates to produce &y over 2001-2016. The
resulting mean forecasts and the 95% prediction intervals are then plotted against the true
life expectancies in Figure 6. It can be seen that the éys produced by the CSVAR model are
uniformly larger than those generated by the Lee-Carter and the SVAR model, especially
for the UK data. This is consistent with the age-coherent property of the CSVAR model.
More importantly, those forecast &y by the CSVAR model are closest to the true values at all
horizons for both populations. As for the PIs, all models manage to cover the range of the
true ¢g. In terms of the efficiency, however, the VAR-based models generate narrower Pls
than the Lee-Carter model for both populations. In particular, the CSVAR model results in
the most efficient interval estimates, with the widths of the UK data almost 50% narrower
than those of SVAR.
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Figure 6. Forecast vs actual life expectancy at age 0: 1991-2016.

5. Conclusions

This paper proposes an age-coherent sparse vector autoregressive model to forecast
log mortality rates. In particular, we allow the age-specific mortality improvement rates
to converge to a universal long-term mean for all ages. The following key results can be
drawn from our study. First, the proposed coherent VAR model generates more accurate
out-of-sample forecasting results than the Lee-Carter model and the sparse VAR (SVAR)
model recently developed by Guibert et al. (2019), as measured by the root-mean-square
errors. This result holds for both the uni-sex, single-age UK and the French mortality
data for age 0 to 100 with the training sample of 1950 to 2000 and the forecasting period
of 2001 to 2016, and is robust when the training sample is shortened to 1970 to 2000 or
when five-age mortality data are used instead of the single-age mortality rates. Second, the
proposed coherent model retains the attractive advantages of the SVAR model, and has a
more flexible parametric structure than the factor-based models, such as the Lee—Carter
and the Li-Lee model. In particular, by extending the SVAR model, the proposed model
uses the lasso-based algorithm to determine the autoregressive coefficient matrix, and
thus the autoregressive matrix is data-driven, rather than based on a prior parameter
constraints. Consequentially, the VAR model is able to capture rather general patterns of
mortality developments, such as the impact of mortality change of a young age on that
of a very old age. Thirdly, by allowing the mortality improvement rates to converge to a
universal long-term mean, the proposed model can generate coherent long-term mortality
projections, i.e., projected mortality rates at different ages will not diverge in the long-run,
such as the spatial-temporal model by Li and Lu (2017). Moreover, by utilizing a hyperbolic
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decay structure, we allow the speed of convergence to vary with age. Finally, since the
number of parameters to be estimated only increase rather moderately with the addition
of new populations, the proposed model can be applied to model the joint mortality
improvements of multiple populations in an efficient manner. In the multi-population case,
projected mortality rates are coherent both on the age and the population dimension. A
two-population illustration is made using the UK and French data.

In this paper, we focus on the age-coherent extension of the SVAR model developed
by Guibert et al. (2019). However, the proposed age-coherent extension is rather general
and applicable to more VAR specifications, such as VAR models with a moving average
structure or stochastic volatility. In the future, it would be interesting to explore the
age-coherent mortality projections based on more general VAR specifications.
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Abbreviations

The following abbreviations and variables are used in this manuscript:

LC Lee—Carter model

VAR Vector Autoregression model
CBD Cairns—-Blake-Dowd model
LL Li-Lee model

STAR Spatial-temporal Autoregression model

SVAR Sparse VAR model

CSVAR  Coherent Sparse VAR model

LASSO  Least Absolute Shrinkage and Selection Operator

ENET  Elastic-net

RMSFE Root of Mean Squared Forecasting Error
Variables of single population models:

Ya,t Log central mortality rate at age x in year ¢
ay The average mortality level at each age x
k¢ The mortality index at time ¢
by The age-specific sensitivity of yy; to changes in k;
ext The normal error term
AYy The vector of differenced log central mortality rate
M Intercept vector of the VAR-type models
B Coefficients of AY;_1 in the VAR-type models
1y Forecast intercept term in the CSVAR model for age x at step h
dy(dx)  Thehyperbolic parameter associated with i, j,
A The ENET penalty
Additional variables of joint population models:
By Age effect of the common factor

K; Period effect of the common factor
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Appendix A. Additional Tables

Table A1l. Tuning parameters.

SVAR CSVAR
A A dq b

UK -—11.66 —9.26 02974 0.2184
FR —-11.30 —-6.89 0.7426 0.0621

SVAR CSVAR; CSVAR,
A A dy bj Ay bj

UK -1198 —-9.26 04458 0.1663 —10.75 0.2638 0.2599
FR —-1198 —-9.26 0.7426 04789 —11.16 0.3468 0.5311

Note: The values of the ENET penalties (A and A;) are reported in logarithms.

Single Models

Join Models
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