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1. Introduction

In actuarial science, the discounted sum of losses over time can be considered as a
randomly weighted sum of a sequence of independent and identically distributed (i.i.d.)
random variables. Those independent and identically distributed random variables rep-
resent the claim amounts in successive development years, while the weights represent
the discounted factors. Similar studies that have assumed independence between the
inter-occurrence time and the forthcoming claim amounts include Taylor (1979), Delbaen
and Haezendonck (1987), Waters (1983), Sundt and Teugels (1995), Cai (2002) and Yuen
et al. (2006) who not only assumed independence between inter-occurrence time but have
also derived the asymptotic tail probabilities associated with free interest risk model. In
addition, Boogaert et al. (1988), Willmot (1989), Leveillé and Garrido (2001a, 2001b),
Leveillé and Adékambi (2011, 2012) and Léveillé et al. (2010) have not only assumed the
independence between the inter-occurrence time and the claim sizes but have also general-
ized the moments of the aggregate renewal sums. Leveillé and Hamel (2018) have used
non-homogeneous and doubly compound Poisson process with stochastic force of interest
and have derived the moments generating functions of the discounted aggregate claims.
Moreover, they have found the inverse of the moments generating functions numerically
and analytically. Geluk and Tang (2009) have studied the asymptotic behavior of the tail
probabilities of a sum of real-value random variables. They have assumed that the distri-
butions of the random variables belong to the subexponential class. Using asymptotically
independence assumptions, they have showed that the asymptotic behavior of the tail
probabilities is the same as that of the independence case. Although the independence
assumption appears to be custom in risk theory, it has recently been subject to severe
criticism due to the fact that it does not provide reliable estimates under extreme events,
for example, see Boudreault et al. (2006) and Zhang and Yang (2011). Thus, the use of
dependent risk models has exhibited some positive interests in the literature. Yang et al.
(2012) have also studied the asymptotic behavior of the tail probabilities of a randomly
weighted sum of subexponential random variables under dependence structure. In their
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paper, they have assumed that the random weights and the corresponding summand are
dependent and the sequence of the pairs of random variables are i.i.d. Liu and Gao (2015)
have considered the problem of the tail behavior of the discounted aggregate sum in depen-
dent risk models with constant force of interest. They have assumed that the claim sizes
are of an upper tail asymptotic independence structure. Moreover, they have assumed
that the claim sizes and the inter-occurrence time have a specific dependence structure
and they have derived an asymptotic formula in the case where the claim size distribution
belongs to the intersection of long-tailed distribution class and dominant variation class.
Albrecher and Boxma (2004, 2005) have developed a dependent risk model in which they
have assumed that the inter-claim time and the forthcoming claim amounts are governed by
a semi-Markov process. Further to that, Albrecher and Teugels (2006) have used a random
walk process to model the dependency between the inter-claim time and the forthcoming
claim amounts. Their results are more elaborate as they have modeled this dependency
using a copula and have derived exponential estimates of the ruin probabilities in finite
and infinite time horizons. Yang et al. (2014) have considered a nonstandard risk model
in which they have assumed a Lévy process for the interest rate. Assuming a specific
dependency among the claims, they have derived the tail probability of the discounted
aggregate claim. Lu et al. (2018) have extended the work of Yang et al. (2014) by consider-
ing the multi-risk model. They incorporated the dependence structure among the claim
severities and by assuming a multidimensional Lévy process for the force of interest, they
have derived the asymptotic tail distribution of the discounted aggregate claim. This paper
attempts to assess the impact of the dependency between the inter-occurrence time and
the forthcoming claim severities through a copula approach and derives the asymptotic
tail probabilities. The closest study to ours is that of Asimit and Badescu (2010) who have
considered in a constant force of interest environment a heavy tailed distribution of the
discounted aggregate claim in which the dependence structure is modeled via copulas.
They have derived numerically the asymptotic tail probabilities, the asymptotic finite
time ruin probabilities and asymptotic approximations for some common risk measures
associated with the discounted aggregate claims distribution, without taking into account
any effect of the interest rate. Asimit and Badescu (2010) have also derived a convolution
form of the asymptotic tail probability of the aggregate claim under homogeneous Poisson
risk model when the force of interest rate δ 6= 0 and a closed-form expression has only been
derived for the special case of δ = 0. In the present paper, we have extended their result by
finding a closed-form expression of the tail probability under homogeneous, mixed and
non-homogeneous Poisson processes (Theorems 2–7), assuming that the counting process
following Poisson distribution may be restrictive.

The model inputs are set as follows:

• The counting processes {N(t), t ≥ 0}, {Nnh(t), t ≥ 0} and {Nmh(t), t ≥ 0} form
respectively homogeneous, non-homogeneous and mixed Poisson processes.

• Non-negative random variables {Vk, k ∈ N} that represent the inter-occurrence times.
• Non-negative random variables {Tk, k ∈ N} such that Tk = ∑k

j=1 Vj, represent the
claim occurrence times.

• Positive i.i.d random variables {Bk, k ∈ N} that represent the claim severities. It is
assumed that {Bk, Vk, k ∈ N− 1} are independent of {B1, V1}.
The discounted aggregate claim process for homogeneous, non-homogeneous or

mixed Poisson models over a finite time horizon (0; t] is given by

Zδ(t) =
N(t)

∑
k=1

Bke−δTk , Znh
δ (t) =

Nnh(t)

∑
k=1

Bke−δTk , Zmh
δ (t) =

Nmh(t)

∑
k=1

Bke−δTk ,

where Zδ(t) = Znh
δ (t) = Zmh

δ (t) = 0 if N(t) = Nnh(t) = Nmh(t) = 0 and δ is the force
of interest.

The remaining is structured as follows. Section 2 reviews the type of dependence
structure used in the study. Section 3 gives a closed-form expression of the tail probability
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for the homogeneous, non-homogeneous and mixed Poisson risk models and finally in
Section 4 we apply these results to derive some risk measures such as the asymptotic finite
time ruin probability and the value-at-risk and also provide some numerical illustrations
for these risk measures.

2. Preliminaries

This paper considers the same dependence structure for the k-th inter-occurrence time
Vk and its corresponding claim size Bk as in Asimit and Badescu (2010) and derived the tail
probability for the aggregate claim.

The following assumption (from Asimit and Badescu (2010)) characterizes the type of
dependence structure under study.

Assumption 1. The pairs of random variables
(
Vi, Bi

)
, i = 1, 2, ... are mutually i.i.d. Moreover,

there exists a positive and locally bounded function l() such that the relation

Pr(B1 > b | V1 = v1) ∼ Pr(B1 > b)l(v1), (1)

holds uniformly for all v1 ∈ (0, T] as b→ +∞ where T is the time horizon.

Here uniformly is understood as

lim
b→∞

sup
v∈(0,t]

∣∣∣∣Pr
(

B1 > b | V1 = v1
)

Pr(B1 > b)l(v1)
− 1

∣∣∣∣ = 0. (2)

As in Asimit and Badescu (2010), Assumption 1 is motivated by the fact that under its
premises, one can study a wide class of dependence structure given in terms of a copula.

From Sklar’s theorem (see Sklar 1959), if H is a joint cumulative distribution function
with continuous marginals H1 and H2 respectively, there exists a unique copula C such that

H(b, v) = C(H1(b), H2(v)), (b, v) ∈ Dom(H).

So, for example, the survival copula is defined as the copula relative to the joint survival
function and is given by

Ĉ(u1, u2) = u + v− 1 + C(1− u1, 1− u2), (u1, u2) ∈ [0, 1]2.

For more details on the theory of copulas, the reader is referred to the book of Nelsen (1999).

It follows (see Asimit and Badescu 2010) that if Ĉ2(u1, u2) =
∂Ĉ(u1, u2)

∂u2
exists, then

Assumption 1 can be rewritten as

lim
u1↓0

sup
u2∈[e−λT ,1)

∣∣∣∣ Ĉ2(u1, u2)

u1h(u2)
− 1
∣∣∣∣ = 0, where h(v) := l

(
− log v

λ

)
.

In this paper, we consider only the case of heavy-tailed claim size distributions. Let us
denote by F the cumulative distribution function of a non-negative random variable B, F
its tailed distribution and F∗n the n-fold convolution of F

(1) The distribution of B is said to belong to the subexponential class (S) if and only if

lim
b→∞

F∗2(b)
F(b)

= 2.
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(2) The distribution of B is said to belong to regularly varying class (RV−α) if and only if

lim
b→∞

F(by)
F(b)

= y−α, α > 0.

For more information on heavy-tailed distributions and its applications, the reader is
referred to Su et al. (2007) and references therein.

3. Asymptotic Expression of the Cumulative Distribution of Zδ(T)

Recall from Section 1 that Zδ(T) is the random variable that represents the discounted
aggregate claim process. If the actuary knows the form of Zδ(T), then he can apply the
quantile principle to calculate the premium or risk measures such as the ruin probability or
the value-at-risk.

3.1. Homogeneous Poisson Risk Process

Let us recall the following theorem from Asimit and Badescu (2010) for the tail
probability of Zδ(t).

Theorem 1. Consider a homogeneous compound Poison risk process with constant force of interest
δ > 0 such that the cumulative function (F) of B belongs to RV−α. If Assumption 1 is satisfied
for any t ∈ (0; T], T is time horizon, then

P(Zδ(T) > b) ∼ Kδ(T)P
(
B1 > b), b −→ +∞,

where

Kδ(T) = e−λT
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv1 · · · dvn. (3)

Theorem 1 gives the convolution form of the tail probability of the aggregate claim.
Although this result is interesting, it has a drawback as a closed analytical expression is
still unknown, thus the multiple integrals need to be evaluated numerically and may cost
in time. To address the issue, the following theorems derive and solve the differential
equation of Kδ(T) given above.

Theorem 2. Under the assumption of Theorem 1, the deterministic function Kδ(T) satisfied the
following differential equation

d2Kδ(T)
dT2 =

(
λe−αδT − αδ− λ

)dKδ(T)
dT

+ λl′(T)e−(αδ+λ)T , (4)

where Kδ(0) = 0 and ∂Kδ(T)
∂T

∣∣∣∣
T=0

= λl(0).

Remark 1. If δ = 0 then
d2K0(T)

dT2 = λl′(T)e−λT .

The solution of this differential equation is consistent with the result of Asimit and Badescu (2010).



Risks 2021, 9, 122 5 of 22

Proof. From Equation (3) of Theorem 1 we have for any T ≥ 0,

Kδ(T) = e−λT
∞

∑
n=1

λn
∫

Dn

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv

= e−λT
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv1 · · · dvn

= e−λT
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0

n

∑
i=1

l(vi)
i

∏
j=1

e−αδvj dv1 · · · dvn

= e−λT
{ ∫ T

0
λl(v)e−αδvdv +

∞

∑
n=2

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv1 · · · dvn

}
,

where, at n = 1, the preceding notations mean that we integrate only between 0 and T.
By taking the first derivative of the preceding expression with respect to T we have,

dKδ(T)
dT

= −λKδ(T) + e−λTλl(T)e−αδT + e−λTλ
∞

∑
n=2

λn−1
∫ T

0

∫ vn−1

0

· · ·
∫ v2

0

[
n−1

∑
i=1

l(v)
i

∏
j=1

e−αδvj + l(v)e−αδ ∑n−1
j=1 vj e−αδT

]
dv1 · · · dvn−1

= −λKδ(T) + λl(T)e−(αδ+λ)T

+ e−λTλ
∞

∑
n=2

λn−1
∫ T

0

∫ vn−1

0
· · ·

∫ v2

0

n−1

∑
i=1

l(v)
i

∏
j=1

e−αδwj dv1 · · · dvn−1

+ e−(αδ+λ)Tλ
∞

∑
n=2

λn−1
∫ T

0

∫ vn−1

0
· · ·

∫ v2

0
l(v)e−αδ ∑n−1

j=1 vj dv1 · · · dvn−1.

Rearranging this expression gives,

dKδ(T)
dT

= −λKδ(T) + λl(T)e−(αδ+λ)T

+ e−λTλ
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0

n

∑
i=1

l(v)
i

∏
j=1

e−αδvj dv1 · · · dvn

+ e−(αδ+λ)Tλ
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0
l(v)e−αδ ∑n

j=1 vj dv1 · · · dvn

= −λKδ(T) + λl(T)e−(αδ+λ)T + λKδ(T)

+ e−(αδ+λ)Tλ
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0
l(v)e−αδ ∑n

j=1 vj dv1 · · · dvn

= λe−(αδ+λ)T
{

l(T) +
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0
l(v)e−αδ ∑n

j=1 vj dv1 · · · dvn

}
. (5)

As previously, the derivative of the preceding expression with respect to T yields,

d2Kδ(T)
dT2 = −(αδ + λ)

dKδ(T)
dT

+ λe−(αδ+λ)T
{

l
′
(T) + λl(T)e−αδT

+ λ
∞

∑
n=2

λn−1
∫ T

0

∫ vn−1

0
· · ·

∫ v2

0
l(v)e−αδ ∑n−1

j=1 vj e−αδTdv1 · · · dvn−1

}
= −

(
αδ + λ

)dKδ(T)
dT

+ λe−(αδ+λ)T
{

l
′
(T) + λl(T)e−αδT

+ λe−αδT
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0
l(v)e−αδ ∑n

j=1 vj dv1 · · · dvn

}
. (6)
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From Equation (5) we have,

λe−αδT
∞

∑
n=1

λn
∫ T

0

∫ vn

0
· · ·

∫ v2

0
l(v)e−αδ ∑n

j=1 vj dv1 · · · dvn = eλT dKδ(T)
dT

− λl(T)e−αδT . (7)

Then, substituting (7) into (6) leads to,

d2Kδ(T)
dT2 = −

(
αδ + λ

)dKδ(T)
dT

+ λe−(αδ+λ)T
{

l
′
(T) + λl(T)e−αδT + eλT dKδ(T)

dT
− λl(T)e−αδT

}
= −

(
αδ + λ

)dKδ(T)
dT

+ λe−(αδ+λ)T
{

l
′
(T) + eλT dKδ(T)

dT

}
= −

(
αδ + λ

) ∂Kδ(T)
∂T

+ λl
′
(T)e−(αδ+λ)T + λe−αδT dKδ(T)

dT

=

(
λe−αδT − αδ− λ

)
dKδ(T)

dT
+ λl

′
(T)e−(αδ+λ)T ,

which proves the statement.

The next theorem gives an analytical expression of Kδ(T) in a homogeneous Poisson
risk model.

Theorem 3. Under the assumption of Theorem 2, if we assume further that K′δ(t) > 0 for every
t ∈ [0, T], then the solution of the differential equation given by expression (4) of Theorem 2 is

Kδ(T) =
∫ T

0
e−
(

λ
αδ e−αδv+(αδ+λ)v

)
dv + λ

∫ T

0
l(v)e−(αδ+λ)v

(
1 +

(
αδ + λ

)(
T − v

))
dv, (8)

where
lim
δ→0

λ

αδ
e−αδv = + ∞.

Proof.

(1) Firstly let us solve Equation (4) of Theorem 2 without the second member.

From
d2Kδ(T)

dT2 =

(
λe−αδT − αδ− λ

)
dKδ(T)

dT
,

we have,

d
dT

(
ln
[

dLδ(T)
dT

])
= λe−αδT − αδ− λ

ln
[

dLδ(T)
dT

]
= −

(
λ

αδ
e−αδT + (αδ + λ)T

)
+ µ0

dLδ(T)
dT

= e−
(

λ
αδ e−αδT+(αδ+λ)T

)
+ µ1

Lδ(T) =
∫ T

0
e−
(

λ
αδ e−αδv+(αδ+λ)v

)
dv + µ.

By letting µ = 0 we have,

Lδ(T) =
∫ T

0
e−
(

λ
αδ e−αδv+(αδ+λ)v

)
dv.

(2) Secondly let us find the solution for the second member of Equation (4).
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Let for any T ≥ 0,

H(T) = λ
∫ T

0
l(v)e−(αδ+λ)v

(
1 +

(
αδ + λ

)(
T − v

))
dv.

One can easily check that

d2H(T)
dT2 = λl′(T)e−(αδ+λ)T .

Therefore, the final solution is

Kδ(T) = Lδ(T) + H(T),

which proves the statement.

Remark 2. In the case of a mixed Poisson compound model, the differential equation of Kδ(T)
given Λ = λ is again given by Equation (4)

We can now state the theorem that gives the closed-form expression of Kδ(T) in a
mixed Poisson compound risk model.

Theorem 4. Consider a mixed Poisson compound risk model. Assume that the intensity rate Λ
is a continuous positive random variable such that its moment generating function MΛ(s) exists
then, the closed-form expression of Kδ(T) is given by

Kδ(T) =
∫ T

0

{
MΛ

(
− v− e−αδv

αδ

)
e−αδv + E

[
l(v)e−(αδ+Λ)vΛ

(
1 +

(
αδ + Λ

)(
T − v

))]}
dv. (9)

Proof. From Theorem 3, we have

Kδ(T)
∣∣∣∣
Λ=λ

=
∫ T

0

{
e−
(

λ
αδ e−αδv+(αδ+λ)v

)
+ λl(v)e−(αδ+λ)v

(
1 +

(
αδ + λ

)(
T − v

))}
dv,

therefore,

Kδ(T) = E
[∫ T

0

{
e−(

Λ
αδ e−αδv+(αδ+Λ)v) + Λl(v)e−(αδ+Λ)v(1 + (αδ + Λ)(T − v))

}
dv
]

,

and using Fubini’s theorem, we can interchange the expectation and the integral.
Hence,

Kδ(T) =
∫ T

0

{
E
[

e−
(

Λ
αδ e−αδv+(αδ+Λ)v

)]
+ E

[
Λl(v)e−(αδ+Λ)v

(
1 +

(
αδ + Λ

)(
T − v

))]}
dv

=
∫ T

0

{
E
[

e−
(

e−αδv
αδ Λ+Λv

)]
e−αδv + E

[
Λl(v)e−(αδ+Λ)v

(
1 +

(
αδ + Λ

)(
T − v

))]}
dv

=
∫ T

0

{
E
[

e−
(

e−αδv
αδ +v

)
Λ
]

e−αδv + E
[

l(v)e−(αδ+Λ)vΛ
(

1 +
(
αδ + Λ

)(
T − v

))]}
dv

=
∫ T

0

{
MΛ

(
− v− e−αδv

αδ

)
e−αδv + E

[
l(v)e−(αδ+Λ)vΛ

(
1 +

(
αδ + Λ

)(
T − v

))]}
dv.

Using specific copulas given in terms of a closed analytical expression of l() one can
reduce Equation (9).
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Corollary 1. Under assumption of Theorem 4. If the dependence structure is modeled by Gumbel–
Barnett copula then,

Kδ(T) =
∫ T

0
MΛ

(
− v− e−αδv

αδ

)
e−αδvdv + (1 + θ)

∞

∑
n=0

(−T)n+1

(n + 1)!

×
[

T
n+1

∑
k=0

(
n + 1

k

)(
αδ
)n+1−kM(k+1)

Λ (0) + (1− n)
n

∑
k=0

(
n
k

)(
αδ
)n−kM(k+1)

Λ (0)
] (10)

The expression of Kδ(T) is similar for the other copulas.

Proof. Using the result in Section 3.2, we have for these copulas.

Λ
∫ T

0
l(v)e−(αδ+Λ)v

(
1 +

(
αδ + Λ

)(
T − v

))
dw = Λ(1 + θ)

{[
2

1− e−(αδ+Λ)T

αδ + Λ

]
+ (αδ + Λ)T

1− e−(αδ+Λ)T

αδ + Λ
+ Te−(αδ+Λ)T

}
.

Moreover,

2Λ(1 + θ)
1− e−(αδ+Λ)T

αδ + Λ
= 2(1 + θ)

∞

∑
n=0

(−T)n+1

(n + 1)!

n

∑
k=0

(
n
k

)
Λk+1(αδ

)n−k

Λ(1 + θ)(αδ + Λ)T
1− e−(αδ+Λ)T

αδ + Λ
= (1 + θ)T

∞

∑
n=0

(−T)n+1

(n + 1)!

n+1

∑
k=0

(
n + 1

k

)
Λk+1(αδ

)n+1−k

Λ(1 + θ)Te−(αδ+Λ)T = −(1 + θ)
∞

∑
n=0

(n + 1)
(−T)n+1

(n + 1)!

n

∑
k=0

(
n
k

)
Λk+1(αδ

)n−k.

The result follows by taking the expectation and interchanging the sum and the
expectation.

In the next subsection we give a closed-form expression of the constant Kδ(T) where
the dependence structure is modeled by some specific well-known copulas.

3.2. Examples with Some Copulas

Recall that ex = ∑∞
n=0

xn

n! and
(
a + b)n = ∑n

k=0 (
n
k)akbn−k. Let

H =
∫ T

0
e−
(

λ
αδ e−αδv+(αδ+λ)v

)
dv
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therefore,

H =
∫ T

0

∞

∑
n=0

[
−
(

λ
αδ e−αδv + (αδ + λ)v

)]n

n!
dv

=
∫ T

0

∞

∑
n=0

(−1)n

n!

(
λ

αδ
e−αδv + (αδ + λ)v

)n
dv

=
∫ T

0

∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ
e−αδv

)k(
(αδ + λ)v

)n−k
dv

=
∫ T

0

∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
αδ + λ

)n−k(
λ

αδ
e−αδv

)k
vn−kdv

=
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k ∫ T

0
e−kαδvvn−kdv

=
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k(
αδk
)k−1−n

∫ αδkT

0
e−xxn−kdx

=
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k(
αδk
)k−1−n

γ(n + 1− k, αδT),

where
γ(α, x) =

∫ x

0
tα−1e−tdt is the incomplete gamma function.

then,

H =
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k(
αδk
)k−1−n

γ(n + 1− k, αδT) (11)

Example 1. Ali–Mikhail–Haq copula:

C(u1,2 ) =
u1u2

1− θ(1− u1)(1− u2)
, θ ∈ [−1, 1) l(v) = 1− θ

(
1− 2e−λv).

If the dependence structure is modeled by the Ali–Mikhail–Haq copula then,

Kδ(T) =
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k

(αδk)k−1−nγ(n + 1− k, αδT)

+ λT
(

1 + θ − 2θ
αδ + λ

αδ + 2λ

)
+ 2λ(1 + θ)ā(αδ+λ)T −

2λ2θ

αδ + 2λ
ā(αδ+2λ)T .

This expression can be easily evaluated numerically.

Proof.

λ
∫ T

0
l(v)e−(αδ+λ)v(1 + (αδ + λ)(T − v)dv = λ

∫ T

0
l(v)e−(αδ+λ)vdv

+ λ(αδ + λ)
∫ T

0
l(v)e−(αδ+λ)v(T − v)dv,

hence,

λ
∫ T

0
l(v)e−(αδ+λ)vdv = (1 + θ)λ

∫ T

0
e−(αδ+λ)vdv− 2θλ

∫ T

0
e−(αδ+2λ)vdv

= (1 + θ)λ

(
1− e−(αδ+λ)T

αδ + λ

)
− 2λθ

(
1− e(αδ+2λ)T

αδ + 2λ

)
= (1 + θ)λā((αδ+λ)T) − 2λθ ā((αδ+2λ)T). (12)
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Let x = T − v then,∫ T

0
l(v)e−(αδ+λ)T(T − v)dv =

∫ T

0
xl(T − x)e−(αδ+λ)T−xdv

= e−(αδ+λ)T
∫ T

0
xl(T − x)e(αδ+λ)xdx

= e−(αδ+λ)T
∫ T

0
x
[
1 + θ

(
1− 2e−λ(T−x)

)]
e(αδ+λ)xdx

= e−(αδ+λ)T
[
(1 + θ)

∫ T

0
xe(αδ+λ)xdx− 2θe−λT

∫ T

0
xe(αδ+2λ)xdx

]
.

Using integration by parts yields

λ(αδ + λ)
∫ T

0
l(v)e−(αδ+λ)T(T − v)dv = λT

(
1 + θ − 2θ

αδ + λ

αδ + 2λ

)
+ λ

(
(1 + θ)ā(αδ+λ)T + 2θ

αδ + λ

αδ + 2λ
ā(αδ+2λ)T

)
.

(13)

The result follows by combining (11)–(13).

Remark 3. For the FGM copula, l(.) is the same as for the Ali–Mikhail–Haq copula; therefore,
Kδ(T) will be the same.

Example 2. Gumbel–Barnett copula:

C(u1, u2) = u1u2 exp(−θ ln u1 ln u2), 0 ≤ θ ≤ 1, l(v) = 1− θ − θ ln
(

1− e−λv
)

.

If the dependence structure is modeled by the Gumbel–Barnett copula then,

Kδ(T) =
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k

(αδk)k−1−nγ(n + 1− k, αδT)

+ λ(1 + θ)
[
(2 + (αδ + λ)T)ā(αδ+λ)T + Te−(αδ+λ)T

]
+ λθ

∞

∑
k=2

1
k− 1

[
αδ + λ

αδ + λk

(
Te−(αδ+λk)T + ā(αδ+λk)T

)
+ (1 + (αδ + λ)T)ā(αδ+λk)T

]
.

Proof. Let
κ(v) = e−(αδ+λ)v(1 + (αδ + λ)(T − v)), (14)

then using (14),

λ
∫ T

0
l(v)κ(w)dv = λ(1 + θ)

∫ T

0
e−(αδ+λ)v(1 + (αδ + λ)(T − v))dv

= λ
(
1 + θ)(1 + (αδ + λ)T

) ∫ T

0
e−(αδ+λ)vdv

− λ
(
1 + θ)(αδ + λ)

∫ T

0
ve−(αδ+λ)vdv,

using integration by parts yields

λ
∫ T

0
l(v)κ(v)dv = λ(1 + θ)

[(
2 + (αδ + λ)T

)
ā(αδ+λ)T + Te−(αδ+λ)T

]
. (15)
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Moreover,∫ T

0
ln
(
1− e−λv)κ(v)dv =

∫ T

0

∞

∑
n=1

e−nλv

n
e−(αδ+λ)v(1 + (αδ + λ)(T − v)

)
dv

=
∞

∑
n=1

[(
1 + (αδ + λ)T

) ∫ T

0
e−(αδ+(n+1)λ)v

− (αδ + λ)
∫ T

0
ve−(αδ+(n+1)λ)v

]
=

∞

∑
n=1

1
n

[(
1 + (αδ + λ)T

)
ā(αδ+(n+1)λ)T

+
αδ + λ

αδ + (n + 1)λ)

(
Te−(αδ+(n+1)λ)T + ā(αδ+(n+1)λ)T

)]
.

By taking k = n + 1 in the above result and combining it with (11) and (15) yields
the result.

Example 3. Marshall–Olkin copula:

C(u1, u2) = min
(
u1−θ1

1 u2, u1u1−θ2
2

)
0 ≤ θ1, θ1 ≤ 1 with l(v) = 1− θ1.

Kδ(T) is given by

Kδ(T) =
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k(
αδk
)k−1−n

γ(n + 1− k, αδT)

+ λ(1 + θ1)

[(
2 + (αδ + λ)T

)
ā(αδ+λ)T + Te−(αδ+λ)T

]
.

Example 4. Frank copula:

C(u1, u2) = −
1
θ

ln
(

1 +

(
e−θu1 − 1

)(
e−θu2 − 1

)(
e−θ − 1

) )
, θ ∈ R∗, l(v) =

θe−θ

1− e−θ
eθ
(

1−e−λv
)

.

If the dependence is modeled by the Frank copula then,

Kδ(T) =
∞

∑
n=0

(−1)n

n!

n

∑
k=0

(
n
k

)(
λ

αδ

)k(
αδ + λ

)n−k(
αδk
)k−1−n

γ(n + 1− k, αδT)

+
λθe−θ

1− e−θ

∞

∑
n=0

θn

n!

n+1

∑
k=1

(
n

k− 1

)
(−1)k−1

{
αδ + λ

αδ + λk

[
ā(αδ+λk)T + Te−(αδ+λk)T

]
+ (1 + (αδ + λ)T)ā(αδ+λk)T

}
.

Proof. Recall that

l(v) =
θe−θ

1− e−θ
eθ
(

1−e−λv
)
=

θe−θ

1− e−θ

∞

∑
n=0

θn

n!

n

∑
j=0

(
n
j

)
(−1)je−jλv.
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Then using (14)

∫ T

0
g(v)κ(v)dv =

θe−θ

1− e−θ

∞

∑
n=0

θn

n!

n

∑
j=0

(
n
j

)
(−1)j

{
(1 + (αδ + λ)T)

×
∫ T

0
e−(αδ+(j+1)λ)vdv− (αδ + λ)

∫ T

0
ve−(αδ+(j+1)λ)vdv

}
,

=
θe−θ

1− e−θ

∞

∑
n=0

θn

n!

n

∑
j=0

(
n
j

)
(−1)j

{(
1 + (αδ + λ)T

)
ā(αδ+(j+1)λ)T

+
αδ + λ

αδ + (j + 1)λ

[
ā(αδ+(j+1)λ)T + Te−(αδ+(j+1)λ)T

]}
.

By letting k = j + 1 we have,

λ
∫ T

0
l(v)κ(v)dv =

λθe−θ

1− e−θ

∞

∑
n=0

θn

n!

n+1

∑
k=1

(
n

k− 1

)
(−1)k−1

{
(1 + (αδ + λ)T)

× ā(αδ+kλ)T +
αδ + λ

αδ + kλ

[
ā(αδ+kλ)T + Te−(αδ+kλ)T

]}
,

(16)

The result follows by combining (11) and (16).

3.3. Non-Homogeneous Poisson Risk Model

In this subsection, we extend our result by considering a non-homogeneous compound
Poisson process where the intensity rate is a deterministic function λ(t), which we assume
to be piece-wise continuous and bounded on finite intervals.

Theorem 5. Consider a non-homogeneous Poisson compound renewal model with constant force
of interest (δ > 0) such that the cumulative distribution function F ∈ RV−α. If Assumption 1 is
fulfilled for any time t ∈ (0, T] then,

P
(
Znh

δ (T) > b
)
∼ Kδ(T)P(B1 > b), b 7→ ∞

where

Kδ(T) = e−m(T)
∞

∑
n=1

∫ T

0
λ(vn) · · ·

∫ v2

0
λ(v1)

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv1 · · · dvn, (17)

and m(T) =
∫ T

0
λ(s)ds is mean function (or cumulative intensity function).

Before proving Theorem 5, let us recall the following useful Lemmas.

Lemma 1 (From Ruwet (2007)). Consider a non-homogeneous Poisson process N(t) with an
intensity rate λ(t) as a function of t. Then the conditional distribution function of the first n
occurrence times of the claims, assuming that N(t) = n, has the same distribution as the order
statistics of the n i.i.d. uniform random variables U1, U2, · · · , Un with common distribution

FUi (u) =
m(u)
m(t)

, 0 < u < t, where m(t) =
∫ t

0
λ(s)ds

i.e.,

fT1,T2,··· ,Tn |N(t)=n(t1, t2, · · · , tn|n) =
n!

mn(t)

n

∏
i=1

λ(ti), t1 < t2 < · · · < tn.

Lemma 2 (From Asimit and Badescu (2010)). Let B, X1, X2, · · · be a sequence of independent
non-negative random variables with F the cumulative distribution of B such that F ∈ S . Assume
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further that there exists a constant M such that P(Xi > x) ≤ MP(B > b) holds for all b > 0 and
any i = 1, 2, · · · . Then, for any ε > 0 there exists A < ∞ such that

sn :=
P(∑n

i=1 Xi > x)
P(B > b)

≤ A(1 + ε)n,

holds for any integer n.

Proof of Theorem 5. By conditioning on the number of claims and inter-occurrence time
by time T, the cumulative distribution functions of Zδ(T) follow the integral equation

P(Znh
δ (T) > b) =

∞

∑
n=1

P(N(T) = n)
∫

Dn
P
( n

∑
k=1

Bke−δ ∑k
i=1 Vi > b

∣∣V = v, N(T)
)

× P(V = v|N(T) = n)dv

=
∞

∑
n=1

P(N(T) = n)
∫

Dn
P
( n

∑
k=1

Bke−δ ∑k
i=1 Vi > b

∣∣V = v
)

× fV1,··· ,Vn |N(T)(t1, · · · tn| n)dv.

Due to the fact that

P

(
n

∑
k=1

Bke−δ ∑k
i=1 Vi > b

∣∣V = v

)
≤ P

(
n

∑
k=1

Bk > b
∣∣V = v

)
,

by the fact that Bk|Vk = vk are i.i.d. and F ∈ RV−α therefore belongs to S , we can apply
Lemma 2. This is true since Assumption 1 implies that there exists a constant M > 0 such
that for all b > 0 and v ∈ (0, T], we have

P
(

B1e−δV1 > b
∣∣V1 = v1

)
≤ P

(
B1 > b|V1 = v1

)
≤ MP(B1 > b).

From Lemma 2, it follows that for any ε > 0 there exists A > 0 such that,

P
( n

∑
k=1

Bke−δ ∑k
i=1 Vi > b

∣∣V = v
)
≤ P

( n

∑
k=1

Bk > b
∣∣V = v

)
≤ A

(
1 + ε

)nP(B1 > b)

holds uniformly for all b > 0, v ∈ (0, T]n and n = 1, 2, · · · .
Then

∞

∑
n=1

P(N(T) = n)
∫

Dn
P
( n

∑
k=1

Bke−δ ∑k
i=1 Vi > b

∣∣V = v
)

P(V = v|N(T) = n)

≤
∞

∑
n=1

P(N(T) = n)
∫

Dn
P
( n

∑
k=1

Bk > b
∣∣V = v

)
P(V = v|N(T) = n)

≤
∞

∑
n=1

P(N(T) = n)
∫

Dn
A
(
1 + ε

)nP(B1 > b)P(V = v|N(T) = n)

≤

AP(B1 > b)
∞

∑
n=1

P(N(T) = n) = AP(B1 > b)PN(T)(1 + ε) < ∞.

Since PN(T) exists for any t > 0.
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Using Lemma 1 together with the fact that P(N(T) = n) = m(T)n

n! e−m(T) we have

P(Znh
δ (T) > b) =

∞

∑
n=1

e−m(T)
∫

Dn

n

∏
i=0

λ(vi)P
( n

∑
k=1

Bke−δ ∑k
i=1 Vi > b

∣∣V = v
)

dv. (18)

The result follows by applying the Dominated Convergence Theorem in (18).

The following theorem gives the expression of the differential equation of the tail prob-
ability of the discounted aggregate claims under a non-homogeneous Poisson risk model.

Theorem 6. Under the assumption of Theorem 5, if the the intensity function λ(t) 6= 0 for
all t ∈ [0, T], then the deterministic function Kδ(T) given in Theorem 5 satisfied the following
differential equation

d2Kδ(T)
dT2 =

(
λ′(T)
λ(T)

+ λ(T)e−αδT − (λ(T) + αδ)

)
dKδ(T)

dT
+ λ(T)l′(T)e−

(
m(T)+αδT

)
, (19)

where Kδ(0) = 0, ∂Kδ(T)
∂T

∣∣∣∣
T=0

= λ(0)l(0) and m(T) =
∫ T

0 λ(s)ds.

Remark 4. If λ(t) = λ for all t ∈ [0, T], then λ′(t) = 0 and m(T) = λT; therefore, the result in
Theorem 6 is consistent with the result of Theorem 2

Proof. From Equation (17) of Theorem 5 we have for any T ≥ 0,

Kδ(T) = e−m(T)
∞

∑
n=1

∫
Dn

n

∏
k=1

λ(vk)
n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv

= e−m(T)
∞

∑
n=1

∫ T

0
λ(vn)

∫ vn

0
λ(vn−1) · · ·

∫ v2

0
λ(v1)

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv1 · · · dvn

= e−m(T)
∞

∑
n=1

∫ T

0
λ(vn)

∫ vn

0
λ(vn−1) · · ·

∫ v2

0
λ(v1)

n

∑
i=1

l(vi)
i

∏
j=1

e−αδvj dv1 · · · dvn

= e−m(T)
{ ∫ T

0
λ(v)l(v)e−αδvdv +

∞

∑
n=2

∫ T

0

∫ vn

0
λ(vn−1)

· · ·
∫ v2

0
λ(v1)

n

∑
i=1

l(vi)e
−αδ ∑i

j=1 vj dv1 · · · dvn

}
.
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As in Theorem 2, the derivative of the preceding expression with respect to T yields.

dKδ(T)
dT

= −m′(T)Kδ(T) + e−m(T)λ(T)l(T)e−αδT + e−m(T)λ(T)
∞

∑
n=2

∫ T

0
λ(vn−1)

· · ·
∫ v2

0
λ(v1)

[ n−1

∑
i=1

l(v)
i

∏
j=1

e−αδvj + l(v)e−αδ ∑n−1
j=1 vj e−αδT

]
dv1 · · · dvn−1

= −λ(T)Kδ(T) + λ(T)l(T)e−(m(T)+αδT) + e−m(T)λ(T)
{

∞

∑
n=2

∫ T

0
λ(vn−1) · · ·

∫ v2

0
λ(v1)

n−1

∑
i=1

l(v)
i

∏
j=1

e−αδvj dv1 · · · dvn−1

+ e−αδT
∞

∑
n=2

∫ T

0
λ(vn−1) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n−1
j=1 vj dv1 · · · dvn−1

}
= −λ(T)Kδ(T) + λ(T)l(T)e−(m(T)+αδT)

+ e−m(T)λ(T)
∞

∑
n=1

∫ T

0
λ(vn) · · ·

∫ v2

0
λ(v1)

n

∑
i=1

l(v)
i

∏
j=1

e−αδvj dv1 · · · dvn

+ e−(m(T)+αδT)λ(T)
∞

∑
n=1

∫ T

0
λ(vn) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n
j=1 vj dv1 · · · dvn

= −λ(T)Kδ(T) + λ(T)l(T)e−(m(T)+αδT) + λ(T)Kδ(T + e−(m(T)+αδT)λ(T))

×
∞

∑
n=1

∫ T

0
λ(vn)

∫ vn

0
λ(vn−1) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n
j=1 vj dv1 · · · dvn

= λ(T)e−(m(T)+αδT)l(T)+

+ λ(T)e−(m(T)+αδT)
∞

∑
n=1

∫ T

0
λ(vn) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n
j=1 vj dv1 · · · dvn. (20)

By taking the derivative of the preceding expression with respect to T we have,

d2Kδ(T)
dT2 =

(
λ′(T)
λ(T)

−
(
αδ + λ(T)

))dKδ(T)
dT

+ λ(T)e−(m(T)+αδT)
{

l′(T) + λ(T)l(T)e−αδT

+ λ(T)
∞

∑
n=2

∫ T

0
λ(vn−1) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n−1
j=1 vj e−αδTdv1 · · · dvn−1

}
=

(
λ′(T)
λ(T)

−
(
αδ + λ(T)

))dKδ(T)
dT

+ λ(T)e−(m(T)+αδT)
{

l′(T) + λ(T)l(T)e−αδT

+ λ(T)e−αδT
∞

∑
n=1

∫ T

0
λ(vn) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n
j=1 vj dv1 · · · dvn

}
. (21)

From Equation (20) we have,

λ(T)e−αδT
∞

∑
n=1

∫ T

0
λ(vn) · · ·

∫ v2

0
λ(v1)l(v)e

−αδ ∑n
j=1 vj

n

∏
i=1

dvi = em(T) dKδ(T)
dT

− λ(T)l(T)e−αδT . (22)

Then, substituting (22) into (21) leads to,

d2Kδ(T)
dT2 =

(
λ′(T)
λ(T)

−
(
αδ + λ(T)

))dKδ(T)
dT

+ λ(T)e−(m(T)+αδT)
{

l′(T) + λ(T)l(T)e−αδT

+ em(T) dKδ(T)
dT

− λ(T)l(T)e−αδT
}

=

(
λ′(T)
λ(T)

−
(
αδ + λ(T)

))dKδ(T)
dT

+ λ(T)e−(m(T)+αδT)
{

l′(T) + em(T) dKδ(T)
dT

}
=

(
λ′(T)
λ(T)

+ λ(T)e−αδT −
(
αδ + λ(T)

))dKδ(T)
dT

+ λ(T)l′(T)e−(m(T)+αδT).
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The following theorem gives the solution of the differential equation of Kδ(T) where
the intensity function is not a constant.

Theorem 7. Under the assumption of Theorem 6. If we assume further that K′δ(t) > 0 for every
t ∈ [0, T], then

Kδ(T) =
∫ T

0
λ(v)e−

(
m(v)+αδv

)
e
∫ v

0 λ(s)e−αδsdsdv +
∫ T

0

∫ v

0
λ(s)l′(s)e−

(
m(s)+αδs

)
dsdv. (23)

Proof.

(1) Firstly let us solve Equation (19) of Theorem 6 without the second member.

From
d2Kδ(T)

dT2 =

(
λ′(T)
λ(T)

+ λ(T)e−αδT − αδ− λ(T)
)

dKδ(T)
dT

,

we have,

d
dT

(
ln
[

dLδ(T)
dT

])
=

λ′(T)
λ(T)

+ λ(T)e−αδT − αδ− λ(T)

ln
[

dLδ(T)
dT

]
= ln λ(T)−

(
m(T) + αδT

)
+
∫ T

0
λ(s)e−αδsds + µ0

dLδ(T)
dT

= λ(T)e−
(

m(T)+αδT
)

e
∫ T

0 λ(s)e−αδsds + µ1

Lδ(T) =
∫ T

0
λ(v)e−

(
m(v)+αδv

)
e
∫ v

0 λ(s)e−αδsdsdv + µ.

By letting µ = 0 we have,

Lδ(T) =
∫ T

0
λ(v)e−

(
m(v)+αδv

)
e
∫ v

0 λ(s)e−αδsdsdv.

(2) Secondly let us find the solution of Equation (19) of Theorem (6) for the second
member.
Let for any T ≥ 0,

H(T) =
∫ T

0

∫ v

0
λ(s)l′(s)e−

(
m(s)+αδs

)
dsdv.

One can easily check that

d2H(T)
dT2 = λ(T)l′(T)e−

(
m(T)+αδT

)
.

Therefore, the final solution is

Kδ(T) = Lδ(T) + H(T),

which proves the statement.

4. Applications

In this section we use the expression of Kδ(T) to derive an upper bound of the ruin
probability and also to evaluate some risk measure such as the value-at-risk.

4.1. Ruin Probability

Finding the exact analytical expression of the ruin probability that can be computation-
ally tractable is an extremely complex task. For simple cases of the collective risk model,
exact formulas and approximations have been found for the ruin probability. However,
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when the effect of the force of interest is incorporated into the collective risk model, the
calculations become more difficult. In the case of the discounted compound Poisson risk
model, with a constant force of interest, a differential equation has been obtained for the
ruin probability and a solution has been found when the amount of the claims follows an
exponential distribution. For more details, see Sundt and Teugels (1995). The calculation of
the ruin probability is also possible if we know the distribution of our risk process. The
expressions obtained by Leveillé and Hamel (2018); Léveillé et al. (2010) for the distribution
of the discounted aggregated renewal sum confirm that it will be very difficult to find an
explicit expression of the probability of ruin in the framework defined by the previous
authors. Hence the use of bounds for an estimation of the probability of ruin. Several
bounds have been proposed in the framework of Sparre Andersen’s model, see Cai and
Dickson (2003), when the force of interest is constant and Cai (2002) when the force of inter-
est follows a time series. Other authors such as Albrecher and Teugels (2006), Tang (2005)
and Wei and Yang (2004) have incorporated the dependency into the risk model and have
derived asymptotic formulas for finite and infinite time ruin probabilities. In this subsec-
tion, we present some asymptotic results of the ruin probability for homogeneous and
non-homogeneous compound Poisson risk model with a heavy tailed distribution for the
claim severities and we also assume that the dependence structure is given in Section 3.2.
This subsection provides numerical illustration with the use of copulas.

Let

Uδ(t) = beδt + Cδ(t)− eδtZδ(t), (24)

where b is the surplus at time t = 0 and Cδ(t) =
∫ t

0 eδ(t−s)dC(s) represents the accumulated
amount of premiums received at time t. The non-decreasing and right continuous stochastic
process, {C(s)}s≥0 with C(0) = 0 represents the total amount of premiums accumulated to
time s. We then define the time to ruin as

Tδ,b = inf
{

t > 0 : Uδ(t) < 0|Uδ(0) = b
}

, (25)

therefore, the finite-time ruin probability is given by

ψδ(b, T) = P(Tδ,b ≤ T).

Clearly

P
(

Zδ(T) ≥ b + e−δTCδ(T)
)
≤ ψδ(b, T) ≤ P

(
Zδ(T) ≥ b

)
, holds for δ ≥ 0. (26)

Using the long-tailed property of subexponential distributions, see Embrechts et al. (1997),
in (26) leads to the following Corollary of Theorems 1 and 5.

Corollary 2. Consider a homogeneous and a non-homogeneous compound renewal risk process
with constant force of interest δ > 0 such that Assumption 1 is fulfilled for any t ∈ (0; T], assume
further that F ∈ RV−α. In addition, if Cδ(T) < ∞ then

ψδ(b, T) ∼ Kδ(T)P(B1 ≥ b), b→ +∞.

Proof. See Asimit and Badescu (2010).

Numerical Illustration

In this subsection, we provide numerical illustrations for the asymptotic finite-time
ruin probability. For this purpose we assume that the counting process is a homogeneous,
a non-homogeneous and a mixed Poisson process. Furthermore, we assume that the
dependence structure is given by some copulas defined in Section 3.2. However, the
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forthcoming claim amounts are assumed to have a Weibull distribution with cumulative
distribution given by:

FB1(b) = 1− exp
(
− b

1
τ
)

Insurance claims are known to be right-skewed. Moreover, under extreme events scenarios
the frequency of the claim occurrence is relatively low; therefore, we choose our parameters
accordingly.

In Table 1, we consider a homogeneous compound Poisson process where λ = 0.5,
the constant force of interest rate is assumed to be δ = 20%, τ = 2 and the time horizon
T ∈ {20, 40}.

In Table 2, we consider a mixed homogeneous compound Poisson process where Λ
has gamma distribution with density

fΛ(λ) =
βa

Γ(a)
λa−1 exp(−βλ), for λ ≥ 0,

where a = 15, β = 20.
In Table 3, we consider a non-homogeneous Poisson risk model where the intensity

function is assumed to be

λ(t) = 0.5 + 0.2 exp(−0.2t),

and the other parameters were chosen as in Table 1.
Tables 1–3 give numerical values for the ruin probability respectively for the Ali–

Mikhail–Haq and Frank copulas.

Table 1. Asymptotic finite-time ruin probability for homogeneous Poisson risk model with inter-
est rate.

α α = 2.5

θ θ = −0.5 θ = 0.75

T T = 20 T = 40 T = 20 T = 40

b 50 100 50 100 50 100 50 100

ψAli
δ (b, T) 0.0074 0.0004 0.0145 0.0008 0.0112 0.0006 0.0218 0.0012

ψFrank
δ (b, T) 0.0185 0.0010 0.0365 0.0020 0.0171 0.0009 0.0339 0.0018

Table 2. Asymptotic ruin probability for mixed homogeneous Poisson risk model with interest rate.

α α = 2.5

θ θ = −0.5 θ = 0.75

T T = 20 T = 40 T = 20 T = 40

b 50 100 50 100 50 100 50 100

ψAli
δ (b, T) 0.0113 0.0006 0.0225 0.0012 0.0155 0.0008 0.0306 0.0016

ψFrank
δ (b, T) 0.0271 0.0015 0.0540 0.0029 0.0259 0.0014 0.0517 0.0028
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Table 3. Asymptotic ruin probability for non-homogeneous Poisson risk model with interest rate.

θ θ = −0.5

α α = 2.5 α = 5

T T = 20 T = 40 T = 20 T = 40

b 50 100 50 100 50 100 50 100

ψAli
δ (b, T) 0.0310 0.0017 0.0622 0.0033 0.0249 0.0013 0.0498 0.0027

ψFrank
δ (b, T) 0.0365 0.0019 0.0743 0.0040 0.0365 0.0020 0.0744 0.0040

Our numerical illustrations show (see Tables 1 and 2) that when the time to maturity
increases, the ruin probability for the homogeneous and mixed Poisson processes increases.
However, the inverse effect is observed for an increase of the copula’s parameter for the
Frank copula. For non-homogeneous risk model (see Table 3), increasing the parameter α
decreases the ruin probability in the case of the Ali–Mikhail–Haq copula.

4.2. Risk Management

In the movement to redefine the solvency margin according to risks for all financial
risks, after the bank industry and the implementation of the Basel II agreement, it was the
turn of insurance industry to see its regulations adapted to integrate risk. After Solvency
I, which provided for a solvency margin determined as a function of percentages on
premiums and claims, insurance regulations moved to more complex rules integrating
risk, either by applying a standard formula or by using an internal model. Note that
the subprime crisis, far from having put this reform on hold, convinced the European
Commission to legislate to protect itself against so-called systemic risks (chain failures of
players—banks, insurers, etc.—in the financial world).

The second pillar aims to set qualitative standards for monitoring risks internally in
companies and how the supervisory authority should exercise its supervisory powers in
this context. The identification of the “riskiest” companies is an objective, and the supervi-
sory authorities will have in their power the possibility of requiring these companies to
hold a capital higher than the amount suggested by the calculation of the so-called solvency
capital, requirement (SCR) and/or reduce their exposure to risks. See Hoiring (2013),
Gatzert and Wesker (2012) and Boonen (2017). This capital requirement covers all the
risks that an insurer faces and is defined as the value-at-risk (VaR) of the basic own funds
subject to a confidence level of 99.5% on a 1-year period. In this subsection we provide an
asymptotic expression for the value-at-risk.

4.2.1. Value-at-Risk

Considered as the most popular risk measure in financial industry, the value-at-risk
(VaR) at level p for a loss variable L represents the p-quantile, defined as in Jorion (2001):

VaRp(L) = inf
{

b ∈ R : P(L > b) ≤ 1− p
}

.

An alternative definition of the value-at-risk (VaR) is the α-quantile of the distribution of
the discounted aggregate sum of claims. Using Theorems 1 and 5, this quantile can be
expressed as:

VaR1−p
(
Zδ(T)

)
∼ VaR1− p

Kδ

(B1), for p ↓ 0,

provided that the density function of Zδ(T) is continuously close enough to the right tail.

4.2.2. Numerical Illustration

In this subsection, we provide numerical illustrations for the value-at-risk where
Weibull distribution is considered for the claim severities using some copulas defined in
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Section 3.2. With the same parameters as before, we compute the value-at-risk at level
p = 0.5%.

In Tables 4 and 5, we note that the value-at-risk is higher in the case of a negative value
of θ for the Frank copula and the inverse effect is observed for the Ali–Mikhail–Haq copula.
For the non-homogeneous Poisson process (see Table 6), the value-at risk is positively
correlated to the parameter α in the case of the Frank copula and negatively correlated to
the parameter α for the Ali–Mikhail–Haq copula.

Table 4. Asymptotic value-at-risk for homogeneous Poisson risk model with interest rate.

θ θ = −0.5 θ = 0.75

Time horizon T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Ali VaR99.5% 46.5245 55.7628 66.20207 52.3648 62.0655 73.0105

Frank VaR99.5% 59.4932 70.2307 82.0888 58.2135 68.9356 80.7418

Table 5. Asymptotic value-at-risk for mixed homogeneous Poisson risk model with interest rate.

θ θ = −0.5 θ = 0.75

Time horizon T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Ali VaR99.5% 51.9694 62.2281 73.5260 56.8626 67.3297 78.9272

Frank VaR99.5% 65.3088 76.7875 89.3044 64.4641 75.9769 88.4878

Table 6. Asymptotic value-at-risk for non-homogeneous Poisson risk model with interest rate.

α α = 2.5 α = 5

Time horizon T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

Ali VaR99.5% 67.1523 79.1319 92.0187 63.8356 75.3102 87.7768

Frank VaR99.5% 69.3052 82.0407 95.4547 69.3582 82.0685 95.4694

5. Discussion and Conclusions

Under the model assumption, the numerical simulations show that the ruin is high for
the Frank copula in comparison with the Ali–Mikhail–Haq copula in both homogeneous,
mixed homogeneous and non-homogeneous Poisson processes. Moreover, the ruin is
higher when the claim number process is modeled by a non-homogeneous process than the
other process understudies. This finding was further confirmed by the simulation of the
value-at-risk as shown in Table 6. One of the most important advantages of simulation in
social science is the fact that simulation allows to approach the conditions of the experiment.
It is very generally accepted that only experimentation can ensure the existence of cause-
and-effect. Indeed, it is by manipulating the cause under experimental conditions (i.e.,
controlling other variables) that one can ensure a variation of the effect. Another major
advantage of the simulation approach is that it helps with the discovery. Therefore,
although the findings in this study are interesting and important from a theoretical point of
view, further research must be done in terms of empirical studies with real data to confirm
our findings.
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