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Abstract: In this paper, we generate boundary value problems for ruin probabilities of surplus-
dependent premium risk processes, under a renewal case scenario, Erlang (2) claim arrivals, and
a hypoexponential claims scenario, Erlang (2) claim sizes. Applying the approximation theory of
solutions of linear ordinary differential equations, we derive the asymptotics of the ruin probabilities
when the initial reserve tends to infinity. When considering premiums that are linearly dependent
on reserves, representing, for instance, returns on risk-free investments of the insurance capital, we
firstly derive explicit solutions of the ordinary differential equations under considerations, in terms of
special mathematical functions and integrals, from which we can further determine their asymptotics.
This allows us to recover the ruin probabilities obtained for general premiums dependent on reserves.
We compare them with the asymptotics of the equivalent ruin probabilities when the premium rate is
fixed over time, to measure the gain generated by this additional mechanism of binding the premium
rates with the amount of reserve owned by the insurance company.

Keywords: ruin probability; premiums dependent on reserves; risk process; Erlang distribution

1. Introduction

Insurance companies maintain solvency via careful design of premium rates. The
premium rates are primarily based on the claims history and carefully adjusted to evolving
factors, such as the number of customers and/or the returns from the investments in the
financial market. Collective risk models, introduced by Lundberg and Cramér, describe
the evolution of the surplus of an insurance business when considering constant premium
rates, for the simplicity of arguments. This model, a compound Poisson process with drift,
is referred to in the actuarial mathematics literature as the Cramér-Lundberg model. In
practical situations, risk models with surplus-dependent premiums capture the dynamics of
the surplus of an insurance company better. The Reference Lin and Pavlova (2006) advised
for a lower premium for higher surplus levels to improve competitiveness, whereas a
higher premium is needed for lower surplus levels to reduce the probability of ruin.

Among surplus-dependent premiums, risk models with risky investments have been
widely analyzed (see e.g., Albrecher et al. 2012; Frolova et al. 2002; Paulsen 1993; Paulsen
and Gjessing 1997). See Paulsen (1998) and Paulsen (2008) for surveys on the topic. The
special case of risk models with linearly dependent premiums can be interpreted as models
with riskless investments, since the volatility of return on investments, or the proportion
of the capital invested in the risky asset is zero. Under this scenario, exact expressions
of the ruin probability are derived for compound Poisson risk models with interest on
surplus and exponential-type upper bounds for renewal risk models with interest (see Cai
and Dickson 2002, 2003). The Reference Cheung and Landriault (2012) investigated risk
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models with surplus-dependent premiums with dividend strategies and interest earning
as a special case. The Reference Czarna et al. (2019) discussed the ruin probabilities with
the scale function from the theory of the Lévy process for risk models when the claim
arrival process is a spectrally negative Lévy process and the premium rate function is
non-decreasing and locally Lipschitz-continuous.

Throughout this paper, we build on the method developed in Albrecher et al. (2013) to
extend the derivation of ruin probabilities to surplus-dependent premium risk models with
Erlang distributions (claim sizes or interarrival times). Recall from Albrecher et al. (2013),
the risk model with surplus-dependent premiums described by

U(t) = u +
∫ t

0
p(U(s))ds−

N(t)

∑
k=1

Xk, (1)

where U(t) denotes the surplus at time t and p(U(t)) describes the premium rate at time t,
a positive function of the current surplus U(t). When p(.) is constant, this model reduces
to the classical collective risk model, see Asmussen and Albrecher (2010). As in the classical
collective risk theory, ruin defines the first time the surplus becomes negative. For Tu, the
time of ruin, given by

Tu = inf{t > 0|U(t) < 0},

the probability of ruin with initial value u is defined as

ψ(u) = P{Tu < ∞|U(0) = u}.

We focus on calculating the ruin probabilities under Erlang claims or Erlang arrivals
scenarios. Previously, Willmot (2007) considered the mixed Erlang claim size class when
examining various properties associated with the renewal risk processes with constant pre-
mium rates. Furthermore, Willmot and Woo (2007) employed the Erlang mixture to claim
size distributions, when discussing the application of ruin-theoretic quantities. Various
studies of ruin probabilities focus on the risk model with interclaim times, being Erlang(2)
(see Dickson and Hipp 2001; Dickson and Li 2010; Tsai and Sun 2004) or distributed
Erlang(n) (see Gerber and Shiu 2005; Li and Dickson 2006; Li and Garrido 2004).

We follow an algebraic approach to derive the equations satisfied by the ruin proba-
bilities, similar to the one from Albrecher et al. (2010), and further perform an asymptotic
analysis of their solutions. We even solve them explicitly in a few instances. To put it in
perspective, recall that Albrecher et al. (2010) introduced an algebraic approach to study
the Gerber–Shiu function and derived a linear ordinary differential equation (ODE) with
constant coefficients for claims distribution with a rational Laplace transform. Later, in
Albrecher et al. (2013), they extended this approach to an ODE with variable coefficients
for surplus-dependent premium risk models. Using methods based on boundary value
problems and Green’s operators, Albrecher et al. (2010) derived explicit forms of the ruin
probability in the classical model with exponential claim sizes. The Reference Albrecher
et al. (2013) extended the method to surplus-dependent premium models with exponential
arrivals, for which they derived exact and asymptotic results for a few premium functions,
when the claims were exponentially distributed. Here we extend it to renewal models and
Erlang claims.

The novelty of the paper consists of the explicit asymptotic analysis performed for
reserve-dependent premiums with Erlang-distributed generic claim sizes or Erlang- dis-
tributed generic interarrival times. We separate the analysis between p(∞) = c and
p(∞) = ∞ and use the approximation theory of solutions of linear ordinary differential
equations developed in Fedoryuk (1993) to conclude the asymptotics of the ruin prob-
abilities when initial reserves tend to infinity. We compare those ruin probabilities for
which the speed of going to zero is substantially different, skipping the analysis when only
the constant is different. Let us note that these constants are available using the theory
presented in Section 2.
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Among the premium functions exploding at infinity, that is, p(∞) = ∞, we consider
the linear premium p(u) = c + εu, in which ε can be interpreted as the interest rate on the
available surplus. Linear premiums can be interpreted as returns from investments in bonds
or risk-free assets. In this case, the risk model is the same as the surplus-generating process
in Paulsen and Gjessing (1997) when the stochastic investment σ = 0. When considering
premiums that are linearly dependent on reserves, we firstly derive explicit formulas for
the ruin probabilities, using confluent geometric functions and their corresponding ODEs.
From these explicit expressions, we can easily determine their asymptotics, only to match
the ones obtained for general premiums dependent on reserves.

We show that when the investments are made on risk-free assets only, as bonds or
treasury bills, the solvency is improved. We will look at the improvements on solvency
when such investments are made, by analyzing the insurance risk models with or without
investment returns, for claims and claim arrivals that are exponential or Erlang-distributed.
We compare them with the asymptotics of the equivalent ruin probabilities when the pre-
mium rate is fixed over time, to measure the gain generated by this additional mechanism
of binding the premium rates with the amount of reserve owned by the insurance company.

After revisiting the model exhibiting Exp(λ)-distributed interarrival times with Exp(µ)-
distributed claim sizes, in this paper we consider

(i) Erlang(2, λ)-distributed interarrival times with Exp(µ)-distributed claim sizes,
(ii) Exp(λ)-distributed interarrival times with Erlang(2, µ)-distributed claim sizes.

We furthermore consider two premium functions:

P1. The premium function behaving like a constant at infinity

p(∞) = c, p′(u) = O
(

1
u2

)
; (2)

for c > 0, or
P2. The premium function exploding at infinity, p(∞) = ∞ as

p(u) = c +
l

∑
i=1

εiui, εi, c > 0. (3)

The first case is satisfied by the rational and exponential premium functions. The
second case is satisfied by the linear and quadratic premium functions.

The paper is organized as follows. In Section 2, we introduce the Gerber–Shiu function
and present them as solutions of boundary value problems in models with premiums
dependent on reserves and times and claims from distributions with rational Laplace trans-
forms. In Sections 3 and 4, we perform the asymptotic analysis for the ruin probabilities
for exponential and Erlang(2)-distributed claim sizes and interarrival times, alternatively,
for models with premiums dependent on reserves. In each section, for linear premiums,
the exact ruin probabilities are derived and the asymptotics confirmed to match those
obtained for general premiums. Section 5 is dedicated to comparing the asymtotic results,
highlighting the gain generated, as in higher solvency, when dynamically adjusting the
premium rates to surplus. Conclusions are given in Section 6.

2. Ruin Probabilities—Method

Ruin probability is sometimes seen as a particular case of the Gerber–Shiu function
Φ(u) defined in Gerber and Shiu (1998). Φ(u) is given by

Φ(u) = E
[
e−δTu ω

(
U(T−u ), |U(Tu)|

)
1Tu<∞|U(0) = u

]
, (4)

where e−δTu is the discount factor, ω is the penalty function of the surplus before ruin
U(T−u ) and the deficit at ruin U(Tu). Thus, the ruin probability ψ(u) is a special case of the
Gerber–Shiu function when δ = 0 and ω = 1.
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Assuming that the distribution of the interclaim times (τk)k>0 and the claim sizes
(Xk)k>0 have rational Laplace transform, the density functions fτ(t), fX(x) satisfy the
linear ordinary differential equation

Lτ

(
d
dt

)
fτ(t) = 0, LX

(
d

dy

)
fX(y) = 0,

with initial conditions

fτ
(k)(0) = 0 (k = 0, 1, . . . , n− 2), fτ

(n−1)(0) = α0,

fX
(k)(0) = 0 (k = 0, 1, . . . , m− 2), fX

(m−1)(0) = β0,

where

Lτ

(
d
dt

)
=

(
d
dt

)n
+ αn−1

(
d
dt

)n−1
+ · · ·+ α0,

LX

(
d

dx

)
=

(
d

dx

)m
+ βm−1

(
d

dx

)m−1
+ · · ·+ β0,

and αi, βi are the parameters of the rational Laplace transform related to derivatives of
fτ(t), fX(x).

For the risk models with surplus-dependent premiums, Albrecher et al. (2013) derived
a compact integro-differential equation for Φ(u)

Lτ

(
δ− p(u)

d
du

)
Φ(u) = α0

(∫ u

0
Φ(u− y)dFX(y) + ω(u)

)
, (5)

where ω(x) =
∫ ∞

x ω(x, y− x)dFX(y). For a Gerber–Shiu function, the coefficients of ODE
are variables (non-constant), and the boundary value problem developed by (Albrecher
et al. 2013) is

LX

(
d

du

)
Lτ

(
δ− p(u)

d
du

)
Φ(u) = α0β0Φ(u) + α0LX

(
d

du

)
ω(u), (6)

exhibiting one regularity condition
Φ(∞) = 0

and m initial conditions
Φ(k)(0) = 0 (k = 0, . . . , m− 1).

The general solution of this boundary value problem has the form

Φ(u) = γ1s1(u) + · · ·+ γmsm(u) + Gg(u),

where si(u), i = 1, . . . , m are m stable solutions (si(u) → 0 as u → ∞), γi are constants
determined by initial conditions, g(u) = α0LX(

d
du )ω(u), and Gg(u) is the Green’s operator

for (6) (see Albrecher et al. 2013). Recall that the probability of ruin ψ(u) is a special case of
Φ(u) for δ = 0 and ω = 1. Furthermore, in this case we have g(u) = 0. Thus, one has

ψ(u) = γ1s1(u) + · · ·+ γmsm(u).

In the next sections we build on the above theory to analyse the case when either the
generic interarrival time or the generic claim size follows an Erlang distribution. For the
case when the inter-arrivals and claim sizes are exponentially distributed, the explicit and
asymptotic results for ruin probability ψ(u) derived by Albrecher et al. (2013); Asmussen
and Albrecher (2010) are captured in the Appendix A.
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3. Erlang(2, λ) Distributed Interarrival Times with Exp(µ) Distributed Claim Sizes

Let the claim sizes (Xk)k>0 be exponentially distributed, with density

fX(x) = e−µx, x > 0

and the interarrival times (τk)k>0 be Erlang(2, λ) distributed, with density

fτ(t) = λ2te−λt, t > 0.

We denote by ψl,2(u) and Φl,2(u) the ruin probability and, respectively, the Gerber–
Shiu function in this case.

3.1. General Premium

Based on the (Albrecher et al. 2010, 2013) technique, the boundary value problem (6)
becomes [(

d
du

+ µ

)(
δ− p(u)

d
du

+ λ

)2
− λ2µ

]
Φl,2(u) = Gg(u), u > 0.

For the special case δ = 0 and ω = 1, g(u) = 0, the ODE of the ruin probability ψl,2(u)
has the form [(

d
du

+ µ

)(
−p(u)

d
du

+ λ

)2
− λ2µ

]
ψ(u) = 0, u > 0, (7)

with
ψl,2(u) = γ21s21(u),

where s21(u) is a stable solution and γ21 is a constant to be determined by the initial
conditions. Expanding ODE (7) leads to

p2(u)ψ′′′l,2(u) + (2p′(u)p(u)− 2λp(u) + µp2(u))ψ′′l,2(u) + (λ2 − 2λp′(u)− 2λµp(u))ψ′l,2(u) = 0.

This is a third-order ODE with variable coefficients, that can be regarded as a second-
order ODE in hl,2(u) = ψ′l,2(u). Thus, one has

p2(u)h′′l,2(u) + (2p′(u)p(u)− 2λp(u) + µp2(u))h′l,2(u) + (λ2 − 2λp′(u)− 2λµp(u))hl,2(u) = 0. (8)

In order to perform the asymptotic analysis described in (Fedoryuk 1993, p. 250), we
consider the characteristic Equation of (8) when p(u) = c. Let ρ̂1 and ρ̂2 be the solutions of
the square equation

ρ2 +
−2λc + µc2

c2 ρ +
λ2 − 2λµc

c2 = 0,

that is, for i = 1, 2,

ρ̂i =
2λc− µc2 ±

√
(2λc− µc2)2 + 4λc2(2µc− λ)

2c2 . (9)

Moreover, let

ρ1(u) =
1
2

(
−q1(u)−

√
q2

1(u)− 4q0(u)
)

(10)

and

ρ2(u) =
1
2

(
−q1(u) +

√
q2

1(u)− 4q0(u)
)

(11)
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be the solutions of the characteristic equation ρ2 + q1(u)ρ + q0(u) = 0, where

q1(u) =
2p′(u)p(u)− 2λp(u) + µp2(u)

p2(u)

and

q0(u) =
λ2 − 2λp′(u)− 2λµp(u)

p2(u)
.

Further, as in (Fedoryuk 1993), denote

ρ
(1)
i (u) =

−ρ′i(u)
2ρi(u) + q1(u)

, i = 1, 2. (12)

Theorem 1. Let Ci (i = 1, 2, 3) be some constants. If (2) holds with

2c
λ

>
1
µ

, (13)

then
ψl,2(u) ∼ −

C1

ρ̂1
eρ̂1u (14)

where ρ̂1 < 0. If (3) holds, then

ψl,2(u) ∼ C3

∫ ∞

u
exp

{∫ y

0
(ρ1(z) + ρ

(1)
1 (z)dz

}
dy. (15)

Remark 1. Condition (13) is derived from ρ̂i in Equation (9), which is also consistent with
the safety loading condition for the classical risk model when the premium is constant, that is,
2c
λ −

1
µ > 0. Under the assumption complimentary to (13),

2c
λ

<
1
µ

,

we have ρ̂1,2 > 0, and hence, both asymptotic particular solutions are unstable. Their difference
might still tend to zero, but the Fedoryuk (1993) theory is not refined enough to recover the finer
asymptotics in this case.

Proof. Note that in the case of premium function (2), we have

q1(u) =
−2λc + µc2

c2 + O
(

1
u2

)
and

q0(u) =
λ2 − 2λµc

c2 + O
(

1
u2

)
.

Further, under assumption (13), ρ̂1 < 0 and ρ̂2 > 0, for ρ̂1,2 defined in (9). Then
Conditions (1) and (2) of (Fedoryuk 1993, p. 250) are satisfied, and hence, choosing the
stable solution (tending to zero as u tends to infinity), we have

hl,2(u) ∼ eρ̂1u, (16)

whenever (13) is satisfied. Thus, asymptotics (14) hold true.
In the second case, of premium function (3), we observe that the solutions of the

characteristic equation ρ2 + q1(u)ρ + q0(u) = 0 satisfy:

ρ1(u) =
1
2

(
−q1(u)−

√
q2

1(u)− 4q0(u)
)
∼ −µ +

q0(u)
µ
∼ −µ− 2λ

εl
u−l (17)
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and

ρ2(u) =
1
2

(
−q1(u) +

√
q2

1(u)− 4q0(u)
)
∼ 2λ

εl
u−l . (18)

Moreover, in this case, q0(u) ∼ −2λµ
εl

u−l and q1(u) ∼ µ. Thus, Conditions (1), (2), and
(19) of (Fedoryuk 1993, p. 254) are satisfied, and we can conclude (15). Note that from (18)∫ ∞

u
exp

{∫ y

0
(ρ2(z) + ρ

(1)
2 (z)dz

}
dy

equals infinity for all u. Hence, by (17), only∫ ∞

u
exp

{∫ y

0
(ρ1(z) + ρ

(1)
1 (z)dz

}
dy

can produce the stable asymptotics (15) in a sense that it tends to zero as u tends to
infinity.

Observe that, indeed in all considered cases, ψl,2(u) → 0 as u → +∞, that is, we
choose the asymptotics of the stable solutions.

3.2. Linear Premium

Now we perform the asymptotic analysis of the special case of the linear premium
rate which corresponds to investments of reserves into bonds with the interest rate ε > 0.
Substituting p(u) = c + εu into ODE (8), we have

(c + εu)2h′′l,2(u) + (2ε(c + εu)− 2λ(c + εu) + µ(c + εu)2)h′l,2(u)

+ (λ2 − 2λε− 2λµ(c + εu))hl,2(u) = 0. (19)

Before we solve this equation and perform the asymptotic analysis, we will show how
the asymptotics of ψl,2 can be derived from Theorem 1. In this case, we have

q1(u) =
2ε− 2λ

c + εu
+ µ and q0(u) =

λ2 − 2λε

(c + εu)2 −
2λµ

c + εu
.

The discriminant is

q2
1(u)− 4q0(u) =

4ε2

(c + εu)2 +
4µε + 4λµ

c + εu
+ µ2,

and therefore,

ρ1(u) =
1
2

(
−q1(u)−

√
q2

1(u)− 4q0(u)
)

= −1
2

µ− ε− λ

c + εu
− 1

2

√
µ2 +

4µ(ε + λ)

c + εu
+

4ε2

(c + εu)2 .

Applying Taylor expansion, we can conclude that√
q2

1(u)− 4q0(u) ∼ µ +
2(ε + λ)

c + εu
, as u→ ∞.

Additionally, observe that

q′1(u) = −
ε(2ε− 2λ)

(c + εu)2 and
(√

q2
1(u)− 4q0(u)

)′
=
− 4ε3

(c+εu)3 −
ε(2εµ+2λµ)
(c+εu)2√

4ε2

(c+εu)2 +
4µε+4λµ

c+εu + µ2
.
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This gives

ρ′1(u)√
q2

1(u)− 4q0(u)
=

1
2

(
−q1(u)−

√
q2

1(u)− 4q0(u)
)′

√
4ε2

(c+εu)2 +
4µε+4λµ

c+εu + µ2

=

ε(ε−λ)
(c+εu)2√

4ε2

(c+εu)2 +
4µε+4λµ

c+εu + µ2
+

2ε3

(c+εu)3 +
ε(εµ+λµ)
(c+εu)2

4ε2

(c+εu)2 +
4µε+4λµ

c+εu + µ2
.

Using (12), we finally derive

ρ1(u) + ρ
(1)
1 (u) = ρ1(u) +

ρ′1(u)√
q2

1(u)− 4q0(u)
∼ −µ− 2ε

c + εu
, as u→ ∞.

Thus, for u→ ∞,

exp
{∫ y

0
(ρ1(z) + ρ

(1)
1 (z)dz

}
∼e−µy

(
c + εy

c

)−2

and by (15)

ψl,2(u) ∼ C3

∫ ∞

u
e−µy

(
c + εy

c

)−2
dy, (20)

for some constant C3. The same asymptotics can be derived by solving (19) explicitly. Note
that (19) is the general confluent equation 13.1.35 in Abramowitz and Stegun (1965, p. 505),
which has the form

w′′(z) +
[

2A
Z

+ 2 f ′(z) +
bh′(z)
h(z)

− h′(z)− h′′(z)
h′(z)

]
w′(z)

+

[(
bh′(z)
h(z)

− h′(z)− h′′(z)
h′(z)

)(
A
Z

+ f ′(z)
)
+

A(A− 1)
Z2 +

2A f ′(z)
Z

+ f ′′(z) + f ′2(z)− ah′2(z)
h(z)

]
w(z) = 0.

For our ODE (19), let

Z =
c + εu

ε
, f (Z) = h(Z) = µZ,

A =
1
2
− λ

ε
− 1

2

√
1 +

4λ

ε
, a = 1 +

ε + 2λ + ε
√

1 + 4λ
ε

2ε
, b = 1 +

√
1 +

4λ

ε
,

where the corresponding solutions are

hl,21(u) =C21e−µu(c + εu)−
1
2+

λ
ε +

1
2

√
1+ 4λ

ε

·M

1 +
ε + 2λ + ε

√
1 + 4λ

ε

2ε
, 1 +

√
1 +

4λ

ε
,

µ(c + εu)
ε

,

and

hl,22(u) =C22e−µu(c + εu)−
1
2+

λ
ε +

1
2

√
1+ 4λ

ε

·U

1 +
ε + 2λ + ε

√
1 + 4λ

ε

2ε
, 1 +

√
1 +

4λ

ε
,

µ(c + εu)
ε

,
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where C21 and C22 are constants. From (Abramowitz and Stegun 1965, p. 504), we know that

M(a, b, z) ∼ Γ(b)
Γ(a)

ezza−b and U(a, b, z) ∼ z−a, as z→ ∞.

Thus, we have hl,21(u) → ∞ and hl,22(u) → 0 for u → ∞. Since s2(u) is the stable
solution, we have

s2(u) = C
∫ ∞

u
e−µv(c + εv)−

1
2+

λ
ε +

1
2

√
1+ 4λ

ε

·U

1 +
ε + 2λ + ε

√
1 + 4λ

ε

2ε
, 1 +

√
1 +

4λ

ε
,

µ(c + εv)
ε

dv.

Thus, as u→ ∞, the ruin probability has the following asymptotics:

ψl,2(u) ∼ C
∫ ∞

u
e−µy · (c + εy)−

1
2+

λ
ε +

1
2

√
1+ 4λ

ε ·
(

µ(c + εy)
ε

)−1− ε+2λ+ε
√

1+ 4λ
ε

2ε

dy,

equivalent to

ψl,2(u) ∼ C
(µ

ε

)−1− ε+2λ+ε
√

1+ 4λ
ε

2ε
∫ ∞

u
e−µy · (c + εy)−2dy, as u→ ∞.

By (20), this asymptotic behaviour is the same as the one derived using Theorem 1.
Furthermore, one can simplify the above asymptotics by applying the integration-by-
parts formula,

ψl,2(u) ∼ C ·
(µ

ε

)−1− ε+2λ+ε
√

1+ 4λ
ε

2ε · 1
ε

(
e−µu

c + εu
− µ

∫ ∞

u

e−µv

c + εv
dv
)

= C ·
(µ

ε

)−1− ε+2λ+ε
√

1+ 4λ
ε

2ε · 1
ε

(
e−µu

c + εu
− µ

ε
e

µ
ε cΓ
(µ

ε
(c + εu), 0

))
, as u→ ∞. (21)

4. Exp(λ)-Distributed Interarrival Times with Erlang(2, µ)-Distributed Claim Sizes

Let the claim sizes (Xk)k>0 be Erlang(2, µ)-distributed and the interarrival times
(τk)k>0 be Exp(λ)-distributed, that is,

fX(x) = µ2xe−µx, x > 0 and fτ(t) = λe−λt, t > 0.

We denote by ψl,3(u) and Φl,3(u) the ruin probability and the Gerber–Shiu function in
this case.

4.1. General Premium

Applying the same technique as in (Albrecher et al. 2010, 2013), the boundary value
problem (6) becomes[(

d
du

+ µ

)2(
δ− p(u)

d
du

+ λ

)
− λµ2

]
Φ(u)l,3 = Gg(u), u > 0.

For δ = 0 and ω = 1, g(u) = 0 and the ODE of ψl,3(u) has the following form:[(
d

du
+ µ

)2(
−p(u)

d
du

+ λ

)
− λµ2

]
ψl,3(u) = 0, u > 0, (22)
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equivalent to (
d2

du2 + 2µ
d

du
+ µ2

)
(−p(u)ψ′l,3(u) + λψl,3(u)) = λµ2ψl,3(u). (23)

Hence, one can rewrite it as

p(u)ψ′′′l,3(u) + (2p′(u) + 2µp(u)− λ)ψ′′l,3(u) + (p′′(u) + 2µp′(u) + µ2 p(u)− 2µλ)ψ′l,3(u) = 0.

Denoting hl,3(u) = ψ′l,3(u), we have the following equation in hl,3(u)

p(u)h′′l,3(u) + (2p′(u) + 2µp(u)− λ)h′l,3(u) + (p′′(u) + 2µp′(u) + µ2 p(u)− 2µλ)hl,3(u) = 0. (24)

We first analyze the general premium rate. We denote now, as in (Fedoryuk 1993),

q̃1(u) =
2p′(u) + 2µp(u)− λ

p(u)

and

q̃0(u) =
p′′(u) + 2µp′(u) + µ2 p(u)− 2µλ

p(u)
.

By ρ̃1,2 we denote the roots of the quadratic equation

ρ2 +
2µc− λ

c
ρ +

µ2c− 2µλ

c
= 0,

that is, for i = 1, 2,

ρ̃i =
λ− 2µc±

√
(λ− 2µc)2 + 4µc(2λ− µc)

2c
. (25)

Further, let

ρ̃
(1)
i (u) =

−ρ̃′i(u)
2ρ̃i(u) + q1(u)

, i = 1, 2

with

ρ̃1(u) =
1
2

(
−q̃1(u)−

√
q̃2

1(u)− 4q̃0(u)
)

(26)

and

ρ̃2(u) =
1
2

(
−q̃1(u) +

√
q̃2

1(u)− 4q̃0(u)
)

(27)

be solutions of the characteristic equation ρ2 + q̃1(u)ρ + q̃0(u) = 0.

Theorem 2. Let Ci (i = 1, 2, 3, 4) be some constants. If (3) holds, then

ψl,2(u) ∼ −
C1

ρ̃1
eρ̃1u, (28)

where ρ̃1 < 0 for

λ >
µc
2

(29)

and
ψl,2(u) ∼ −

C1

ρ̃1
eρ̃1u − C2

ρ̃2
eρ̃2u (30)
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where ρ̃1,2 < 0 for

λ <
µc
2

. (31)

Moreover, if (3) holds, then

ψl,2(u) ∼ C3

∫ ∞

u
exp

{∫ y

0
(ρ̃1(z) + ρ̃

(1)
1 (z)dz

}
dy + C4

∫ ∞

u
exp

{∫ y

0
(ρ̃2(z) + ρ̃

(1)
2 (z)dz

}
dy. (32)

Remark 2. Again, the conditions (29) and (31) are derived from ρ̃i in Equation (25). In this case,
the safety loading condition for the classical risk model with constant premium is c

λ −
2
µ > 0.

Proof. Note that in the first case of premium function (2), we have

q̃1(u) =
2µc− λ

c
+ O

(
1
u2

)
and

q̃0(u) =
µ2c− 2µλ

c
+ O

(
1
u2

)
.

Here, ρ̃1 and ρ̃2 are different. Then, Conditions (1) and (2) of (Fedoryuk 1993, p. 250)
are satisfied, and hence, choosing the stable solution (tending to zero as u tends to infinity)

hl,2(u) ∼ eρ̃1u (33)

for ρ̃2 > 0 or
hl,2(u) ∼ eρ̃1u + eρ̃2u (34)

for ρ̃2 < 0. Similarly like in the proof of Theorem 1, this observation completes the proof of
(28) and (30).

In the case of premium function (3), observe that the solutions of the characteristic
equation ρ2 + q1(u)ρ + q0(u) = 0 converge for u→ ∞ to

ρ̃1(u) =
1
2

(
−q̃1(u)−

√
q̃2

1(u)− 4q̃0(u)
)
→ −µ (35)

and

ρ̃2(u) =
1
2

(
−q̃1(u) +

√
q̃2

1(u)− 4q̃0(u)
)
→ −µ, (36)

since in this case, q0(u) → µ2 and q1(u) → 2µ. Although we are not in the set-up of
asymptotically simple roots Equation (9) from (Fedoryuk 1993, p. 251), (Fedoryuk 1993,
(9)) still holds true. Observe now that for large u,

ρ̃1(u)− ρ̃2(u) + ρ̃
(1)
1 (u)− ρ̃

(1)
2 (u)

does not change signs. Indeed, note that

ρ̃1(u)− ρ̃2(u) = −
√

q̃2
1(u)− 4q̃0(u) < 0.

Moreover,

ρ̃
(1)
1 (u) =

1
2

1
|q̃2

1(u)− 4q̃0(u)|

(
q̃′1(u)

√
q̃2

1(u)− 4q̃0(u) + q̃1(u)q̃′1(u)− 2q̃′0(u)
)
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and

ρ̃
(1)
2 (u) =

1
2

1
|q̃2

1(u)− 4q̃0(u)|

(
−q̃′1(u)

√
q̃2

1(u)− 4q̃0(u) + q̃1(u)q̃′1(u)− 2q̃′0(u)
)

.

Therefore,

ρ̃
(1)
1 (u)− ρ̃

(1)
2 (u) =

1
2

1√
q̃2

1(u)− 4q̃0(u)
q̃′1(u),

which is negative for large values of u because

q′1(u) ∼
−2l
u2 < 0.

Finally, q′′1 (u) ∼
4l
u3 and

q′0(u) ∼
−2µl

u2 , q′′0 (u) ∼
4µl
u3 .

Thus, Conditions (1), (2), and (9) of Fedoryuk (1993, pp. 251–52) are satisfied and,
similarly with the proof of Theorem 1, we conclude the proof of (32).

4.2. Linear Premium

Using the same method as in the previous case, and considering a linear premium
p(u) = c + εu, one has

(c + εu)h′′l,3(u) + (2ε + 2µ(c + εu)− λ)h′l,3(u) + (2µε + µ2(c + εu)− 2µλ)hl,3(u) = 0. (37)

As in the previous section, before we solve this equation explicitly, and then using
its solution to perform the asymptotic analysis, we will first show how the asymptotic
behaviour of ψl,3 can be derived from Theorem 2. Note that, in this case, we consider

q̃1(u) =
2ε− λ

c + εu
+ 2µ and q̃0(u) =

2µε− 2µλ

c + εu
+ µ2.

Further, we have the discriminant

q̃2
1(u)− 4q̃0(u) =

(2ε− λ)2

(c + εu)2 +
4λµ

c + εu
,

and hence for i = 1, 2,

ρ̃i(u) =
1
2

(
−q̃1(u)±

√
q̃2

1(u)− 4q̃0(u)
)

= −µ− 2ε− λ

2(c + εu)
± 1

2

√
(2ε− λ)2

(c + εu)2 +
4λµ

c + εu
.

Thus,

ρ̃′i(u)√
q̃2

1(u)− 4q̃0(u)
=

1
2

(
−q̃1(u)±

√
q̃2

1(u)− 4q̃0(u)
)′

√
(2ε−λ)2

(c+εu)2 + 4λµ
c+εu

=
ε(2ε− λ)

2(c + εu)
√
(2ε− λ)2 + 4λµ(c + εu)

±
− ε(2ε−λ)

c+εu − 2ελµ

2(2ε− λ)2 + 8λµ(c + εu)

∼ ∓ ε

4(c + εu)
, as u→ ∞.
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Additionally,

ρ̃i(u) + ρ̃
(1)
i (u) = ρ̃i(u)∓

ρ̃′i(u)√
q̃2

1(u)− 4q̃0(u)

∼ −µ +

(
−3ε

4
+

λ

2

)
1

c + εu
±
√

λµ

c + εu
, as u→ ∞.

Thus, we conclude that

exp
{∫ y

0
(ρ̃i(z) + ρ̃

(1)
i (z)dz

}
= e−µy± 2

ε

(√
λµ(c+εy)−

√
λµc

)(
c + εy

c

)− 3
4+

λ
2ε

and by Theorem 2, we have that

ψl,3(u) ∼C3

∫ ∞

u
e−µy+ 2

ε

(√
λµ(c+εy)−

√
λµc

)(
c + εy

c

)− 3
4+

λ
2ε

dy

+ C4

∫ ∞

u
e−µy− 2

ε

(√
λµ(c+εy)−

√
λµc

)(
c + εy

c

)− 3
4+

λ
2ε

dy, (38)

for some constants C3 and C4 as u→ ∞. The same asymptotic behaviour can be observed
by first solving ODE (37) explicitly. Recall that a general Bessel equation (Sherwood and
Reed 1939, p. 211)

x2 d2y
dx2 +

[
(1− 2m)x− 2αx2

] dy
dx

+
[

p2a2x2p + α2x2 + α(2m− 1)x + m2 − p2n2
]
= 0,

exhibits solutions involving Bessel functions (see Sherwood and Reed (1939, p. 211) and
Logan (2012, p. 460) for details). In our ODE (37), we let

x = c + εu, m = −1
2
+

λ

2ε
, α = −µ

ε
, p =

1
2

, p2a2 = −λµ

ε2 , n = −1 +
λ

ε
,

and employing the property K−v(z) = Kv(z) (see Abramowitz and Stegun (1965, p. 375)),
it can be verified that the corresponding solution is

hl,3(u) =C31e−
µ
ε (c+εv) · (c + εv)−

1
2+

λ
2ε · BesselI

[
− 1 +

λ

ε
, 2

√
(v + c

ε )λµ

ε

]
+ C32e−

µ
ε (c+εv) · (c + εv)−

1
2+

λ
2ε · BesselK

[
− 1 +

λ

ε
, 2

√
(u + c

ε )λµ

ε

]
,

where C31 and C32 are some real constants and BesselI and BesselK are modified Bessel func-
tions. The solution is the same as the one in Example 2.4. in Paulsen and Gjessing (1997),
which is solved by the changing of variables u = z− c/ε. In this case, n = −1 + λ

ε has to
be restricted to an integer. This yields

s31(u) = C31

∫ ∞

u
e−

µ
ε (c+εv) · (c + εv)−

1
2+

λ
2ε · BesselI

[
− 1 +

λ

ε
, 2

√
(v + c

ε )λµ

ε

]
dv,

s32(u) = C32

∫ ∞

u
e−

µ
ε (c+εv) · (c + εv)−

1
2+

λ
2ε · BesselK

[
− 1 +

λ

ε
, 2

√
(v + c

ε )λµ

ε

]
dv.

Since

Iv(z) ∼
ez
√

2πz
and Kv(z) ∼

√
π

2z
e−z as z→ ∞
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(see Abramowitz and Stegun (1965, p. 377)), we have that, for u→ ∞,

ψl,3(u) ∼
C31√

2π
√

λµ
e−

µc
ε

∫ ∞

u
e−µy+ 2

ε

√
λµ(c+εy) · (c + εy)−

3
4+

λ
2ε dy

+ C32

√
π

2
√

λµ
e−

µc
ε

∫ ∞

u
e−µy− 2

ε

√
λµ(c+εy) · (c + εy)−

3
4+

λ
2ε dy,

which is consistent with (38), and hence with Theorem 2.

5. Asymptotic Analysis—Comparison Results
5.1. Exp(λ)-Distributed Interarrival Times with Exp(µ)-Distributed Claim Sizes

In this case, for the linear premium, we have the asymptotic result (A3), that is,

ψ(u) ∼ µ

λcλ/ε
Ce−µu(c + εu)

λ
ε −1,

where C is some constant. For a constant premium c, the result for the ruin probability is

ψc,1(u) =
λ

cµ
e−(µ−

λ
c )u, for any u > 0.

Thus, we have

ψl,1(u) ∼ C · ψc,2(u) · e−
λ
c u · (c + εu)

λ
ε −1, as u→ ∞.

5.2. Erlang(2, λ)-Distributed Interarrival Times with Exp(µ)-Distributed Claim Sizes

Recall the asymptotic result (21) for risk models with linear premiums, in this case,

ψl,2(u) ∼ C1 ·
(µ

ε

)−1− ε+2λ+ε
√

1+ 4λ
ε

2ε · 1
ε

( e−µu

c + εu
− µ

ε
e

µ
ε cΓ
(µ

ε
(c + εu), 0

))
, as u→ ∞,

and the explicit result for risk models with constant premiums gives

ψc,2(u) = C2e−
cµ−2λ+

√
c2µ2+4cλµ

2c u, u > 0,

see (Dickson and Hipp 1998, 2001). Taking the limit and applying L’Hôpital’s rule, the ratio
between ψl,2(u) and ψc,2(u) behaves asymptotically as

ψl,2(u)
ψc,2(u)

∼ C3e−
cµ+2λ−

√
c2µ2+4cλµ

2c u(c + εv)−2, u→ ∞,

where C3 is some constant. Hence, ψl,2(u)
ψc,2(u)

tends to zero as u tends to infinity.
This means that as the initial surplus u increases, one has more premium income

for risk models with linear premiums, thus the ruin probability ψl,2(u) for risk models
with linear premiums decays to zero exponentially faster than the ruin probability ψc,2(u)
for constant premium risk models. As expected, this means that risk models with linear
premiums are less risky than the constant premium ones.
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5.3. Exp(λ)-Distributed Interarrival Times with Erlang(2, µ)-Distributed Claim Sizes

We start by recalling the asymptotic result (38) for risk models with linear premiums

ψl,3(u) ∼C1

∫ ∞

u
e−µy+ 2

ε

(√
λµ(c+εy)−

√
λµc

)(
c + εy

c

)− 3
4+

λ
2ε

dy

+ C2

∫ ∞

u
e−µy− 2

ε

(√
λµ(c+εy)−

√
λµc

)(
c + εy

c

)− 3
4+

λ
2ε

dy, u→ ∞,

where C1 and C2 are constants. The explicit result for the constant premiums case can also
be derived from an ordinary differential equation, as

ψc,3(u) = C3eσ31u + C4eσ32u, u > 0,

where σ31,32 = − 2cµ−λ±
√

λ2+4cλµ
2c < 0 and C3 and C4 are some constants, see Bergel and

Egidio dos Reis (2015); Li and Garrido (2004) for details. Taking the limit and applying
L’Hôpital’s rule, we can conclude that

lim
u→∞

ψl,3(u)
ψc,3(u)

= 0.

Thus, as the initial surplus u increases, the ruin probability ψl,3(u) for risk models
with linear premiums decreases to zero faster than the ruin probability ψc,3(u) for constant
premiums. Again, this means that risk models with constant premiums are more risky than
linear premium ones, as expected; thus, there is a gain in terms of solvency when binding
premiums to reserves.

6. Conclusions

It is much easier to calculate the ruin probabilities for risk models with constant
premiums, and explicit results for constant cases abound in the risk theory literature;
however, the risk models with surplus-dependent premiums are more applicable in real
life. For these complex cases, we have results in terms of the confluent hypergeometric
function and modified Bessel function at most, or only asymptotic results, from which one
can make inferences.
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Appendix A

We recall the results for ruin probabilities, in models with premiums dependent
on reserves, general and linear premiums, when both inter-arrivals and claim sizes are
exponentially distributed. For a classical compound Poisson process with exponential
claims, the following explicit and asymptotic results for ruin probability ψ(u) can be found
in Albrecher et al. (2013); Asmussen and Albrecher (2010).
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General premium. The ruin probability ψ(u) has the following explicit expression

ψ(u) =
λ
∫ ∞

u e−µv+
∫ v

0
λ

p(y) dy 1
p(v)dv

1 + λ
∫ ∞

0 e−µv+
∫ v

0
λ

p(y) dy 1
p(v)dv

. (A1)

The asymptotic estimate of ruin probability for p(∞) = c is

ψ(u) ∼ µ

λ
Ce−µu+λ

∫ u
0

dw
p(w) , u→ ∞

and for p(∞) = ∞ is

ψ(u) ∼ µ

λ
C

1
p(u)

e−µu+λ
∫ u

0
dw

p(w) , u→ ∞

where C is a constant. We write f (u) ∼ g(u) for some functions f and g when
limu→+∞ f (u)/g(u) = 1.

Linear premium. The explicit form of ruin probability ψ(u) is

ψl,1(u) =
λελ/ε−1

µλ/εcλ/εe−µc/ε + λελ/ε−1Γ( λ
ε , µc

ε )
Γ(

λ

ε
,

µ(c + εu)
ε

), (A2)

where Γ(η, x) is the incomplete gamma function defined as

Γ(η, x) =
∫ ∞

x
tη−1e−tdt.

Moreover, when p(u) = c + εu, we have

ψ(u) ∼ µ

λcλ/ε
Ce−µu(c + εu)

λ
ε −1, as u→ ∞. (A3)
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