
Citation: Fahmy, S.; Abdelgaber, K.;

Karam, O.; Elzanfaly, D Modeling the

Influence of Fake Accounts on User

Behavior and Information Diffusion

in Online Social Networks .

Informatics 2023, 10, 27.

https://doi.org/10.3390/

informatics10010027

Academic Editor: Jiang Bian

Received: 2 January 2023

Revised: 24 February 2023

Accepted: 27 February 2023

Published: 3 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  informatics

Article

Modeling the Influence of Fake Accounts on User Behavior and
Information Diffusion in Online Social Networks
Sara G. Fahmy 1,*, Khaled M. Abdelgaber 1,2 , Omar H. Karam 1 and Doaa S. Elzanfaly 1,3

1 Department of Information Systems, Faculty of Informatics & Computer Science ,
The British University in Egypt, Cairo 11511, Egypt

2 Department of Physics & Engineering Mathematics, Faculty of Engineering-Mataria, Helwan University,
Cairo 11511, Egypt

3 Department of Information Systems, Faculty of Computer & Artificial Intelligence, Helwan University,
Cairo 11511, Egypt

* Correspondence: sara.gamil@bue.edu.eg; Tel.: +20-01274511500

Abstract: The mechanisms of information diffusion in Online Social Networks (OSNs) have been
studied extensively from various perspectives with some focus on identifying and modeling the
role of heterogeneous nodes. However, none of these studies have considered the influence of fake
accounts on human accounts and how this will affect the rumor diffusion process. This paper aims to
present a new information diffusion model that characterizes the role of bots in the rumor diffusion
process in OSNs. The proposed SIh IbR model extends the classical SIR model by introducing two
types of infected users with different infection rates: the users who are infected by human (Ih)

accounts with a normal infection rate and the users who are infected by bot accounts (Ib) with a
different diffusion rate that reflects the intent and steadiness of this type of account to spread the
rumors. The influence of fake accounts on human accounts diffusion rate has been measured using
the social impact theory, as it better reflects the deliberate behavior of bot accounts to spread a rumor
to a large portion of the network by considering both the strength and the bias of the source node.
The experiment results show that the accuracy of the SIh IbR model outperforms the SIR model when
simulating the rumor diffusion process in the existence of fake accounts. It has been concluded that
fake accounts accelerate the rumor diffusion process as they impact many people in a short time.

Keywords: rumors; fake accounts; social networks; bots; SIR model

1. Introduction

Social networks are online platforms that connect individuals who have similar
interests to communicate, generate and share content. Although social networks have
a lot of advantages, one of their drawbacks is that they may mislead and drive public
opinion with unverified content that can be easily spread among users in an uncontrolled
fast manner [1,2]. The spreading of posts and sharing information through social networks
is known as information diffusion [3,4]. One of the main factors that affects the diffusion
rate is the reaction of users when receiving information from other accounts. This reaction
varies from one user to another depending on the user’s beliefs and intentions. Some
users reject information, some reject spreading information, and others accept and spread
information [3]. The behavior of users on social networks can be manipulated and
influenced by fake accounts that are known as bots. In other words, bots are software
programs that carry out pre-defined repetitive tasks. They act like humans but much
faster because they are automated [5,6]. In addition, they can perform many tasks such as
producing content while hiding their robotic identity [7]. In 2010, social bots were employed
during the U.S. elections to influence the followers of some candidates by directing them
to websites that contain fake news [6]. Misinformation diffusion has also occurred during
COVID-19 and the U.S. elections in 2020 [8]. Incapsula reports concluded that in 2014,
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“about 56% of the internet traffic was generated by bots”, and in 2019, malicious bot traffic
on the internet rose by 18.1%, and currently, they are almost one-quarter of all internet
traffic [9]. Therefore, understanding the behavior of bots and how they affect the dynamics
of information diffusion in social networks is essential to stop their role in diffusing rumors
and fake news. The mechanisms of information diffusion on OSNs have been studied
extensively from various perspectives and with various approaches. This includes the
time-series approaches that model the dynamics of the diffusion process over time using
mathematical expressions [10]. Among these models are the epidemic models [1,4,11],
the stochastic model [12–14], and the progressive models [1,15,16]. Other approaches
are the data-driven ones [10] where machine learning and deep learning algorithms are
used to model the diffusion process based on the features that are extracted from the
collected datasets [17,18]. Some of these studies focus on identifying and modeling the
role of heterogeneous nodes in the OSNs, such as the most influential users [19] and super
spreaders [20]. However, none of these studies have considered the influence of fake
accounts on human accounts and how this will affect the rumor diffusion process. In
measuring the influence power of different network users, most researchers are using
the structural properties of the network such as centrality measures [21,22] , PageRank
index [23], and a—centrality [24]. Although these measures are useful in most cases, they
are less accurate in the case of bots. This is because bot accounts usually constitute a lower
percentage of the whole accounts in the network with a sparse degree distribution [25] and
the average centrality measures of normal users are greater than the centrality measures
of bots [25]. On the other hand, there is a reasonable amount of research that analyzes
the behavior of bots and how they influence the diffusion of fake news and rumors in
OSNs [2,5,25–28]. Most of these studies rely on statistical analysis methods to compare the
behavior of bots and humans in the diffusion process of specific events [6,27]. However,
modeling the behavior of bots and how they influence the mechanisms of rumor diffusion
in OSN is still in its beginnings with very few attempts, such as the work in [27]. This leads
to the necessity of creating a proposed model that measures the influential behavior of
bot accounts and considers their special nature. In this context, this paper aims to present
an information diffusion model that characterizes the role of bots in the rumor diffusion
process in OSNs. The proposed model extends the classical SIR by containing two types of
infected users with different infection rates: the users who are infected by human accounts
(Ih) with a normal infection rate λ and the users who are infected by bot accounts (Ib) with
a different diffusion rate θ that reflects the intent and steadiness of this type of account to
spread the rumors. The intuition for this differentiation relies on the findings of [27,29],
and [30], where it has been shown that there is a significant difference in the impact of
bot accounts and human accounts on information diffusion. Bot accounts tend to have
a long-term behavior [6] and a greater influence than that of human accounts regarding
specific topics [8,25,31]. Moreover, the proposed model is introducing the use of the social
impact theory [32] for measuring the influence of bots on human accounts. This is because,
unlike other influence measures, the social impact theory considers both the strength and
the bias of the source node. This will better reflect the deliberate behavior of bot accounts to
spread a rumor to a large portion of the network. The proposed model has been evaluated
using a rumor dataset collected from Twitter [5]. The least-squares fitting function is
used to estimate the parameters of the model, which can accurately predict the rumor
propagation process. The rest of this paper is organized as follows. Section 2 contains
related work for information diffusion models and social influence. Section 3 contains
a detailed explanation of the proposed SIh IbR model. Section 4 contains simulation and
numerical results. Section 5 represents the conclusion and finally the references list.

2. Related Work

Two major research areas are related to this study: modeling the dynamics of the
information diffusion process and measuring the influence of the network users.
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2.1. Information Diffusion Models

As stated in the introduction, the two main approaches for modeling the information
diffusion process are time-based and data-driven. Although researchers started to adopt the
data-driven approaches because of the rapid development of machine learning and deep
learning and due to their high prediction accuracy [25,33], most research in this area uses
epidemic models [34–36]. This is because epidemic models are straightforward, efficient,
extendable, interpretable, and conforming to some real-world physic laws [10,37], whereas
the performance of the machine learning and deep learning algorithms is unexplainable
as it is dependent on the quality and the quantity of the extracted features from the
collected datasets [10]. Epidemic models, as the elementary models of information diffusion,
study the diffusion process by its analogy with the diffusion of epidemics, since they
both have similar diffusion mechanisms. There are four main epidemic models: the
Susceptible–Infected model (SI) [38,39], Susceptible–Infected–Susceptible model (SIS) [1,38],
Susceptible–Infected–Recoveredmodel (SIR) [4,38,40], andSusceptible–Infected–Recovered–Susceptible
model (SIRS) [1,38]. The main differences between these models lie in their distinctive ways of detecting
the status and the behavior of each node and how it affects the diffusion process. Among these models
are the SIR model and its extensions, which are the most commonly used ones specifically for rumor
diffusion [33–36,41,42]. The SIR model has been reformed and extended in many types of research
to incorporate different factors that affect the rumor diffusion process. In fact, these extensions can
be categorized into three main categories based on the type of modification that has been applied
to the basic SIR model. As shown in Tables 1–3, the first category contains the models that extend
the SIR model by adding one or more new nodes to represent different states; the second category
comprises the models that modify the classical SIR model by considering new factors that may affect
the diffusion process, and the third category has the models that modify the classical SIR model by
branching some of the main nodes to sub-nodes.

2.1.1. Classical SIR Model Extensions with New Node

This section explains the various extensions that have been applied to the classical SIR
model by adding new types of users to represent different states for better diffusion results.
For instance, previous studies added a hibernators node, an anti-rumor node, an exposed
node, a potential spreader, a collector node, a hesitating node, adding a commentor node,
and adding a lurker node in [17,18,33,35,42–45], respectively.

The SIHR model in [43] divides the social media users into four groups: “spreaders”,
“ignorant”, “hibernators”, and “removed”. The spreader is the same as the infective
state; ignorant is the same as the susceptible state. Stiflers are those who are aware of
the news but do not publish it, which is similar to the removed state. The hibernator
node represents how frequently information diffuses. In addition to the SKIR model, [18]
reflects on the effect of the competition between rumor and anti-rumor information on
the propagation process. They also considered the user behavior driving force by using
evolutionary game theory and multiple information regression methods. Furthermore,
the SEIR model in [17] inserts an exposed (E) node into the classical SIR model. Exposed
nodes indicate infected individuals, but they are not yet able to infect others. In the SEIR
model, the epidemic will not outbreak on the network unless the recovery number is
more than an epidemic threshold. Otherwise, a great number of nodes in the network
will become infected. This model constructs a dynamical evolution equation to properly
define the information diffusion process. Moreover, it studies the impact of individual login
rates and the number of friends on information diffusion. They concluded that individual
login rates directly affect the information diffusion process. When a susceptible individual
contacts infected individuals, the susceptible individuals transform into exposed ones with
probability P. Meanwhile, ε represents the velocity for an exposed individual who will
become an infected individual, and γ represents the velocity for infected individuals who
will be recovered individuals. Concerning the SCIR model in [46], it has has four states:
“susceptible”, “infected”, “counterattack”, and “recovered”. The susceptible, infected and
recovered nodes are the same nodes in the SIR model. The counterattack node is the node
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that does not disseminate information and published the counter information. Once a
susceptible individual interacts with an infected individual, the susceptible one may have
three results: first, it turns out to be an infective node with probability α (spreading rate);
second, it turns out to be a refractory node with probability β (ignoring rate); third, it turns
out to be a counterattack node with probability θ (refuting rate).

Unlike the above models which have four states, the SEIRS-C model in [41] has five
states at any time: the susceptible state (S), the exposed state (E) represents individuals
who believe the rumor and have the intention to spread it, the infected state (I), the
counterattack state (C) represents the ones who heard the rumor and published the truth,
and the recovered state (R). Regarding the SPIR model in [44], it introduced the idea
of a potential spreader set. The equations of the SIR model could suffer from repeated
calculations that will be far from the actual values if the traditional SIR model was solved
discretely. To overcome this problem, the SPIR model introduced the idea of a potential
spreader set, which is defined as a susceptible individual whose friends have at least one
infected individual. Concerning the IRCSS model in [35], it considers sharing, reviewing,
collecting, and stifling. Once an ignorant user interacts with a sharer, he/she transforms into
one of the four possible statuses: a “reviewer” once he/she comments on the information
with probability a, a “sharer” when she/he shares the information with probability ß, a
“collector” if he/ she considers the collection value of the information with probability γ and
“stiffer” if he/she has no response on the rumor with probability θ. Unlike the above models,
the SEIR1R2 model in [34] added a new node, which is the exposed node, and divided the
recovered nodes into two groups, which are R1 and R2. This model takes into consideration
the influence of the rumor self-purification mechanism. SEIR1R2 divided people into five
datasets: the susceptible people (S), the exposed people (E) who are the ones who believe
and have the intention to spread the rumor, the infected people (I), the recovered1 people
(R1)—those who recovered after being infected—and the recovered2 people (R2): those
who recovered due to comments published by individuals (error correction. Regarding
the ICST model in [42], it has main four nodes: the ignorant, the communicator, the sharer,
and the stiffer. Once an ignorant deal with a sharer, there would be three possible results:
the ignorant may comment on the rumor with rate α (the commenting rate); the ignorant
may believe the rumor and share it with rate β (sharing rate), and the ignorant may not
be interested in the rumor with rate λ (stifling rate). In addition, the commentor may
share the information with probability η, and the sharer may lose interest to become stifler
with probability δ. The newly registered accounts have a growth rate of ρ. Independent
spreaders are considered in the SIR model in [47]. Through the process of information
diffusion, at every time step, any ignorant node can be converted to an independent
spreader with a specific probability. An independent spreader represents the fact that users
can obtain misinformation from other channels rather than from their neighbors within the
network. The density of the independent spreaders can be calculated by two aspects: the
misinformation attractiveness and its current overall popularity. Normally, the popularity
can be represented by the density of the publisher.

Concerning the ILSR model in [45], it considers two different users (important users
and ordinary users) based on the degree of each node. ILSR has four main statuses: the
ignorant, the lurker (heard the rumor but temporarily not publishing it), the spreader,
and recovered. When the ignorant deals with a spreader, the ignorant will transform
to be a lurker or spreader with probability α1 or α2, respectively. Once the lurkers deal
with spreaders, he/she will transform to be a spreader with probability β. As a spreader
deals with a recovered, the spreader will transform to be recovered with probability δ. In
addition, this model divided users into two groups: important users (those who do not
believe rumors easily) and ordinary users (those who easily believe rumors) based on the
node degree.
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Table 1. Different modifications to the classical SIR model by adding new node types.

Model Description

SIHR
Extended the classical SIR model by adding a group called hibernators to model the forgetting and remembering
mechanisms of the infected accounts [43].

SKIR
Studied the effect of the competition between the users who adopt the rumor and those who adopt an anti-rumor
on the propagation process [18].

SEIR Added an Exposed node that represents people who are infected but not yet infectious [17].

SICR Introduced the Counterattack node to represent susceptible individuals who may not agree with the rumor [46].

SEIRS-C Updated the SICR in [46] by adding the exposed state along with the Counterattack state [41].

SPIR
Adopted the concept of a Potential Spreader set of users to model the susceptible node that is likely to become
infective at the next unit time [44].

IRCSS Added a collector state to model the value of the news [35].

SEIR1R2
Proposed a rumors purification model that contains exposed nodes and two types of recovered nodes: those who
had never been exposed to the rumor or recovered from a rumor, and those who purified the rumor [34].

SHAR
Added a hesitating state to include the users who heard the rumor, but they are uncertain whether to propagate the
rumor or not [33].

ICST Added a commentor node to model the susceptible node that is likely to become infective at the next unit time [42].

ILSR
Added a lurker node that heard the rumor but temporarily is not publishing it. In addition, they consider
two types of users(important users and normal users) based on the degree of each node [45].

2.1.2. Classical SIR Model with the Consideration of New Factors

This section explains the previous modifications that have been added to the classical
SIR model by considering different factors such as the reading rate and diffusion rate
of the neighbor’s behavior in [48,49], respectively. The Mb-RP model in [48] divides the
population into three clusters: “the unknown“ representing nodes that do not know
the information, “the known” representing nodes that publish information and “the
unconcern” representing nodes that published the information earlier and then lost interest
in propagating it. Once users publish a tweet, their followers will see it with a specific
probability. In other words, the probability is introduced by how many individuals read
every tweet. As the followers read the tweet, they may retweet and spread it. Once the
followers already read the information, the publisher will change to the unconcerned status
with some speed until no publisher exists. Therefore, individuals pay attention to a topic
for a specific period. Only a part of the spreader’s followers can read the information
published. The ISIR model is introduced in [37] demonstrates the transmission rate as
a function of the infected nodes concerning the crowding effect. The crowding effect is
known when a huge number of infected nodes exists in a group, and the affected contacts
between susceptible and infected nodes do not rise fast. In the ISIR model, the infection
ratio is not a static value but a function of the infected nodes number. The Fractional SIR
model is presented in [49]. Once a user is flooded with a lot of news, the news may not be
well diffused. The FSIR model is introduced to reflect the impact of neighbors on a user in
the information propagation process. Because the entire amount of attention an individual
can pay to social media is limited, it is assumed that the amount of impact from every
neighbor is inversely proportional to the total number of friends that the individual has.
Regarding the irSIR model in [40], it shows the adoption and abandonment of individual
opinions by inserting an infection recovery kinetics process. Everyone who enters the
network is expected to continue forever and then eventually lose interest as their friends
lose interest. Hence, modifying the traditional SIR model is very important to contain the
infectious recovery process which provides a superior description of online social networks.
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2.1.3. Classical SIR Model with Divided Nodes

This section explains the modifications that have been made to the classical SIR model
by dividing one node into two nodes such as the recovered node that can be divided into Ra
and Ru, infected accounts can be divided into opinion leaders and normal users, infected
accounts can be divided into super spreaders and ordinary spreaders or infected accounts
can be divided into new and old spreaders in [20,36,50,51], respectively. The SIRaRu model
in [50] extends the classical SIR model by dividing the removed state into two classes: Ra
which represents the individuals who accepted the rumor and then lost interest to publish
it and Ru which shows the individuals who rejected the rumor from the beginning. The
OL-SFI model in [20] studies the impact of opinion leaders on different stages of information
propagation within a short duration. The model differentiates between the contribution of
opinion leaders and normal ones and builds upon these two nodes. Every user may be in
one of the following four positions at any time: the susceptible state (S), the forwarding
state which is influenced by opinion leaders (FL), the forwarding state which is influenced
by normal users (FN), and the immune state (I). The SAIR model in [51] introduces
super-spreaders to the classical SIR model. A super-spreader on OSNs would impact
more individuals than ordinary individuals, making individuals influential to impact
others. Therefore, the model introduced the SAIR model to describe the super-spreading
phenomena in information diffusion. A in the model represents the super-spreader. The
INSR model in [36] considers the age of infection. This model has four main nodes: “the
ignorant”, “the new spreader”, “the old spreader”, and “the stiffer”. The relative time
that has passed from the beginning of the infection is what differentiates new spreaders
from old spreaders. There are few attempts in the literature that studied the role of bots
in the information diffusion process in OSNs. Among these attempts is the one in [6] that
presents a statistical analysis of the interplay between bots and information diffusion in two
specific scenarios: manipulating public opinion in the American elections and publishing
social spam campaigns in the tobacco-related conversation on Twitter. They concluded that
bots generate more engagement than humans when retweeting politics-related information
on Twitter. Another research study [27], models and simulates states of the diffusion of
disinformation in social networks produced by bots. This model analyzes the behavioral
patterns of the accounts involved in disinformation based on three assumptions: the delay
in the start of the disinformation, the restricted number of bots that the disinformation
agent can publish, and the limited capabilities of social networks to detect bots. In addition,
the Kolmogorov–Smirnov statistic was implemented to check if the data follow a normal
distribution, and it was concluded that the data did not follow a normal distribution. As
stated in the above-mentioned studies, the SIR model is one of the most extensively used
models to study rumor propagation in social networks in a variety of ways. However, none
of these studies has incorporated the effect of the bot accounts in the diffusion models.

Table 2. Different Modifications to the Classical SIR Model by Considering New Factors.

Model Description

Mb-RP Considered thereading rate as the susceptible node read the rumor many times, he/she may retweet and spread it [48].

ISIR Considered the infection rate is not a static value, but it differs according to the number of infected nodes [37].

FSIR
Considered the diffusion rate of the neighbor’s behavior. Once a person has a lot of information from neighbors,
the information may not be well diffused [49].

irSIR
Added infection recovery process. Each user who joins the network is expected to continue forever and then eventually
lose interest as their friends lose interest [40].
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Table 3. Different Modifications to the Classical SIR Model by Branching the Basic Nodes.

Model Description

SIRuRa
Divided the removed states into Ra (users accepted the rumor but lose interest) and Ru (users do not accept
information at all) [50].

OL-SFI
Studied the impact of opinion leaders as the opinion leaders will spread the news faster than the normal ones as they
have many followers [20].

SAIR
Introduced super-spreaders to the classical SIR model as they can impact more individuals than ordinary ones and
make them influential to impact others [51].

INSR The age of infection is considered to have new and old spreaders [36].

2.2. Measuring Social Influence

Social influence is evident when a user or a group of users influences the behavior of
other users. Measuring this influence to identify the most influential nodes and how they
affect the information diffusion process is one of the ongoing research areas [52]. Among
various measures that have been proposed in the literature are the centrality measures that
are based on the structural properties of the network [12]. The basic well-known centrality
measures are degree, betweenness, closeness, eigenvector, and Katz centrality measures.
As the analytical usefulness of each measure depends mainly on the context of the network
without considering the behavior or the intentions of the nodes who are defusing the
rumors and how this will affect the propagation rate, some recent studies are combining
multiple centrality measures in closed formulas instead of using each measure by its
own [24,53,54]. None of these studies reflect the deliberated and biased behavior of social
bots when posting a rumor. Social impact theory is another approach for quantifying the
social force that changes the behavior of network users by considering different aspects [55].
The theory describes the social impact as a function of three forces: the strength or the
power of the source, the immediacy or the proximity of the source, and the number of
present sources in the network [32], as shown in Equation (1) [55]. When applying this to
the OSNs, the strength is mapped to the number of friends (i.e., the degree of a node), the
immediacy is mapped to the online distance between users (i.e., the number of edges in the
shortest path connecting two vertices), and the number of people in the group is the total
number of nodes in the OSNs as described in Table 4.

Ik = bNa−1
k ∗∑

i,j
Si/di j2 (1)

In Equation (1), N represents the number of people in the influence group. In the social
impact model, there is the insertion of a means that the persuasion of a specific belief does
not increase linearly with the number of people holding it. In addition, b represents the
possibility of bias in expressing the belief and d represents the distance between the source
and the target. The more people there are close to each other, the more impact they have on
each other. Additionally, s represents the number of people who can see the post [55,56].
Other researchers are considering the two-way influence between the target and the source
rather than the source only, and they name it dynamic social impact theory [57]. In this
paper, we are adopting the one-way influence (from the bot as a source to its followers as
the targets) as social bots will never be influenced by normal accounts.
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Table 4. Symbol Description for SIh IbR Model, Social Impact Theory, and Closeness Centrality.

Symbol Description

s(t) The number of susceptible accounts at a specific time.

ih(t) The infected real accounts.

ib(t) The number of infected bot accounts.

r(t) The number of recovered accounts.

λ The infection rate for real accounts.

θ The infection rate for bot accounts.

sih
Susceptible accounts transform to be infected accounts due to the existence of infected
real accounts.

sib
Susceptible accounts transform to be infected accounts due to the existence of infected
bot accounts.

µ The recovery rate.

µih The number of recovered accounts.

Ik The impact of a person on a target group.

b The possibility of bias in expressing the belief.

N The number of people in the influence group

a This means that the persuasion of a specific belief does not increase linearly with the
number of people holding it.

Si The number of followers for an account.

di j The distance (number of hubs) between the source and the target.

B The number of bot accounts (constant number).

3. The SIh IbR Proposed Model

The classical SIR model and all its extensions that simulate the diffusion process are
assuming that all accounts are real ones without considering the existence of fake accounts
(social bots). However, these fake accounts will never change their state; they will remain
infected and will never be susceptible or recover nodes. Their effect appears in the diffusion
rate. Therefore, the proposed model (SIh IbR) extends the classical SIR model by considering
fake accounts, as well as the real ones, and modeling their effect on the rumor diffusion
process. As shown in Figure 1, a new state has been added to the model to address the
difference in behaviors between bots and ordinary users (aforementioned facts stated
in [25,29,30]). This will allow us to vary the transition rates between states. We mainly
focus on the impact of bots on forwarding rumors. The main reason is that although bots,
as a special group of spreaders, are a minority, they have the ability to extremely prompt
information propagation due to the automated nature of their activity and persuasiveness.

Figure 1. SIh IbR Rumor Diffusion Model.
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The proposed model has five main nodes which are the Bot node, the susceptible (s)
node (the node that has not heard the news yet, but it can be infected in the future), the
InfectedN (ih) node (infected by normal accounts means this node knows the news and it is
able to publish it), the InfectedB (ib) node (infected by bot accounts), and the recovered (r)
node (meaning that the node lost interest in the news). When a susceptible node contacts a
bot node, the susceptible node may be transformed to be an InfectedB node by probability
θ, which is the bot infection rate calculated using social impact theory. If a susceptible
node is contacted by a normal infected node, it may be transformed to be infectedN with
probability λ, which is the normal infection rate. Then, all infected nodes will recover
(except the bot accounts will not recover at any time) with rate µ, which is the recovery
rate. Considering the SIh IbR rumor-spreading mechanism, the mean-field equations can be
described as follows:

s(t) + ih(t) + ib(t) + B + r(t) = 1 (2)

ds/dt = −λs(t)ih(t)− θs(t)ib(t) (3)

di/ds = λs(t)ih(t) + θs(t)ib(t)− µi(t) (4a)

dih/dt = λs(t)ih(t)− µih(t) (4b)

dib/dt = θs(t)ib(t)− µib(t) (4c)

dr/dt = µ(ih(t) + ib(t)) (5)

The SIh IbR model relies on the following hypotheses:

• Users are in a closed environment, meaning that the number of users (N) remains
unchanged.

• The total population is divided into five groups: the susceptible nodes (s), the normal
infected nodes (ih), the bot-infected nodes (ib), the bot nodes (B), and the recovered
nodes (r).

• Each user, except bots, may be in one of four states at any given time: the susceptible
state (S), the infected state influenced by bots (Ib), the infected state influenced by
human users (Ih), and the recovered state (R).

• Correspondingly, if a susceptible node (S) contacts an infective node, the susceptible
node will become infective with probability λ if the infected node is a human account
(Ih) or with probability θ if the infected node is a bot account (Ib).

• Bot accounts do not change their status. In other words, they will remain infected
during one rumor propagation.

• Both infected types of nodes will recover with µ rate.
• It is not assumed that the user knows the identity of the account (fake or real) that

posts the information, as fake accounts usually hide their identity. The effect of the
fake accounts is reflected in the diffusion rate that differs from the normal rate. This is
because social bots have a deliberate and continuous intent to post the rumor. Normal
accounts post the information only once, whereas fake accounts keep posting the
rumors for a while until it diffuses.

For measuring the θ (the infection rate of bot accounts), we are using Equation (1) [55],
which depicts the social influence of bot accounts using the social impact theory.

θ = bNa−1
k ∗∑

i,j
Si/di j2 (6)

where:

• S: The strength is mapped to the number of accounts that can see the rumor.
• d: The immediacy is mapped to the shortest distance between the bot account and the

susceptible accounts.



Informatics 2023, 10, 27 10 of 17

• N: represents the number of accounts in the influence group.
• a: means that the persuasion of a specific belief does not increase linearly with the

number of bots holding it.
• b: represents the possibility of the bias of bot accounts in expressing the belief.

The distance, d(i,j) = C(i), is calculated using closeness centrality in Equation (7) [21].
Closeness centrality calculates the shortest distance between the source and the target (it
could be calculated from the network).

C(i) = ((n− 1)/(
n

∑
j=1

dij)) (7)

There are a lot of numerical methods to solve ordinary differential equations (ODE);
one of them is the Runge–Kutta method. Therefore, the system from Equation (3)–(5) can
be resolved using the Runge–Kutta method (another form of solution for the differential
equations) in the vector form as:

Z
′
(t) = F(t, Z(t)), 0 ≤ t ≤ tmax (8)

Z(t) = [(s(t) ih(t) ib(t) r(t))] (9)

p̂ = p + 1 (10)

where vector Equation (9) and tmax is used as an adaptation for t→ ∞. To obtain local error
estimation for adaptive step-size control effectively, consider two Runge–Kutta formulas
of different orders p and Equation (10). A Runge–Kutta process generates a sequence Zn
as an approximation of Z(tn) for 0 = t0 < t1 <...< tn = tmax. In the interval from tn to
t(n+1) = tn + h, there are two approximations of Z(t(n+1)) called Z(n+1) and Ẑ(n+1) for p
and p̂ = p + 1, respectively. Their forms are the following:

Z(n+1) = Zn + hn

m

∑
i=0

biKi and Ẑ(n+1) = Zn + hn

m

∑
i=0

b̂iKi (11)

where m is the number of stages and

K0 = F(tn, Zn), Ki = F(tn + cihn, Zn + hn ∑ j = 0i−1ai jK j), and i = 1, 2, . . . , m. (12)

By taking p = 4 and m = 7, the coefficients ai j,bi, b̂i, and ci = ∑i−1
j=0 ai j where

i = 1, 2, . . . , m can be evaluated as shown by Bogacki and Shampine [58] to produce the
efficient pair of formulas Z(n+1) (4th order formula) and Ẑ(n+1) (5th order formula). The
error between the two numerical solutions Z(n+1) and Ẑ(n+1) is calculated by

e(n+1) = max|Z(n+1) − Ẑ(n+1)| (13)

In case of e(n+1) = t, one can use Z(n+1) or Ẑ(n+1) as the final approximate value of
Z(t(n+1)) where t is the required accuracy. On the other hand, if e(n+1) > t, the error e(n+1)

is used to adapt the step size hn to ĥn as follows [59]

ĥn = hn(τ/(e(n+1)))
(1/p) (14)

The adapted step size is used to estimate the new values of Z(n+1) and Ẑ(n+1) until
achieving e(n+1) = τ.
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4. Simulation and Numerical Results

While the previous section explains the SIh IbR model and how it will be implemented,
this section will consider the impact of fake accounts on information diffusion using
numerical simulation.

4.1. Experimental Design

The model has been evaluated through two sets of experiments. In the first set, the
diffusion process has been simulated without the consideration of the existence of bots
(using the Classical SIR model). In the second set, the simulation has been performed
with the consideration of bot accounts using the SIh IbR model. The two models have
been evaluated against a real dataset obtained from Twitter [5]. The dataset contains
4929 accounts: 1455 identified as bot accounts and 3474 identified as human accounts.
Additionally, it contains the tweet’s text, time, account name, ID, followers, friends, and
tweet ID. It covers the tweets of real and bot accounts across different years.

For better tracking of the rumor diffusion, we extracted the tweets published by bots
and human accounts in the same period across two years to have two sub-datasets, one
containing the 2011 tweets and the other containing the 2012 tweets. In addition to the
tweets, the retweets and the replays are considered infected users. In the 2012 dataset, the
initial number of infected accounts is 53 accounts (the number of real accounts is 16 and the
number of bots is 37), and the total number of infected accounts is 11,219. As in the 2011
dataset, the initial number of infected accounts is 13 accounts (nine real accounts and four
bots), and the total number of infected accounts is 2300.

Figures 2–5 represent the simulation results of the SIR and the SIh IbR in the 2012 and
2011 datasets. Different infection and recovery rates are tested as shown in Tables 5 and 6
to decide the best-fit rates with respect to the two datasets. It is obvious from the figures
that the infection and recovery rates control the model; therefore, different rates are used.
Figures 2 and 3 show the results of implementing the classical SIR model across 2012 and
2011 datasets using λ = 0.3, µ = 0.1 and neglecting θ (the best-fit parameters). On the other
hand, Figures 4 and 5 represent the results of implementing the proposed model (SIh IbR)
over 2012 (using λ = 0.3, µ = 0.1 and θ = 1.38) and over 2011 datasets (using λ = 0.3, µ = 0.1
and θ = 0.48).

4.2. Testing the SIR Model

The classical SIR model has been tested against the 2011 and 2012 datasets with three
different rates of infection and recovery. This simulation of the 2012 and 2011 datasets
will disregard the bot accounts (bot number = 0). Figures 2 and 3 reflect the normal
behavior of the SIR model where the number of infected accounts increases while the
susceptible accounts decrease and then the recovered accounts begin to appear. The
simulation terminates when the number of infected accounts becomes 0.

Table 5 represents the results of the simulation using different infection and recovery
rates to be compared with the real dataset values. From simulation results, the maximum
number of infected accounts and the time when they are infected can be noticed. However,
the exact time of reaching the maximum number of infected accounts cannot be concluded
from the dataset, as it was published for bot identification and not for diffusion simulation.
Therefore, to be able to obtain the number of infected accounts from this dataset, the number
of tweets, retweets, and replies is considered. The exact time for retweets and replies is not
mentioned in the dataset. As shown in Table 5, the best-fit rates are achieved when using
an infection rate λ of 0.3 and a recovery rate µ of 0.1.
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Table 5. The SIR Model Simulation Results.

Year Initial Infected λ µ Total Number of Infected Accounts Days

2011
9 Real Accounts 0.3 0.1 704 30
4 Bot Accounts 0.4 0.2 365 30

0.8 0.3 604 12

2012
16 Real Accounts 0.3 0.1 3448 30
37 Bot Accounts 0.4 0.2 1786 31

0.8 0.3 2959 12

It can be concluded that the classical SIR model is far from reality, as it neglects the
bot accounts and the fact that they remain infected and never recover. It does not reflect
the diffusion process of the real datasets. In the 2011 and 2012 datasets, the total number
of infected accounts was 2300 and 11,219, respectively, whereas the SIR model simulation
gives 704 for 2011 and 3448 for 2012, which represents about 31% of the real number of
infected accounts. These numbers have been achieved with the best-fit rates.

(a) λ = 0.3 and µ = 0.1. (b) λ = 0.4 and µ = 0.2. (c) λ = 0.8 and µ = 0.3.

Figure 2. The simulation results for SIR model using different rates on the 2012 dataset (a is the
best fit).

(a) λ = 0.3 and µ = 0.1 (b) λ = 0.4 and µ = 0.2 (c) λ = 0.8 and µ = 0.3
Figure 3. The simulation results for SIR model using different rates on the 2011 dataset (a is the
best fit).

4.3. Testing the SIh IbR Model

The SIh IbR model has been tested against the 2011 and 2012 datasets with three
different rates of infection and recovery. While the bot infection rate θ is constant as it is
calculated using social impact theory, this simulation will consider the bot accounts and
their bias, as shown in Figures 4 and 5. In this stage, a variation will happen between
infected human accounts and bot accounts. The simulation reflects the SIh IbR model where
the number of infected accounts (due to the existence of bot accounts and human accounts)
increases while the susceptible accounts decrease and then the recovered accounts begin to
appear. The simulation terminates when the number of infected accounts is equal to the
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number of bot accounts. This means that they will not recover at any time and they will
remain infected.

Table 6, represents the results of simulating the SIh IbR model in comparison to the
real dataset.

Figure 6 and 7 show how the number of infected nodes changes by using different
infection and recovery rates (λ and µ) across the classical SIR model and the SIh IbR model.

When comparing the simulation results with the 2011 and 2012 datasets, we found
that the best fit is achieved for the SIh IbR model when setting the infection rate to λ = 0.3
and the recovery rate to µ = 0.1.

The SIh IbR better matches the real datasets. The simulation gives 1032 infected
accounts in the 2011 dataset and 8359 in the 2012 dataset. This represents about 44%
of the 2011 dataset and 74.5% of the infected accounts in the 2012 dataset, which is close to
reality. Moreover, the influence of fake accounts on the diffusion process is reflected in the
number of days when the infection reaches its peak. In Table 5, without considering the
bots in the SIR model, the infection outbreak is on day 30, whereas in Table 6, the rumor
reaches its outbreak on day 20 in the 2011 dataset and on day 7 when using the 2012 dataset.

Comparing the classical SIR model with the new SIh IbR model on the 2012 dataset, it
can be noticed that in the SIR model, the maximum number of infected accounts is 3448
(reached after 30 days) as shown in Figure 2, while in the SIh IbR model, the maximum
number of infected accounts is 8359 (reached after 7 days), as shown in Figure 4. When
comparing the two models in the 2011 dataset, it is observed that in the classical SIR model,
the maximum number of infected accounts is 704 (reached after 30 days), as shown in
Figure 3, while in the SIh IbR model, the maximum number of infected accounts is 1032
(reached after 20 days), as shown in Figure 5.

(a) λ = 0.3, µ = 0. and θ = 1.38.
(b) λ = 0.4, µ = 0.2 and θ = 1.38. (c) λ = 0.8 , µ = 0.3 and θ = 1.38.

Figure 4. The simulation results for the SIh IbR model using different rates on the 2012 dataset (a is the
best fit).

(a) λ = 0.3, µ = 0.1 and θ =
0.48. (b) λ = 0.4, µ = 0.2 and θ = 0.48. (c) λ = 0.8, µ = 0.3 and θ = 0.48.

Figure 5. The simulation results for the SIh IbR model using different rates on the 2011 dataset (a is the
best fit).
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Table 6. The SIh IbR Model Simulation Results.

Year Initial Infected λ µ θ Num of Ib Num of Ih Total Num of I Days

2011
9 Real Accounts 0.3 0.1 0.48 904 128 1032 20
4 Bot Accounts 0.4 0.2 0.48 298 158 456 22

0.8 0.3 0.48 13 576 589 12

2012
16 Real Accounts 0.3 0.1 1.38 8306 33 8359 7
37 Bot Accounts 0.4 0.2 1.38 6467 32 6499 7

0.8 0.3 1.38 4937 126 5063 6.5

Figure 6. Number of infected accounts comparison for 2011.

Figure 7. Number of infected accounts comparison for 2012.

It is worth mentioning that when the infection rate of the human accounts λ exceeds
the infection rate of the bot accounts θ, the infection outbreak did not change in the two
models in the 2011 dataset (on day 12) as the human accounts are more infectious than
the bots. However, it changes in the 2012 dataset as the number of bots is more than the
number of human accounts.

As a result, the SIh IbR model reflects the effect of deliberate and biased behavior on
real accounts, because fake accounts persuade more people in a shorter period of time.
Unlike normal accounts, fake accounts can impact more accounts and make them influential
enough to impact others. Therefore, increasing the number of fake accounts speeds up
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the rumor propagation process. Even if the number of fake accounts is small, they can
have a strong influence on others. Finally, we can say that the SIh IbR model works more
effectively than the classical SIR model in the presence of bot accounts.

5. Conclusions

This research considers the effect of bot accounts on rumor propagation in social media.
Two types of nodes have been introduced, by including both human accounts and bot
accounts. In addition, a new infection rate for the bot accounts is introduced using social
impact theory that studies the impact of bot accounts on the real accounts. The analysis
has been made on the results of both the classical SIR model and the SIh IbR model. The
two models have both been applied to the simulator. The results are then compared to a
real dataset that contains real accounts tweets and bot tweets in 2011 and 2012. The results
of the proposed model represent an improved accuracy compared to the classical model.
The accuracy for 2011 without considering the effect of bots is 30.6%, and the accuracy
considering the bot accounts is 44.8%. The accuracy for 2012 without considering the effect
of bots is 30.7%, and the accuracy considering the bot accounts is 74.3%. Results point out
the importance of using the SIh IbR model in modeling rumors propagation, as bots can
impact many accounts in a shorter time. Therefore, the SIh IbR model proves that it is better
than the classical SIR model. Future work is required to study the characteristics that affect
the diffusion process to find the exact ratios between infection rates and recovery rates.
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