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Abstract: Death benefits are generally the largest cash flow items that affect the financial statements
of life insurers; some may still not have a systematic process to track and monitor death claims.
In this article, we explore data clustering to examine and understand how actual death claims
differ from what is expected—an early stage of developing a monitoring system crucial for risk
management. We extended the k-prototype clustering algorithm to draw inferences from a life
insurance dataset using only the insured’s characteristics and policy information without regard to
known mortality. This clustering has the feature of efficiently handling categorical, numerical, and
spatial attributes. Using gap statistics, the optimal clusters obtained from the algorithm are then used
to compare actual to expected death claims experience of the life insurance portfolio. Our empirical
data contained observations of approximately 1.14 million policies with a total insured amount of
over 650 billion dollars. For this portfolio, the algorithm produced three natural clusters, with each
cluster having lower actual to expected death claims but with differing variability. The analytical
results provide management a process to identify policyholders’ attributes that dominate significant
mortality deviations, and thereby enhance decision making for taking necessary actions.

Keywords: k-prototype clustering; geospatial attributes; gap statistics; tracking and monitoring
death claims

1. Introduction and Motivation

According to the Insurance Information Institute (https://www.iii.org/publications/
2021-insurance-fact-book/life-health-financial-data/payouts (accessed on 3 March 2021)),
the life insurance industry paid a total of nearly $76 billion as death benefits in 2019.
Life insurance is in the business of providing a benefit in the event of premature death,
something that is understandably difficult to predict with certainty. Claims arising from
mortality are not surprisingly the largest cash flow item that affects both the income
statement and the balance sheet of a life insurer. Life insurance contracts are generally
considered long term, where the promised benefit could be unused for an extended period
of time before being realized. In effect, not only do life insurers pay out death claims in
aggregate on a periodic basis; they are also obligated to have sufficient assets set aside as
reserves to fulfill this long term obligation. See Dickson et al. (2013).

Every life insurer must have in place a systematic process of tracking and monitoring
its death claims experience. This tracking and monitoring system is an important risk
management tool. It should involve not only identifying statistically significant deviations
of actual to expected experience, but also be able to understand and explain the effects
of patterns. Such deviations might be considered normal patterns of deviation that are
anomalies for short durations, while of more considerable importance are deviations
considered to follow a trend for longer durations.
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Prior to sale, insurance companies exercise underwriting to identify the degrees of
mortality risk to applicants. As a consequence, there is a selection effect on the underlying
mortality of life insurance policyholders; normally, the mortality of policyholders is consid-
ered better than the general population. However, this mortality selection wears off over
time, and in spite of this selection, it is undeniably important for a life insurance company
to have a monitoring system. Vadiveloo et al. (2014) listed some of these benefits and we
reiterate their importance again as follows:

1. A tracking and monitoring system is a risk management tool that can assist insurers
to take the actions necessary to mitigate the economic impact of mortality deviations.

2. It is a tool for improved understanding of the emergence of death claims experience,
thereby helping an insurer in product design, underwriting, marketing, pricing,
reserving, and financial planning.

3. It provides a proactive tool for dealing with regulators, credit analysts, investors, and
rating agencies who may be interested in reasons for any volatility in earnings as a
result of death claim fluctuations.

4. A better understanding of the company’s emergence of death claims experience helps
to improve its claims predictive models.

5. The results of a tracking and monitoring system provide the company a benchmark
for its death claims experience that can be relatively compared with that of other
companies in the industry.

Despite these apparent benefits, some insurers may still not have a systematic process
of tracking and monitoring death claims. Such a process clearly requires a meticulous
investigation of historical death claims experience. In this article, we explore the use of
data clustering to examine and understand how actual death claims differ from expected
ones. By naturally subdividing the policyholders into clusters, this process of exploration
through data clustering will provide us a better understanding of the characteristics of
the life insurance portfolio according to their historical claims experience. This can be
important in the early stage of monitoring death claims and subsequent management of
portfolio risks for the life insurer.

As information stored in data grows rapidly in the modern world, several industries,
including the insurance industry, have started to implement practices to analyze datasets
and to draw meaningful results for more effective decision making. The magnitude and
scale of information from these datasets continue to increase at a rapid pace, and so does
the ease of access. Data analytics have become an important function in every organization,
and how to deal with huge data sets has become an important issue. In many instances,
information comes in unstructured forms so that unsupervised learning methods are
instituted for preliminary investigation and examination.

The most commonly used unsupervised learning technique is cluster analysis. It
involves partitioning observations into groups or clusters where observations within
each cluster are optimally similar, while at the same time, observations between clusters
are optimally dissimilar. Among many clustering algorithms developed in the past few
decades, the k-means clustering algorithm (MacQueen (1967)) is perhaps the simplest,
most straightforward, and most popular method that efficiently partitions the data set
into k clusters. With k initial arbitrarily centroid set, the k-means algorithm finds the
locally optimal solutions by gradually minimizing the clustering error calculated according
to numerical attributes. While the technique has been applied in several disciplines,
(Thiprungsri and Vasarhelyi (2011); Sfyridis and Agnolucci (2020); Jang et al. (2019)), there
is less related work in life insurance. Devale and Kulkarni (2012) suggests the use of
k-means to identify population segments to increase customer base. Different methods
of clustering were employed to select representative policies when building predictive
models in the valuation of large portfolios of variable annuity contracts (Gan (2013); Gan
and Valdez (2016, 2020)).

For practical implementation, the algorithm has drawbacks that present challenges
with our life insurance dataset: (i) it is particularly sensitive to the initial cluster assignment
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which is randomly picked, and (ii) it is unable to handle categorical attributes. While the
k-prototype clustering is lesser known, it provides the advantage of being able to handle
mixed data types, including numerical and categorical attributes. For numerical attributes,
the distance measure used may still be based on Euclidean. For categorical attributes, the
distance measure used is based on the number of matching categories. The k-prototype
algorithm is also regarded as more efficient than other clustering methods (Gan et al. (2007)).
For instance, in hierarchical clustering, the optimization requires repeated calculations of
very high-dimensional distance matrices.

This paper extends the use of the k-prototype algorithm proposed by Huang (1997) to
provide insights into and draw inferences from a real-life dataset of death claims experi-
ence obtained from a portfolio of contracts of a life insurance company. The k-prototype
algorithm has been applied in marketing for segmenting customers to better understand
product demands Hsu and Chen (2007) and in medical statistics for understanding hospital
care practices Najjar et al. (2014). This algorithm integrates the procedures of k-means and
k-modes to efficiently cluster datasets that contain, as said earlier, numerical and categorical
variables; the nature of our data, however, contains a geospatial variable. The k-means can
only handle numerical attributes while the k-modes can only handle categorical attributes.
We therefore improve the k-prototype clustering by adding a distance measurement to the
cost function so that it can also deal with the geodetic distance between latitude–longitude
spatial data points. The latitude is a numerical measure of the distance of a location from
far north or south of the equator; longitude is a numerical measure of the distance of a
location from east-west of the “meridians”. Some work related to geospatial data clustering
can be found in the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
(Ester et al. 1996) and in ontology (Wang et al. 2010). The addition of spatial data points in
clustering gives us the following advantages: (i) we are able to make full use of available
information in our dataset; (ii) we can implicitly account for possible neighborhood effect
of mortality; and (iii) we provide additional novelty and insights into the applications.

Our empirical data have been drawn from the life insurance portfolio of a major
insurer and contain observations of approximately 1.14 million policies with a total insured
amount of over 650 billion dollars. Using our empirical data, we applied the k-prototype
algorithm that ultimately yielded three optimal clusters determined using the concept of
gap statistics. Shown to be an effective method for determining the optimal number of
clusters, the gap statistic is based on evaluating “the change in within-cluster dispersion
with that expected under an appropriate reference null distribution” (Tibshirani et al. 2001).

To provide further insights into the death claims experience of our life insurance
data set, we compared the aggregated actual to expected deaths for each of the optimal
clusters. For a life insurance contract, it is most sensible to measure the magnitude of
deaths based on the face amount, and thus, we computed the ratio of the aggregated
actual face amounts of those who died to the face amounts of expected deaths for each
optimal cluster. Under some mild regularity conditions, necessary to prove normality, we
were able to construct statistical confidence intervals of the ratio on each of the clusters,
thereby allowing us to draw inferences as to the significant statistical deviations of the
mortality experience for each of the optimal clusters. We provide details of the proofs for the
asymptotic development of these confidence intervals in Appendix A. Each cluster showed
different patterns of mortality deviation and we can deduce the dominant characteristics
of the policies from this cluster-based analysis. The motivation was to assist the life
insurance company in gaining some better understanding of potential favorable and
unfavorable clusters.

The rest of this paper is organized as follows. In Section 2, we briefly describe the real
data set from an insurance company, including the data elements and the preprocessing of
the data in preparation of cluster analysis. In Section 3, we provide details of the k-prototype
clustering algorithm and discuss how the balance weight parameter is estimated and how
to choose the optimal number of clusters. In Section 4, we present the clustering results
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together with interpretation. In Section 5, we discuss their implications and applications to
monitoring the company’s death claims experience. We conclude in Section 6.

2. Empirical Data

We illustrate k-prototype clustering algorithm based on the data set we obtained
from an insurance company. This data set contains 1,137,857 life insurance policies issued
in the third quarter of 2014. Each policy is described by 8 attributes with 5 categorical
and 2 numerical data elements, and longitude-latitude coordinates. Table 1 shows the
description and basic summary statistics of each variable.

Table 1. Descriptions of variables in the mortality dataset.

Categorical Variables Description Proportions

Gender Insured’s sex Female 34.1%
Male 65.9%

Smoker Status Insured’s smoking status Smoker 4.14%
Nonsmoker 95.86%

Underwriting Type Type of underwriting requirement Term conversion 4.52%
Underwritten 95.48%

Substandard Indicator Indicator of substandard policies Yes 7.76%
No 92.24%

Plan Plan type Term 74.28%
ULS 14.55%
VLS 11.17%

Continuous Variables Minimum Mean Maximum

Issue Age Policyholder’s age
at issue

0 43.62 90

Face Amount Amount of sum in-
sured at issue

215 529,636 100,000,000

Figure 1 provides a visualization of the distribution of the policies across the states.
We only kept the policies issued in the continental United States, and therefore, excluded
the policies issued in Alaska, Hawaii, and Guam. First, the frequency the latter policies
observed from these states is not materially plentiful. Second, since those states or territories
are outside the mainland United States, geodetic measurements are distorted and clustering
results may become less meaningful. The saturated color indicates a high frequency of
the policy distributed in a particular state. The distribution of the policy count is highly
skewed, with New York, New Jersey, California, and Pennsylvania having significantly
more insureds than other states. The spatial attributes are represented by latitude and
longitude coordinate pairs.

The insured’s sex indicator, gender, is also a discrete variable with 2 levels, female
and male, with the number of males being almost twice that of females. Smoker status
indicates the insured’s smoking status with 95.86% nonsmokers and the remaining 4.14%
smokers. The variable underwriting type reflects two types of underwriting: 95.48% of the
policies were fully underwritten at issue while the remaining 4.52% were term conversions.
Term conversions refer to those policies originally with a fixed maturity (or term) that were
converted into permanent policies at a later date, without any additional underwriting. The
variable “substandard indicator” indicates whether policy has been issued as substandard
or not. Substandard policies are issued after an underwriting is performed that have
expected mortality worse than standard policies. Substandard policies come with an extra
premium. In our dataset, there are about 7.76% policies considered substandard and the
remaining 92.24% are standard. The variable plan has three levels: the term insurance plan
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(term), universal life with secondary guarantees (ULS), and variable life with secondary
guarantees (VLS).
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Figure 1. U.S heatmap of policy frequency.

In our dataset, there are two continuous variables. The variable “issue age” refers
to the policyholder’s age at the time of issuing; the range of issue ages is from as young
as a newborn to as old as 90 years, with an average of about 44 years old. The variable
“face amount” refers to the sum insured, either fixed at policy issuing or accumulated to
this level at the most recent time of valuation. As is common with data clustering, we
standardized these two continuous variables by rescaling the values in order to be in the
range of [0, 1]. The general formula used in our normalization is

xnew =
x−min(x)

max(x)−min(x)
,

where x is the original value and xnew is the standardized (or normalized) value. This
method is usually more robust than other normalization formulas. However, for the
variable face amount, we found few extreme values that may be further distorting the
spread or range of possible values. To fix this additional concern, we take the logarithm of
the original values before applying the normalization formula:

xnew =
log(x)−min(log(x))

max(log(x))−min(log(x))
.

3. Data Clustering Algorithms

Data clustering refers to the process of dividing a set of objects into homogeneous
groups or clusters (Gan 2011; Gan et al. 2007) using some similarity criterion. Objects in
the same cluster are more similar to each other than to objects from other clusters. Data
clustering is an unsupervised learning process and is often used as a preliminary step
for data analytics. In bioinformatics, for example, data clustering is used to identify the
patterns hidden in gene expression data (MacCuish and MacCuish 2010). In big data
analytics, data clustering is used to produce a good quality of clusters or summaries for
big data to address the storage and analytical issues (Fahad et al. 2014). In actuarial science,
data clustering is also used to select representative insurance policies from a large pool of
policies in order to build predictive models (Gan 2013; Gan and Lin 2015; Gan and Valdez 2016).

Figure 2 shows a typical clustering process described in Jain et al. (1999). The clustering
process consists of five major steps: pattern representation, dissimilarity measure definition,
clustering, data abstraction, and output assessment. In the pattern representation step, the
task is to determine the number and type of the attributes of the objects to be clustered. In
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this step, we may extract, select, and transform features to identify the most effective subset
of the original attributes to use in clustering. In the dissimilarity measure definition step,
we select a distance measure that is appropriate to the data domain. In the clustering step,
we apply a clustering algorithm to divide the data into a number of meaningful clusters.
In the data abstraction step, we extract one or more prototypes from each cluster to help
comprehend the clustering results. In the final step, we use some criteria to assess the
clustering results.

Pattern
representation

Define
dissimilarity
measure

clustering Data
abstraction

Assess
output

Figure 2. A typical data clustering process.

Clustering algorithms can be divided into two categories: partitional and hierarchical
clustering algorithms. A partitional clustering algorithm divides a dataset into a single
partition; a hierarchical clustering algorithm divides a dataset into a sequence of nested
partitions. In general, partitional algorithms are more efficient than hierarchical algo-
rithms because the latter usually require calculating the pairwise distances between all the
data points.

3.1. The k-Prototype Algorithm

The k-prototype algorithm (Huang 1998) is an extension of the well-known k-means
algorithm for clustering mixed type data. In the k-prototype algorithm, the prototype is
the center of a cluster, just as the mean is the center of a cluster in the k-means algorithm.

To describe the k-prototype algorithm, let {Xij}, i = 1, 2, . . . , n, j = 1, 2, . . . , d denote a
dataset containing n observations. Each observation is described by d variables, including
d1 numerical variables, d2− d1 categorical variables, and d− d2 = 2 spatial variables. With-
out loss of generality, we assume that the first d1 variables are numerical, the remaining
d2 − d1 variables are categorical, and the last two variables are spatial. Then the dissimi-
larity measure between two points x and y used by the k-prototype algorithm is defined
as follows:

D(x, y) =
d1

∑
j=1

(xj − yj)
2 + λ1

d2

∑
j=d1+1

δ1(xj, yj) + λ2δ2(x∗, y∗), (1)

where λ1 and λ2 are balancing weights with respect to numerical attributes that are used
to avoid favoring types of variables other than numerical, δ1(·, ·) is the simple-matching
distance defined as

δ1(xj, yj) =

{
1, if xj 6= yj,
0, if xj = yj,

and δ2(·, ·) returns the spatial distance between two points with latitude–longitude coordi-
nates using great circle distance (WGS84 ellipsoid) methods. We have x∗ = (xd2+1, xd2+2),
y∗ = (yd2+1, yd2+2) and the radius of the Earth r = 6,378,137 m from WGS84 axis (Carter 2002):

∆a = xd2+2 − xd2+1

∆b = yd2+2 − yd2+1

A = cos(xd2+2) sin(∆b)

B = sin(∆a) + cos(xd2+2) sin(xd2+1)[1− cos(∆b)]

Φ2,1 = tan−1(A/B)

Θ2,1 = tan−1
[

B cos(Φ2,1) + A sin(Φ2,1)

cos(∆a)− cos(xd2+1) cos(xd2+2)[1− cos(∆a)]

]
δ2(x∗, y∗) = r(1− f )×Θ2,1
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where f is the flattening of the Earth (use 1/298.257223563 according to WGS84). WGS84 is
the common system of reference coordinate used by the Global Positioning System (GPS),
and is also the standard set by the U.S. Department of Defense for a global reference system
for geospatial information. In the absence of detailed location for each policy, we used the
latitude–longitude coordinates of the capital city within the state.

The k-prototype algorithm aims to minimize the following objective (cost) function:

P(U, Z) =
n

∑
i=1

k

∑
l=1

uil D(xi, zl), (2)

where U = (uil)i=1:n,l=1:k is an n × k partition matrix, Z = {z1, z2, . . . , zk} is a set of
prototypes, and k is the desired number of clusters. The k-prototype algorithm employs
an iterative process to minimize this objective function. The algorithm starts with k initial
prototypes selected randomly from the dataset. Given the set of prototypes Z, the algorithm
then updates the partition matrix as follows:

uil =

{
1, if D(xi, zl) = min1≤s≤k D(xi, zs),
0, if otherwise.

(3)

Given the partition matrix U, the algorithm updates the prototypes as follows:

zl j =
∑n

i=1 uil xij

∑n
i=1 uil

, 1 ≤ j ≤ d1, (4a)

zl j = mode{xij : uil = 1}, d1 + 1 ≤ j ≤ d2, (4b)

(zl,d2+1, zl,d2+2) = {(xi,d2+1, xi,d2+2)
∣∣min(δ2(x∗, z∗l ))}, (4c)

where x∗ = {(x1,d2+1, x1,d2+2), (x2,d2+1, x2,d2+2), . . . , (xn,d2+1, xn,d2+2)} and z∗l = (zl,d2+1,
zl,d2+2). When δ2 is calculated, we exclude the previous spatial prototype. The numerical
components of the prototype of a cluster are updated to the means, the categorical compo-
nents are updated to the modes, and the new spatial prototype is the coordinate closest to
the previous one.

Algorithm 1 shows the pseudo-code of the k-prototype algorithm. A major advantage
of the k-prototype algorithm is that it is easy to implement and efficient for large datasets.
A drawback of the algorithm is that it is sensitive to the initial prototypes, especially when
k is large.

Algorithm 1: Pseudo-code of the k-prototype algorithm.
Input: A dataset X, k
Output: k clusters

1 Initialize z1, z2, . . . , zk by randomly selecting k points from X;
2 repeat
3 Calculate the distance between xi and zj for all 1 ≤ i ≤ n and 1 ≤ j ≤ k;
4 Update the partition matrix U according to Equation (3);
5 Update cluster centers Z according to Equation (4);
6 until No further changes of cluster membership;
7 Return the partition matrix U and the cluster centers Z;

3.2. Determining the Parameters λ1 and λ2

The cost function in Equation (2) can be further rewritten as:

P(U, Z) =
k

∑
l=1

n

∑
i=1

uil

{
d1

∑
j=1

(xij − zl j)
2 + λ1

d2

∑
j=d1+1

δ1(xij, zl j) + λ2δ2(x∗i , z∗l )

}
,
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where x∗i = (xi,d2+1, xi,d2+2) and the inner term

Dl =
n

∑
i=1

uil

{
d1

∑
j=1

(xij − zl j)
2 + λ1

d2

∑
j=d1+1

δ1(xij, zl j) + λ2 δ2(x∗i , z∗l )

}
= Dn

l + Dc
l + Ds

l

is the total cost when X is assigned to cluster l. Note that we can subdivide these measure-
ments into

Dn
l =

n

∑
i=1

uil

d1

∑
j=1

(xij − zl j)
2,

Dc =
n

∑
i=1

uil λ1

d2

∑
j=d1+1

δ1(xij, zl j), and

Ds
l =

n

∑
i=1

uil λ2 δ2(x∗i , z∗l ),

that represent the total cost from the numerical, categorical, and spatial attributes, respec-
tively.

It is easy to show that the total cost Dl is minimized by individually minimizing Dn
l ,

Dc
l , and Ds

l (Huang (1997)). Dn
l can be minimized through Equations (4a). Dc

l , the total cost
from categorical attributes of X, can be rewritten as

Dc
l = λ1

n

∑
i=1

uil

d2

∑
j=d1+1

δ1(xij, zl j)

= λ1

n

∑
i=1

d2

∑
j=d1+1

{1 · (1− P(xij = zl j|l)) + 0 · P(xij = zl j|l)}

= λ1

n

∑
i=1

d2

∑
j=d1+1

{1− P(xij = zl j|l)}

= λ1

d2

∑
j=d1+1

nl{1− P(zl j ∈ Aj|l)},

where Aj is the set of all unique levels of the jth categorical attribute of X and P(zl j ∈ Aj|l)
denotes the probability that the jth categorical attribute of prototype zl occurs given cluster
l. λ1 and λ2 are chosen to prevent over-emphasizing either categorical or spatial with
respect to numerical attributes and thereby are dependent on the distributions of those
numerical attributes (Huang (1997)). In the R package Szepannek (2017), the value of λ1
is suggested to be the ratio of average of variance of numerical variables to the average
concentration of categorical variables:

λ̂1 =

1
d1

∑d1
j=1 Var(xj)

1
d2−(d1+1) ∑d2

j=d1+1 ∑k qjk(1− qjk)
=

1
d1

∑d1
j=1 Var(xj)

1
d2−(d1+1) ∑d2

j=d1+1(1−∑k q2
jk)

,

where qjk is the frequency of the kth level of the jth categorical variable. See also, Szepannek (2019).
For each categorical variable, we consider it to have a distribution with a probability of each
level to be the frequency of this level. For example, the categorical data element plan has
three levels: term, universal life with secondary guarantees (ULS), and variable life with sec-
ondary guarantees (VLS). Then the concentration of plan can be measured by Gini impurity:
∑3

k=1 qjk(1− qjk) = 1−∑3
k=1 q2

jk. Therefore, under the condition that all the variables are

independent, the total Gini impurity for categorical variables is ∑d
j=d1+1(1−∑k q2

jk), since
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∑3
k=1 qjk = 1. The average of the total variance for the numerical variables 1

d1
∑d1

j=1 Var(xj)

can be considered to be the estimate of the population variance. Subsequently, λ̂1 becomes
a reasonable estimate and is easy to calculate.

Similarly, λ̂2 =

1
d1

∑d1
j=1 Var(xj)

Var(δ2(x∗, center))
, where the concentration of spatial attributes is

estimated by the variance of the Great Circle distances between x∗ and the center of the
total longitude-latitude coordinates.

3.3. Determining the Optimal Number of Clusters

As alluded to in Section 1, the gap statistic is used to determine the optimal number
of clusters. Data X = {Xij}, i = 1, 2, . . . , n, j = 1, 2, . . . , d consist of d features measured on
n independent observations. Dij denotes the distance, defined in Equation (1), between
observations i and j. Suppose that we have partitioned the data into k clusters C1, . . . , Ck
and nl = |Cl |. Let

Dw
l = ∑

i,j∈Cl

Dij

be the sum of the pairwise distance for all points within cluster l and set

Wk(X) =
k

∑
l=1

1
2nl

Dw
l .

The idea of the approach is to standardize the comparison of log(Wk) with its expecta-
tion under an appropriate null reference distribution of the data. We define

Gap(k) = E[log(Wk(X
∗))]− log(Wk(X)),

where E[log(Wk(X∗))] denotes the average log(Wk) of the samples X∗ generated from
the reference distribution with predefined k. The gap statistic can be calculated by the
following steps:

• Set k = 1, 2, . . . , 10;
• Run k-prototype algorithm and calculate log(Wk) under each k = 1, 2, . . . , 10 for the

original data X;
• For each b = 1, 2, . . . , B, generate a reference data set X∗b with sample size n. Run the

clustering algorithm under the candidate k values and compute

E[log(Wk(X
∗))] =

1
B

B

∑
b=1

log(Wk(X
∗
b))

and Gap(k);
• Define s(k) =

(√
1 + 1/B

)
× sd(k), where

sd(k) =
√
(1/B)∑B

b=1(log(Wk(X∗b))− E[log(Wk(X∗))])2; and

• Choose the optimal number of clusters as the smallest k such that Gap(k) ≥ Gap(k +
1)− s(k + 1).

This estimate is broadly applicable to any clustering method and distance measure Dij.
We use B = 50 and randomly draw 10% of the data set using stratified sampling to keep the
same proportion of each attribute. The gap and the quantity Gap(k)− (Gap(k + 1)− s(k + 1))
against the number of clusters k are shown in Figure 3. The gap statistic clearly peaks at
k = 3 and the criteria for choosing k displayed in the right panel. The correct k = 3 is the
smallest for which the quantity Gap(k)− (Gap(k + 1)− s(k + 1)) becomes positive.
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Figure 3. (a) Gap statistics in terms of the corresponding number of clusters and (b) results of
choosing the optimal number of clusters.

There is the possible drawback of the highly sensitivity of the initial choice of pro-
totypes. In order to minimize the impact, we run the k-prototype algorithm with correct
k = 3 starting with 20 different initializations and then choose the one with the smallest
total sum squared errors.

4. Clustering Results and Interpretation

Using our mortality dataset with eight different attributes that are mixed type (nu-
merical, categorical and spatial), we concluded as detailed in the previous section that
three clusters are formed. Table 2 displays the size and membership degree of each cluster.
Cluster 3 has the largest membership of nearly 57% of the total observations, while clusters
1 and 2 are partitioned with 30.1% and 13.0% memberships, respectively.

Table 2. Size and percentage for each of the three optimal clusters.

Cluster 1 Cluster 2 Cluster 3

number of observations 342,518 147,561 647,778
percentage 30.10% 12.97% 56.93%

Let us describe some dominating features for each of the clusters. The outputs are
visualized in Figures 4 and 5. Additional details of these dominating features are well
summarized in Table A2 showing the cluster distribution in the categorical variables,
Table A1 with a descending order of the cluster proportion in the variable states, and
Table A3 regarding the distributions of numerical variables. These tables are provided in
the Appendix B.

Cluster 1

• Its gender make-up is predominantly females in the entire portfolio. There is a
larger percentage of term plans and a smaller percentage of substandard policies
than clusters 2 and 3. The violin plots for the numerical attributes show that the
youngest group with the smallest amount of insurance coverage is in this cluster.
Geographically, the insureds in this cluster are mostly distributed in the northeast-
ern regions, such as New Jersey, New York, Rhode Island, and New Hampshire.

Cluster 2

• This cluster has a gender make-up that is interesting. While clusters 1 and 3 have
a dominating gender, cluster 2 has 30% females and 70% males. It also has the
largest proportions of smokers, term conversion underwriting type policies, and
substandard policies when compared with other clusters. However, when it comes
to plan type, 91% of them have universal life contracts and almost none have term
plans. With respect to issue age and amount of insurance coverage, this cluster of
policies has the most senior people, and not surprisingly, it has also a lower face
amount. Geographically, with the exception of a few states dominating the cluster,
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there is almost uniform distribution of the rest of the states. Custer 2 has the states
with the lowest proportions of insured policies among all the clusters.

Cluster 3

• Male policyholders dominate this cluster and cluster 3 has the smallest proportions
of smokers and term conversion underwriting type policies among all clusters.
More than 90% of the policyholders purchased term plans and most of them are also
with generally larger face amounts than the other two clusters. The policyholders
in this cluster are more middle aged compared with other clusters according to the
violin plots. The policyholders in this cluster are more geographically scattered in
Arkansas, Alabama, Mississippi, Tennessee, and Oregon; interestingly, cluster 3
has the largest proportion of policies among all clusters.
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Figure 4. Distribution of the variable “states” in each of the optimal clusters.
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Figure 5. Distributions of the numerical and categorical attributes in each of the optimal clusters.

5. Discussion

We now discuss how the clustering results in the previous section can be applied as a
risk management tool for mortality monitoring. In particular, we compare these clusters
with respect to their deviations of actual to expected mortality. It is a typical practice in
the life insurance industry that when analyzing and understanding such deviations, we
compare the actual to expected (A/E) death experiences.

To illustrate how we made the comparison, consider one particular cluster containing
n policies. We computed the actual number of deaths for this entire cluster by adding up
all the face amounts of those who died during the quarter. Let FAi be the face amount of
policyholder i in this particular cluster. Thus, the aggregated actual face amount among
those who died is equal to

n

∑
i=1

Ai =
n

∑
i=1

FAi × Ii,

where Ii = 1 indicates the policyholder died and the aggregated expected face amount is

n

∑
i=1

Ei =
n

∑
i=1

FAi × qi,

where the expected mortality rate, qi, is based on the latest 2015 valuation basic ta-
ble (VBT), using smoker-distinct and ALB (age-last-birthday) (https://www.soa.org/

https://www.soa.org/resources/experience-studies/2015/2015-valuation-basic-tables/
https://www.soa.org/resources/experience-studies/2015/2015-valuation-basic-tables/
https://www.soa.org/resources/experience-studies/2015/2015-valuation-basic-tables/
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resources/experience-studies/2015/2015-valuation-basic-tables/ (accessed on 3 March
2021)). The measure of deviation, R, is then defined to be

R =
∑n

i=1 Ai

∑n
i=1 Ei

.

Clearly, a ratio R < 1 indicates better than expected mortality, and R > 1 indicates
worse than expected mortality.

The death indicator Ii is a Bernoulli distributed random variable with parameter qi
which represents the probability of death, or loosely speaking, the mortality rate. For large
n, i.e., as n→ ∞, the ratio R converges in distribution to a normal random variable with

mean 1 and variance ∑n
i=1 FA2

i qi(1−qi)

(∑n
i=1 Ei)2 . The details of proofs for this convergence are provided

in Appendix A.
Based on the results of this convergence, it allowed us to construct 90% and 95%

confidence intervals of the ratio R or the A/E of mortality. We display Figure 6a,b, which
depict the differences in the A/E ratio for the three different clusters, based on 90% and
95% confidence intervals, respectively.

Based on this company’s claims experience, these figures provide some good news
overall. The observed A/E ratios for all clusters are all below 1, which as said earlier,
indicates that the actual mortality is better than expected for all three clusters. There are
some peculiar observations that we can draw from the clusters:

• Cluster 1 has the most favorable A/E ratio among all the cluster—significantly less
than 1 at the 10% significance level, with moderate variability. This can be explained
reasonably by this dominant feature compared with other clusters: Its gender make-up
of all females in the entire portfolio. Females live longer than males on the average.
There is a larger percentage of variable life plans, and slightly fewer smokers, term
conversion, and substandard policies than clusters 2 and 3. In addition, the violin
plots for the numerical attributes show that the youngest group with smallest amount
of insurance coverage belongs to this cluster. We expect this youngest group to have
generally low mortality rates. Geographically, the insureds in this cluster are mostly
distributed in the northeastern regions, such as New Jersey, New York, Rhode Island,
and New Hampshire. It may be noted that policyholders tend to come from this
region where the people typically have better incomes with better employer-provided
health insurance.

• Cluster 2 has the A/E ratio of 0.68—not significantly less than 1 at both 5% and 10%
significance levels; it has the largest variability of this ratio among all clusters. Cluster
2 has, therefore, the most unfavorable A/E ratio from a statistical perspective. The
characteristics of this cluster can be captured by these dominant features: (i) Its gender
make-up is a mix of males and females, with more males than females. (ii) It has
the largest proportions of smokers, term conversion underwriting type policies, and
substandard policies. (iii) When it comes to plan type though, 91% of them have
universal life contracts and no term policies. (iv) With respect to age at issuing and
amount of insurance coverage, this cluster has the largest proportion of elderly people
and therefore, has lower face amounts. All these dominating features help explain a
generally worse mortality and larger variability of deviations. For example, the older
group has a higher mortality rate than the younger group, and along with the largest
proportion of smokers, this explains the compounded mortality. To some extent,
with the largest proportions of term conversion underwriting types and substandard
policies, they reasonably indicate more inferior mortality experience.

• Cluster 3 has the A/E ratio that is most significantly less than 1, even though it has
the worst A/E ratio among all the clusters. The characteristics can be captured by
some dominating features in the cluster: male policyholders dominate this cluster and
it has the smallest proportions of smokers and term conversion underwriting type
policies among ALL three clusters. More than 90% of the policyholders purchased

https://www.soa.org/resources/experience-studies/2015/2015-valuation-basic-tables/
https://www.soa.org/resources/experience-studies/2015/2015-valuation-basic-tables/
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Term plans and most of them have larger face amounts than other clusters. The
policyholders in this cluster are more often middle aged compared to other clusters
according to the violin plots. The policyholders are more geographically scattered
in Arkansas, Alabama, Mississippi, Tennessee, and Oregon. We generally know
that smokers’ mortality is worse than non-smokers. Relatively younger age groups
have a lower mortality rate than other age groups. Term plans generally have fixed
terms and are more subject to frequent underwriting. The small variability can be
explained by having more policies giving enough information, and hence, much more
predictable mortality.
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(a) 90% Confidence interval of A/E ratio.
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(b) 95% Confidence interval of A/E ratio.

Figure 6. Actual to expected mortality rates based on face amounts. The values in the boxes are the
observed ratios for the respective clusters; the confidence intervals were calculated based on the
theory developed in Appendix A.

6. Conclusions

This paper has presented the concept of the k-prototype algorithm for clustering
datasets with variables that are of mixed type. Here, our empirical data consist of a
large portfolio of life insurance contracts that contain numerical, categorical, and spatial
attributes. With clustering, the goal is to subdivide the large portfolio into different groups
(or clusters), with members of the same cluster that are more similar to each other in
some form than those in other clusters. The concept of similarity presents an additional
challenge when objects in the portfolio are of mixed type. We constructed the k-prototype
algorithm by minimizing the cost function so that: (i) for numerical attributes, similarity
is based on the Euclidean distance, (ii) for categorical attributes, similarity is based on
simple-matching distance, and (iii) for spatial attributes, similarity is based on a distance
measure, as proposed in WGS84. Based on the gap statistics, we found that our portfolio
yielded three optimally unique clusters. We have described and summarized the peculiar
characteristics in each cluster.

More importantly, as a guide to practitioners wishing to perform a similar study, we
demonstrated how these resulting clusters can then be used to compare and monitor actual
to expected death claims experience. Each cluster has lower actual to expected death claims
but with differing variabilities, and each optimal cluster showed patterns of mortality
deviation for which we are able to deduce the dominant characteristics of the policies
within a cluster. We also found that the additional information drawn from the spatial
nature of the policies contributed to an explanation of the deviation of mortality experience
from what was expected. The results may be helpful for decision making because of an
improved understanding of potential favorable and unfavorable clusters. We hope that
this paper stimulates further work in this area, particularly in life insurance portfolios with
richer and more informative sets of feature variables to enhance the explainability of the
results. With each cluster used as a label to the observations, a follow-up study will be done
to implement supervised learning to improve understanding of risk classification of life
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insurance policies. More advanced techniques for clustering, e.g., Ahmad and Khan (2019),
can also be used as part of future work.
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Appendix A. Convergence of A/E Ratio

Define Sn = X1 + · · ·Xn and B2
n = Var(Sn) = ∑n

k=1 σ2
k and for ε > 0 let

Ln(ε) =
1

B2
n

n

∑
k=1

E(Xk − µk)
21|Xk−µk |>εBn .

Theorem A1 (Lindeberg-Feller). Let {Xn}n≥1 be a sequence of independent random vari-
ables with mean µn and variances 0 < σ2

n < ∞. If Ln(ε)→ 0 for any ε > 0, then

Sn − E[Sn]

Bn

d−→ N (0, 1).

Theorem A2 (Lyapunov Theorem). Assume that E|Xk|2+δ < ∞ for some δ > 0 and k =
1, 2, . . . . If

1
B2+δ

n

n

∑
k=1

E|Xk − µk|2+δ → 0

Then

Sn − E[Sn]

Bn

d−→ N (0, 1)
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Proof. For δ > 0,

Ln(ε) =
1

B2
n

n

∑
k=1

E(Xk − µk)
21|Xk−µk |>εBn =

1
B2

n

n

∑
k=1

n

∑
k=1

E
|Xk − µk|2+δ

|Xk − µk|δ
1|Xk−µk |>εBn

≤ 1
εδB2+δ

n

n

∑
k=1

E|Xk − µk|2+δ → 0 as n→ ∞

Then by Lindeberg-Feller Theorem, Sn−E[Sn ]
Bn

d−→ N (0, 1).

We can prove that if {Xn}n≥1 is a sequence of independent random variables such

that 0 < infn Var(Xn) and supn E|Xn|3 < ∞. Then (Sn − E[Sn])/Bn
d−→ N (0, 1).

Proof. Suppose that Xn has mean µn and variance σ2
n < ∞.

∑n
k=1 E|Xk|3

B3
n

=
∑n

k=1 E|Xk|3

(∑n
k=1 σ2

k )
3
2
≤

n · supn E|Xn|3

(n · infn Var(Xn))
3
2
=

supn E|Xn|3

(infn Var(Xn))
3
2

1√
n
→ 0 as n→ ∞.

where supn E|Xn|3 < ∞ and 0 < infn Var(Xn) < ∞. Therefore by Lyapunov Theorem,

(Sn − E[Sn])/Bn
d−→ N (0, 1).

In this paper, each policy has a death indicator Ii that is Bernoulli distributed with
probability of death qxi . Assume that each policy’s death is observable and fixed, not
random, so that qxi is fixed and not varying with data. Within cluster c with total number
of policies nc, let FAi, Ai, and Ei be the face amount, actual death payment, and expected
death payment for each policy, respectively. When a policy i is observed dead, then
Ii = 1. Otherwise, Ii = 0. Thus, Ai = FAi · Ii and Ei = FAi · qxi . Let Yi = ci Ii where
ci =

FAi
∑nc

k=1 Ek
. Since Ii ∼ Bernoulli(qxi ), E(Yi) = ciE(Ii) = ciqxi and Var(Yi) = c2

i qxi (1− qxi ).

We calculate that infn Var(Xn) = 1.67 ∗ 10−16, then infn Var(Yn) is positive and finite,
and 0 < supn E|Yn|3 = 1.2 ∗ 10−5 < ∞. These two conditions are satisfied and Yi’s are
independently distributed.

Let Rc = ∑nc
i=1 Yi =

∑nc
i=1 Ai

∑nc
i=1 Ei

denote the measure of mortality deviation for cluster c. By

the Lyapunov theorem, we have

∑nc
i=1 Yi − E(∑nc

i=1 Yi)√
Var(∑nc

i=1 Yi)

d−→ N (0, 1)⇒ Rc
d−→ N

(
1,

∑nc
i=1 FA2

i qxi (1− qxi )

(∑nc
i=1 Ei)2

)
,

where

E(Rc) =
nc

∑
i=1

E(Yi) =
nc

∑
i=1

ciqxi =
∑nc

i=1 FAi ∗ qxi

∑nc
i=1 Ei

=
∑nc

i=1 Ei

∑nc
i=1 Ei

= 1

and

Var(Rc) =
nc

∑
i=1

Var(Yi) =
nc

∑
i=1

c2
i qxi (1− qxi ) =

∑nc
i=1 FA2

i qxi (1− qxi )

(∑nc
i=1 Ei)2 .
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Appendix B. Tables That Summarize the Distributions of Clusters

Table A1. Proportions of each cluster in the variable states.

Cluster 1 Cluster 2 Cluster 3

States Proportion States Proportion States Proportion

NJ 36.36% WV 21.25% AR 74.78%
NY 34.54% DE 19.40% AL 74.19%
RI 34.35% PA 19.26% MS 73.84%

NH 34.09% OH 18.50% TN 71.36%
ME 33.98% IN 16.40% OR 70.64%
MA 33.64% RI 16.21% ID 69.03%
DE 32.70% ME 15.79% OK 68.16%
CA 32.46% SD 15.48% KY 68.02%
NV 32.25% IL 15.45% TX 66.90%
MD 31.90% NJ 14.17% WA 66.29%
IL 31.82% NY 14.12% UT 64.42%
PA 31.63% SC 13.84% GA 64.34%
DC 31.54% MD 13.54% CO 64.29%
CT 30.82% IA 12.78% WY 63.83%
MT 29.96% MO 12.78% ND 63.20%
NM 29.94% KS 12.69% NE 62.92%
IN 29.55% ND 12.51% NC 62.69%
FL 29.19% LA 12.32% KS 61.93%

MN 28.60% VT 12.22% VA 61.80%
AZ 28.47% MA 12.15% IA 61.74%
WI 28.34% FL 12.07% LA 61.48%
MI 27.94% NH 11.93% MT 61.02%
VT 27.93% MN 11.65% MO 60.85%
OH 27.61% WI 11.65% AZ 60.69%
WY 27.12% MI 11.64% MI 60.42%
UT 27.01% NM 11.59% WI 60.01%
VA 26.91% CT 11.53% SD 59.86%
SC 26.86% NE 11.51% VT 59.85%
WA 26.61% NC 11.49% MN 59.75%
MO 26.37% VA 11.29% SC 59.31%
LA 26.20% CA 11.26% FL 58.74%
GA 26.10% AZ 10.83% DC 58.66%
NC 25.82% NV 10.34% NM 58.47%
CO 25.66% CO 10.05% CT 57.65%
NE 25.57% KY 9.98% NV 57.40%
IA 25.48% DC 9.80% CA 56.28%

WV 25.48% GA 9.56% MD 54.56%
KS 25.38% OK 9.08% MA 54.21%
SD 24.66% WY 9.05% IN 54.05%
ND 24.29% MT 9.02% NH 53.98%
TX 24.24% TX 8.86% OH 53.90%
ID 22.84% AL 8.74% WV 53.27%
OK 22.77% MS 8.62% IL 52.73%
OR 22.24% UT 8.57% NY 51.34%
KY 22% ID 8.13% ME 50.23%
TN 20.71% TN 7.93% NJ 49.47%
AR 18.04% AR 7.18% RI 49.44%
MS 17.54% OR 7.12% PA 49.10%
AL 17.07% WA 7.10% DE 47.90%
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Table A2. Data summary for categorical variables within the 3 optimal clusters.

Categorical Variables Levels Cluster 1 Cluster 2 Cluster 3

Gender Female 100% 30.43% 0.09%
Male 0% 69.57% 99.91%

Smoker Status Smoker 4.43% 6.53% 3.45%
Nonsmoker 95.57% 93.47% 96.55%

Underwriting Type Term conversion 3.59% 22.79% 0.85%
Underwritten 96.41% 77.21% 99.15%

Substandard Indicator Yes 6% 11.58% 7.82%
No 94% 88.42% 92.18%

Plan Term 73.71% 0% 91.51%
ULS 8.95% 90.86% 0.12%
VLS 17.34% 9.14% 8.37%

Table A3. Data summary for numerical variables within the 3 optimal clusters.

Continuous Variables Minimum 1st Quantile Mean 3rd Quantile Maximum

Issue Age

Cluster 1 0 31 38.59 46 81
Cluster 2 0 47 51.53 61 90
Cluster 3 0 36 44.47 53 85

Face Amount

Cluster 1 215 100,000 375,066 500,000 13,000,000
Cluster 2 3000 57,000 448,634 250,000 19,000,000
Cluster 3 4397 250,000 717,646 1,000,000 100,000,000
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