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Abstract: In this paper, a measure is proposed that, based on the trajectories of moving objects,
computes the speed limit rate in each of the cells in which a region is segmented (the space where the
objects move). The time is also segmented into intervals. In this way, the behavior of moving objects
can be analyzed with regard to their speed in a cell for a given time interval. An implementation
of the corresponding algorithm for this measure and several experiments were conducted with
the trajectories of taxis in Porto (Portugal). The results showed that the speed limit rate measure
can be helpful for detecting patterns of movement, e.g., in a day (morning hours vs. night hours)
or on different days of the week (weekdays vs. weekends). This measure might also serve as a
rough estimate for congestion in a (sub)region. This may be useful for traffic analysis, including
traffic prediction.

Keywords: trajectory; moving object; speed; speed limit rate; congestion

1. Introduction

Objects that move in a region can be seen in various scenes of everyday life. For
example, people and vehicles that move in a city, animals in the jungle, birds in the sky, and
ships in the ocean, among others. The region in which these objects move can be segmented
into subregions (cells) in order to analyze the movement of these objects in a sectorized
way. The time can also be segmented into intervals. In this way, the movement of objects
in a cell for a given time interval can be analyzed. Among the many aspects that can be
considered and evaluated in the movement of objects [1,2] is the speed [3,4]. In particular,
in this paper, we focus on analyzing the speed limit rate of moving objects in these cells at
certain time intervals.

To that end, we propose a measure that, based on the historical data of the moving
objects’ trajectories [5], determines the speed limit rate in each of the cells in which a region
is segmented. To do this, we formally define the concepts of speed limit rate and temporal
and spatial segmentation.

In a review of the literature, we found a few related studies; however, they focused
mainly on trajectory visualization [6,7] and congestion analysis [8,9]. Possibly the closest
work to ours is [10]. There, the authors propose a TDW (trajectory data warehouse [11])
for storing the trajectories of vehicles. The geographical space where these trajectories
occur is segmented into cells, and the speed and density of the vehicles are analyzed in
each one. The relationship between these two variables (speed and density) is analyzed in
certain time intervals, and the results are displayed by combining OLAP (online analytical
processing) tools [12], GIS, and visualizations that include triangles that allow the analyst
to compare the speed (represented in the base of the triangle) and the density (represented
in the height of the triangle) of the vehicles in each cell. Our approach to the analysis of
speed limit rates may be complementary to their work.
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On the other hand, in [13], the authors propose a TDW for the analysis of the trajecto-
ries of two types of moving objects: cars and ships. The geographical space is segmented
into cells, and visualization techniques are also proposed with triangles that represent the
fishing cost and the fish catches in each cell, as well as arrows that represent the flow among
the cells. The segmentation of the geographical space allows the analyst to observe the
evolution of traffic in a cell for a given time interval: the number of vehicles in circulation,
their speed, their direction, and the traffic density in the cell, which is also shown by means
of a color scale. In addition, they include a correlation analysis between different measures
(e.g., density vs. speed) in each cell and analyze flows of moving objects among the cells.
In [6], the authors propose a method for visualizing trajectories that are distinguished
by types (e.g., the trajectories of cargo ships or fishing ships). The geographical space is
segmented into rectangles (called compartments) or free-form polygons. To facilitate visu-
alization, the trajectories are grouped considering their shape and their life span (average
time spent of a trajectory in a region). These visualizations allow us to analyze both the
movement and congestion in each region. The congestion is calculated from the presence
measure. Given a time interval ti and a region r, the presence can be characterized by (a) the
total number of moving objects that visited r during ti or (b) the total number of visits
(some moving objects might visit r during ti more than once), or (c) the total or average
time spent in r by the moving objects. An analysis of the flow of the congestion and its
spreading to other regions is presented in [14], where the flow of moving objects among
adjacent regions is represented by arrows.

A relevant recent review of research on trajectory analytics can be found in [15].
Different trajectory systems are classified according to several criteria, such as evaluation
type, i.e., integration, design, and analytics, geometric representation, i.e., vector or graph,
platform and storage technology used, support of semantic information (which includes
annotations associated with a trajectory as a whole, e.g., duration, size, and objective,
among others), design type, i.e., cell or segment, model type, and implementation.

A more recent, extensive, and thorough survey concerning several research aspects
about trajectory data management systems and applications focused mainly on urban
trajectories is included in [16]. Different research approaches are grouped and classified in
terms of trajectory representation, storage, processing, similarity computation, operations,
querying, indexing, and clustering (based on some similarity measure, such as pointwise
measures, which are divided into five categories: curve-based, real-distance, edit-distance,
temporal aware, and segment-based).

Related to our work, road traffic applications are also categorized. They can be
classified as follows [17]:

- Sketch-planning tools: these tools produce general estimates of travel demand and
traffic operations in response to transportation improvements.

- Travel demand models: these are mathematical models that forecast long-term future
travel demand based on current conditions and major highway improvements in
metropolitan areas.

- Analytical/deterministic tools: these tools predict capacity, density, speed, delay, and
queuing at a variety of transportation facilities.

- Traffic signal optimization tools: these tools are designed to develop optimal signal phas-
ing and timing plans for isolated signal intersections, arterial streets, or signal networks.

- Macroscopic simulation models: these models are based on the relationships between
the flow, speed, and density of the traffic. The simulation takes place on a section-by-
section basis rather than by tracking individual vehicles.

- Microscopic simulation models: these models simulate the movement of individual
vehicles. These models evaluate heavily congested conditions, complex geometric
configurations, and system-level impacts of future transportation improvements.
However, these models are time consuming, costly, and can be difficult to calibrate.

Thus, in a microscope simulation model, individuals that comprise traffic flows (vehi-
cles, bicycles, pedestrians, etc.) are the minimum element of analysis, unlike a macroscopic
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simulation model, which simulates the flows of vehicles within the minimum work units
that are the network sections [18].

Our proposal is a microscope model because it processes individual trajectories. Each
trajectory is processed (traversed) only once, and we use basic spatial operations (Euclidean
distance and speed between two points, spatial inclusion of a point in a square) to generate
our measure. However, our results are applied at a macroscopic level, where the element of
analysis is the region (cell) where the trajectories take place. Although we are not working
in a TDW environment, our measure could be included as a measure in a TDW, enabling
additional TDW analysis. For this purpose, the semantics of the corresponding aggregation
operators and the aggregation hierarchy of the spatial dimension (where the cell would
possibly be the most detailed level of aggregation) must be defined.

We believe that our speed limit rate measure might serve also as a rough estimate for
calculating the congestion of a cell. However, note that our focus is not vehicular congestion,
and our measure is not intended to compete with such proposals [19]. Furthermore, our
work is not about congestion or traffic prediction [20], although its results could be roughly
applied in these fields.

The paper is organized as follows: In Section 2, we present our definitions and methods.
In Section 3, we present results and discuss our experiments. In Section 4, we conclude our
paper and give ideas for future work.

2. Definitions and Methods

Temporal segmentation: Time is divided into consecutive temporal segments (mutu-
ally exclusive) of size (duration) dt, see Figure 1. For example, suppose that dt = 15 min,
then [14 June 2022 7:00, 14 June 2022 7:15) and [14 June 2022 7:15, 14 June 2022 7:30) are two
(consecutive) temporal segments.
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Figure 1. Temporal segmentation.

Spatial segmentation: The region of interest (i.e., the geographical space) is seg-
mented into cells (square tessellation, square tiling) of side l, l ∈ I+ (positive integers). The
region of interest is represented by a bidimensional array R of order p × q, p, q ∈ I+. The
element R[v, w], 0 < v ≤ p, 0 < w ≤ q, v, w ∈ I+; corresponds to a cell. We assume that
the neighborhood relationships between the cells in the real world correspond to those
established in the array R (according to rows and columns). Thus, e.g., the adjacent cells of
the cell R[1, 1] are R[1, 2] (on the right), R[2, 1] (on the bottom), and R[2, 2] (diagonally).
Figure 2 shows a region (array of order 3 × 4).

Spatiotemporal scenario: A spatiotemporal scenario STS is a 2-tuple (R, TempSeg) where
R is a segmented region and TempSeg is a temporal segment.

Coordinated Point (CP): A coordinated point is a 3-tuple (x, y, t), x, y ∈ R+, t is a
timestamp, where x represents the latitude, y the longitude, and t the time when the CP
was generated. For example, (10, 20, ‘15 June 2022 13:30:00’) is a CP.

Trajectory: A trajectory T is a sequence of n CPs, n ∈ I+, T = <(x1, y1, t1), (x2, y2, t2),
. . . , (xn, yn, tn)> where ∀i, j ∈ I+: 0 < i < n, 1 < j ≤ n, i < j, ti < tj, i.e., the CPs are ordered
temporally (by the ascending time of the CPs).
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Segment of a trajectory in a cell of a spatiotemporal scenario: let us consider:

• A spatiotemporal scenario STS(R, TempSeg) where R is a region of order p × q.
• A trajectory T = < (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)>.
• A subtrajectory Subt of T, Subt = < (xj, yj, tj), (xj+1, yj+1, tj+1), . . . , (xj+m, yj+m, tj+m)>,

0 < j < n, m ∈ I+, (j + m) ≤ n, i.e., |Subt| > 1 (i.e., Subt has at least two CPs). That is, a
subtrajectory is a subsequence of at least two CPs of a trajectory.

We say that Subt is a segment of T in R[v, w] (R[v, w] is a cell of STS), 0 < v ≤ p,
0 < w ≤ q, if it meets the following conditions:

(a) ∀ CP (xk, yk, tk) ∈ Subt, k ∈ I+, j ≤ k ≤ (j+m), (xk, yk) is inside R[v, w], i.e., the cell
R[v, w] contains the CP (xk, yk, tk) (spatial inclusion [21]).

(b) ∀ CP (xk, yk, tk) ∈ Subt, k ∈ I+, j ≤ k ≤ (j+m), tk ∈ TempSeg, i.e., the segment TempSeg
includes the CP (xk, yk, tk) (temporal inclusion [22]).

Informally, condition (a) guarantees the spatial inclusion of all the CPs of the segment
Subt in the cell R[v, w] and condition (b) in turn, guarantees the temporal inclusion of all
the CPs of the segment Subt in the temporal segment TempSeg. Figure 3 shows a segment of
T in a cell of a spatiotemporal scenario.
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Figure 3. Segment of a trajectory T in a cell of a spatiotemporal scenario.

We say that Subt is a maximal segment in R[v, w] if, in addition to conditions (a) and (b),
it meets the following:

(c) The first CP of Subt, i.e., (xj, yj, tj), is the first CP of T (i.e., j = 1), or if j > 1 then,
(xj-1, yj-1) is not inside R[v, w] or tj-1 /∈ TempSeg.



Informatics 2023, 10, 15 5 of 23

(d) The last CP, i.e., (xj+m, yj+m, tj+m), of Subt is the last CP of T (i.e., j + m = n), or if j+m < n
then: (xj+m+1, y j+m+1) is not inside R[v, w] or tj+m+1 /∈ TempSeg.

In this way, conditions (c) and (d) guarantee that Subt is the segment of the maximum
size with respect to conditions (a) and (b). Figure 4 illustrates a maximal segment of T in a
cell of a spatiotemporal scenario.
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On the other hand, let Subt = < (xj, yj, tj), (xj+1, yj+1, tj+1), . . . , (xj+m, yj+m, tj+m) > a
segment of T in R[v, w]. We say that Subt is a slow segment in R[v, w] if, in addition to
conditions (a) and (b), it meets the following:

(e) Let MaxSpeed be a speed limit set by the analyst, where MaxSpeed ∈ R+, then ∀ (xk, yk, tk)
and (xk+1, yk+1, tk+1), k ∈ I+, j ≤ k < (j + m), i.e., for every pair of consecutive CPs in
Subt, their speed (calculated as the distance of the straight line between (xk, yk) and
(xk+1, yk+1) divided by (tk+1- tk)) is less than or equal to MaxSpeed.

Moreover, a slow segment is maximal if it meets the following:

(f) The first CP of Subt, i.e., (xj, yj, tj), is the first CP of T (i.e., j = 1), or if j > 1 then, the
speed between (xj-1, yj-1, tj-1) and (xj, yj, tj) is greater than MaxSpeed, or (xj-1, yj-1) is not
inside R[v, w], or tk /∈ TempSeg.

(g) The last CP of Subt, i.e., (xj+m, yj+m, tj+m), is the last CP of T(i.e., j+m = n), or if j+m < n
then, the speed between (xj+m, yj+m, tj+m) and (xj+m+1, yj+m+1, tj+m+1) is greater than
MaxSpeed, or (xj+m+1, yj+m+1) is not inside R[v, w] or tj+m+1 /∈ TempSeg.

Informally, condition (e) guarantees that the speed among all the consecutive CPs of a
slow segment is less than the given speed limit (MaxSpeed). Meanwhile, conditions (f) and
(g) guarantee that a slow segment has the maximum cardinality (i.e., the number of CPs)
with respect to conditions (a), (b), and (e). Figure 5 shows a trajectory with two maximal
slow segments in a cell of a spatiotemporal scenario.
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In Table 1 we summarize our segment types in a cell (R[v, w]) and the conditions that
each must meet.

Table 1. Summary of segment types in a cell (R[v, w]).

Conditions
(a) guarantees the spatial inclusion of all the CPs of a segment in the cell R[v, w].
(b) guarantees the temporal inclusion of all the CPs of a segment in the temporal segment
associated with the cell R[v, w].
(c) and (d) guarantee that the segment is the one with the maximum size with respect to
conditions (a) and (b).
(e) guarantees that the speed among all the consecutive CPs of a segment is less than MaxSpeed.
(f) and (g) guarantee that the segment has the maximum number of CPs with respect to conditions
(a), (b), and (e).

Segment Type Conditions

Segment (a) and (b)

Maximal segment (a), (b), (c), and (d)

Slow segment (a), (b), and (e)

Maximal slow segment (a), (b), (e), (f), and (g)
Note that a slow segment may, in turn, be a maximal segment; it occurs when it also meets conditions (c) and (d) or
equivalently when a maximal segment also meets conditions (e), (f), and (g).

Speed limit rate in a cell of a spatiotemporal scenario: Let R[v, w] be a cell of a
spatiotemporal scenario STS(R, TempSeg) where R is a region of order p × q, 0 < v ≤ p;
0 < w ≤ q, v, w ∈ I+, MaxSlowSeg = {mss1, mss2, . . . , mssp} the set of all the maximal slow
segments of all the trajectories that passed through R[v, w], and MaxSeg = {ms1, ms2, . . . ,
msk} the set of all the maximal segments of all the trajectories that passed through R[v, w].
The speed limit rate of R[v, w] is given by Equation (1).

Speed limit rate =
∑

p
i=0 segmentDistance(mssi), mssi ∈ MaxSlowSeg

∑k
i=0 segmentDistance(msi), mssi ∈ MaxSeg

(1)

where the segmentDistance(s) function calculates the length of a segment s, i.e., the sum
of the distances of the consecutive CPs of s, see Equation (2). We calculate the distance
between two consecutive CPs using the Euclidean distance formula. Thus, given a segment
s = <(xj, yj, tj), (xj+1, yj+1, tj+1), . . . , (xj+m, yj+m, tj+m)> then:

segmentDistance(s) = ∑j+m−1
k=j EuclideanDistance((xk, yk), (xk + 1, yk + 1)) (2)

where EuclideanDistance((xk, yk), (xk+1, yk+1)) = SQRT((xk+1 − xk)2 + (yk+1 − yk)2)
Note that in Equation (1), the numerator corresponds to the total distance of all the

maximal slow segments and the denominator corresponds to the total distance of all the
maximal segments.

Example:
Consider Figure 6, where we show a cell of side l = 7 km of a spatiotemporal scenario,

three trajectories corresponding to three vehicles, and TempSeg = [15 June 2022 13:30:00,
15 June 2022 13:35:00). For simplicity, we use a Cartesian coordinate system. If coordi-
nates are in a different coordinate system, e.g., GNSS (global navigation satellite systems)
coordinates, a transformation is required, as we have explained in our experiments.
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Figure 6. A cell with three trajectories.

From Figure 6, we have:
MaxSeg = {ms1, ms2, ms3} = {
<(1, 5, 15 June 2022 13:30:00), (2, 5, 15 June 2022 13:31:00), (2, 7, 15 June 2022 13:32:00)>,
<(2, 3, 15 June 2022 13:31:00), (4, 3, 15 June 2022 13:32:00), (6, 3, 15 June 2022 13:33:00)>,
<(5, 1, 15 June 2022 13:32:00), (6, 1, 15 June 2022 13:33:00), (7, 1, 15 June 2022 13:34:00)>
}
Note that in ms2, we do not include the point (7, 3) because we do not have the

time when it was generated, i.e., it is an incomplete CP (in future work, its time may be
interpolated).

Thus:
segmentDistance(ms1) = 1 + 2 = 3 km
segmentDistance(ms2) = 2 + 2 = 4 km
segmentDistance(ms3) = 1 + 1 = 2 km
Then, the total distance of all the maximal segments is 3 + 4 + 2 = 9 km (denominator

in Equation (1)).
MaxSlowSeg = {mss1, mss2} = {
<(1, 5, 15 June 2022 13:30:00), (2, 5, 15 June 2022 13:31:00)>,
<(5, 1, 15 June 2022 13:32:00), (6, 1, 15 June 2022 13:33:00), (7, 1, 15 June 2022 13:34:00)>
}
For example, the segment mss1 is a maximal slow segment because the speed between

its two CPs is:
EuclideanDistance((1, 5), (2, 5)) = SQRT((2 − 1)2 + (5 − 5)2) = 1 km.
Time between the two CPs = 1 min.
Thus, speed = 1 km/min = 60 km/h, and because MaxSpeed = 80 km/h, then,

60 km/h ≤ 80 km/h. Note that the speed between (2, 5, 15 June 2022 13:31:00) and (2,
7, 15 June 2022 13:32:00) is 2 km/min = 120 km/h and 120 km/h > 80 km/h.

Thus:
segmentDistance(mss1) = 1 km.
segmentDistance(mss2) = 1 + 1 = 2 km.
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Then, the total distance of all the maximal slow segments is 1 + 2 = 3 km (numerator
in Equation (1)).

Therefore:
Speed limit rate = 3/9 = 0.333.
The CellSpeedLimitRate algorithm finds the speed limit rate of a cell of a spatiotempo-

ral scenario. It receives a set of trajectories (TT), a cell (r), a speed limit (MaxSpeed), and the
temporal segment (TempSeg) associated with the spatiotemporal scenario where the cell r
is located.

CellSpeedLimitRate(TT, r, MaxSpeed, TempSeg)
Input:
TT //Array of trajectories
r //Cell of a spatiotemporal scenario where the speed limit rate will be computed
MaxSpeed //Speed limit
TempSeg //Temporal segment of the spatiotemporal scenario where the cell r is located
Output:
speedLimitRate //Speed limit rate of r
DECLARE
speedLimitRate = 0;
maximalSlowSegmentsDistance = 0; //Total distance of all the maximal slow segments
maximalSegmentsDistance = 0; //Total distance of all the maximal segments
euclideanDist; //Euclidean distance between two CPs
BEGIN
1. FOR EACH trajectory T ∈ TT
2. //Traverse trajectory T
3. FOR i = 1 TO size(T)-1; //size(T) function returns the number of CPs of T
4. //Check spatial and temporal inclusion of T[i] and T[i+1] in r
5. IF (inside((T[i].x, T[i].y), r) AND T[i].t ∈ TempSeg AND
6. inside((T[i+1].x, T[i+1].y), r) AND T[i+1].t ∈ TempSeg) THEN
7. //Euclidean distance between T[i] and T[i+1]
8. euclideanDist= euclideandistance((T[i].x, T[i].y), (T[i+1].x, T[i+1].y))
9. maximalSegmentsDistance += euclideanDist;
10. //Checks the speed condition
11. IF (speed(T[i], T[i+1]) ≤ MaxSpeed) THEN
12. maximalSlowSegmentsDistance += euclideanDist;
13. END IF
14. END IF
15. END FOR
16. END FOR EACH
17. IF (maximalSegmentsDistance > 0) THEN
18. //Compute speed limit rate of r
19. speedLimitRate = maximalSlowSegmentsDistance / maximalSegmentsDistance;
20. END IF;
21. RETURN speedLimitRate;
END CellSpeedLimitRate

Basically, the algorithm loops through the array of trajectories TT (line 1). Next, the CPs
of each trajectory T (line 3) are traversed. For each pair of consecutive CPs, T[i] and T[i+1]
are verified if both are inside cell r (spatial inclusion) and belong to the temporal segment
TempSeg (temporal inclusion) (lines 5 and 6). If so, the variable maximalSegmentsDistance
(line 9) is incremented and then it is verified if the two CPs also meet the speed condition
(line 11). If so, the variable maximalSlowSegmentsDistance (line 12) is incremented. Finally,
the algorithm computes the speedLimitRate (line 19). Note that each trajectory is traversed
only once. Thus, the total number of iterations of the algorithm is equal to the total number
of CPs of the trajectories—|TT| (because the last CP of each trajectory is not traversed,
see line 3).

The inside(p, r) Boolean function (lines 5 and 6), where p is a point(x, y) and r is a cell
(a square of side l), is defined as follows. Let (rx, ry) be the coordinate of the bottom-left
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corner of r. The function returns TRUE if p is inside r otherwise, it returns FALSE. p is
inside r if the two following conditions are met:

• x ≥ rx and x ≤ rx + l
• y ≥ ry and y ≤ ry + l

The speed(T[i], T[i+1]) function (line 11) is calculated as follows:
speed(T[i], T[i+1]) = EuclideanDistance((T[i].x, T[i].y), (T[i+1].x, T[i+1].y))/(T[i+1].t −

T[i].t).

3. Results and Discussion

The experiments were carried out with public data of taxi trips from Porto (Portugal)
and its surrounding areas [23]. Each data packet corresponds to a completed trip (a taxi
trajectory). These taxis operate through a taxi dispatch center, using mobile data terminals
installed in the vehicles. Each data packet of a taxi trajectory includes (among other data):

• TRIP_ID: trip identifier.
• TAXI_ID: taxi id.
• TIMESTAMP: time when the trip began.
• POLYLINE: list of coordinates [longitude, latitude]. A pair of consecutive coordinates

corresponds to 15 s of a trip. The last coordinate corresponds to the trip’s destination,
while the first one represents its start.

• MISSING_DATA: type of the data packet. MISSING_DATA may take two values:

# FALSE: if there are no missing coordinates.
# TRUE: otherwise.

We considered 1048576 trips from 3 August 2013 to 31 August 2013 (28 days), each
trajectory had on average 10 coordinates (CPs). The POLYLINE of a trip looks similar to
this: [[−8.613567, 41.146875], [−8.613549, 41.146749], [−8.613675, 41.145957], [−8.612604,
41.145966], . . . , [−8.648334, 41.158017], [−8.648451, 41.15799], [−8.648523, 41.157981]]. In
Figure 7, we show this trajectory (we used this tool https://geojson.io, accessed on 30
November 2022).
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16, see Figure 8. In Figure 9, we detailed cell 6 with its coordinates (note that in Figure 9,
in the “coordinates” array, the last coordinate is equal to the first one). To calculate the
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cell dimensions (km), we used the tool https://www.omnicalculator.com/other/latitude-
longitude-distance, accessed on 30 November 2022. One side of the cell measured 5.787 km
and the other 6.721 km. As the cell is not a square (it is a rectangle), the inside function
of our algorithm was modified in such a way that it verifies the spatial inclusion of a
point in a rectangle. We also divided the day into twelve mutually exclusive consecutive
temporal segments: (00:00, 02:00], (02:00, 04:00], . . . , (22:00, 00:00]. Thus, we have 12
spatiotemporal scenarios.
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We processed the data, stored in CSV files, with Jupyter Notebook. Before applying our
algorithm for computing the speed limit rate, we cleaned the data: we removed repeated
data packets and data packets with: (i) the same taxi in different positions at the same time,
(ii) missing coordinates, and (iii) excessive speed between two consecutive coordinates

https://www.omnicalculator.com/other/latitude-longitude-distance
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(greater than 200 km/h). In addition, we only considered cells of a spatiotemporal scenario
with more than 10 trajectories. Note that cells 3 and 4 are located entirely in the ocean;
therefore, there are no trajectories passing through these cells.

To compare the results of our speed limit rate measure, we also conducted experiments
with the SPI (speed performance index) [19,24], which is an index to measure the traffic
state level of a road. SPI = 100*(Vavg/Vmax), where Vavg is the average speed in a cell
and Vmax is the maximum permitted speed in the cell. With this index, the traffic state
level can be classified as follows: [0, 25) heavy, [25, 50) mild, [50, 75) smooth, and [75, 100]
very smooth.

We conducted the following experiments.

• First: considering the 12 spatiotemporal scenarios and the 14 cells (excluding cells 3
and 4), we ran our algorithm for all the 28 days with MaxSpeed 50 km/h and 40 km/h.

• Second: from the results of the first experiment, we chose five cells: four of them were
the cells with more trajectories, and the other was the one with less trajectories. Then,
we ran our algorithm with MaxSpeed values of 50 km/h, 30 km/h, and 10 km/h. For
each of these five cells, we obtained the results for 28 days.

• Third: considering the same five cells as the second experiment, we conducted the
corresponding experiments for the SPI with Vmax of 100 km/h, 80 km/h, and 60 km/h.

• Fourth: analysis of slow segments.

3.1. First Experiment with MaxSpeed 50 km/h and 40 km/h

For the 12 spatiotemporal scenarios, the 14 cells, and the 28 days, we had a total of
14*12*28 = 4704 measurements. In Table 2, we show the results for one day (3 August 2013)
with MaxSpeed = 50 km/h and in Table 3, with MaxSpeed = 40 km/h. ND stands for No
Data; this means that there were not enough trajectories (less than 11) for a cell in a specific
spatiotemporal scenario. Note that all the measurements for cells 3 and 4 are equal to ND.
We discuss the results of the first experiment together with those of the second one in the
next Section 3.2.

Table 2. Calculated speed limit rates for 3 August 2013 with MaxSpeed = 50 km/h.

TempSeg
Cell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(00:00, 02:00] ND 0.471 ND ND 0.089 0.268 0.606 ND 0.153 0.331 0.438 ND ND 0.485 ND ND
(02:00, 04:00] 0.048 0.405 ND ND 0.157 0.331 0.569 ND ND 0.423 0.569 ND ND ND ND 0.601
(04:00, 06:00] 0.539 0.514 ND ND 0.069 0.405 0.650 ND ND 0.421 0.534 0.247 ND ND ND ND
(06:00, 08:00 ND 0.568 ND ND 0.091 0.374 0.586 0.264 0.571 0.438 0.627 ND ND 0.622 ND ND
(08:00, 10:00] 0.409 0.782 ND ND 0.083 0.396 0.659 ND 0.399 0.424 0.474 0.345 0.107 0.320 1 ND
(10:00, 12:00] 0.176 0.587 ND ND 0.094 0.381 0.734 0.408 0.4401 0.452 0.528 1 ND 1 0.352 0.090
(12:00, 14:00] 0.064 0.660 ND ND 0.068 0.404 0.691 0.507 ND 0.500 0.505 ND ND ND ND ND
(14:00, 16:00] 0.514 0.627 ND ND 0.828 0.436 0.727 ND ND 0.458 0.494 ND ND 1 0.587 ND
(16:00, 18:00] ND 0.570 ND ND 0.169 0.455 0.738 ND 0.889 0.455 0.504 ND ND 1 ND ND
(18:00, 20:00] ND 0.594 ND ND 0.085 0.414 0.619 0.055 0.456 0.398 0.458 ND 0.537 0.220 ND ND
(20:00, 22:00] 0 0.274 ND ND 0.101 0.364 0.646 0.206 0.500 0.362 0.419 0.504 ND 0.313 0.435 ND
(22:00, 00:00] 0 0.449 ND ND 0.112 0.271 0.598 0.138 0.277 0.320 0.374 0.257 ND 0.528 0.413 ND

Table 3. Calculated speed limit rates for 3 August 2013 with MaxSpeed = 40 km/h.

TempSeg
Cell

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(00:00, 02:00] ND 0.327 ND ND 0.056 0.173 0.433 ND 0.039 0.211 0.275 ND ND 0.485 ND ND
(02:00, 04:00] 0.025 0.257 ND ND 0.100 0.218 0.439 ND ND 0.276 0.392 ND ND ND ND 0.441
(04:00, 06:00] 0.240 0.371 ND ND 0.053 0.280 0.496 ND ND 0.277 0.383 0.189 ND ND ND ND
(06:00, 08:00 ND 0.358 ND ND 0.068 0.250 0.458 ND 0.448 0.290 0.442 ND ND 0.062 ND ND
(08:00, 10:00] 0.250 0.494 ND ND 0.051 0.266 0.501 ND 0.236 0.260 0.298 0.274 0.0 0.128 0.769 ND
(10:00, 12:00] 0.155 0.379 ND ND 0.080 0.256 0.572 ND 0.272 0.292 0.325 0.776 ND 0.025 0.102 0.090
(12:00, 14:00] 0.042 0.507 ND ND 0.047 0.275 0.523 ND ND 0.330 0.319 ND ND ND ND ND
(14:00, 16:00] 0.226 0.426 ND ND 0.434 0.293 0.553 ND ND 0.276 0.329 ND ND 0.359 0.237 ND
(16:00, 18:00] ND 0.418 ND ND 0.117 0.295 0.567 ND 0.560 0.273 0.308 ND ND 1.000 ND ND
(18:00, 20:00] ND 0.320 ND ND 0.038 0.271 0.456 ND 0.411 0.231 0.272 ND 0.275 0.102 ND ND
(20:00, 22:00] 0 0.234 ND ND 0.059 0.231 0.494 ND 0.300 0.218 0.247 0.261 ND 0.151 0.435 ND
(22:00, 00:00] 0 0.251 ND ND 0.076 0.172 0.439 ND 0.109 0.202 0.226 0.202 ND 0.377 0.206 ND
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In Table 4, we show the average speed limit rate by day and TempSeg of all the cells.

Table 4. Average calculated speed limit rate by day and TempSeg of all the cells, MaxSpeed = 50 km/h
(weekends in green).

Date
TempSeg

(00:00,
02:00]

(02:00,
04:00]

(04:00,
06:00]

(06:00,
08:00]

(08:00,
10:00]

(10:00,
12:00]

(12:00,
14:00]

(14:00,
16:00]

(16:00,
18:00]

(18:00,
20:00]

(20:00,
22:00]

(22:00,
00:00]

3 August 2013 0.411 0.473 0.503 0.507 0.489 0.524 0.525 0.529 0.538 0.473 0.448 0.391
4 August 2013 0.394 0.405 0.463 0.449 0.437 0.479 0.516 0.469 0.473 0.439 0.370 0.280
5 August 2013 0.374 0.544 0.539 0.492 0.520 0.540 0.541 0.495 0.486 0.420 0.396 0.318
6 August 2013 0.380 0.525 0.549 0.515 0.578 0.551 0.552 0.500 0.492 0.498 0.412 0.351
7 August 2013 0.408 0.538 0.531 0.490 0.565 0.565 0.580 0.511 0.487 0.462 0.394 0.374
8 August 2013 0.440 0.525 0.524 0.473 0.588 0.574 0.568 0.510 0.463 0.448 0.429 0.363
9 August 2013 0.426 0.535 0.557 0.466 0.565 0.537 0.547 0.535 0.552 0.474 0.438 0.396

10 August 2013 0.412 0.483 0.495 0.449 0.457 0.509 0.502 0.500 0.534 0.482 0.447 0.412
11 August 2013 0.411 0.411 0.458 0.385 0.451 0.468 0.481 0.512 0.475 0.414 0.381 0.315
12 August 2013 0.412 0.513 0.537 0.485 0.556 0.565 0.560 0.487 0.478 0.458 0.400 0.351
13 August 2013 0.409 0.508 0.527 0.471 0.540 0.564 0.545 0.490 0.505 0.494 0.449 0.352
14 August 2013 0.370 0.530 0.536 0.485 0.543 0.576 0.568 0.479 0.528 0.466 0.448 0.384
15 August 2013 0.384 0.419 0.467 0.417 0.467 0.464 0.510 0.507 0.490 0.473 0.393 0.363
16 August 2013 0.407 0.496 0.542 0.471 0.544 0.529 0.552 0.484 0.519 0.497 0.432 0.404
17 August 2013 0.386 0.471 0.508 0.427 0.500 0.561 0.543 0.497 0.530 0.474 0.429 0.374
18 August 2013 0.391 0.417 0.429 0.412 0.493 0.475 0.505 0.461 0.481 0.421 0.423 0.317
19 August 2013 0.391 0.529 0.555 0.494 0.535 0.550 0.548 0.517 0.524 0.442 0.394 0.337
20 August 2013 0.381 0.494 0.522 0.472 0.546 0.559 0.560 0.493 0.532 0.468 0.399 0.354
21 August 2013 0.374 0.487 0.522 0.477 0.533 0.528 0.569 0.508 0.493 0.471 0.424 0.354
22 August 2013 0.379 0.480 0.521 0.509 0.561 0.568 0.545 0.527 0.502 0.434 0.342 0.391
23 August 2013 0.418 0.521 0.533 0.485 0.548 0.550 0.563 0.517 0.512 0.467 0.410 0.395
24 August 2013 0.378 0.463 0.512 0.461 0.495 0.548 0.580 0.528 0.534 0.488 0.433 0.392
25 August 2013 0.363 0.411 0.486 0.433 0.479 0.518 0.522 0.459 0.528 0.426 0.362 0.324
26 August 2013 0.385 0.506 0.508 0.490 0.583 0.569 0.556 0.485 0.519 0.423 0.380 0.322
27 August 2013 0.382 0.522 0.514 0.485 0.572 0.545 0.555 0.513 0.524 0.431 0.350 0.340
28 August 2013 0.388 0.503 0.533 0.520 0.554 0.552 0.543 0.530 0.519 0.430 0.436 0.366
29 August 2013 0.408 0.492 0.517 0.498 0.596 0.576 0.539 0.502 0.509 0.459 0.420 0.354
20 August 2013 0.382 0.543 0.530 0.470 0.532 0.562 0.565 0.501 0.530 0.492 0.431 0.372

3.2. Second Experiment

As a result of the two previous experiments, we chose cells 1, 6, 7, 10, and 11 for the
next group of experiments. Cells 6, 7, 10, and 11 were the four cells with more trajectories,
and cell 1 was the one with fewer trajectories. Then, we ran our algorithm for these five
cells. For each cell, we obtained four figures to show the behavior for: (i) 28 days in
the morning, (ii) 28 days in the afternoon, (iii) weekends, and (iv) weekdays. Next, we
show four figures for cell 6 with MaxSpeed = 50 km/h, Figures 10–13. In Appendix A,
Figures A1–A8, we show four figures for cell 6 with MaxSpeed = 30 km/h, and four with
MaxSpeed = 10 km/h. In https://drive.google.com/drive/folders/1fMTjd6G1whkFhticrce-
EkBWsRWbVCr8?usp=sharing (accessed on 3 December 2022) the reader can access all
the figures corresponding to the five cells, with three MaxSpeeds (50, 30, and 10 km/h),
and for the 28 days, for the weekends, and for the weekdays. This classification by day of
the week allows users to focus their analysis on specific days or groups of days, e.g., to
observe if there are recurring behaviors on Fridays or to compare the behavior of Mondays
and Sundays.

https://drive.google.com/drive/folders/1fMTjd6G1whkFhticrce-EkBWsRWbVCr8?usp=sharing
https://drive.google.com/drive/folders/1fMTjd6G1whkFhticrce-EkBWsRWbVCr8?usp=sharing
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Figure 10. Calculated speed limit rates for the 28 days, cell 6 with MaxSpeed = 50 km/h in the morning.
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Figure 11. Calculated speed limit rates for the 28 days, cell 6 with MaxSpeed = 50 km/h in the afternoon.
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Figure 12. Calculated speed limit rates for the weekends, cell 6 with MaxSpeed = 50 km/h.
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Figure 13. Calculated speed limit rates for the weekdays, cell 6 with MaxSpeed = 50 km/h.

Considering all the results, first and second experiments, we highlight the following.
On average:

• Weekdays were slower than weekends, especially slower than Sundays in the mornings.
• Sundays were the slowest days.
• Mornings and middays (08:00 to 14:00] were slower than the afternoons (14:00 to 20:00]

(although, in some cells, e.g., cell 6, the slowness was similar in both time-ranges).
This makes sense since in the mornings most people commute to work and school
and have lunch at noon. On the other hand, in the afternoons, not all of these people
return to their morning activities. Those who do, return home at different times, e.g.,
in schools, classes usually start at 9:00 and end at 15:30, banks work from 8:30 to 15:00,
small stores are open from 9:00 to 18:00, and big stores from 10:00 to 22:00.

• The temporal segment (08:00, 10:00] was the slowest.
• The temporal segments (22:00, 00:00] and (00:00, 02:00] were the fastest.
• There was more slowness between 08:00 and 18:00 than between 18:00 and 08:00.
• In addition:
• As MaxSpeed increases, so does the speed limit rate measure in the cells; this is reason-

able because as the speed limit increases, more slow segments are generated, and thus,
the speed limit rate measure increases as well. Note that, if MaxSpeed→ ∞ then speed
limit rate = 1, because all the segments that pass through a cell are considered slow.

• Thursday 15 August 2013 had a “weekend behavior” during the Assumption of Mary, a
holiday in Portugal. Note, e.g., in cell 6, Figures 10, A1 and A5, in the morning, had
similar results for Thursday 15 August 2013 and Sundays.

• Considering the five cells of experiment 2, cell 7 was the slowest.
• (00:00, 02:00], (02:00, 04:00], (20:00, 22:00], and (22:00, 00:00] were the fastest temporal

segments. This is reasonable because at these hours, fewer vehicles are circulating.
• In general, the weekdays had similar behavior, although Mondays tended to be slower

than the other weekdays and Tuesdays tended to be faster.

3.3. Third Experiment

Analogously to the second experiment, in Figures 14–17 we show the results for cell 6
for the SPI at 100 km/h.
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Figure 14. Calculated SPI for the entire month, cell 6 with Vmax = 100 km/h in the morning.
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Figure 15. Calculated SPI for the entire month, cell 6 with Vmax = 100 km/h in the afternoon. 
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Figure 16. Calculated SPI for the weekends, cell 6 with Vmax = 100 km/h.
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Figure 17. Calculated SPI for the weekdays, cell 6 with Vmax = 100 km/h.

Note that increasing Vmax will change the SPI value proportionally. For example, if in
cell 6 between 14:00 and 16:00 on 3 August 2013, Vavg = 50 km/h then, at Vmax = 60, 80,
and 100 km/h, we obtain:

SPI = 100 ∗
(

50
60

)
SPI = 100 ∗

(
50
80

)
SPI = 100 ∗

(
50
100

)
SPI = 83.33 SPI = 62.5 SPI = 50

The results of the SPI were consistent with our speed limit rate measurements: week-
days were a little slower than weekends; on average, Sundays were the slowest days, as
were afternoons when compared to mornings, a weekday with an unusual behavior was
due to a holiday (Thursday15 August 2013), and extreme time-ranges, (00:00, 02:00], (02:00,
04:00], (20:00, 22:00], and (22:00, 00:00], were the fastest; this makes sense because at extreme
time-ranges there is usually less traffic, which makes it easier for vehicles in circulation to
move at higher speeds. However, in general, the differences between mornings-middays
and afternoons were not greater than 0.2; see, e.g., the peak hours (08:00, 10:00] and (18:00,
20:00] in Table 4, where the speed limit measure ranges in the interval (0.4, 0.6).

3.4. Fourth Experiment

With our proposal, the slow segments of a trajectory can be shown in a spatiotemporal
scenario. This feature cannot be obtained with the SPI measure [24]. As a result, we can
identify critical points (highest slowness) on the cells, see Figure 18.

We can also see the slow segment evolution of a cell through the different spatiotempo-
ral scenarios, e.g., see Figure 19; the color conventions are the same as the ones in Figure 18.
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Figure 19. Slow segment evolution of a cell through different spatiotemporal scenarios on Tuesday
6 August 2013, 60 km/h.

From the previous figures, we notice that:

• From 08:00 to 10:00 on 6 August 2013 there was less slowness in the cell.
• Around the roundabout, there was more slowness than in the other parts of the cell.
• Avenida Boavista, Rua de Diogo Bothelio, and Autopista do Norte are main streets

that usually have slow segments and critical points in the cell.

We can also analyze a cell in a spatiotemporal scenario over different days, and see if
the critical points (more slowness) are the same in these days, e.g., see Figure 20; the color
conventions are the same as the ones in Figure 18.
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Figure 20. Slow segment evolution of a cell from 6 August 2013 to 13 August 2013 and from 8:00–10:00,
60 km/h.

From the previous figures, we notice that Wednesday (7 August 2013) and Monday
(12 August 2013) were the days with more slowness; the other days were similar in slowness.

4. Conclusions

In this paper, we proposed a measure to compute the speed limit rate in each of the
cells in which a region is segmented and in a specific temporal segment. The calculation is
based on the historical data of trajectories as well as on the identification of slow segments
according to a speed limit (MaxSpeed) given by the analyst.

We present and formally define the concepts of speed limit rate and (maximal) slow
segments, which are the basic elements to determine the speed limit rate in a cell. Our
proposal allows the analyst to segment the region of interest into cells of the desired size
(l). Analogously, the time is also segmented. These two segmentations are the basis for
developing the notion of a spatiotemporal scenario, a key concept of our proposal.

Our algorithm was tested with historical data (10,485,760 trajectories), and the results
stood to reason, e.g., weekdays were slower than weekends, 10 pm to 4 am were the fastest
hours (this makes sense because there is usually less traffic during these days and hours,
making it easier for vehicles to move faster), and in general, were consistent with the
SPI. Although more experiments are needed, our experiments showed the feasibility of
our proposal and its potential to identify (sub)regions with high or low-speed limit rates.
This could be useful for traffic analysis, including traffic prediction [25]. For example,
in our fourth experiment, we showed the evolution of the slow segments of a cell over
the course of a day. This evolution can also be obtained for a week or a month and for
each temporal segment. In this way, an analyst could detect, according to history, when
(temporal segments) and where (roads) slower segments tend to appear in a cell. Another
interesting analysis is to see how the slowness of a cell propagates to its adjacent cells in
the next temporal segment. Thus, suppose that a driver is currently in cell A and needs to
get to cell W. The driver can get to W by following adjacent cells F or L. As a result, if cell F
has previously shown, in the next temporal segment, less slowness than cell L, the driver
could select this cell because it is faster than cell L.

As future work, we intend to enrich our speed limit rate measure as follows: For
example, if only a few vehicles (e.g., less than 5) are passing through a cell and they are
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moving slowly (e.g., speed ≤ 5 km/h), our speed limit rate measure reports the maximum
value (speed limit rate = 1). This is consistent with our definition. However, we could
include elements that try to explain why these vehicles are moving slowly, e.g., traffic lights,
narrow or bad roads, speed bumps [26], a truck or a set of trucks (a cluster of moving
objects) [27] that, e.g., every Monday morning, obstruct a certain road.
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Appendix A

Additional Figures A1–A8.

• MaxSpeed 30 km/h
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Figure A1. Results for the 28 days, cell 6 with MaxSpeed = 30 km/h in the morning.

https://archive.ics.uci.edu/mL/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015
https://archive.ics.uci.edu/mL/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015
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Figure A2. Results for the 28 days, cell 6 with MaxSpeed = 30 km/h in the afternoon.
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Figure A3. Results for the weekends, cell 6 with MaxSpeed = 30 km/h. 
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Figure A4. Results for the weekdays, cell 6 with MaxSpeed = 30 km/h.

• MaxSpeed 10 km/h
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Figure A5. Results for the 28 days, cell 6 with MaxSpeed = 10 km/h in the morning.
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Figure A6. Results for the 28 days, cell 6 with MaxSpeed = 10 km/h in the afternoon. 
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Figure A7. Results for the weekends, cell 6 with MaxSpeed = 10 km/h.
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FA8 Figure A8. Results for the weekdays, cell 6 with MaxSpeed = 10 km/h.
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