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Abstract: We derive a Hattendorff differential equation and a recursion governing the evolution
of continuous and discrete time evolution respectively of the variance of the loss at time t random

variable given that the state at time t is j, for a multistate Markov insurance model (denoted by 2σ
(j)
t ).

We also show using matrix notation that both models can be easily adapted for use in MATLAB for
numerical computations.

Keywords: policy value; Kolmogorov forward equations; multistate model; Thiele’s differential
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1. Introduction

The original Hattendorff theorem in Hattendorff (1868) states that in a life insurance
policy, the losses in different years are uncorrelated and have zero means, hence the
variance of the total loss is the sum of variances of the losses in individual years. This
result has had a revival in modern-day actuarial mathematics with a flavor of stochastic
processes or a martingale approach as seen in Gerber (1979, 1986), Papatriandafylou and
Waters (1984), Ramlau-Hansen (1988), Norberg (1992). Furthermore, the theorem has been
mentioned in classic textbooks such as Bowers et al. (1986). An explicit integral formula for
the variance of the loss at time t random variable 2σ

(j)
t , given that the state at time t is j, was

derived in Wolthuis (1987). Furthermore, Norberg (1995) and Asmussen and Steffensen
(2020) derive differential equations for higher-order moments and variances in a more
abstract setting. More recently in Bladt et al. (2020) a matrix representation was carried out
to obtain representation formulas for all higher-order moments for the loss at time t of the
random variable Lt. In this paper, however, we explicitly derive models for the continuous
and discrete time evolutions of the variance of Lt under a much more general benefit and
premium structure that is adaptable for numerical computation.

The main goals of this paper are as follows:

1. Explicitly derive a differential equation, which we name as the Hattendorff differential
equation that governs the continuous time evolution of the variance of the loss at time t
random variable given that the state at time t is j (denoted by 2σ

(j)
t ), for a general setting

of benefits and premiums in the setting of a multistate Markov insurance model.
2. Explicitly derive recursions for the discrete time evolution of the variance of the loss

at time t random variable 2σ
(j)
t (both annual and h−yearly cash flows), for a general

setting of benefits and premiums in the context of a multistate Markov assumption.
3. Develop a matrix representation of the continuous time differential equation as well

as the discrete time recursion (both annual and h−yearly cash flows) that allows for
the use of MATLAB or similar software for ease of computation of 2σ

(j)
t as the solution

of a backwards in time differential equation or a recursion.
4. Demonstrate the setup of the computations in the form of two examples in Section 6.
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Since the derivation of the models is a big task, we focus mainly on the derivation
of the continuous and discrete time models in this paper for a general setup of benefits
and premiums. The actual computation of 2σ

(j)
t for all time t is a matter of solving a

system of coupled differential equations. We tackle that issue in a separate paper in the
future with numerical computations. However, we do demonstrate the usefulness of the
two models derived by setting up the differential equation and the recursion respectively,
for two situations. To our knowledge, this is the first time a general insurance model that is
conducive for computation of the variance of loss 2σ

(j)
t has been derived.

In line with (Dickson et al. 2020, chp. 8), we consider a multistate model with m + 1
states labeled as 0, 1, . . . , m with instantaneous transitions possible between pairs of states.
We use Y(t) to represent the state at time instant t. {Y(t)}t≥0 is a stochastic process for
t ≥ 0 (continuous or discrete time depending on when we choose to make observations),
with Y(t) = i to mean that the individual is in state i at age x + t (initial age is taken as x).
We refer to Appendix A for notation and assumptions used in this paper.

We end this section by stating some h−yearly relationships between the L(j)
t and L(j)

t+h,
which can be easily derived by drawing a timeline for the interval [t, t + h] and marking
out the outgo and income:

L(j)
t = vh(hB(j)

t+h + S(jk)
t+h + L(k)

t+h)− hP(j)
t if Y(t + h) = k given Y(t) = j. (1)

As a result, the h−yearly relationship between V(j)
t and V j

t+h can be derived by taking the
expected value of Equation (1) as follows:

V(j)
t = vh

m

∑
k=0

h pjk
x+t(hB(k)

t+h + S(jk)
t+h + V(k)

t+h)− hP(j)
t . (2)

The paper is organized as follows. In Section 2, we explicitly derive discrete recursive
relationships for 2σ

(j)
t . In Section 3, we derive the differential equation describing the

evolution of 2σ
(j)
t using the h−yearly recursion derived in Section 2. In Section 4, we restate

all the theorems with matrix notation. In Section 5, we briefly discuss possible terminal
conditions that can be used to back-propagate the Hattendorff recursion and differential
equation derived in Section 3. In Section 6 we apply the continuous time differential
equation and the discrete time recursion to the disability insurance model to demonstrate
how to set up the differential equation and the recursion respectively for computation
using software. Finally, we conclude with some remarks in Section 7.

2. Discrete Recursion for 2σ
(j)
t

In this section, we derive several discrete recursions for the variance 2σ
(j)
t . First,

we derive an h−yearly recursion for 2σ
(j)
t .

Theorem 1. Assume that Notation A1, Assumption A1 and Notation A2 are true. Then, the fol-
lowing h−yearly recursion of 2σ

(j)
t holds.

2σ
(j)
t =

m

∑
k=0

h pjk
x+t · v

2h · 2σ
(k)
t+h +

m

∑
k 6=l

h pjk
x+t h pjl

x+tv
2h
[
(W(jk)

t+h −W(jl)
t+h

]2
. (3)

Proof. Since,(
L(j)

t

)2
=
(

vh(hB(k)
t+h + S(jk)

t+h + L(k)
t+h)− hP(j)

t

)2
, with probability h pjk

x+t,
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we know that

E
(

L(j)
t

)2
=

m

∑
k=0

h pjk
x+tE

(
vh(hB(k)

t+h + S(jk)
t+h + L(k)

t+h)− hP(j)
t

)2

=
m

∑
k=0

[
h pjk

x+t · v
2h · 2σ

(k)
t+h + h pjk

x+t

(
vhV(k)

t+h + T jk
)2
]

,

where T jk = vh(hB(k) + S(jk)
t+h − hP(j)

t )2 and 2σ
(k)
t+h = Var(L(k)

t+h).
Since the expected value is given by

E(L(j)
t ) =

m

∑
k=0

h pjk
x+t

(
vhV(k)

t+h + T jk
)

,

we have (
E(L(j)

t )
)2

=

(
m

∑
k=0

h pjk
x+t

(
vhV(k)

t+h + T jk
))2

.

Thus,

2σ
(j)
t = Var(L(j)

t ) = E
(

L(j)
t

)2
−
(

E(L(j)
t )
)2

=
m

∑
k=0

h pjk
x+tv

2h · 2σ
(k)
t+h

+
m

∑
k=0

h pjk
x+t

(
vhV(k)

t+h + T jk
)2
−
(

m

∑
k=0

h pjk
x+t

(
vhV(k)

t+h + T jk
))2

=
m

∑
k=0

h pjk
x+tv

2h · 2σ
(k)
t+h

+
m

∑
k=0

h pjk
x+t

(
U jk
)2
−
(

m

∑
k=0

h pjk
x+tU

jk

)2

=
m

∑
k=0

h pjk
x+tv

2h · 2σ
(k)
t+h +

m

∑
k 6=l

h pjk
x+t

(
U jk −U jl

)2
,

where U jk = vhV(k)
t+h + T jk. Here, we have used the fact that ∑m

k=0 h pjk
x+t = 1 in the last step

above.
Noting that

U jk −U jl = vh
[
(V(k)

t+h −V(l)
t+h + h(B(k)

t+h − B(l)
t+h) + S(jk)

t+h − S(jl)
t+h

]
,

we have

2σ
(j)
t =

m

∑
k=0

h pjk
x+t · v

2h · 2σ
(k)
t+h

+
m

∑
k 6=l

h pjk
x+t h pjl

x+tv
2h
[
(V(k)

t+h −V(l)
t+h + h(B(k)

t+h − B(l)
t+h) + S(jk)

t+h − S(jl)
t+h

]2
.
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So,

2σ
(j)
t =

m

∑
k=0

h pjk
x+t · v

2h · 2σ
(k)
t+h +

m

∑
k 6=l

h pjk
x+t h pjl

x+tv
2h
[
(W(jk)

t+h −W(jl)
t+h

]2
.

Next, we obtain an annual recursion for 2σ
(j)
t as a corollary.

Corollary 1. Assume that Notation A1, Assumption A1 and Notation A2 are true. Then the
following annual recursion for 2σ

(j)
t holds:

2σ
(j)
t =

m

∑
k=0

pjk
x+t · v

2 · 2σ
(k)
t+1 +

m

∑
k 6=l

pjk
x+t pjl

x+tv
2
[
(W(jk)

t+1 −W(jl)
t+1

]2

= pjj
x+tv

2 · 2σ
(j)
t+1 +

m

∑
k=0
k 6=j

pjk
x+tv

2 · 2σ
(k)
t+1 +

m

∑
k 6=l

pjk
x+t pjl

x+tv
2
[
(W(jk)

t+1 −W(jl)
t+1

]2
.

Proof. The proof follows by substituting h = 1 in Theorem 1.

Finally, we derive an explicit annual relationship for 2σ
(j)
t that mirrors the traditional

Hattendorff recursion for the alive-dead model.

Theorem 2. Assume that Notation A1, Assumption A1 and Notation A2 are true. Then the
following explicit annual relationship holds for 2σ

(j)
t :

2σ
(j)
t+m = v2s

s−1

∏
i=0

pjj
x+t+i ·

2σ
(j)
t+s +

s

∑
n=1

v2n

(
n−2

∏
i=0

pjj
x+t+i

)
i

∑
k=0
k 6=j

pjk
x+t+n−1 ·

2σ
(k)
t+n

+
s

∑
n=1

v2n

(
n−2

∏
i=0

pjj
x+t+i

)
i

∑
k 6=l

pjk
x+t+n−1 · p

jl
x+t+n−1

[
(W(jk)

t+n −W(jl)
t+n

]2
.

Proof.

2σ
(j)
t = pjj

x+tv
2 · 2σ

(j)
t+1 +

m

∑
k=0
k 6=j

pjk
x+tv

2 · 2σ
(k)
t+1

+
m

∑
k 6=l

pjk
x+t pjl

x+tv
2
[
(W(jk)

t+1 −W(jl)
t+1

]2

2σ
(j)
t+1 = pjj

x+t+1v2 · 2σ
(j)
t+2 +

m

∑
k=0
k 6=j

pjk
x+t+1v2 · 2σ

(k)
t+2

+
m

∑
k 6=l

pjk
x+t+1 pjl

x+t+1v2
[
(W(jk)

t+2 −W(jl)
t+2

]2
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2σ
(j)
t+2 = pjj

x+t+2v2 · 2σ
(j)
t+3 +

m

∑
k=0
k 6=j

pjk
x+t+2v2 · 2σ

(k)
t+3

+
m

∑
k 6=l

pjk
x+t+2 pjl

x+t+2v2
[
(W(jk)

t+3 −W(jl)
t+3

]2

...

2σ
(j)
t+m = pjj

x+t+mv2 · 2σ
(j)
t+m +

m

∑
k=0
k 6=j

pjk
x+t+mv2 · 2σ

(k)
t+m+1

+
m

∑
k 6=l

pjk
x+t+m pjl

x+t+mv2
[
(W(jk)

t+m+1 −W(jl)
t+m+1

]2

The theorem then follows by recursive substitution of the equations above.

3. Hattendorff Differential Equation

In this section, we derive a continuous time differential equation satisfied by 2σ
(j)
t .

Theorem 3. Assume that Notation A1, Assumption A1 and Notation A2 are true. Then 2σ
(j)
t

satisfies the following differential equation:

d
dt

2σ
(j)
t = (2δ + ∑

k 6=j
µ

jk
x+t) ·

2σ
(j)
t −∑

k 6=j
µ

jk
x+t ·

2σ
(k)
t

−∑
l 6=j

µ
jl
x+t

(
W(jj)

t −W(jl)
t

)2
.

Proof. Let us reconsider Theorem 1:

2σ
(j)
t = h pjj

x+tv
2h · 2σ

(j)
t+h +

m

∑
k=0
k 6=j

h pjk
x+tv

2h · 2σ
(k)
t+h + ∑

k 6=l
h pjk

x+t · h pjl
x+tv

2h
[
(W(jk)

t+h −W(jl)
t+h

]2
.

With a bit of algebra, we have

2σ
(j)
t+h −

2σ
(j)
t

h
= 2σ

(j)
t+h

[
1− h pjj

x+tv
2h

h

]

−
m

∑
k=0
k 6=j

h pjk
x+t
h

v2h · 2σ
(k)
t+h −∑

k 6=l
h pjk

x+t
h pjl

x+t
h

v2h
[
(W(jk)

t+h −W(jl)
t+h

]2
.

Of course, we will let h approach zero and determine the limit of this expression.
To organize our thoughts, note that
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lim
h→0

h pjk
x+t
h

= µ
jk
x+t, lim

h→0
h pjj

x+t = 1, and lim
h→0

h pjk
x+t = 0.

We will first tackle the limit of the first term on the right. Please note that

d
dh

(v2h) =
d

dh

(
e−2δh

)
= −2δe−2δh = −2δv2h.

We will also need to recall Kolmogorov’s Forward Equations. That is,

d
dt

(
t pjk

x

)
= ∑

k 6=j

[
t pjk

x µ
kj
x+t − t pjj

x µ
jk
x+t

]
,

and hence
d

dh

(
h pjj

x+t

)
= ∑

k 6=j

[
h pjk

x+tµ
kj
x+t+h − h pjj

x+tµ
jk
x+t+h

]
.

We determine the following limit by applying L’Hospital’s Rule.

lim
h→0

[
1− h pjj

x+tv
2h
]

h
= lim

h→0

[
1− h pjj

x+te
−2δh

]
h

= lim
h→0
−
[

h pjj
x+t(−2δv2h) + v2h ∑

k 6=j
(h pjk

x+tµ
kj
x+t+h − h pjj

x+tµ
jk
x+t+h)

]
= 2δ + ∑

j 6=k
µ

jk
x+t

As h approaches 0, we have

lim
h→0

m

∑
k=0
k 6=j

h pjk
x+t
h

v2h · 2σ
(k)
t+h =

m

∑
k 6=j

µ
jk
x+t ·

2σ
(k)
t .

d
dt

2σ
(j)
t = (2δ + ∑

k 6=j
µ

jk
x+t) ·

2σ
(j)
t −∑

k 6=j
µ

jk
x+t ·

2σ
(k)
t

− lim
h→0

∑
k 6=j

h pjk
x+t h pjl

x+tv
2h

h

(
(V(k)

t+h −V(l)
t+h) + h(B(k)

t+h − B(l)
t+h) + (S(jk)

t+h − S(jl)
t+h)

)2

= (2δ + ∑
k 6=j

µ
jk
x+t) ·

2σ
(j)
t −∑

k 6=j
µ

jk
x+t ·

2σ
(k)
t

−∑
l 6=j

µ
jl
x+t

(
(V(j)

t −V(l)
t ) + (S(jj)

t − S(jl)
t )

)2

= (2δ + ∑
k 6=j

µ
jk
x+t) ·

2σ
(j)
t −∑

k 6=j
µ

jk
x+t ·

2σ
(k)
t

−∑
l 6=j

µ
jl
x+t

(
W(jj)

t −W(jl)
t

)2
.

This proves the theorem.

4. Matrix Representation

In this section, we rewrite some of the theorems in Sections 2 and 3 using the matrix
notation introduced in Notation A3. This makes the equations look more elegant.
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First, we use matrix notation to restate Theorem 1.

Theorem 4. Assume that Notation A1, Assumption A1, Notation A2 and Notation A3 are true.

Then the following h−yearly recursion for
−→
2σt holds:

−→
2σt= v2h · hPx+t·

−→
2σt+h +

−→
2σd

t+h

Proof. The proof follows by applying matrix notation in Notation A3 to Theorem 1.

We obtain the following corollary for annual recursion using h = 1 in Theorem 4.

Corollary 2. Assume that Notation A1, Assumption A1, Notation A2 and Notation A3 are true.

The following annual recursion for
−→
2σt holds:

−→
2σt= v2 · Px+t·

−→
2σt+1 +

−→
2σd

t+1=
−→

2σd
t+1 +2

1Ex+t

−→
2σt+1 .

Next, we obtain the matrix version of Theorem 2.

Theorem 5. Assume that Notation A1, Assumption A1, Notation A2 and Notation A3 are true.

Then the following explicit relationship for
−→
2σt holds:

−→
2σt=

2
sEx+t

−→
2σt+s +

s−1

∑
l=0

2
l Ex+t

−→
2σd

t+l+1 .

Proof. Using the recursion from Corollary 2 we have

−→
2σt= v2 · Px+t·

−→
2σt+1 +

−→
2σd

t+1=
2
1Ex+t

−→
2σt+1 +

−→
2σd

t+1

−→
2σt+1= v2 · Px+t+1·

−→
2σt+2 +

−→
2σd

t+2=
2
1Ex+t+1

−→
2σt+2 +

−→
2σd

t+2

−→
2σt+2= v2 · Px+t+2·

−→
2σt+3 +

−→
2σd

t+3=
2
1Ex+t+2

−→
2σt+3 +

−→
2σd

t+3

...

The theorem follows by recursively substituting these expressions into the first equation.

Finally, we rewrite Theorem 3 in matrix form.

Theorem 6. Assume that Notation A1, Assumption A1, Notation A2 and Notation A3 are true.

Then,
−→
2σt satisfies the following differential equation.

d
dt

(−→
2σt

)
= Mx+t·

−→
2σt −

−→
µd

s+t

Proof. The theorem follows by applying Notation A3 to Theorem 3.

5. Terminal Conditions

In this section, we introduce terminal conditions and outline the steps involved to

compute
−→
2σt numerically.
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5.1. N Year Term or Endowment Insurance

We consider end conditions for an N year term (no survival benefit) or endowment
insurance (survival benefit). In this case, all benefits at the end of the term are certain and

hence the variance equals 0. That is,
−→
2σN=

−→
0 .

5.1.1. Annual Case

For yearly cash flows, we have s = N − t in Theorem 5

−→
2σt =

2
N−tEx+t

−→
2σN +

N−t−1

∑
l=0

2
l Ex+t

−→
2σd

t+l+1

=
N−t−1

∑
l=0

2
l Ex+t

−→
2σd

t+l+1 (*)

=
−→

2σd
t+1 +

N−t−1

∑
l=1

2
l Ex+t

−→
2σd

t+l+1

=
−→

2σd
t+1 +

N−t−2

∑
p=0

2
p+1Ex+t

−→
2σd

t+p+2 Let p = l − 1

=
−→

2σd
t+1 +

N−t−2

∑
p=0

2
1Ex+t

2
pEx+t+1

−→
2σd

t+p+2

=
−→

2σd
t+1 +2

1Ex+t

N−t−2

∑
p=0

2
pEx+t+1

−→
2σd

t+p+2

=
−→

2σd
t+1 +2

1Ex+t

−→
2σt+1 follows from (*).

Thus,

−→
2σt=

−→
2σd

t+1 +2
1Ex+t

−→
2σt+1 . (4)

This equation can be used to go backwards in time recursively. Note:
−→

t+1V=
[

t+1V(0), t+1V(1), . . . , t+1V(m)
]

is needed to calculate
−→

2σd
t+1 so this is coupled with

the recursion for
−→

t+1V.
We also note that from Equation (*) above we obtain the generalization of the scalar

Hattendorff relationship that is widely celebrated to the multistate case.

Theorem 7. Assume that Notation A1, Assumption A1, Notation A2 and Notation A3 are true.
Furthermore, assume an N− year term insurance for the multistate model for yearly cash flows.
Then, the following relationship generalizes the discrete Hattendorff theorem for the alive-dead
model:

−→
2σt=

N−t−1

∑
l=0

2
l Ex+t

−→
2σd

t+l+1 .

5.1.2. Continuous Case

Recall that the Hattendorff differential equation derived earlier in Theorem 3 is

d
dt

−→
2σt= Mx+t

−→
2σt −

−→
µd

x+t .

For an N year term or endowment insurance,
−→
2σN=

−→
0 , so we can use this fact to solve

the differential equation backwards in time with this as end conditions.
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In general, we will need to use Matlab or similar software to compute the solution.
Let Φ(t, t0) be the fundamental solution, which can be computed separately and

stored, as follows.

d
dt
(Φ(t, t0)) = Mx+t ·Φ(t, t0); with Φ(t0, t0) = Im+1 (5)

Please note that Φ(t, t0) is invertible for all t ≥ 0.
Additionally,

−→
2σt= Φ(t, t0)

−→
2σt0 −

∫ t

t0

Φ(t0 + t− s, t0)
−→

µd
x+s ds.

In other words,

−→
2σt0= Φ−1(t, t0)

−→
2σt +Φ−1(t, t0)

∫ t

t0

Φ(t0 + t− s, t0)
−→

µd
x+s ds.

Again, for an N year term or endowment insurance,
−→
2σN=

−→
0 , so with t = N above,

we have the following:

−→
2σt0= Φ−1(t, t0)

∫ t

t0

Φ(t0 + t− s, t0)
−→

µd
x+s ds.

The above equation generalizes the scalar Hattendorff equation to the multistate continuous
case, so we state it as a theorem below:

Theorem 8. Assume that Notation A1, Assumption A1, Notation A2 and Notation A3 are true.
Furthermore, assume an N− year term insurance for the multistate model for continuous cash flows.
Then, the following relationship generalizes the discrete Hattendorff theorem for the alive-dead
model: −→

2σt0= Φ−1(t, t0)
∫ t

t0

Φ(t0 + t− s, t0)
−→

µd
x+s ds. (6)

We can use any of the quadrature approximation formulas to compute
−→
2σt0 as a

function of t0 (or
−→
2σt as a function of t) in Equation 6. Alternatively, the solution of the

differential equation in Equation (5) can be directly computed backwards in time using

MATLAB or similar software with the terminal conditions
−→
2σN=

−→
0 .

Please note that

Φ−1(t, t0) = e−2δ(t−t0) Im+1 J(t, t0),

where J is a matrix.

5.1.3. Alive-Dead Model Continuous Case

The discrete case for Hattendorff recursion is well known for the alive-dead model.
We choose m = 0 in Theorem 3 to derive the scalar counterpart of Theorem 3 as follows:

d
dt
(2σt) = (2δ + µx+t)

2σt − µx+t(St − tV)2 (7)

Let
I(t) = e−

∫ t
t0
(2δ+µx+s)ds.

Then,

d
dt
(2σt)e

−
∫ t

t0
(2δ+µx+s)ds

= −e−
∫ t

t0
(2δ+µx+s)ds

µx+t(St − tV)2,
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whose solution is

2σt0 = 2σt v2(t−t0)t−t0 px+t0 +
∫ t

t0

v2(u−t0)u−t0 px+t0(Su − uV)2)du.

For an N year term or endowment insurance: 2σN = 0.
Thus,

2σt0 =
∫ t

t0

v2(u−t0)u−t0 px+t0(Su − uV)2)du,

which can again be computed using any of the quadrature approximation formulas.
Alternatively, the differential equation (Equation (7)) can be directly solved backwards in
time using the terminal condition 2σN = 0.

5.2. Whole Life Insurance

We now specialize the previous results for the case of whole life insurance both for
discrete and continuous time.

5.2.1. Annual Case

For yearly cash flows, we have the following:

−→
2σt=

2
N−tEx+t

−→
2σN +

N−t−1

∑
l=0

2
l Ex+t

−→
2σd

t+l+1 . (8)

For whole life insurance, it is reasonable to assume that as N approaches infinity,

||2NEx+t

−→
2σN || → 0.

Then we have the following generalization of Hattendorff equation for the multistate
insurance model:

−→
2σt=

∞

∑
l=0

2
l Ex+t

−→
2σd

t+l+1 .

To compute
−→
2σt , we could choose N large enough and compute the backward recursion

given by Equation (8) backwards in time with the end condition
−→
2σN=

−→
0 .

5.2.2. Continuous Case

We recall the variation of parameters solution formula for the differential equation
given by Equation (5):

−→
2σt0= Φ−1(t, t0)

−→
2σt +Φ−1(t, t0)

∫ t

t0

Φ(t + t0 − s, t0)
−→

µd
x+s ds.

We can reasonably assume that ||Φ−1(t, t0)
−→
2σt || → 0 as t → ∞, especially since

Φ−1(t, t0) = e−2δ(t−t0) Im+1 J(t, t0). Then, we have the following:

−→
2σt0= Φ−1(t, t0)

∫ ∞

t0

Φ(t + t0 − s, t0)
−→

µd
x+s ds.

We can use quadrature formulas to compute the above equation. Alternatively, we
could also choose T large enough and just simulate the solution of the ordinary differential

equation given by Equation (5) backwards in time with
−→
2σT=

−→
0 as end conditions. This,

in turn will be a good approximation.
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The above work illustrates that we have extended the Hattendorff differential equa-
tion that describes a life that makes transitions to multiple states. During that process,
a Hattendorff recursion for the annual and h−yearly evolution of 2σ

(j)
t for annual cash and

h−yearly cash flows respectively, along with terminal conditions has been developed.

6. Examples

In this section, we demonstrate how we can set up the recursion or differential equation
as the case might be, with two examples. We have deliberately chosen not to carry out
computations because software such as MATLAB or something similar can be used to
compute solutions of differential equations and recursions very easily given the terminal
conditions. The goal is to use the given basis in the examples to set up the differential
equation or recursion for the model illustrated in Figure 1. We have deliberately avoided
explicit numerical calculations as it is our intention to demonstrate numerical experiments
in a future paper.

In both examples in this section, we use the disability income insurance model shown
in Figure 1, where state 0 is the “alive” state, state 1 is “disabled” where the disability is
temporary that can be moved out of, and state 2 is “Dead”. State 0 and 1 can be visited
multiple times (indicated by the double arrow); however, state 2 is an absorbing state,
i.e., once in state 2, the process terminates. We also use the standard actuarial mathematics
halo notation where µ

ij
x stands for the force of transition for a life aged x from state i to

state j, āij
x+t is the expected present value of benefit for a life aged x for being in state j at

time t that was initially in state i where the benefit is paid immediately, and Āij
x+t is the

expected present value of a transition benefit for a life aged x that was originally in state i
at time 0 and has transitioned to state j at time t. The values chosen for the insurance basis
in both problems are typical values in actuarial mathematics. Our main goal in this section
is to demonstrate the usefulness of the two models derived by showing that they can be
rewritten in the form of coupled differential or difference equations that can be used for
computations easily.

Figure 1. Temporary disability income insurance model.

6.1. Example 1: Continuous Time Disability Income Insurance Model

Consider a disability income insurance model with the following transition rates:

µ01
60+t = 0.05, µ02

60+t = 0.25t, µ10
60+t = 0.25, µ12

60+t = 0.04t.

The valuation force of interest is 5%. You are also given:

ā00
60 = 5.1716, ā01

60 = 0.8430, Ā02
60 = 0.6980, ā11

60 = 4.8201, Ā12
60 = 0.7350,
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ā00
70 = 2.4769, ā01

70 = 0.2012, Ā02
70 = 0.8659, ā10

70 = 0.1051, ā11
70 = 1.8528, Ā12

70 = 0.9017,

and
10 p00

60 = 0.18314, 10 p01
60 = 0.06181.

A 10-year health insurance product has the following features:

- The product is issued to lives aged 60 in the healthy state.
- The product pays a death benefit of 5000 at the moment of death.
- The product pays a continuous disability benefit at a rate of 750 per year while the

insured is temporarily disabled.
- Net premiums are payable continuously while the insured is healthy.
- The product pays an endowment of 1000 if the person lives beyond 10 years.

The net premium can be computed using the Equivalence Premium Principle that is
assumed to be at a rate of P = 695.64.

By Thiele’s differential equation, we have the following:
d
dt

(
tV(0)

)
= δtV(0) + P−

{
µ01

60+t(S
(01)
t + tV(1) − tV(0)) + µ02

60+t(S
(02)
t + tV(2) − tV(0))

}
= (0.05) · tV(0) + 695.64−

{
0.05(0 + tV(1) − tV(0)) + 0.025t(5000 + tV(2) − tV(0))

}
= 695.64 + tV(0)(0.05 + 0.05 + 0.025t)− 0.05tV(1) − (0.025t)(5000)

= 695.64 + tV(0)(0.1 + 0.025t)− 0.05 · tV(1) − 125t.

Please note that tV(2) = 0 for all t ≥ 0.
We also have the following for tV(1):

d
dt

(
tV(1)

)
= δtV(1) − B(1)

t −
{

µ10
60+t(S

(10)
t + tV(0) − tV(1)) + µ12

60+t(S
(12)
t + tV(2) − tV(1))

}
= (0.05) · tV(1) + 750−

{
0.025(0 + tV(0) − tV(1)) + 0.04t(5000− tV(1))

}
= (0.05 + 0.025 + 0.04t) · tV(1) − 0.025tV(0) − 750− 200t

= (0.075 + 0.04t) · tV(1) − 0.025tV(0) − (750− 200t).

Since tV(2) = 0 for all t ≥ 0 we have no need for a differential equation.
Thus, Thiele’s differential equation can be written as

d
dt

[
tV(0)

tV(1)

]
=

[
0.1 + 0.025t −0.05
−0.025 0.075 + 0.04t

][
tV(0)

tV(1)

]
+

[
−125t

695.64− (750 + 200t)

]
,

Terminal Conditions:

{
10V(0) = 1000 (Endowment)
10V(1) = 0

Now let us consider Hattendorff’s differential equation.
Recall that δ = 0.05 so 2δ = 0.1.
Now,

d
dt

 2σ
(0)
t

2σ
(1)
t

2σ
(2)
t

 =

 (2δ + µ01
60+t + µ02

60+t) −µ01
60+t −µ02

60+t
−µ10

60+t (2δ + µ10
60+t + µ12

60+t) −µ12
60+t

0 0 2δ


 2σ

(0)
t

2σ
(1)
t

2σ
(2)
t



−

 ∑l 6=0 µ0l
60+t(V

(0)
t − (V(l)

t − S(0l)
t ))2

∑l 6=1 µ1l
60+t(V

(1)
t − (V(l)

t − S(1l)
t ))2

∑l 6=2 µ2l
60+t(V

(2)
t − (V(l)

t − S(2l)
t ))2

.
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Additionally,

S(01)
t = 0, S(02)

t = 5000, S(10)
t = 0, S(12)

t = 5000,

W jj
t = V(j)

t − S(jj)
t = V(j)

t , W00
t = V(0)

t ,

and
W(jl)

t = V(l)
t − S(jl)

t .

Therefore,

d
dt

 2σ
(0)
t

2σ
(1)
t

2σ
(2)
t

 =

 0.1 + 0.05 + 0.025t −0.05 −0.025t
−0.025 0.1 + 0.025 + 0.04t −0.04t

0 0 0.1


 2σ

(0)
t

2σ
(1)
t

2σ
(2)
t



−

 0.05(V(0)
t −V(1)

t )2 + 0.025t(5000 + V(0)
t −V(2)

t )2

0.025(V(1)
t −V(0)

t )2 + 0.04t(5000 + V(1)
t −V(2)

t )2

0

.

Terminal Conditions are as follows:

2σ
(0)
10 = 2σ

(1)
10 = 2σ

(2)
10 = 0.

We end the example by stating the following:

1. tV(j) can be solved by solving Thiele’s differential equation backwards in time with
terminal conditions. The solution can be stored in memory.

2. 2σ
(j)
t can be solved by solving Hattendorff’s differential equation backwards in time with

terminal conditions. This step will require the solution of Thiele’s differential equation.
3. Both the previous steps can be easily accomplished using MATLAB or similar software.

6.2. Example 2: Discrete Time Disability Income Insurance Model

Here are the assumptions for this case.

1. Assume same µ’s as in Example 6.1.
2. Assume an annual premium of P = 700 paid at the beginning of year; 10-year term;

policy issued to 60-year-old.
3. Death benefit at end of year of death (state 2) = 5000; S(02)

t+1 = S(12)
t+1 = 5000.

4. Disability benefit at end of year if disabled (state 1) at end of year is B(1)
t+1 = 750.

5. Premiums paid at beginning of year if healthy.
6. Endowment of 1000 in healthy state 0 at t = 10.

To compute probabilities, we will use Kolmogorov’s equations. Please note that

tP60 =

 t p00
60 t p01

60 t p02
60

t p10
60 t p11

60 t p12
60

t p20
60 t p21

60 t p22
60,


and
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Q60+t =

 −µ01
60+t − µ02

60+t µ01
60+t µ02

60+t
µ10

60+t −µ10
60+t − µ12

60+t µ12
60+t

µ20
60+t µ21

60+t −µ20
60+t − µ21

60+t


=

 −0.05− 0.025t 0.05 0.025t
0.025 −0.025− 0.04t 0.04t

0 0 0

.

Kolmogorov’s equations are as follows:

d
dt
(tP60) = tP60Q60+t; 0P60 = I3,

for t = 1, 2, 3, . . . , 9, 10. This can be solved easily using MATLAB. Next, we compute the
recursion for the policy value tV(j). That is,

tV(0) =
2

∑
k=0

p0k
60+t · v(B(k)

t+1 + S(0k)
t+1 + V(k)

t+1)− P(0)
t

= p00
60+t · v(B(0)

t+1 + S(00)
t+1 + V(0)

t+1) + vp01
60+t(B(1)

t+1 + S(01)
t+1 + V(1)

t+1)

+ vp02
60+t(B(2)

t+1 + S(02)
t+1 + V(2)

t+1)− 700

= vp00
60+tV

(0)
t+1 + vp01

60+tV
(1)
t+1 + vp02

60+tV
(2)
t+1 + vp01

60+t(750) + vp02
60+t(5000)− 700

= vp00
60+tV

(0)
t+1 + vp01

60+tV
(1)
t+1 + vp01

60+t(750) + vp02
60+t(5000)− 700,

and

tV(1) =
2

∑
k=0

p1k
60+t · v(B(k)

t+1 + S(1k)
t+1 + V(k)

t+1)− P(1)
t

= vp10
60+tV

(0)
t+1 + vp(11)

60+tV
(1)
t+1 + vp12

60+tV
(2)
t+1︸ ︷︷ ︸

=0

+vp10
60+t(0) + vp11

60+t(750) + vp12
60+t(5000).

Since tV(2) = 0 for all t ≥ 0 there is no need for a recursion. Thus, we have the
following recursion:

 tV(0)

tV(1)

tV(2)

 = vP60+t

 t+1V(0)

t+1V(1)

t+1V(2)

+

 vp01
60+t(750) + vp02

60+t(5000)− 700
vp11

60+t(750) + vp12
60+t(5000)

0

,

with the following terminal conditions for policy values: 10V(0)

10V(1)

10V(2)

 =

 1000
0
0

.

Next, we compute the recursion for
−→
2σt .

Recall the following:

−→
2σt=

[
2σ

(0)
t , 2σ

(1)
t , 2σ

(2)
t

]
and
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−→
2σd

t =
[

2σ
(0),d
t , 2σ

(1),d
t , 2σ

(2,d)
t

]
.

From Corollary 1,

2σ
(0),d
t = v2 ∑

k 6=l
p0k

60+t p0l
60+t(W

0k
t+1 −W0l

t+1)
2,

where

W00
t+1 = V(0)

t+1 + B(0)
t+1 − S(00)

t+1 = V(0)
t+1,

W01
t+1 = V(1)

t+1 + 750− 0 = V(1)
t+1 + 750,

and

W02
t+1 = V(2)

t+1 + B(2)
t+1 − S(02)

t+1 = −5000.

Thus,

2σ
(0),d
t = v2(p00

60+t p01
60+t(V

(0)
t+1 −V(1)

t+1 − 750)2 + p00
60+t p02

60+t(V
(0)
t+1 + 5000)2 + v2(p01

60+t p02
60+t(V

(1)
t+1 + 5750)2).

We also have the following:

2σ
(1),d
t = v2 ∑

k 6=l
p1k

60+t p1l
60+t(W

1k
t+1 −W1l

t+1)
2,

where

W10
t+1 = V(0)

t+1 + B(0)
t+1 − S(10)

t+1 = V(0)
t+1,

W11
t+1 = V(1)

t+1 + 750− 0 = V(1)
t+1 + 750,

and

W12
t+1 = V(2)

t+1 + B(2)
t+1 − S(12)

t+1 = −5000.

So,

2σ
(1),d
t = v2(p10

60+t p11
60+t(V

(0)
t+1 −V(1)

t+1 − 750)2 + p10
60+t p12

60+t(V
(0)
t+1 + 5000)2 + v2(p11

60+t p12
60+t(V

(1)
t+1 + 5750)2).

Additionally,

2σ
(2),d
t = 0.

The recursion for
−→
2σt is given by

−→
2σt=

 2σ
(0)
t

2σ
(1)
t

2σ
(2)
t

 = v2P60+t·
−→

2σt+1 +
−→

2σd
t+1 .

Terminal conditions:
−→

2σ10=
−→
0 .

We end the example by stating the following:

1. Pt is obtained from solving the Kolmogorov equations in forward time with
initial conditions.
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2. tV is obtained from solving the annual recursion for tV(j) backwards in time with
terminal conditions.

3.
−→
2σt is obtained from solving the annual recursion for

−→
2σt backwards in time with

terminal conditions.
4. All the previous three steps can be easily accomplished using MATLAB or

similar software.

7. Conclusions

In this paper, we have explicitly derived a Hattendorff differential equation that
describes the continuous time evolution of the variance of the loss at time t random variable
given that it is in state j denoted by 2σ

(j)
t for continuous cash flows, along with terminal

conditions. In addition, we have also derived a Hattendorff recursion for the annual and
h−yearly evolution of 2σ

(j)
t for annual cash and h−yearly cash flows respectively, along

with terminal conditions. Both derivations were carried out in the general setting of a
multistate Markov insurance model. In both cases, the equations are coupled with policy
values which are in turn solutions of either the Thiele’s differential equation in continuous
time or a policy value recursion in discrete time.

We have also developed a matrix notation to easily adapt the differential equation
and recursion for programming into MATLAB or similar software. We have shown the
adaptation and closed form expressions for the differential equation and recursion for two
examples. Differential equations and recursions are easily solved using MATLAB and
hence, the setting lends itself into easily programmable calculations for 2σ

(j)
t .

We conclude by stating that all four objectives stated in the beginning of this paper
have been achieved. In addition, to our knowledge, such an explicit derivation of both
the continuous and discrete time models governing the evolution of 2σ

(j)
t that is very

conducive for computations on MATLAB has not been shown before. In a future paper, we
will demonstrate the use of the development in this paper to create numerical routines that
can be adapted for a variety of insurance problems.
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Appendix A. Assumptions and Notations

We introduce the following notation for states i and j and ages x ≥ 0 as in
(Dickson et al. 2020, chp. 8):

Notation A1.

1. t pij
x = Pr[Y(x + t) = j|Y(x) = i]. This is probability that state of the process at time t is j

given that the state at time 0 is i.
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2. t pīi
x = Pr[Y(x + s) = i for all s ∈ [0, t]|Y(x = i)]. This is the probability that the state

resides continuously in state i from time 0 to time t.

3. Force of transition: µ
ij
x = limh→0+

h pij
x

h for i 6= j.

4. L(j)
t = Future loss random variable for a policy which is in state j at time t

5. V(j)
t = E[L(j)

t ]. Expected present value of the future loss random variable at time t given that
the state at time t is j.

6. σ
2(j)
t = Var[L(j)

t ]. Variance of future loss random variable at time t given that the state at
time t is j.

For simplicity of notation, we will simply write Y(t) instead of Y(x + t), with the as-
sumption that the policyholder is of age x at t = 0. We also make the following assumptions
as in (Dickson et al. 2020, chp. 8):

Assumption A1.

1. (Markovian assumption) For any states i, j and times t and t + s, the conditional probability
Pr[Y(t + s) = j|Y(t) = i] is well defined and is independent of the knowledge of the process
before time t.

2. The probability of two or more transitions in a time interval h is o(h).

3. For all states i and j and all ages x ≥ 0, we assume that t pij
x is a differentiable function of t.

4. For simplicity, we assume that there are no expenses although expenses can be easily incorpo-
rated into the formulation.

5. For simplicity, we assume a constant interest rate i although a variable interest can be easily
incorporated into the formulation.

We also make the following assumptions and notation on the payments for h−yearly
cash flows:

Notation A2.

1. We assume that for the discrete time payments, the payments depend at most on the state of
the process Y(t) at the start and end of the period between cash flows.

2. hP(j)
t − amount of premium payable at the start of the interval (t, t + h) given that Y(t) = j.

P(j)
t is a premium rate which is differentiable with respect to t.

3. hB(k)
t+h− benefit payable at the end of the interval (t, t + h) given that Y(t + h) = k. B(k)

t is a
benefit rate which is differentiable with respect to t. Additionally, for consistency we have

lim
h→0

B(k)
t+h = −P(k)

t .

We allow for the mathematical possibility that B(k)
t+h and P(k)

t both exist in the time interval
(t, t + h) as benefit rate at the end given Y(t + h) = k and premium rate at the beginning
given Y(t) = k respectively, with the understanding that one or both can be zero for a given
state k.

4. S(jk)
t+h− lump sum benefit payable at the end of the interval (t, t + h) if Y(t + j) = k, given

that Y(t) = j. Here we allow S(jk)
t+h to be differentiable with respect to t and allow j = k as a

mathematical possibility as well, with the assumption that for small h, S(jj)
t+h = hB(j)

t+h, and
hence

lim
h→0

S(jj)
t+h = 0; lim

h→0

S(jj)
t+h
h

= B(j)
t .

We include terms of the form S(jj)
t for symmetry in the derivation, with the understanding

that S(jj)
t = 0 since S(jk)

t is in principle, a benefit paid upon transition from state j to state k
with j 6= k, and hence is equal to zero when j = k.
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5. We define W(jk)
t+h = V(k)

t+h + hB(k)
t+h − S(jk)

t+h and W(jk)
t = lim

h→0
W(jk)

t+h = V(k)
t − S(jk)

t .

We introduce some matrix and vector notation that will be useful in Section 4.

Notation A3.

1. Represent the variance vector as

−→
2σt=

−→
Var(Lt)=

[
2σ

(0)
t , 2σ

(1)
t , ..., 2σ

(m)
t

]T
.

2. Let the (i, j)th element of the matrix hP be given by

(hPx+t)ij = h pij
x+t.

3. In this light, we have

2σ
(j),d
t+h = Var

(
L(j),d

t+h

)
= v2h ∑

k 6=l
h pjk

x+th pjl
x+t(W

(jk)
t+h −W(jl)

t+h)
2,

where

L(j),d
t+h = vhW(jk)

t+h with probability h pjk
x+t and

m

∑
k=0

h pjk
x+t = 1.

4. Define the vector of variance of losses as

−→
2σd

t =

−→
Var
(

Ld
t

)
=
[

2σ
(0),d
t , 2σ

(1),d
t , ..., 2σ

(m),d
t

]T
.

5. Define the j-th element of the vector
−→

µd
x+t as{ −→

µd
x+t

}
j
= ∑

l 6=j
µ

jl
x+t(W

(jj)
t −W(jl)

t )2.

6. Define the (i, j)−th element of the matrix Mx+t as

(Mx+t)ij =

{
2δ + ∑k 6=l µ

jk
x+t if i = j

−µ
ij
x+t if i 6= j

.

7. M is in terms of known matrices. That is, define

νi
x+t =

m

∑
l=0

µil
x+t,

then define the (m + 1)× (m + 1) transition intensity matrix

{Qx+t}ij =

{
−νi

x+t if i = j
µ

ij
x+t if i 6= j

.

So,
Mx+t = 2δIm+1 −Qx+t,

where Im+1 represents the (m + 1)× (m + 1) identity matrix.
8. Define the matrix discount factor as

2
l Ex+t = v2l

lPx+t.
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The matrix discount factor can be factored. Recall that

2
mEx+t = v2m

mPx+t

and
2
nEx+t = v2n

nPx+t.

Therefore,

2
mEx+t · 2nEx+t+m = v2m

mPx+t · v2h
nPx+t+m

= v2(m+n)
mPx+t · nPx+t+m

= v2(m+n)
m+nPx+t

= 2
m+nEx+t.

Since v and p satisfy |v| < 1 and |n pij
x+t| < 1, we have the following:

lim
n→∞

2
nEx+t = 0.
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