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Abstract: Among several approaches to analyzing crash research, the use of machine learning and
econometric analysis has found potential in the analysis. This study aims to empirically examine
factors influencing the single-vehicle crash for personal cars and trucks using decision trees (DT)
and mixed binary logit with heterogeneity in means and variances (RPBLHMV) and compare model
accuracy. The data in this study were obtained from the Department of Highway during 2011–2017,
and the results indicated that the RPBLHMV was superior due to its higher overall prediction
accuracy, sensitivity, and specificity values when compared to the DT model. According to the
RPBLHMV results, car models showed that injury severity was associated with driver gender, seat
belt, mount the island, defect equipment, and safety equipment. For the truck model, it was found
that crashes located at intersections or medians, mounts on the island, and safety equipment have
a significant influence on injury severity. DT results also showed that running off-road and hitting
safety equipment can reduce the risk of death for car and truck drivers. This finding can illustrate
the difference causing the dependent variable in each model. The RPBLHMV showed the ability to
capture random parameters and unobserved heterogeneity. But DT can be easily used to provide
variable importance and show which factor has the most significance by sequencing. Each model has
advantages and disadvantages. The study findings can give relevant authorities choices for measures
and policy improvement based on two analysis methods in accordance with their policy design.
Therefore, whether advocating road safety or improving policy measures, the use of appropriate
methods can increase operational efficiency.

Keywords: data driven; econometric analysis; model accuracy; sensitivity; specificity

1. Introduction

Thailand, classified as a middle-income country, faces a significant number of serious
crashes. As of 2018, the fatality rate stood at 32.7 per 100,000 people, ranking it eighth
globally [1]. An analysis of data from the Highway Crash Information Management
System [2] reveals that between 2011 and 2017, Thailand experienced the highest proportion
of run-off-road crashes, accounting for approximately 52% (Figure 1). The current focus on
addressing road accidents has led to increasing interest in the use of automated vehicles
(AVs) as a potential solution. Scholars have highlighted the advantageous features of AVs,
such as driving assistance systems and advanced sensors, which contribute to their ability
to prevent accidents [3,4]. Moreover, the rise of AVs aligns with the growing popularity of
electric vehicles, leading to not only a reduction in road risks but also the promotion of a

Informatics 2023, 10, 66. https://doi.org/10.3390/informatics10030066 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics10030066
https://doi.org/10.3390/informatics10030066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0001-6258-496X
https://orcid.org/0000-0002-8555-551X
https://orcid.org/0000-0002-9369-2741
https://orcid.org/0000-0002-4620-5058
https://doi.org/10.3390/informatics10030066
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics10030066?type=check_update&version=1


Informatics 2023, 10, 66 2 of 18

greener environment and the advancement of industry 4.0 technology [5,6]. This aligns with
the Sustainable Development Goals (SDGs) established to foster sustainability. However,
it is important to acknowledge that before fully embracing these automatic and green
industries, developing countries must first tackle the immediate issue of road accidents.
Researchers have studied factors that affect the severity of collision crashes using various
methods to solve road crash problems, as well as the correlation between driver factors and
crash occurrence [7]. Figure 2 provides valuable insights into the fatality rate associated
with crashes involving personal cars and trucks. Although these vehicles account for 46%
of all crashes [1], it is important to note that they represent the medium- and large-sized
vehicle categories. Literature findings from sources such as [8–10] further support the
notion that car and truck-related crashes tend to result in more severe injuries and cause
greater damage to both private and public properties compared to smaller groups of road
users like pedestrians and motorcyclists. Additionally, it is worth highlighting that among
the different types of crashes, single-vehicle incidents hold the highest proportion [11,12].
This information underscores the significance of considering the factors contributing to and
consequences of single-vehicle crashes in efforts to enhance road safety [13].
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Nowadays, numerous types of machine learning (ML) are applied in the study of
crash severity; the decision tree (DT) is the method applied to algorithms’ arrangements to
recognize the proportion of data based on determining variables. Thus, the researcher can
use appropriate data to analyze complicated independent data [14,15]. The use of DT as an
ML model offers a distinct advantage over other models, such as Artificial Neural Networks.
Specifically, DT has the ability to determine the order of influence of independent variables
on dependent variables through nodes and branches. In contrast, other ML models that
utilize Blackbox algorithms cannot reveal the priority of factors. It is worth noting that
DT is not able to improve model depth or increase accuracy when there is unobserved
heterogeneity, unlike some other ML models. Nevertheless, the ability to obtain the order
of important variables and a classification tree structure allows for meaningful comparisons
with other econometric models, such as the logit model. According to the literature, it
has been applied to crash analysis and predicted non-injury crashes in Malaysia [16] and
crashes at the crosspoint between roads and railways in the United States [15]. In Thailand,
the DT model was also used for analyzing rear-end collisions on Thai highways [17].
Nevertheless, if we can compare the unique results of DT with another method, it will give
us different aspects.

Additionally, the logit model is a widely used method for predicting crashes and
illustrates the comparison of the characteristics of different severity levels [18]. For example,
Champahom, et al. [18] compared the severity of crash-related incidents on urban and
rural roads in Thailand, Chen, et al. [19] studied the severity of injuries among truck
drivers, and Huang, et al. [20] studied the severity of driver injury and vehicle damage
in traffic congestion at intersections in Singapore [19,21]. The traditional logit model,
on the other hand, appears to be an inefficient method for analyzing data with a large
number of variables. Nowadays, scholars have established a random parameter model that
can capture the variation and complexity of the model [22–24]; the extension of logit can
describe the relationship between the fixed parameters of the model and can also explain
the model’s variation. Moreover, researchers recently uncovered the concept of unobserved
heterogeneity (in means and variances), which can apply to random parameters (probit)
logit model in the analysis of traffic crash injury severity [25,26]; this represents a hidden
influence (layer 2) that can affect the direction of random parameters of the model, this
method could influence model complexity.

The aforementioned methods have been used in crash analysis and are based on the
researcher’s objectives, which vary according to the research context and objectives, as
each model has a different form of operation (algorithm). However, the proposed studies
of DT and RPBLHMV analysis have not yet been discovered. Due to the quite different
functions of the model, a study that can compare the significant results and the model’s
performance of each method could reveal the model’s advantages and disadvantages and
lead to efficient use [27].

This study foresees the potential for predicting the crash injury outcome of both models
and the explanatory significance of significant results. So, the objective is to compare the
crash data analysis from contributing factors, such as vehicle factors, driver factors, and
road and environmental factors, to determine how they affect crash severity (fatal and
non-fatal). To achieve this objective, this study mainly used two different techniques: The
first is the data-driven technique (DT), and the second is econometric analysis (random
parameters binary logit model with heterogeneity in means and variances: RPBLHMV)
to analyze factors associated with drivers’ injury severity among personal car and truck
run-off-road crashes. Past studies have confirmed that both methods have potential in
crash analysis and revealed the associating factors, resulting in plans, measures, or policies
that will help reduce road crashes. In addition to affecting factors, this study wants to
compare the model accuracy (predicting outcome) between the DT and RPBLHMV models,
including overall accuracy, sensitivity, and specificity. The contribution of the study is that
it enables readers to understand the advantages and disadvantages of each model and then
select the appropriate method for analyzing run-off-road crashes on highways (among



Informatics 2023, 10, 66 4 of 18

personal car and truck drivers). In addition, these findings can give relevant authorities the
contributing factors for establishing policies and measures to reduce the severity of run-
off-road crashes. Good mitigation can result in both injury-related and property damage
reduction.

2. Materials and Methods
2.1. Data Collection and Descriptive Statistics

This study used the crash database from the Department of Highways of Thailand,
which comprised two parts: (1) data on highway crashes in Thailand from 2011 to 2017,
as reported by police officers and recorded in the Highway Crash Information System
Management (HAIMS), comprising causes, severity, driver characteristics, crash charac-
teristics, vehicle characteristics, road characteristics, and environmental context. This
dataset was screened for only personal car (total of 3448 cases) and truck (including at
least 6-wheeled vehicles; a total of 1375 cases) crashes related to run-off-road collisions.
In addition, collisions are categorized into two levels of severity: fatal (severe injury or
fatality) and non-fatal (property-damaged only or minor injury) injuries. Variables are
coded and described in Table 1.

Table 1. Summary statistic of single-vehicle crash data.

Variable Description Car (n = 3448) Truck (n = 1375)

Mean SD Mean SD

Y SEVERITY 1 if severe or fatal injury; 0 PDO or minor injury 0.283 0.450 0.253 0.435

AGE_26_35 1 if aged 26 to 35; 0 otherwise 0.365 0.481 0.333 0.471
AGE_36_45 1 if aged 36 to 45; 0 otherwise 0.221 0.415 0.320 0.467
AGE_46_55 1 if aged 46 to 55; 0 otherwise 0.126 0.332 0.184 0.388
AGE_56_UP 1 if the driver’s age is more than 55; 0 otherwise 0.084 0.277 0.058 0.234

MALE 1 if male drivers; 0 otherwise 0.773 0.419 0.991 0.093
SAF_EQ 1 if driver uses seatbelt; 0 otherwise 0.409 0.492 0.362 0.481

ALCOHOL 1 if driver is under effect of alcohol; 0 otherwise 0.017 0.131 0.007 0.085
EXEED_SPEED 1 if driver exceeds speed limit; 0 otherwise 0.808 0.394 0.703 0.457
FALL_ASLEEP 1 if driver falls asleep while driving; 0 otherwise 0.119 0.324 0.140 0.347
CONSTRUCT 1 if crash occurs at area of road maintenance (or construction); 0 otherwise 0.028 0.166 0.026 0.160

ASPHALT 1 if pavement type is asphalt; 0 otherwise 0.912 0.284 0.933 0.25
VERTICAL 1 if crash occurs on the graded road section; 0 otherwise 0.086 0.280 0.199 0.400

INTERSECTION 1 if crash occurs within intersection; 0 otherwise 0.071 0.256 0.085 0.279
U_TURN 1 if crash occurs within U-turn (opened median); 0 otherwise 0.099 0.298 0.056 0.230

COMMUNITY 1 if crash occurs within community area; 0 otherwise 0.010 0.100 0.009 0.093
NO_MEDIAN 1 if crash occurs on road without median; 0 otherwise 0.267 0.443 0.351 0.478

PAINTED 1 if crash occurs on road with painted median; 0 otherwise 0.051 0.22 0.031 0.172
RAISED 1 if crash occurs on road with raised median; 0 otherwise 0.280 0.449 0.181 0.385

DEPRESSED 1 if crash occurs on road with depressed median; 0 otherwise 0.345 0.475 0.363 0.481
BARRIER 1 if crash occurs on road with barrier median; 0 otherwise 0.050 0.217 0.069 0.254

MOUNT_ISLAND 1 if the vehicle mounted the traffic island; 0 otherwise 0.248 0.432 0.162 0.369
PASS_IN_FRONT 1 if crash passes in front of car; 0 otherwise 0.020 0.139 0.033 0.178
DEFECT_CAR 1 if crash occurs because of defective car equipment; 0 otherwise 0.012 0.110 0.066 0.247
WET_SURFACE 1 if crash occurs on wet road; 0 otherwise 0.155 0.362 0.199 0.400
DIRTY_SURFACE 1 if crash occurs on wavy or dirty road; 0 otherwise 0.004 0.061 0.004 0.066

WEATHER 1 if crash occurs during rain, dust, or fog; 0 otherwise 0.170 0.375 0.213 0.410
NIGHT 1 if crash occurs during nighttime; 0 otherwise 0.503 0.500 0.417 0.493

OFF_STR 1 if cause of crash is being run off-road on a straight; 0 otherwise 0.140 0.347 0.093 0.291

OFF_STR_HIT 1 if cause of crash is being run off-road on a straight and striking safety
equipment; 0 otherwise 0.323 0.468 0.330 0.470

OFF_CUR 1 if cause of crash is being run off-road on curve; 0 otherwise 0.057 0.232 0.079 0.270

OFF_CUR_HIT 1 if cause of crash is being run off-road on curve and striking safety equipment;
0 otherwise 0.191 0.393 0.281 0.45

Note: SD = standard deviation; PDO = property-damaged only.

To avoid multicollinearity among the observed indicators, this study had to ensure
that no pair of components exhibited a high correlation. Tables A1 and A2 illustrated
correlations between the input indicators of personal car and truck models, respectively.
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According to Mukaka [28], correlations between relevant variables should be less than
0.800, and the findings confirm that the statistical values fall within an acceptable range.

2.2. Decision Tree (DT)

For data analysis, this study used the DT model, which comprises two components [29].
The first component was the decision model structure, which comprises (a) the decision
node, which functions as a node representing variables used for data sorting; (b) the
branches representing the variables’ values used to sort the data of each decision node; and
(c) the leaf node showing the final result of sorting data of that variable. The second compo-
nent was algorithms, which include (a) splitting, for selecting and dividing variable values
in data sorting; (b) stopping, for controlling the model’s establishment and termination
based on specified conditions, ensuring that the model is not overfitting or underfitting; and
(c) pruning, for adapting the model to optimize the model’s suitability. This study applied
the CART algorithm, which has the following advantages: (1) it analyzes both category
and continuous variables [29]; (2) it has a binary splitting node format, suitably used for
interpretation in crash data analysis [14]; (3) it analyzes the influence of the independent
variables on the dependent variables [29], and uses the widely employed Gini algorithms.

2.3. Random Parameters (Mixed) Binary Logit Model

In this research, the mixed binary logit model was used to examine the factors affecting
the severity of driver injuries as classified by the following involved vehicles: cars and
trucks. This study adopted the random parameters binary logit model for the model
analysis. The model begins by defining the severity function Sjm of crash m sustaining
injury severity j as follows (Equation (1)) [12]:

Sjm = β jXjm + ε jm (1)

where Xjm denotes a vector of the crash-level factors (independent variables) with β j as a
vector of estimable parameters, and ε jm is an error term. Taking into account crash-specific
unobserved heterogeneity, the outcome probabilities of random parameters logit model of
car and truck driver-injury severities can be defined [30]

Pm(j) =
∫ EXP

(
β jXjm

)
∑∀j EXP

(
β jXjm

) f (β|ρ)dβj (2)

where Pm(j) defines the probability of driver injury severities j in crash m, f (β|ρ) is the den-
sity function of β with ρ being vector of parameters (means and variances). To account for
possibility of unobserved heterogeneity in the means and variances of random parameters,
the Equation is as follows

β jm = β j + ΦjmZjm + σjmEXP
(
ωjmWjm

)
Vjm (3)

where β jm is a vector of estimated parameters that varies across crashes. β j refers to the
mean parameter estimate across all crashes, Zjm is a vector of the explanatory variable
that captures heterogeneity in the mean that influences severities level j, Φjm represents
a vector of estimable parameters, Wjm refers to a vector of crashes-specific variables that
captures heterogeneity in the standard deviation σjm with corresponding vector ωjm, and
disturbance term is denoted by Vjm.

2.4. Classification Accuracy

Model efficiency performance can be verified by using statistical values: true positive
true negative, false positive, and false negative (Table 2). To build the metrics validating
data of the model and covering model performance evaluation, we calculated the model by
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using Equations (4)–(6), respectively. The obtained results from the model test [31] are as
follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

FP + TN
(6)

Table 2. Statistical values.

Predicted Positive (Fatal) Predicted Negative (Non-Fatal)

Actual positive (fatal) True Positive (TP) False Negative (FN)
Actual negative (non-fatal) False Positive (FP) True Negative (TN)

3. Results and Discussion

In this section, two statistical models (DT and RPBLHMV) were analyzed, and their
independent variable importance was presented. Then, each model was used to test the
most efficient model’s performance in analyzing factors affecting the severity of run-off-
road crashes (car and truck).

3.1. The Comparison of Model Prediction Accuracy

This study has compared the model accuracy for factors affecting drivers’ injury
severity in run-off-road crashes among cars and trucks on Thai highways. The presentation
of DT and RPBLHMV found that each model could have advantages and disadvantages in
the present study. The model’s performance was measured based on its ability to predict
with overall accuracy, sensitivity (predicting the true positive), and specificity (predicting
the true negative), as shown in Table 3 below. We considered evaluating the ability to
predict as a measure of the model’s accuracy.

Table 3. Outcome prediction of decision tree and random parameters logit model.

Predicted

Fatal (Car) Non-Fatal (Car) Fatal (Truck) Non-Fatal (Truck)

Actual

Decision tree
Fatal 242 732 0 348

Non-fatal 190 2284 0 1027

Mixed logit Fatal 446 528 153 195
Non-fatal 159 2315 6 1021

In terms of the DT model (Table 4), the overall prediction accuracy between the car
and truck models is quite similar. However, upon closer examination of sensitivity, it was
observed that the truck model failed to predict any fatal crashes (0%). This limitation
may stem from the smaller sample size of truck crashes (1375 cases), which falls below
the required number for accurate measurement indicators. In light of previous findings
by McNamara, et al. [32] and Genç and Mendeş [33], the necessary sample size may vary
based on the type of measurement indicators or data used. Nevertheless, larger samples
tend to yield more stable estimations and higher prediction accuracy.

While the car model exhibited a sensitivity greater than zero (24.85%), it still falls short
when compared to the results obtained from mixed logit models. Notably, the prediction
efficiency of the mixed logit models, encompassing both personal cars and trucks, proved
intriguing. These models demonstrated the ability to correctly predict overall accuracy
at a rate exceeding 80%, with sensitivity surpassing 40% and an almost perfect specificity
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of close to 100%. The performance of the RPBLHMV model also aligns with prior litera-
ture [34], which has confirmed its superior predictive accuracy compared to traditional
models due to its capability to capture hidden effects of unobserved heterogeneity (i.e.,
layer-2 effect) among crashes. Based on these findings, it can be concluded that the RP-
BLHMV models exhibit superiority over the DT models, particularly in terms of predicting
sensitivity.

Table 4. Comparison of models’ accuracy, sensitivity, and specificity.

Method Classification Accuracy Sensitivity Specificity

Decision tree
Car 73.26% 24.85% 92.32%

Truck 74.76% 0% 100%

Mixed logit Car 80.08% 45.8% 93.6%
Truck 85.38% 43.97% 99.42%

Additionally, to effectively choose a model, a model with 0% accuracy for some factors
can be a problem for model analysis when you need to predict some level of outcome (only
non-fatal or fatal), not the overall outcome. Thus, a model with low prediction error must be
selected for analyzing factors related to crashes [35,36]. The results of RPBLHMV, therefore,
appeared to be an appropriate method for explaining and predicting the run-off-road
crashes in this study, considering the low percentage of errors.

3.2. Results of the Decision Tree Model
3.2.1. Personal Car Classification

According to Figure 3, the results found four variables related to the dependent
variable (injury severity). Off-road crashes on straight roads are the most variable factor
that is significantly associated with the severity of a car driver’s injury in a run-off-road
crash. The results revealed that 53.9% of drivers who ran off the road on a straight route
were more likely to die. There is evidence that straight roads (no curves) cause drivers to
drive faster, resulting in greater injury severity when crashes occur (consistent with the
finding of Obaid, et al. [37]). Further, the significant variable related to driver injury was
a raised median [17]; the statistical results revealed that 36.5% of off-road drivers with a
raised median have a greater chance of becoming more severe. Going off-road on curves is
a significant variable in driver fatalities; the results revealed that off-road on curves cause
drivers to fall into severe injury (36.5%) when compared to others [38]. This evidence could
imply that run-off-road crashes on highways were found to be severe problems that had to
be mitigated. Furthermore, 42.9% of drivers who suffer off-road on curves were found to
be more likely to die when driving on dry roads, which is consistent with the findings of
Peng and Boyle [39].

3.2.2. Truck Classification

The results of DT for truck drivers also found four variables related to the crash injury
severity as well (as shown in Figure 4). Off-road crashes that go straight and strike safety
equipment are the most significantly associated factor; results show that safety equipment
(a safety barrier or guardrail) can save a driver’s life (81.5% of crashes that strike safety
equipment result in minor injury or PDO). Followed by mounted the traffic island, the
results illustrated that truck drivers who are not mounting the island and have not off-
straight road ben associated with minor injuries. Further, hitting safety equipment on
curves is related to the level of severity (27.7% chance of fatal injuries). These findings
suggest that a safety barrier or guardrail could reduce the severity of single-vehicle truck
crashes (fewer fatalities) [40]. The last variable is road surface; this result is in line with the
car model. The status of the road surface is one of the major factors that could influence the
control of the vehicle while driving and result in levels of injury severity when suffering
crashes, as confirmed by the evidence in related literature [39].
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3.3. Results of Random Parameters Binary Logit Model with Unobserved Heterogeneity
3.3.1. Explaining the Fix Parameters

According to Table 5 results, it was found that various factors related to run-off-road
crashes could influence personal car and truck driver injury severity. The results found
that McFadden R2 of the car model was 0.0595 and 0.0502 for the truck model; that is, the
variance of the data was explained at 5.95% and 5.02%, respectively [41]. The value of
McFadden R2 is dependent on the data used, as confirmed by related literature [42–44],
which indicated their McFadden R2 ranges from 0.03 to 0.08. Although the model exhibits
a low R2, it still has potential in terms of explaining variables. Furthermore, the model’s
performance can be assessed through prediction ability, such as overall accuracy, sensitivity,
and specificity, as shown in Table 4. Additionally, the RPBLHMV captures the random
parameters of the model, which can impact the variance and introduce complexity for both
car and truck drivers. Moreover, we tested the statistical fit of the model using a likelihood
ratio test, as described in Equation (7):

χ2 = −2[LL(βRPBLHMV)− LL(βwithoutRP)] (7)

Table 5. Model results of RPBLHMV (car and truck).

Variables

CAR (n = 3448) TRUCK (n = 1375)

Estimates S.E. t-Stat Marginal
Effect Estimates S.E. t-Stat Marginal

Effect

Constant –0.421 0.333 –1.26 1.312 0.830 1.58
Non-random parameters;

AGE_26_35 –0.04 0.082 –0.49 –0.009 –0.194 0.19 –1.02 –0.042
AGE_36_45 0.029 0.09 0.32 0.006 0.147 0.189 0.78 0.029
AGE_46_55 0.027 0.106 0.26 0.006 –0.089 0.211 –0.42 –0.02
AGE_56_UP 0.121 0.119 1.02 0.026 0.063 0.271 0.23 0.01

MALE 0.136 * 0.073 1.87 0.029 –0.156 0.503 –0.31 –0.032
SAF_EQ –0.162 *** 0.061 –2.64 –0.034 –0.085 0.114 –0.74 –0.018

ALCOHOL 0.263 0.206 1.28 0.056 0.612 0.587 1.04 0.126
EXEED_SPEED –0.089 0.085 –1.05 –0.019 –0.147 0.141 –1.04 –0.03
CONSTRUCT 0.24 0.164 1.47 0.051 –0.077 0.352 –0.22 –0.018

ASPHALT –0.021 0.106 –0.2 –0.005 –0.299 0.192 –1.56 –0.061
VERTICAL 0.035 0.171 0.21 0.006

INTERSECTION –0.387 * 0.217 –1.78 –0.081
U_TURN 0.012 0.115 0.11 0.003 –0.206 0.254 –0.81 –0.043

COMMUNITY 0.427 0.269 1.59 0.091 –0.622 0.758 –0.82 –0.131
NO_MEDIAN 0.025 0.278 0.09 0.005

PAINTED –0.19 0.306 –0.62 –0.04 –0.874 0.666 –1.31 –0.181
RAISED –1.160 * 0.614 –1.89 –0.24

DEPRESSED 0.106 0.277 0.38 0.023 –0.907 0.609 –1.49 –0.188
BARRIER –0.043 0.301 –0.14 –0.009 –1.090 * 0.627 –1.74 –0.226

MOUNT_ISLAND –0.457 *** 0.156 –2.93 –0.097 –0.630 *** 0.189 –3.34 –0.131
PASS_IN_FRONT –0.469 * 0.257 –1.82 –0.1 –0.142 0.319 –0.45 –0.028

DEFECT_CAR –0.661 * 0.369 –1.79 –0.141 –0.343 0.264 –1.3 –0.074
WET_SURFACE 0.099 0.205 0.48 0.021 –0.11 0.329 –0.33 –0.022

DIRTY_SURFACE 0.456 0.463 0.98 0.097 –0.966 1.567 –0.62 –0.21
WEATHER –0.243 0.198 –1.23 –0.052 –0.217 0.327 –0.66 –0.045

NIGHT 0.079 0.062 1.27 0.017
OFF_STR 0.562 *** 0.156 3.6 0.12

OFF_STR_HIT –0.458 *** 0.151 –3.03 –0.097 –0.698 *** 0.156 –4.48 –0.144
OFF_CUR 0.125 0.183 0.68 0.027 –0.023 0.242 –0.09 –0.006

OFF_CUR_HIT –0.538 *** 0.162 –3.33 –0.115 –0.440 ** 0.177 –2.48 –0.092

Random parameters;
VERTICAL –0.194 0.133 –1.46 –0.041

Standard deviation 0.864 *** 0.169 5.12
RAISED –0.397 0.288 –1.38 –0.084

Standard deviation 1.963 ** 0.145 13.55
NO_MEDIAN –1.702 *** 0.623 –2.73 –0.351

Standard deviation 4.161 *** 0.475 8.76
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Table 5. Cont.

Variables

CAR (n = 3448) TRUCK (n = 1375)

Estimates S.E. t-Stat Marginal
Effect Estimates S.E. t-Stat Marginal

Effect

Heterogeneity in means;
VERTICAL: FALL_ASLEEP 0.659 0.419 1.57

RAISED: FALL_ASLEEP –0.470 * 0.268 –1.75
NO_MEDIAN: FALL_ASLEEP 1.364 *** 0.476 −2.86

Heterogeneity in variance;
VERTICAL: INTERSECTION –0.346 1.439 –0.24

RAISED: INTERSECTION –3.326 *** 0.206 –16.13
NO_MEDIAN: NIGHT –0.244 * 0.143 −1.71

NO_MEDIAN: OFF_STR 3.998 *** 1.261 3.17

Model statistics: S.E. = standard error; Halton draw = 1000; AICcar = 3932.7; AICtruck = 1544.7; ***, **, * Significance
at 1%, 5%, 10% level, respectively.

The results demonstrate that the RPBLHMV significantly outperforms the traditional
model (without random parameters and heterogeneities). Specifically, we observed a sig-
nificant improvement in the RPBLHMV for both car and truck models at a 99% confidence
interval.

The RPBLHMV model was analyzed in terms of factors related to non-fatal or fatal
crashes. The driver factors of personal cars with seat-belt-wearing behavior were signif-
icantly related to the reduction in deaths from crashes because wearing seat belts helps
prevent the driver’s physical severity in injury from being crushed in the crash and bounc-
ing off the vehicle, which is consistent with related literature [12]. Following gender, the
findings revealed that male drivers were more likely to sustain serious injuries in run-off-
road collisions; this finding is in line with Al-Balbissi [45], who reported that there was a
definite trend toward significantly higher accident rates for male drivers compared with
female drivers.

Factors related to crash characteristics have a significant effect on the risk faced by
private car and truck occupants. A finding of this study was that road crashes within
a vehicle mounted on the median had fewer chances of death for private car and truck
users [12]. Furthermore, personal car crashes that are caused by passing in front of an
occupant car and defective equipment of vehicle influence the drivers to become less likely
to die. This is consistent with a finding of Behnood and Mannering [46]. Additionally, the
truck model illustrated that a road divided by raised or barrier median could potentially
save truck drivers from the risk of fatality; this finding is in accordance with relevant
literature [11,46].

Further, personal car and truck drivers who have a crash by driving vehicles off the
road, whether on the straight or curve, and hitting safety equipment (barrier or guardrail)
on the roadside, the likelihood of fatal crashes is potentially reduced (the same is true for
truck crashes with a barrier median). This finding is consistent with that of Roque, et al. [40]
and Chitturi, et al. [47]; that is, the unavailability of roadside safety equipment in the case
of run-off-road crashes would result in increasing fatality. Roque, et al. [40] also revealed
that roadside features such as safety barriers and guardrails significantly reduce the fatality
risk for drivers. This result is logical and meets the purpose of the implementation. In
addition, this study also found that roadsides without safety barriers or guardrails could
cause severe injuries to car and truck drivers.

3.3.2. Influence of Random Parameters and Unobserved Heterogeneity

In the case of random parameters, the factors that have the potential to be random
parameters of car drivers are raised, and barrier median. This study found that car drivers
who have a crash at a raised median or road with a slope are less likely to die. These results
also found truck drivers who have crashed at the no-road divider areas tend to decrease
the level of severity.
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This study also captured the unobserved heterogeneity in the means of the data.
The personal car results illustrated that crashes caused by falling asleep can increase the
likelihood of death in crashes on grading roads [48]. In contrast, fall-asleep indicators have
been found to decrease injury severity when a crash occurred on the raised median. For
truck drivers, falling asleep also influences the injury severity of crashes at no median
road. In addition, The result of the personal car model illustrated the crash occurred at an
intersection as representative of heterogeneity in variances that can decrease the variation
of injury severity of crash at raised median and slope. A previous study reported that
intersection area generally creates a number of conflicts with traffic [49]; as a result, they
become a cautious area where driver drive with greater caution and slow their vehicle
down while driving within these areas. Therefore, even if encountering a crash, it probably
does not cause more serious injury to the driver (this is consistent with Ma, et al. [50]).
Regarding truck results, driving at nighttime and off-road crash on strength could influence
the proportion of death in truck driver crashes.

4. Conclusions

The purpose of this study was to compare two potential analysis concepts (data-
driven and econometric analysis) in the study of run-off-road injury severity. The data was
obtained from Thailand’s Department of Highways, which contained statistics on car and
truck run-off-road crashes on highways between 2011 and 2017. The dependent variable is
divided into two categories consisting of non-fatal and fatal injuries. The study results are
presented as follows:

Regarding DT results, it was indicated that there is a difference between the variables
important to the model among personal car and truck run-off-road crashes on highways.
Off-road conditions on straight and curved roads raised medians, and wet surfaces were
found to be of variable importance in causing car crashes in this study. Furthermore, wet
surfaces, off-roading with striking safety equipment (both straight and curved), and traffic
island mounting were discovered to be of variable importance depending on the truck
model.

According to the RPBLHMV analysis results, factors associated with crash severity
were classified as non-random, random parameters, and unobserved heterogeneity in
means and variances. The car model demonstrates that the driver’s use of a seat belt
reduces the risk of fatality. Crash characteristics, including off-roading with striking
safety equipment, can reduce the risk of death. Furthermore, raised median and slope
were representations of the model random parameter. Falling asleep and encountering
intersections play a heterogeneous role in means and variances, respectively. For the truck
model, it was found that intersections, raised and barrier medians, and mounted traffic
islands can affect the crash injury severity, and it was also captured that crashes at no
median area could influence the model’s variation. In addition, falling asleep, nighttime,
and strong off-road crash represented the model’s heterogeneity in means and variance.

Practical implications arise from considering the associated factors, thereby emphasiz-
ing the need for relevant agencies involved in policy design to prioritize certain measures.
These include promoting legislation on seat belt usage [51] and enhancing knowledge
through safe driving training courses, enabling drivers to exercise caution and attentive-
ness while operating vehicles [52]. These factors hold a significant influence over personal
car drivers. Additionally, the potential of guardrails and other safety equipment in reducing
fatality risks for both car and truck drivers, as observed in both RPBLHMV and DT models,
suggests the importance of strategically installing such safety measures to enhance overall
road safety effectiveness.

Furthermore, the RPBLHMV model demonstrates its ability to capture unobserved
heterogeneity, which plays a crucial role in accounting for hidden effects and enhancing the
explanatory power of the model. On the other hand, the DT model offers a straightforward
approach to identifying variable importance in relation to injury severity by prioritizing
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factors through sequencing, thereby providing valuable insights into the most significant
factors.

In terms of the comparative method employed in this study, it reveals the advantages
and disadvantages of utilizing both machine learning (ML) and econometric analysis
concepts. This comparison enables authorities to make informed model choices that align
with their specific objectives and facilitates the design of appropriate measures and policies
accordingly. By understanding the strengths and weaknesses of each approach, decision-
makers can effectively tailor their strategies to achieve desired outcomes.

In terms of related areas, as per recommendations, around the routes prone to crashes,
the involved agencies should design protective equipment in such areas. In addition, to
reduce the likelihood of death and the damage associated with other road users from run-
off-road collisions, safety barriers and guard rails should be installed to prevent vehicles
from deviating from the routes [53].

As per research limitations, this study only focused on factors associated with run-
off-road crashes; this type of crash may have some different attributes when compared to
others [54]; a study on another type of crash could produce different results. In this study,
DT can be easily used to provide variable importance in the model but has limitations
in terms of providing direction for independent variables on crash severity. However,
the RPBLHMV has the potential to address such a problem and showed greater overall
prediction accuracy than DT. However, the McFadden R2 and AIC scores remain relatively
low, particularly for the truck model. This indicates that despite the overall improvement
in model accuracy compared to the DT approach, there is still a limited extent to which
the model explains the variance in the data. To enhance the model’s explanatory power in
future research, it may be necessary to adjust the model parameters or consider alternative
methods that better fit the data. Furthermore, it is recommended to explore comparative
methods utilized in other geographical areas beyond Thailand, as well as conduct more
comprehensive comparisons. Incorporating numerical values from relevant literature into
the comparative analysis can yield more efficient and effective results. By broadening
the scope of the comparison and delving deeper into the existing body of knowledge,
researchers can gain valuable insights and enhance the robustness of their findings. Based
on the specific advantages and disadvantages of data-driven and econometric analysis,
the method potentially empowers researchers to determine the method appropriate to the
educational context.
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Appendix A

Table A1. Correlations between related indicators of personal car data.

SEV V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

SEV 1 −0.019 0.006 −0.002 0.022 0.031 −0.034 * 0.040 * −0.028 0.035 * 0.036 * −0.009 −0.028 −0.022 −0.024 0.020
V1 −0.019 1 −0.403 ** −0.288 ** −0.229 ** −0.041 * −0.008 0.033 −0.002 −0.015 −0.021 0.055 ** 0.014 −0.021 −0.040 * 0.032
V2 0.006 −0.403 ** 1 −0.202 ** −0.161 ** 0.022 0.014 −0.012 −0.005 −0.004 0.018 −0.012 0.002 0.011 0.051 ** −0.019
V3 −0.002 −0.288 ** −0.202 ** 1 −0.115 ** 0.006 0.002 −0.024 −0.010 0.011 −0.007 0.007 −0.013 −0.003 0.012 0.005
V4 0.022 −0.229 ** −0.161 ** −0.115 ** 1 0.069 ** 0.031 −0.024 −0.018 0.034 * 0.005 −0.024 0.012 0.014 0.009 0.001
V5 0.031 −0.041 * 0.022 0.006 0.069 ** 1 −0.016 0.003 0.016 0.001 −0.020 −0.029 0.007 0.015 0.021 0.020
V6 −0.034 * −0.008 0.014 0.002 0.031 −0.016 1 0.029 −0.061 ** 0.050 ** 0.017 0.074 ** 0.039 * 0.012 0.004 0.004
V7 0.040 * 0.033 −0.012 −0.024 −0.024 0.003 0.029 1 −0.132 ** −0.029 0.004 0.010 0.039 * 0.024 −0.022 0.031
V8 −0.028 −0.002 −0.005 −0.010 −0.018 0.016 −0.061 ** −0.132 ** 1 −0.756 ** −0.005 −0.003 0.044 * −0.047 ** 0.018 −0.009
V9 0.035 * −0.015 −0.004 0.011 0.034 * 0.001 0.050 ** −0.029 −0.756 ** 1 −0.004 0.010 −0.055 ** 0.020 −0.011 −0.011

V10 0.036 * −0.021 0.018 −0.007 0.005 −0.020 0.017 0.004 −0.005 −0.004 1 −0.039 * −0.009 0.055 ** 0.020 0.000
V11 −0.009 0.055 ** −0.012 0.007 −0.024 −0.029 0.074 ** 0.010 −0.003 0.010 −0.039 * 1 0.059 ** −0.030 −0.034 * 0.011
V12 −0.028 0.014 0.002 −0.013 0.012 0.007 0.039 * 0.039 * 0.044 * −0.055 ** −0.009 0.059 ** 1 −0.044 ** −0.066 ** −0.021
V13 −0.022 −0.021 0.011 −0.003 0.014 0.015 0.012 0.024 -.047 ** 0.020 0.055 ** −0.030 −0.044 ** 1 0.106 ** 0.107 **
V14 −0.024 −0.040 * 0.051 ** 0.012 0.009 0.021 0.004 −0.022 0.018 −0.011 0.020 −0.034 * −0.066 ** 0.106 ** 1 0.015
V15 0.020 0.032 −0.019 0.005 0.001 0.020 0.004 0.031 −0.009 −0.011 0.000 0.011 −0.021 0.107 ** 0.015 1
V16 0.021 0.011 −0.026 0.029 0.014 0.021 −0.010 0.050 ** −0.074 ** 0.026 0.007 0.125 ** 0.127 ** −0.039 * −0.187 ** −0.002
V17 −0.034 * 0.041 * −0.003 −0.048 ** −0.008 0.022 0.024 −0.021 −0.064 ** 0.036 * 0.008 0.049 ** 0.019 0.018 −0.063 ** 0.003
V18 −0.048 ** −0.003 −0.016 −0.017 0.007 0.008 −0.049 ** 0.006 0.064 ** −0.070 ** −0.005 −0.084 ** −0.066 ** 0.115 ** 0.279 ** 0.034 *
V19 0.042 * −0.030 0.028 0.013 0.010 −0.020 0.066 ** −0.036 * 0.028 0.037 * −0.029 −0.030 −0.098 ** −0.088 ** −0.037 * −0.025
V20 −0.004 0.018 0.020 −0.002 −0.055 ** −0.036 * −0.038 * −0.020 0.023 −0.026 0.057 ** −0.070 ** 0.059 ** −0.006 −0.040 * −0.010
V21 −0.055 ** −0.038 * 0.030 −0.004 0.001 0.004 −0.058 ** −0.015 0.062 ** −0.046 ** −0.017 −0.063 ** −0.140 ** 0.101 ** 0.330 ** 0.015
V22 −0.024 −0.016 0.000 0.028 −0.005 0.012 0.013 −0.019 −0.291 ** −0.052 ** 0.001 −0.022 −0.006 0.034 * 0.016 0.027
V23 −0.023 −0.013 0.030 0.029 −0.015 −0.003 0.015 −0.015 −0.228 ** −0.041 * −0.003 −0.031 −0.025 0.000 0.008 −0.011
V24 −0.030 −0.020 0.086 ** 0.001 −0.008 −0.020 0.047 ** 0.010 0.121 ** −0.111 ** −0.015 0.063 ** 0.104 ** −0.012 −0.007 −0.027
V25 0.014 −0.007 0.013 −0.023 0.016 −0.001 −0.003 −0.008 0.018 −0.023 0.046 ** 0.019 −0.019 0.020 0.043 * −0.006
V26 −0.036 * 0.000 0.068 ** −0.002 −0.006 −0.017 0.031 0.017 0.124 ** −0.116 ** −0.017 0.062 ** 0.085 ** −0.004 −0.002 −0.023
V27 0.001 0.068 ** −0.019 −0.050 ** −0.112 ** 0.078 ** −0.025 0.079 ** −0.002 0.014 0.016 −0.051 ** −0.067 ** 0.064 ** 0.099 ** 0.008
V28 0.230 ** −0.003 0.000 −0.003 0.016 −0.018 0.015 0.042 * −0.092 ** 0.096 ** 0.041 * 0.026 −0.085 ** −0.066 ** −0.114 ** −0.024
V29 −0.084 ** −0.005 −0.020 −0.010 −0.001 0.006 −0.024 −0.040 * −0.045 ** 0.059 ** −0.010 −0.004 −0.171 ** 0.015 −0.087 ** 0.017
V30 0.049 ** 0.017 −0.004 0.012 0.007 0.019 0.030 0.006 −0.001 −0.040 * 0.011 0.037 * 0.153 ** −0.024 −0.073 ** −0.012
V31 −0.085 ** 0.047 ** −0.014 0.011 −0.022 −0.006 0.057 ** 0.009 0.072 ** −0.065 ** −0.034 * 0.055 ** 0.360 ** −0.051 ** −0.136 ** −0.020
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Table A1. Cont.

V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31

V16 1 −0.140 ** −0.376 ** −0.438 ** −0.138 ** −0.291 ** 0.013 −0.013 −0.027 0.016 −0.011 0.004 0.069 ** 0.066 ** 0.087 ** 0.146 **
V17 −0.140 ** 1 −0.144 ** −0.168 ** −0.053 ** −0.075 ** 0.024 0.046 ** −0.001 −0.014 −0.010 0.046 ** −0.025 0.074 ** −0.006 0.025
V18 −0.376 ** −0.144 ** 1 −0.452 ** −0.142 ** 0.397 ** 0.023 0.007 0.031 0.035 * 0.035 * 0.124 ** −0.155 ** −0.220 ** −0.047 ** −0.051 **
V19 −0.438 ** −0.168 ** −0.452 ** 1 −0.166 ** −0.024 −0.041 * −0.014 −0.018 −0.035 * −0.027 −0.128 ** 0.090 ** 0.094 ** −0.057 ** −0.100 **
V20 −0.138 ** −0.053 ** −0.142 ** −0.166 ** 1 −0.082 ** −0.004 −0.001 0.031 −0.014 0.021 −0.027 0.000 0.048 ** 0.042 * −0.013
V21 −0.291 ** −0.075 ** 0.397 ** −0.024 −0.082 ** 1 −0.009 −0.021 −0.003 0.041 * 0.017 0.135 ** −0.232 ** −0.397 ** −0.141 ** −0.279 **
V22 0.013 0.024 0.023 −0.041 * −0.004 −0.009 1 −0.016 −0.044 * −0.009 −0.053 ** −0.038 * −0.009 0.040 * 0.001 −0.042 *
V23 −0.013 0.046 ** 0.007 −0.014 −0.001 −0.021 −0.016 1 −0.026 −0.007 −0.029 −0.027 0.016 0.014 0.007 −0.027
V24 −0.027 −0.001 0.031 −0.018 0.031 −0.003 −0.044 * −0.026 1 0.026 0.888 ** −0.088 ** −0.033 −0.094 ** 0.089 ** 0.091 **
V25 0.016 −0.014 0.035 * −0.035* −0.014 0.041 * −0.009 −0.007 0.026 1 0.023 0.033 −0.011 −0.032 0.005 −0.006
V26 −0.011 −0.010 0.035* −0.027 0.021 0.017 −0.053 ** −0.029 0.888 ** 0.023 1 −0.044 * −0.029 −0.102 ** 0.083 ** 0.081 **
V27 0.004 0.046 ** 0.124 ** −0.128 ** −0.027 0.135 ** −0.038 * −0.027 −0.088 ** 0.033 −0.044 * 1 −0.066 ** −0.013 −0.087 ** −0.022
V28 0.069 ** −0.025 −0.155 ** 0.090 ** 0.000 −0.232 ** −0.009 0.016 −0.033 −0.011 −0.029 −0.066 ** 1 −0.279 ** −0.099 ** −0.196 **
V29 0.066 ** 0.074 ** −0.220 ** 0.094 ** 0.048 ** −0.397 ** 0.040 * 0.014 −0.094 ** −0.032 −0.102 ** −0.013 −0.279 ** 1 −0.170 ** −0.336 **
V30 0.087 ** −0.006 −0.047 ** −0.057 ** 0.042 * −0.141 ** 0.001 0.007 0.089 ** 0.005 0.083 ** −0.087 ** −0.099 ** −0.170 ** 1 −0.119 **
V31 0.146 ** 0.025 −0.051 ** −0.100 ** −0.013 −0.279 ** −0.042 * −0.027 0.091 ** −0.006 0.081 ** −0.022 −0.196 ** −0.336 ** −0.119 ** 1

Note: ** indicates that correlation is significant at 0.01 level (2-tailed). * indicates that correlation is significant at 0.05 level (2-tailed).
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Table A2. Correlations between related indicators of truck data.

SEV V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

SEV 1
V1 −0.042 1
V2 0.038 −0.485 ** 1
V3 −0.004 −0.336 ** −0.326 ** 1
V4 0.020 −0.176 ** −0.171 ** −0.118 ** 1
V5 0.001 −0.033 0.031 0.004 0.023 1
V6 −0.028 0.020 0.002 −0.002 −0.039 0.006 1
V7 0.009 −0.024 0.015 0.026 −0.021 0.008 −0.011 1
V8 −0.036 0.047 0.009 −0.045 0.012 −0.010 0.003 −0.038 1
V9 0.030 0.012 −0.008 0.008 −0.056 * 0.015 −0.034 −0.010 −0.622 ** 1
V10 −0.001 −0.010 0.014 −0.007 −0.002 0.015 0.028 −0.014 0.017 −0.027 1
V11 −0.025 −0.027 0.028 −0.023 0.017 −0.025 0.050 −0.011 −0.078 ** 0.033 −0.011 1
V12 0.070 ** −0.013 0.013 0.022 0.024 0.047 0.052 −0.043 0.005 −0.133 ** −0.002 0.046 1
V13 −0.070 ** −0.016 0.020 −0.004 −0.009 0.001 0.009 0.005 0.038 −0.063 * 0.032 −0.054 * −0.106 ** 1
V14 −0.054 * −0.004 0.016 −0.026 0.007 −0.045 0.007 0.016 0.013 −0.007 0.000 0.002 −0.098 ** 0.073 ** 1
V15 −0.019 −0.017 0.003 −0.024 0.010 0.009 0.043 −0.008 −0.008 −0.038 −0.015 0.025 −0.027 0.055 * 0.011 1
V16 0.080 ** −0.048 0.021 0.036 0.012 0.036 0.032 0.027 −0.079 ** −0.047 −0.016 0.130 ** 0.377 ** −0.088 ** −0.173 ** −0.020
V17 −0.006 0.018 −0.049 0.003 0.010 −0.029 −0.037 −0.015 0.004 −0.011 0.024 −0.003 −0.036 0.037 −0.043 0.120 **
V18 −0.087 ** 0.048 −0.023 −0.014 −0.012 −0.037 −0.071 ** 0.004 0.049 −0.060 * −0.018 −0.146 ** −0.164 ** 0.202 ** 0.165 ** −0.044
V19 −0.004 0.009 −0.009 −0.019 −0.007 0.022 0.076 ** −0.011 0.004 0.126 ** 0.009 0.008 −0.248 ** −0.078 ** 0.079 ** 0.027
V20 −0.020 −0.022 0.041 −0.004 0.006 −0.036 −0.068 * −0.023 0.070 ** −0.052 0.027 −0.030 0.022 −0.011 −0.041 −0.026
V21 −0.075 ** 0.028 −0.023 −0.046 0.009 −0.022 −0.065 * 0.032 0.057 * −0.036 −0.035 0.031 −0.195 ** 0.057 * 0.279 ** 0.022
V22 −0.013 −0.026 0.005 0.029 −0.028 −0.027 0.048 −0.016 −0.283 ** −0.074 ** −0.030 0.049 −0.061 * 0.046 0.026 0.115 **
V23 0.022 −0.081 ** −0.005 0.056 * 0.072 ** −0.007 0.015 0.012 −0.407 ** −0.107 ** −0.007 0.024 0.111 ** −0.017 −0.026 −0.025
V24 −0.064 * −0.013 0.017 0.054 * −0.023 0.008 0.007 0.043 0.189 ** −0.133 ** −0.013 0.068 * −0.026 0.037 0.053 0.031
V25 −0.013 0.000 −0.022 −0.003 0.078 ** 0.006 0.042 −0.006 −0.029 0.005 0.058 * 0.018 0.022 0.019 −0.016 −0.006
V26 −0.070 ** −0.006 0.020 0.055 * −0.031 0.011 0.029 0.039 0.186 ** −0.149 ** −0.007 0.075 ** −0.024 0.045 0.043 0.028
V27 0.000 0.022 0.030 −0.066 * −0.021 0.000 0.087 ** −0.003 −0.058 * 0.138 ** 0.028 −0.010 −0.004 −0.036 0.032 −0.016
V28 0.090 ** 0.013 −0.011 −0.016 −0.005 0.003 −0.023 0.031 −0.132 ** 0.159 ** −0.006 0.056* −0.097 ** −0.035 −0.045 −0.003
V29 −0.109 ** 0.023 0.007 −0.029 −0.016 −0.001 0.055 * −0.005 −0.016 0.064 * 0.011 −0.097 ** −0.268 ** 0.047 −0.029 0.001
V30 0.083 ** −0.007 −0.017 0.034 0.008 0.028 −0.042 −0.025 −0.010 −0.072 ** 0.053 * 0.046 0.244 ** −0.070 ** −0.071 ** −0.028
V31 0.035 −0.029 0.005 0.050 0.018 −0.011 0.055 * −0.034 0.069 * −0.108 ** −0.021 0.038 0.373 ** −0.046 −0.110 ** −0.024
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Table A2. Cont.

V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31

V16 1 −0.131 ** −0.346 ** −0.555 ** −0.200 ** −0.282 ** −0.067 * 0.113 ** −0.085 ** −0.002 −0.056 * −0.022 −0.042 −0.182 ** 0.173 ** 0.344 **
V17 −0.131 ** 1 −0.083 ** −0.134 ** −0.048 −0.055 * 0.039 −0.030 0.007 −0.012 −0.010 0.013 0.001 0.100 ** −0.036 −0.045
V18 −0.346 ** −0.083 ** 1 −0.355 ** −0.128 ** 0.254 ** 0.020 −0.010 0.096 ** 0.055 * 0.101 ** −0.049 −0.073 ** −0.032 −0.061 * −0.117 **
V19 −0.555 ** −0.134 ** −0.355 ** 1 −0.206 ** 0.127 ** 0.014 −0.084 ** −0.002 −0.027 −0.023 0.068 * 0.123 ** 0.150 ** −0.143 ** −0.229 **
V20 −0.200 ** −0.048 −0.128 ** −0.206 ** 1 −0.058 * 0.030 −0.026 0.015 −0.018 −0.002 −0.027 −0.038 0.047 0.058 * −0.011
V21 −0.282 ** −0.055 * 0.254 ** 0.127 ** −0.058 * 1 0.052 −0.021 0.077 ** 0.031 0.079 ** 0.020 −0.141 ** −0.308 ** −0.129 ** −0.275 **
V22 −0.067 * 0.039 0.020 0.014 0.030 0.052 1 −0.049 −0.041 −0.012 −0.036 −0.031 −0.003 0.028 −0.039 −0.069 *
V23 0.113 ** −0.030 −0.010 −0.084 ** −0.026 −0.021 −0.049 1 −0.117 ** −0.018 −0.095 ** −0.098 ** −0.024 −0.048 0.075 ** 0.031
V24 −0.085 ** 0.007 0.096 ** −0.002 0.015 0.077 ** −0.041 −0.117 ** 1 −0.005 0.923 ** −0.075 ** −0.022 −0.051 0.009 0.012
V25 −0.002 −0.012 0.055 * −0.027 −0.018 0.031 −0.012 −0.018 −0.005 1 0.019 0.011 −0.021 0.001 0.021 −0.017
V26 −0.056 * −0.010 0.101 ** −0.023 −0.002 0.079 ** −0.036 −0.095 ** 0.923 ** 0.019 1 −0.040 −0.026 −0.062 * −0.008 0.039
V27 −0.022 0.013 −0.049 0.068 * −0.027 0.020 −0.031 −0.098 ** −0.075 ** 0.011 −0.040 1 0.013 0.057 * −0.106 ** 0.020
V28 −0.042 0.001 −0.073 ** 0.123 ** −0.038 −0.141 ** −0.003 −0.024 −0.022 −0.021 −0.026 0.013 1 −0.225 ** −0.094 ** −0.200 **
V29 −0.182 ** 0.100 ** −0.032 0.150 ** 0.047 −0.308 ** 0.028 −0.048 −0.051 0.001 −0.062 * 0.057 * −0.225 ** 1 −0.206 ** −0.438 **
V30 0.173 ** −0.036 −0.061 * −0.143 ** 0.058 * −0.129 ** −0.039 0.075 ** 0.009 0.021 −0.008 −0.106 ** −0.094 ** −0.206 ** 1 −0.183 **
V31 0.344 ** −0.045 −0.117 ** −0.229 ** −0.011 −0.275 ** −0.069 * 0.031 0.012 −0.017 0.039 0.020 −0.200 ** −0.438 ** −0.183 ** 1

Note: ** indicates that correlation is significant at 0.01 level (2-tailed). * indicates that correlation is significant at 0.05 level (2-tailed).



Informatics 2023, 10, 66 17 of 18

References
1. World Health Organization. Global Status Report on Road Safety 2018: Summary. Available online: http://roadsafety.disaster.go.

th/upload/minisite/file_attach/196/5c40605487b65.pdf (accessed on 20 June 2022).
2. Department of Highway. Thailand Traffic Accident on National Highway in 2016. Available online: http://bhs.doh.go.th/

download/accident (accessed on 20 June 2022).
3. Paliotto, A.; Alessandrini, A.; Mazzia, E.; Tiberi, P.; Tripodi, A. Assessing the Impact on Road Safety of Automated Vehicles: An

Infrastructure Inspection-Based Approach. Future Transp. 2022, 2, 522–540. [CrossRef]
4. Deng, M.; Guo, Y.; Fu, R.; Wang, C. Factors influencing the user acceptance of automated vehicles based on vehicle-road

collaboration. IEEE Access 2020, 8, 134151–134160. [CrossRef]
5. Rehman Khan, S.A.; Ahmad, Z.; Sheikh, A.A.; Yu, Z. Digital transformation, smart technologies, and eco-innovation are paving

the way toward sustainable supply chain performance. Sci. Prog. 2022, 105, 1–26. [CrossRef]
6. Khan, S.A.; Umar, M.; Asadov, A.; Tanveer, M.; Yu, Z. Technological Revolution and Circular Economy Practices: A Mechanism of

Green Economy. Sustainability 2022, 14, 4524. [CrossRef]
7. Kalyoncuoglu, S.F.; Tigdemir, M. An alternative approach for modelling and simulation of traffic data: Artificial neural networks.

Simul. Model. Pract. Theory 2004, 12, 351–362. [CrossRef]
8. Islam, S.; Jones, S.L.; Dye, D. Comprehensive analysis of single- and multi-vehicle large truck at-fault crashes on rural and urban

roadways in Alabama. Accid. Anal. Prev. 2014, 67, 148–158. [CrossRef] [PubMed]
9. Chen, F.; Chen, S. Injury severities of truck drivers in single- and multi-vehicle accidents on rural highways. Accid. Anal. Prev.

2011, 43, 1677–1688. [CrossRef]
10. Wen, H.; Ma, Z.; Chen, Z.; Luo, C. Analyzing the impact of curve and slope on multi-vehicle truck crash severity on mountainous

freeways. Accid. Anal. Prev. 2023, 181, 106951. [CrossRef]
11. Hou, Q.; Huo, X.; Leng, J.; Cheng, Y. Examination of driver injury severity in freeway single-vehicle crashes using a mixed logit

model with heterogeneity-in-means. Phys. A Stat. Mech. Its Appl. 2019, 531, 121760. [CrossRef]
12. Se, C.; Champahom, T.; Jomnonkwao, S.; Karoonsoontawong, A.; Ratanavaraha, V. Temporal stability of factors influencing

driver-injury severities in single-vehicle crashes: A correlated random parameters with heterogeneity in means and variances
approach. Anal. Methods Accid. Res. 2021, 32, 100179. [CrossRef]

13. Razi-Ardakani, H.; Mahmoudzadeh, A.; Kermanshah, M. A Nested Logit analysis of the influence of distraction on types of
vehicle crashes. Euro. Transp. Res. Rev. 2018, 10, 44. [CrossRef]

14. Yan, X.; Radwan, E. Analyses of rear-end crashes based on classification tree models. Traffic Inj. Prev. 2006, 7, 276–282. [CrossRef]
[PubMed]

15. Zheng, Z.; Lu, P.; Tolliver, D. Decision Tree Approach to Accident Prediction for Highway–Rail Grade Crossings: Empirical
Analysis. Transp. Res. Rec. 2016, 2545, 115–122. [CrossRef]

16. Sapri, F.E.; Nordin, N.S.; Hasan, S.M.; Wan Yaacob, W.F.; Md Nasir, S.A. Decision tree model for non-fatal road accident injury.
Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 63–70. [CrossRef]

17. Champahom, T.; Jomnonkwao, S.; Chatpattananan, V.; Karoonsoontawong, A.; Ratanavaraha, V. Analysis of rear-end crash on
Thai highway: Decision tree approach. J. Adv. Transp. 2019, 2019, 2568978. [CrossRef]

18. Champahom, T.; Jomnonkwao, S.; Watthanaklang, D.; Karoonsoontawong, A.; Chatpattananan, V.; Ratanavaraha, V. Applying
hierarchical logistic models to compare urban and rural roadway modeling of severity of rear-end vehicular crashes. Accid. Anal.
Prev. 2020, 141, 105537. [CrossRef]

19. Chen, C.; Zhang, G.; Tian, Z.; Bogus, S.M.; Yang, Y. Hierarchical Bayesian random intercept model-based cross-level interaction
decomposition for truck driver injury severity investigations. Accid. Anal. Prev. 2015, 85, 186–198. [CrossRef]

20. Huang, H.; Chin, H.C.; Haque, M.M. Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian
hierarchical analysis. Accid. Anal. Prev. 2008, 40, 45–54. [CrossRef]

21. Chen, Y.; Wang, K.; King, M.; He, J.; Ding, J.; Shi, Q.; Wang, C.; Li, P. Differences in factors affecting various crash types with high
numbers of fatalities and injuries in China. PLoS ONE 2016, 11, e0158559. [CrossRef]

22. Wang, W.; Yuan, Z.; Liu, Y.; Yang, X.; Yang, Y. A Random Parameter Logit Model of Immediate Red-Light Running Behavior of
Pedestrians and Cyclists at Major-Major Intersections. J. Adv. Transp. 2019, 2019, 2345903. [CrossRef]

23. Ye, F.; Cheng, W.; Wang, C.; Liu, H.; Bai, J. Investigating the severity of expressway crash based on the random parameter logit
model accounting for unobserved heterogeneity. Adv. Mech. Eng. 2021, 13, 1–13. [CrossRef]
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