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Abstract: The utilization of reinforcement learning (RL) within the field of education holds the
potential to bring about a significant shift in the way students approach and engage with learning
and how teachers evaluate student progress. The use of RL in education allows for personalized and
adaptive learning, where the difficulty level can be adjusted based on a student’s performance. As a
result, this could result in heightened levels of motivation and engagement among students. The aim
of this article is to investigate the applications and techniques of RL in education and determine its
potential impact on enhancing educational outcomes. It compares the various policies induced by
RL with baselines and identifies four distinct RL techniques: the Markov decision process, partially
observable Markov decision process, deep RL network, and Markov chain, as well as their application
in education. The main focus of the article is to identify best practices for incorporating RL into
educational settings to achieve effective and rewarding outcomes. To accomplish this, the article
thoroughly examines the existing literature on using RL in education and its potential to advance
educational technology. This work provides a thorough analysis of the various techniques and
applications of RL in education to answer questions related to the effectiveness of RL in education
and its future prospects. The findings of this study will provide researchers with a benchmark
to compare the usefulness and effectiveness of commonly employed RL algorithms and provide
direction for future research in education.

Keywords: education; artificial intelligence; reinforcement learning; Markov decision process

1. Introduction

Artificial intelligence (AI) technologies are advancing rapidly and have a significant
impact on modern society. As a result, AI has become a major topic in education among
other fields [1–6]. The use of AI technologies, such as intelligent tutoring systems, chatbots,
robots, and the automated evaluation of all forms of digital artifacts that support and
enhance education, is known as AI in education (AIEd). While being a subcategory of
machine learning (ML), RL is also a universal framework for AI and automated decision
making. RL, supervised learning, and unsupervised learning are the three main types
of ML. Models are pretrained using labeled datasets during supervised learning. Unsu-
pervised learning, on the other hand, involves training the model on unlabeled datasets.
Figure 1 represents the relationship between artificial intelligence (AI), machine learning,
reinforcement learning, and deep learning. RL can be defined as a computational paradigm
for sequential decision making and goal-directed learning [7–10]. Contrary to supervised
learning and unsupervised learning, RL focuses on agent learning through direct contact
with its environment. Consecutive decisions can be made because RL helps agents to
efficiently interact with their environment. It encourages behavioral decision making by
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utilizing interaction experience and evaluating feedback afterward [7]. The agent receives a
reward or evaluative feedback and a new state based on the action selected for the current
state. Then, it learns the optimal path that will maximize its reward by acquiring experi-
ence and knowledge rather than by receiving instructions. RL is especially well suited for
scenarios where an agent must develop a policy on what to do in various circumstances
and how to map states to actions in order to enhance long-term utility. The agent must
experiment with various actions to find those that produce high rewards. These actions not
only affect the next state but also future rewards.

Figure 1. Schematic representation of the relationship between artificial intelligence (AI), machine
learning, reinforcement learning, and deep learning.

Over the past 10 years, numerous RL algorithms and methods have been developed to
address real-world issues. The Markov decision process (MDP), Monte Carlo, Q-learning,
temporal difference, and dynamic programming are among them. RL has applications in
several fields, including smart grids, engineering, healthcare, robotics, finance, transporta-
tion, and natural sciences. One of the interesting applications of RL has been observed
in the gaming domain [11–16]. There has been an increase in interest in the goal-directed
enhancement of state-of-the-art technology for education. Specifically, sequential student–
teacher interactions are essential for effective learning. RL offers itself as a handy tool
for a variety of problem contexts in education, including developing teaching strategies
using RL techniques and simulating a human student using RL. The use of conventional
RL approaches in education is challenging, despite their potential.

RL is commonly seen as an effective framework for enhancing educational outcomes
by numerous researchers. As a growing number of researchers are exploring the use of re-
inforcement learning to advance education, it is crucial to consider and implement the best
practices in this field. In this paper, we study RL’s impact on education through an explo-
ration of its applications and techniques within this context. Incorporating reinforcement
learning into educational settings can lead to successful and rewarding outcomes.

In this paper, we proceed by surveying the various applications of reinforcement
learning in education. The structure of the paper is as follows. Section 2 illustrates the
methodology followed to conduct this survey. Section 3 reviews the RL techniques and
applications in the education field. Considerations for the design of reinforcement learning
are discussed in Section 4. In Section 5, the challenges of AI in education and future research
directions are illustrated. Finally, Sections 6 and 7 discuss and conclude the work of this
study, respectively.
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2. Review Planning and Methodology

In this literature review article, a systematic review method was followed. This
work involved summarizing and synthesizing the findings of the existing literature on the
following research questions:

RQ1: Does RL actually help in the education field?
RQ2: If so, what are the applications, and where might we anticipate it being most useful?
RQ3: What are the considerations, challenges, and future directions of RL in education?

Figure 2 illustrates the methodology utilized during this study. Initially, we identified
specific research questions that guided our literature review approach. Subsequently, we
conducted an extensive search using respected academic databases such as Google Scholar,
IEEE Explore, and Scopus- with the aim of retrieving relevant articles discussing reinforce-
ment learning methods within educational domains while filtering out irrelevant sources via
our screening process criteria. We used a combination of terms and phrases related to both
reinforcement learning and education to ensure a thorough search for pertinent material.
The terms “reinforcement learning”, “education”, “learning algorithms”, and “educational
technology” were selected as keywords. These keywords were chosen based on their appli-
cability to our subject and their propensity to find a large number of relevant articles. Next, a
screening process was conducted to include only those articles that focused on reinforcement
learning in education. The selected articles were then analyzed and synthesized to answer
the research questions. The PRISMA flow diagram with database searches, the number of
abstracts examined, and the complete texts retrieved for the review are shown in Figure 3.
During this process, gaps in the literature were identified, which could be addressed in future
research. Finally, given these results, we synthesized specific information gathered from
these sources, enabling us to address our specified inquiry effectively while noting key areas
which require further investigation. RL has the potential to bring about a significant shift in
the way students approach and engage with learning and how teachers evaluate students’
progress. Our paper aims to answer important questions related to the effectiveness and po-
tential of RL algorithms in the field of education. Specifically, we provide answers to crucial
questions such as whether RL actually helps in the education field, what its applications are,
and where we might anticipate it being most useful. We also explore the future direction
of RL in education. To accomplish our objective, we surveyed the various applications
of RL in education and compared the various policies induced by RL with baselines. We
identified four distinct RL techniques: the Markov decision process, partially observable
Markov decision process, deep RL network, and Markov chain as well as their application in
education. We also identified the best practices for incorporating RL into educational settings
to achieve effective and rewarding outcomes. Furthermore, we thoroughly examined the
existing literature on the use of RL in education and its potential to advance educational
technology.

Figure 2. Research methodology.
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Figure 3. The PRISMA flow diagram showing database searches, the number of abstracts examined,
and the complete texts retrieved for systematic review.

3. Literature Review

This literature review article provides a comprehensive review of RL applications
and techniques and their potential impact on education while also highlighting the best
practices and future research directions. Researchers will be able to compare the usefulness
and effectiveness of commonly employed RL algorithms in education, which will guide
them in new directions. This section presents reviews on RL research directions in education
application, RL techniques in the education domain, and the application of RL techniques
in curricular analytics in higher education.
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3.1. RL Techniques in the Educational Domain

RL algorithms and methods are being extensively used in the education domain
to enhance student performance, facilitate the teacher tutoring process, reduce the time
needed to acquire or gain knowledge, and improve the students’ graduation rate. This
section illustrates the various RL techniques used in different educational applications.

3.1.1. Markov Decision Process

The MDP provides decision makers with improved management and planning strate-
gies by finding the best decision in a critical system such as educational application. The
MDP is a decision support system that is used to model dynamics in order to solve prob-
lems related to finding the most profitable method, where it studies various decisions
before choosing the best one. Dynamic programming algorithms can be used to identify
the method that will give the best value for the investment in its various fields. Several
targeting scenarios can be simulated to find out the expected impact of a policy [17].

MDPs have four main elements: A refers to a finite set of actions, S refers to a finite
set of states, Pa(s, s′) refers to the probability that action a in state s at time t leads to
state s′ at time t + 1, and Ra(s, s′) refers to the reward acquired after transitioning from
state s to state s′ via action a. The agent is the decision-making entity within the MDP.
It interacts with the environment by selecting actions from the finite set of actions based
on the current state of the environment. Beck et al. [18] studied the learning of temporal
differences (TDs) [19] to place educational policies that would reduce the time students
spend to complete mathematical problems through AnimalWatch, an intelligent tutor
used to teach arithmetic to school students. In the training phase of the study, simulated
students were modeled as computer agents, and time was used as an immediate reward.
In the test phase, the original version of AnimalWatch was compared to the new version
of AnimalWatch with the educational policy. The authors observed that the group of
students who used the new version of AnimalWatch spent less time on each mathematical
problem compared with the students who used the older version. Thus, the new version
with induced policy improved the students’ performance. Iglesias et al. induced a policy
through RLATES, an intelligent system that educates students on the design of the database.
They used online Q-learning with time as the immediate reward [20–22]. The aim of the
applied policy is to support students with direct navigation via the content of the system to
enhance their learning process. Simulated students were utilized in the training phase. The
induced policy performance was evaluated by comparing both real and simulated students
using RLATES with students using IGNATES, which supports indirect navigation without
reinforcement learning. It was noticed that the students who were using RLATES needed
less time than the ones who were using IGNATES. However, both systems provided the
same level of knowledge, which was assessed by conducting an exam. Martin and Arroyo
used Wayang Outpost [23], a web-based intelligent tutoring system. The authors applied a
model-based reinforcement learning technique with a delayed reward to generate policies
to increase the efficiency of hint sequencing. A student model was used to produce the
training data, which were used to produce the policies. The test phase included testing
the new RL policies on simulated students and evaluating the students’ performance. The
results indicate that the newly induced RL policies led to a better learning level. Chi
et al. [24] improved the efficiency of Cordillera, an intelligent physics tutoring system,
by applying model-based RL. The research group gathered exploratory data by training
students on the Cordillera version with random decisions. The system evaluation showed
that the newly employed RL policies were more effective than the previous policies of
normalized learning gain (NLG).

3.1.2. Partially Observable Markov Decision Process (POMDP)

The POMDP is another framework that is widely used in educational fields [25,26].
Mendel et al. [27] integrated the POMDP with a feature compression approach to induce
policies for an educational game. It was noticed that the induced policies with immediate
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rewards had better results than expert-designed policies and random policies in both
empirical and simulated evaluations. For example, the POMDP was applied by Rafferty
et al. [28] to present students’ latent knowledge. They applied the POMDP to induce
policies that utilized time as a reward with the aim of reducing the time needed for learners
to comprehend concepts. The POMDP-induced policies were evaluated by both real-
world and simulated studies, and it was noticed that these policies outperformed the
random policy. Clement et al. [29] developed a model to follow the students’ knowledge
of each component. They integrated student models with the POMDP to induce teaching
policies while the immediate reward was the gained learning. The model was evaluated
by using a series of simulated studies. The results showed that the POMDP policies had
better performance than the learning theory-based policies. Whitehill and Movellan [17]
employed the POMDP to minimize the required time for foreign language learning by
inducing a teaching policy. They used a modified student model to construct the belief
state of their POMDP. Furthermore, they conducted a real-world study to ensure that the
POMDP policy performed better compared with two hand-crafted teaching policies.

3.1.3. Deep RL Framework

There is growing interest in the deep RL framework for inducing policies. Deep RL
uses deep neural networks for the state approximation and function approximation [11,12].
This improvement enables the agent to handle challenging tasks. Wang et al. [30] used
a deep RL framework in an educational game, CRYSTAL ISLAND, to personalize its
interactive narratives. Immediate rewards were used based on normalized learning gain
(NLG). Simulation studies showed that the students’ NLG scores after applying the deep
RL policy were higher than those who used linear RL.

3.1.4. Markov Chain

The Markov chain model teaching assessment method is a quantitative analytic tech-
nique based on stochastic process theory and probability theory. It creates a stochastic
mathematical model to examine the quantitative relationship in the change and devel-
opment process of actual activities. The use of it to evaluate college teachers’ classroom
teaching abilities in a more thorough, reasonable, and effective manner will help to advance
the ongoing development of teachers’ skill levels and the caliber of education provided
in classrooms. This research presents an improved Markov chain hybrid teaching quality
evaluation model after carefully examining the Markov chain algorithm theory, designing
comparative tests, and then implementing it in the hybrid teaching quality evaluation
system of universities. It then creates a comparable hybrid quality evaluation model of
teaching and, in the end, conducts studies to confirm its effectiveness. This study’s mathe-
matical model of mixed-classroom teaching quality evaluation focuses on how the teaching
process is changed and developed over time. In [31], a fuzzy assessment of the quality of
physical education was performed, and examples were used to demonstrate its viability.
The authors accomplished this by utilizing computer technology, the Markov chain, and
the index system of the student’s quality of sports. This kind of appraisal effort has good
practical significance given the prevalence of information and computer technologies in
physical education. The standard of physical education students and instructors is deter-
mined by a dynamic process in which a student who performed exceptionally well on one
assessment may barely pass the next. Changes in the standard of PE were reflected in the
results of a thorough analysis of the kids’ transfer states. Here, the Markov chain provided
a tool for dynamic analysis.

There are numerous events in the actual world that fit this description, provided
that one is aware of the current state of a given system. One can infer its future state by
looking at the present rather than at its past. This occurrence is referred to as the Markov
random phenomenon. The Markov model is a mathematical representation of this random
event [31]. The model developed in [32] is more accurate and reasonable for assessing
the quality of teaching for the teaching process that is directly related to the attribution of
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teaching quality. Figure 4 illustrates the fundamental steps of blended learning using the
Markov algorithm.

Figure 4. Blended teaching fundamentals based on Markov algorithm.

3.2. RL Research Directions in the Education Application

RL algorithms and methods have been used extensively in various research directions
in education applications, as explained in the following subsections.

3.2.1. RL Techniques for the Teacher–Student Framework

The teacher–student framework has been introduced as a way to improve sample
efficiency by deploying an advising mechanism. This mechanism involves a teacher
guiding the student’s exploration. Previous studies in this field have focused on the
teacher advising the student on the optimal action to take in a given state. However,
Anand et al. [33] proposed extending this advising mechanism by incorporating qualitative
assessments of the state provided by the teacher, leveraging their domain expertise to
provide more informative signals. To effectively reuse the advice provided by the teacher,
a novel architecture called Advice Replay Memory (ARM) has been introduced. The
robustness of this approach has been demonstrated through experiments on multiple
Atari 2600 games using a fixed set of hyperparameters. The results show that even with
a suboptimal teacher, the student can still achieve significant performance boosts and
eventually outperform the teacher. The proposed approach outperforms the baselines even
when provided with a smaller advising budget and comparatively suboptimal teachers.
Zimmer et al. [34] presented a novel RL approach to teaching another RL agent, referred
to as the student, in the context of “teaching on a budget”, where the teacher agent can
only provide a limited number of suggestions. The state of the teaching task in this study
includes information about the student’s state and the current teaching session, and the
teacher’s actions represent the decision of whether to give advice or not. The results of
the simulations show that the RL teacher was effective at adapting to when and how to
provide advice based on the state of the student and the training session. Furthermore, the
paper proposes an improved method for the student to exploit received advice through a
max-update strategy, though it requires additional computation and modification of the
student’s architecture. The authors also identified potential venues for future research,
including exploring the approach in different domains, evaluating its performance in near-
optimal settings, and incorporating different types of feedback. Additionally, they suggest
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adding a classifier to predict the student’s next action to simplify communication between
the student and teacher agent.

Li et al. [35] proposed an adaptive learning system using a continuous latent trait
model and a deep Q-learning algorithm. The system aims to improve learners’ abilities to
reach target levels. To address insufficient state transition data, a transition model estimator
based on neural networks was developed to enhance the deep Q-learning algorithm’s
performance. Two simulation studies demonstrated the effectiveness of the proposed
methodology in finding optimal learning policies without teacher assistance. Sánchez
et al. [36] presented a practical and effective approach for designing distance education
resources for children aged from three to five years. The resources are created by teachers,
leveraging their understanding of student needs without requiring advanced computer
skills. The paper introduced a curriculum project consisting of computer game-based re-
sources for this age group, which received positive recognition from educational authorities
and stakeholders in Valencia, Spain. Zhang et al. [37] introduced RLTLBO, an improved
teaching-learning-based optimization (TLBO) algorithm that incorporates reinforcement
learning (RL) techniques. The algorithm features a new learning mode that considers the
influence of the teacher and utilizes a switching mechanism between different learning
modes in the learner phase using Q-learning.

3.2.2. RL Techniques to Provide Hints and Quizzing

Another significant application of RL for education is training policies to provide hints
within a task as feedback, particularly for complex areas such as high school algebra and
visual programming to enhance student learning gains and engagement [38–41]. Previous
research work [42] used the MDP framework to automatically generate hints for logic-proof
tutoring by using students’ historical data. Efremov et al. [43] used RL formalism without
using students’ historical data to train a hints policy for visual programming. He-Yueya
et al. [44] studied how to use an RL-based policy to quiz students and understand their
level of knowledge. These research studies are still in their preliminary stages and show
the potential of RL-based policies to solve problems beyond the customization of student
curricula. RL techniques are expected to yield a major contribution to providing students
with responses for complex, open-ended assignments. An important research direction
here is to train RL policies to balance different learning objectives while giving hints to
students to complete the recent task.

3.2.3. RL Techniques for Adaptive Experimentation in Educational Platforms

Recently, RL methods have been increasingly used to assess education on online
platforms. More specifically, a specific category of RL techniques named multi-armed
bandits (MAB) is utilized in adaptive experimentation, where each student is assigned
to a specific technology version and the algorithm observes the learning outcome of the
student. Each incoming student will be assigned to the technology version that has been
more effective for a former student [45–47]. Student personalization is not enabled in
standard MAB algorithms. However, contextual MAB methods can include features for
the students and tailor the assignments to enhance the student’s learning gain. Whitehill
et al. [17] studied the effect of the features of contextual MAB algorithms and discussed
the effect of personalization on learning gains. Rafferty et al. [48] used a case study of
adaptive experiments to send reminders about homework by email to students. In general,
RL has potential in adaptive experimentation, and it is expected to be seen in real-world
educational platforms. Fairness and equity must be given top priority in order to guarantee
that all students have access to high-quality, individually tailored learning experiences that
can help them realize their maximum potential.

3.2.4. RL Techniques for Instructional Sequencing in Education

Ronald Howard is a pioneer in proposing and using RL to adaptively order different
educational activities to support the student education process, which is currently known
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as instructional sequencing [49]. It is well known that the order of instruction can have an
impact on how effectively students learn, which attracted several researchers to address
problems in this area of research [50]. For example, the authors of [51] utilized RL to enable
the mathematical mechanism for formally optimizing the instructions sequence. Similarly,
Atkinson [52] suggests that a theory of instruction consists of four steps: (1) modeling the
process of learning, (2) specifying the permissible actions, (3) specifying the objectives, and
(4) a measurement scale that allows values to be assigned to each action and the payoffs
to achieving the objectives. These steps of the theory of instruction can be mapped to the
MDP.

In [52], Atkinson explained that the transition function maps onto the learning process
model in the context of instruction, where the students’ states are the MDP states. Instruc-
tional activities are actions that can vary according to the cognitive states of the students.
Such activities can be flashcards, problem steps, worked examples, problems, and game
levels in the educational context. Finally, each instructional action can be assigned a specific
cost to be used in the reward function.

An example of using an MDP in instructional sequencing is using two states for each
knowledge component (KC). The two states for each KC are “correct” or “incorrect”. The
state of each KC is determined by the student’s results for the questions, with a correct
answer resulting in the “correct” state and an incorrect answer resulting in the “incorrect”
state. The full state is represented by a binary vector of each individual KC state. The
available actions for the student are a set of items to practice, each linked to a specific KC.
The probability of transitioning from one state to another for each KC is outlined in a 2 × 2
transition matrix for each item. The objective is to help the student achieve the correct state
for as many knowledge components (KCs) as feasible, as reflected in the reward function,
which rewards a transition from “incorrect” to “correct” with 1, penalizes a transition from
“correct” to “incorrect” with −1, and leaves a transition that remains unchanged with 0.
The ideal instructional policy is simple: always present the item with the highest chance
of transitioning the KC from the “incorrect” state to the “correct” state. The transition
probabilities for each KC are the only components in this basic MDP model and can be
determined by dividing the number of times that the students successfully transitioned
from “incorrect” to “correct” by the number of instances where the students were given
an item in the “incorrect” state. This calculation is referred to as the maximum likelihood
transition probability. The illustrated MDP model assumes that the only objective is for
students to answer the questions accurately. However, in reality, a student’s ability to
answer questions correctly does not always indicate a deep understanding, for instance,
by chance or through incorrect reasoning. To consider the uncertainty of a student’s true
cognitive state, it would be necessary to use a partially observable Markov decision process
(POMDP) [53].

In the domain of educational modeling and decision making, the POMDP framework
stands as a powerful tool, utilizing a belief state space for factors that are not observed,
including students’ proficiency and knowledge. The agent in a POMDP is unaware of the
state, but an observation function (O) links the states to the probability distributions of
observations. In this example, whether a student provides a correct or incorrect response
to a question is observed at each time step, with the likelihood of a correct or erroneous
response based on the student’s state for the knowledge component (KC) currently being
taught. The two states for each KC are referred to as the learned state and the unlearned
state, representing the student’s grasp of the KC. Ignoring the reward function, this POMDP
is equivalent to the Bayesian knowledge tracing (BKT) model, which has been utilized in
intelligent tutoring systems for cognitive mastery learning [54,55].

BKT is not typically considered within the RL framework due to the absence of a
specified reward function, although the use of BKT for mastery learning follows an implicit
reward function. One possible reward function for cognitive mastery learning could be to
receive a reward of 1 each time the estimated probability of the student learning a particular
KC exceeds 95% and a reward of 0 otherwise. Under this function, items will be provided
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for a specific KC until confidence in the student’s learning exceeds 95%, at which point
the model will move on to the next KC. It should be noted that the optimal policy under
this reward function, which represents cognitive mastery learning, may differ significantly
from the optimal policy under alternative reward functions, such as receiving a reward of
one for each KC that is actually in the learned state (which cannot be directly observed).

To effectively estimate the parameters of a POMDP, various algorithms come into
play, including expectation maximization by Welch [56], spectral learning techniques as
described by Hsu et al. [57] and Falakmasir et al. [58], or a straightforward grid search
through the entire parameter space as proposed by Baker et al. [59].

In the domain of instructional sequencing within the literature of intelligent tutoring
systems, two distinct approaches emerge: task loop adaptivity (outer loop) and step loop
adaptivity (inner loop), concepts clarified by Vanlehn [38,60,61]. Task loop adaptivity
involves the selection of distinct instructional activities or tasks by the RL agent, while
step loop adaptivity requires the RL agent to decide on the specifics of each step in a fixed
instructional task. An example of step loop adaptivity would be to decide if the solution to
the next step should be shown or if the student should solve it themself, as noted by Chi
et al. [62].

Unlocking the potential of adaptive learning in the realm of online education holds
the promise of not only enhancing student outcomes but also lightening the workload for
learners, instructors, and course designers. A pioneering study led by Bassen et al. [63]
used the first RL model to dynamically schedule educational activities for a large online
course using active learning. The model optimizes the sequence of course activities to
maximize student outcomes while minimizing the number of assigned tasks. An experiment
with over 1000 participants was conducted to assess the impact of this scheduling policy
on learning gains, dropout rates, and student feedback. The results show that the RL
model outperformed a traditional linear assignment condition in terms of learning gains
and yielded similar results to a self-directed approach but with fewer activities and lower
dropout rates.

3.2.5. RL Techniques for Modeling Students

Another approach involves employing RL to simulate the behavior of the student
as opposed to the teacher. In this approach, the RL agent is the student, and the teacher
represents the environment. This type of modeling is useful in an open-ended learning
field where tasks are sequential, open-ended, and conceptual. Hence, this RL model can be
used to diagnose students’ mistakes and build an effective feedback environment [47,64].
Also, a student was used as a model to evaluate teaching methods. Similarly, the research
work in [65] used students as RL agents to study the foundations of teaching for the
purpose of sequential decision making. The curriculum design problem has been studied in
various research topics [66–68] where the student is used as a learning agent. Rakhsha [69]
investigated the issue of policy teaching when the student is used as an RL agent. The RL
framework modeling a student as an agent is a critical research direction that can be used
in future work. A major research question is how to integrate human-centered features of
learning into RL agents so that the RL agents represent students properly.

3.2.6. RL Techniques for Generating Educational Content

RL approaches can be used to produce educational content such as videos, quizzes,
and exercises. This type of content is known as procedural content generation (PCG).
Research works studied the applicability of RL for PCG to generate various levels of racing
games [70] and Sokoban puzzles [71,72]. The Monte Carlo tree search (MCTS) technique is
used to generate new tasks in the visual programming field. These generated tasks can be
used in various areas such as assigning new practice tasks, including quizzes or homework,
to evaluate students’ knowledge. If a student fails, then the student could be assigned a
new task to aid in answering the given task. Minoofam et al. [73] developed RALF, an
adaptive reinforcement learning framework based on Cellular Learning Automata (CLA),
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to automatically generate content for students with dyslexia. His work addresses the
application of machine learning techniques in adaptive content generation for students
with dyslexia. RL in the generation of educational content is an essential research field
open for further investigation.

3.2.7. RL Techniques for Personalized Education through E-Learning

Information and communication technology (ICT) is becoming more significant in ed-
ucation as a result of global education reform. We expand the idea of personalization from
e-commerce to education, referred to as personalized education (PE), to fully utilize the
enormous amount of relevant and accessible hypermedia that can potentially be accessed
on the Internet. PE includes identifying and comprehending the needs and competencies
of each individual student before adopting and implementing the most effective teaching
methods and multimedia content to close the knowledge gap. An agent-based framework
for the construction of a personalized education system (PES) has been presented in order to
deploy the right personalization strategies and fulfill the learning needs of a wide range of
learners in various methods [74]. A PES is made up of diverse functional components that
heavily rely on customization technology tailored to assisting with different learning activi-
ties. This incorporates intelligent user profiling, searching, and clustering of multimedia
information as well as a constantly adapting intelligent user interface to each user’s actions
and interactions with the system. During childhood, individuals form a set of consistent
interests, personalities, and skills as a result of both positive and negative cultural and
educational experiences [75]. This reinforces the idea that PE is a high-impact area for the
newest e-learning support systems. In [76], a formal method based on the hidden Markov
model (HMM) is presented to learn and characterize user behavior from their interactions
with a web-based learning system. The system creates and recognizes user profiles using
the resulting HMM trained from several scenarios of user interactions in order to predict
and anticipate user demands and dynamically change the user interface to meet the user’s
competence and learning needs.

Wu et al. [77] explored the use of reinforcement learning (RL) to develop data-driven
policies for tutorial planning in adaptive training systems. The aim was to provide per-
sonalized scaffolding based on the Interactive, Constructive, Active, Passive framework
for cognitive engagement. Tang et al. [37] discussed the concept of personalized learning,
where instruction is tailored to individual learners’ needs and optimized for their pace of
learning. Recent advancements in information technology and data science have made
personalized learning feasible through data-driven recommendation systems.

3.2.8. RL Techniques for Personalizing a Curriculum

One of the most extensively researched RL applications in education is to design an
educational approach that can train an instructional policy to provide personalized learning
materials to students. In such a situation, an RL agent is trained to generate an instructional
policy in an intelligent tutoring system, with the student forming an integral part of the
environment [9,78]. The instructional policy is responsible for keeping track of the student’s
response history and finding ways to optimize his or her long-term learning.

The intricacy of the prerequisite dependencies and the curriculum’s organizational
structure are essential elements that affect student progress and, in turn, graduation rates.
However, we are not aware of any closed-form techniques for calculating the correlation
between a curriculum’s complexity and the percentage of students who successfully com-
plete it. In [79], a novel approach is presented for quantifying this relationship using an
MDP. The MDP is an appropriate method for addressing such a problem since student
growth is non-deterministic and because their states change throughout each semester.

In [80], real university data, various data mining techniques, machine learning ap-
proaches, and graph theory were used to study the structure of courses. These strategies
and procedures offer a quantitative instrument for measuring the complexity of a curricu-
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lum framework. The findings of this study demonstrate an inverse relationship between a
curriculum’s complexity and the percentage of students that successfully completed it.

In the literature, there are numerous definitions of student achievement. Most studies
view graduation as the ultimate indicator of student achievement, although these factors
might range from grades and perseverance to self-improvement [81]. The framework
shown in Figure 5 is possibly the most typical one employed by colleges in the US when
examining the elements influencing student achievement. Pre-institutional encounters,
institutional circumstances, and student actions can be used to segment these character-
istics into three broad categories [82,83]. Student growth will be facilitated by providing
institutional settings that matter, but there might also be structural issues with the curricula
that prevent advancement without reference to any success initiatives. The organization of
the courses in a curriculum, such as the number of courses and prerequisites, determines
the structural complexity of the curriculum. In contrast, a curriculum’s instructional com-
plexity is defined by the course’s inherent difficulty, the caliber of the teacher, academic
assistance, etc. These two factors define how challenging a curriculum could be. Graph
theory and complex network analysis are employed to give a mathematical framework
to identify essential courses. This may assist the university in deciding when to offer
particular programs, who should teach them, and what is actually required for a degree
in a particular discipline. The proposed method gives a strong framework to ensure that
students may easily go through courses with the aim of increasing a university’s gradu-
ation rates. A course is considered critical if the student cannot or does not take it at the
appropriate time, thus failing to complete the course by the scheduled time. Therefore,
it would be imperative to transfer these courses to the earliest terms while still adhering
to the requirement relationship restrictions, maximum and minimum academic loads per
term, maximum and minimum credit hours per term, etc. Pivotal courses have a significant
influence on university student advancement and, eventually, graduation rates. Therefore,
finding such courses should be a top priority for university decision makers. The blocking
factor and delay factor are two key characteristics that relate to the cruciality of a course
within the network [80]. The blocking factor of a course is the total number of classes that
students are restricted from enrolling in until they successfully complete it. The delay
factor of a course is the total number of prerequisite courses on any pathway that contains
that course. In [79], an MDP was used for modeling curriculum analytics. The research
provides a mathematical model that supports instantaneous what-if evaluations connected
to curricular modifications rather than waiting years to assess the influence of curriculum
changes on student progress.

Characterizing the Complexity of Curricular Patterns in Engineering Programs

Through the sophomore year, engineering programs often follow a similar pattern
for teaching undergraduate students. Essentially, students who fail an earlier course in
a curricular pattern or are unable to begin the pattern on time (for instance, because of
problems with math placement) will frequently have to postpone graduation. Reforms
to engineering curricula have been introduced in a number of schools with the goal of
enhancing the percentage of students who graduate on time. In this study, the curricular
analytics tools are used to evaluate the degree to which specific refinement will increase
the rates of graduation. One of the most challenging tasks facing academic directors is
altering the culture of an educational system or curriculum. This is because organizational
culture is created over a long period of time by a complex web of objectives, procedures,
customs, values, roles, and attitudes. Higher education has cultural components that have
been developed over a thousand years of history.
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Figure 5. Student success framework.

In [84], the authors viewed the university as a system composed of a number of
smaller units that work together to achieve the system’s objectives. Each of these compo-
nents has a role in the success of reform initiatives either directly or indirectly, given the
fact that the characteristics of the university system vary from one university to another.
The model that can be employed to forecast the projected benefits that can be achieved by
adopting specific changes at specific universities would ideally be built before large-scale
improvement initiatives are launched. This necessitates formalizing the university system
model. A difficult aspect of a university’s system formulation is determining the appropri-
ate metrics and measurements that can be used to quantify the various subcomponents
of the educational system. This is imperative if the system needs to be analyzed to make
predictions, quantify the impact of interventions, and focus efforts where they are most
likely to succeed.

In the following, formal approaches are discussed to define the significant patterns
seen in engineering curricula and estimate their complexity. A demonstration of how the
complexity measure can be used to analyze curricular patterns was carried out in [84].
It was noticed that there is a connection between a student’s ability to navigate a given
curricular pattern and the complexity of that pattern.

The design pattern shown in Figure 6 is one that many aspiring engineering students
are asked to follow for the traditional Circuit I course. Precalculus becomes the most im-
portant course in the pattern due to its placement in the pattern. Each course in a curricular
pattern contributes learning outcomes that are necessary to go through subsequent courses
in the pattern, while some courses offer extra learning outcomes that are not necessary
to complete the pattern (though they might be required in other parts of the curriculum).
Hence, as long as all of the relevant learning outcomes needed to attempt the Circuits I
subject occur in prerequisite courses, we can modify the order in which these objectives are
attained.

This design pattern, represented in Figure 7, entails the replacement of Precalculus in
the preceding design pattern with the introduction of a new course called Engineering 101.
This course is based on the one developed at Wright State University, and the design pattern
itself is based on the curricular changes made there. Notice that the only prerequisite for
the Circuits I course is now Engineering 101. The learning outcomes remain unchanged.
This design pattern tries to achieve the same learning outcomes as in Figure 6 with a
markedly lower total pattern complexity for the same starting math preparation. This
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considerably raises a student’s chances of finishing this pattern, based on a few quite basic
assumptions. The pattern in Figure 6 requires five terms to complete, whereas this pattern
may be finished in just four terms.

Figure 6. The traditional curricular pattern associated with Circuits I, with course cruciality shown
inside the node [84].

Figure 7. Alternative Circuits I design pattern [84].

Network Analysis of University Courses

Pivotal courses have a significant impact on how well university students perform
and, eventually, on graduation rates. Therefore, finding such courses should be a top
priority for university academic administrators. In [80], a new approach for identifying
such courses and measuring their momentousness based on complex network analysis
and graph theory is proposed. The proposed framework’s applications are expanded to
examine the complexity of an institution’s curricula, which prompts thought about the
development of ideal curricula. The best curricula are further used to analyze student
progress, together with the achieved letter grades of the courses. This work is significant
because it offers a solid framework to guarantee that students can easily proceed through
curricula with the aim of raising a university’s graduation rate [85]. Table 1 summarizes
the RL applications and RL techniques discussed in the references incorporated in this
literature review along with our study.
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Table 1. RL applications and techniques in education field.

RL Applications RL Technique
Ref. PC TSF H&Q AE IS MS GEC PE MDP POMDP DRL MC
[78] X X

[9] X

[11–14,30] X

[79] X X

[33,34] X

[38] X X

[39–41,43,44] X

[42] X X

[45,46,48] X

[47] X X X

[17] X X

[18,49,86,87] X X

[50–52,60–63,69,88] X

[19] X

[53–55,59] X X

[56,57] X

[64–68] X

[70–72] X

[74–76] X

[31,32] X

[20–24] X

[25–29] X

The following abbreviations are used in this table: PC = personalized curriculum; TSF = teacher–student frame-
work; H&Q = hints and quizzing; AE = adaptive experimentation in educational platforms; IS = instructional
sequencing in education; MS = model students; GEC = generating educational content; PE = personalized ed-
ucation through e-learning; MDP = Markov decision process; POMDP = partially observable Markov decision
process; DRL = deep RL framework; MC = Markov chain. Note: X= does include.

4. Considerations in the Design of Reinforcement Learning

In reinforcement learning, it is vital to comprehend the various configurations and the
design choices that must be made by researchers when utilizing RL. RL algorithms can be
grouped into two categories: model-based and model-free. The model-based approach
entails acquiring the transition and reward functions before utilizing MDP planning to
generate a policy. Conversely, model-free methods directly learn the policy from data
without the need to first learn the model. RL can be utilized in two ways: online and offline.
In online RL, the agent adapts its policy as it interacts with the environment. On the other
hand, in offline RL, a policy is learned from previously collected data and then applied to
an actual environment. In online RL, the agent faces the challenge of balancing between
using the current best policy to attain high rewards and trying out new, uncertain actions
with the aim of discovering a better policy. This is referred to as the exploration-exploitation
dilemma. Exploration involves attempting new actions to gather information from less
familiar regions of the state and action space, while exploitation entails utilizing the best
policy identified thus far. Although this trade-off is a crucial aspect in RL, it is rarely
addressed in instructional sequencing studies [89–91]. Since the cognitive state of students
is typically not visible, a POMDP is often utilized instead of a fully observable MDP. Solving
POMDPs through planning or reinforcement learning is typically challenging, leading
researchers to rely on approximate methods such as myopic planning [92]. However, some
learning models, like the BKT model, are so limited that they can be used to find the optimal
policy in a POMDP.
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5. Challenges of Artificial Intelligence in Education and Future Research Directions

As discussed in the previous sections, AIEd has the potential to significantly enhance
learning, teaching, evaluation, and academic administration by providing students with
more individualized and adaptive learning, enhancing teachers’ comprehension of students’
learning processes and offering anywhere, anytime machine-supported inquiries and im-
mediate feedback [93]. The success of AIEd is substantial; its advancement has also drawn
attention to the opportunity for substantial and significant changes in education. These
challenges require a lot of effort to be met. To develop proven AIEd tools and procedures,
we must take advantage of and contribute to cognitive and AI research. The difficulties
include combining the development of intelligent systems with empirical research, both in
the laboratory and in the real world, to gather proof of the educational advantages of these
tools, approaches, and systems. Some challenges and future research directions of AIEd are
listed below:

• Insufficient pertinent learning resources for personalized or adaptive learning: Instruc-
tors have complained that the suggested pedagogies and learning materials of the
personalized or adaptive learning platform are overly uniform. Learning objects are
any standardized and reusable digital instructional resources that can be easily reused
and customized to meet a learning purpose in a number of scenarios, according to
the recommendations made by AI agents [94]. More research is required to better
understand how learning objects should be used in customized and adaptive learning,
as well as how they might be created.

• Lack of perspectives on education in AIEd research: The majority of AIEd researchers
come from a strong engineering background; they frequently concentrate on tech-
nology design and development and approach AIEd research from an engineering
perspective. The opinions of educational researchers and instructors are not adequately
represented by this strategy. Future studies should look for innovative research tech-
niques for diverse disciplines of AIEd that can directly involve educators, researchers,
and students, as AI is an interdisciplinary field [95].

• Data selection for AI predictive models: The organized student information now
utilized in linear regressions, a type of classical predictive model, is not necessarily
suitable for nascent AI technology. An extensive collection of unstructured and
structured student information is necessary for an efficient AI predictive model, which
poses significant privacy concerns. The efficiency of AI technology must be balanced
with ethical limitations because AIEd frequently targets young learners. Additional
investigation is required on the types of information that should be used in AI models
while taking ethical considerations very seriously [96].

• Socio-emotional factors are understudied in AIEd research: The majority of AIEd
studies have focused on cognitive results and adaptive learning, whereas very few
have looked at socio-emotional effects [97]. AIEd has been linked to risks and unfa-
vorable outcomes, and both teachers and students are conscious of the moral issues
involved [98–102]. The ethical implications of applying AI to the fields of social sci-
ence, engineering, and law have not yet been thoroughly examined. Therefore, more
investigation is required on the ethical problems surrounding AIEd.

• Teachers lack sufficient expertise in AI technologies: The majority of teachers have been
instructing in a black box since they are unable to comprehend how AI technologies
operate (for example, the guiding principles or algorithms for resource recommen-
dations). Therefore, they cannot fully utilize the technologies for learning, teaching,
and assessment, as well as respond to students’ questions regarding AIEd (such as
why particular learning resources were chosen by the AI platforms). Therefore, future
studies should take into account the requirement for instructors to understand AI and
its use in education [93].

• Potential ethical and social issues: In [103], four themes—privacy, replacing people,
consequences for children, and responsibility—were used to analyze the ethical impli-
cations of deploying (humanoid) robots in the classroom. The nature of intelligence,
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how to balance the interests of individuals and the general public, how to deal with
moral conundrums, and how automation will affect the labor market are just a few of
the fundamental concerns surrounding AI that cannot be fully addressed by technol-
ogy. These issues necessitate interdisciplinary methods, which change the purpose
and nature of educational programs.

For a complete grasp of the ethical and social implications of AI technology, it is
crucial that educators and technologists offer guidance before fully integrating AI into
education. Rather than fearing AI’s world dominance, as some predict in the form of
technological singularity [104], the primary concern should be people’s readiness to simply
trust the technology as a present, which results to practical issues such as mishandling,
over-dependence, underutilization or ignorance, abuse, and use without consideration for
the consequences [105]. The majority of the principles and guidelines that have emerged
in the last few years from governments, policy entities, social agencies, and technology
firms are strikingly devoid of specific recommendations for education, despite the fact that
most of them acknowledge that the obviousness of education will be crucial to ensuring
trustworthy and responsible AI [106].

In this age of artificial intelligence, there is a call for innovation and creativity. Along-
side the acquisition of technological expertise, there is a growing need to instill skills such
as imagination, collaboration, critical inquiry, and continuous learning into the fabric of
education. This demonstrates how the old division between humanities, arts, social sci-
ences, and STEM is inadequate for the demands of the new era of artificial intelligence.
Future students must be transdisciplinary rather than just multidisciplinary in order to
be competent in a range of intellectual frameworks outside of disciplinary views. AI is
not just a STEM field [107,108]; rather, it is transdisciplinary in nature and necessitates a
range of skills that are not taught in the curricula of today’s schools. Redesigning studies
is essential. The potential to fully attain inclusion and diversity across academic sectors
will be provided by this. This will present an exceptional opportunity to actually achieve
inclusion and diversity across academic sectors.

Combining data-driven and psychological approaches offers exciting potential for
advancing instructional sequencing using RL. Psychological theories can guide the selec-
tion of models, action options, and strategies, as seen in past studies on learning tasks.
It is advisable to focus on scenarios with limited yet meaningful choices and to apply
educational principles, such as the expertise reversal effect, which suggests starting with
worked examples and gradually reducing their use in favor of problem-solving tasks.

Integrating psychological theories and principles with data-driven approaches will be
especially important as deep reinforcement learning continues to gain popularity in the
field. Moreover, instructional sequencing can be combined with machine intelligence and
human intelligence, such as incorporating student choice or teacher input.

RL has several potential applications in improving AIEd systems. One of the primary
benefits of RL is its ability to enhance the personalization and adaptivity of AIEd systems
by learning from student interactions and adapting to their individual needs. Additionally,
RL can be used to recommend appropriate learning objects to each student based on their
learning history and preferences. Furthermore, RL can be applied to model socio-emotional
factors and personalize interventions based on a student’s emotional state.

RL can also enhance the accuracy and efficiency of predictive models by learning from
both structured and unstructured student data. However, it is essential to consider ethical
implications, especially when dealing with young learners. Thus, RL can be utilized to
balance the efficiency of AI technology with ethical limitations.

Moreover, RL algorithms can provide explanations for the recommendations made by
AIEd systems, which can help teachers better understand and utilize these technologies.
Additionally, RL can be employed to develop ethical guidelines and principles for AIEd
systems, particularly in areas such as privacy, responsibility, and consequences for children.
RL algorithms have the potential to address some of the challenges and research directions
of AIEd, particularly in personalization, adaptivity, predictive modeling, and ethical con-
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siderations. However, it is crucial to balance the potential benefits of these technologies
with the ethical and privacy concerns associated with the use of student data.

6. Discussion

In response to RQ1, the manuscript highlights that RL can be an effective framework
for enhancing educational outcomes. Various studies have demonstrated positive results in
utilizing RL in personalized learning, adaptive testing, and game-based learning within
the education field. However, it also emphasizes the importance of acknowledging the
limitations and challenges associated with implementing RL in educational settings. Re-
garding RQ2, the manuscript provides a comprehensive overview of the applications of RL
in education. It discusses the use of RL in developing personalized curricula, generating
hints and quizzing, generating educational content, adaptive testing, game-based learning,
and curriculum design. This paper emphasizes the potential benefits of incorporating RL
in these areas, including increased student engagement, improved learning outcomes, and
reduced workload for teachers. As for RQ3, the manuscript illustrates the challenges and
the future direction of RL in education, which involve the development of more advanced
RL algorithms capable of handling complex learning scenarios, such as multi-agent systems.
It also emphasizes the integration of RL with other AI techniques, such as natural language
processing and computer vision. Additionally, this paper underscores the need for further
research to fully comprehend the potential advantages and limitations of RL in educa-
tion, establish best practices for its implementation, and explore the exciting potential of
combining data-driven and psychological approaches in instructional sequencing using RL.

7. Conclusions

The objective of this literature review was to analyze the effectiveness and potential
of RL applications and techniques in the field of education. The manuscript surveyed
the various applications of RL in education to help come up with answers to the research
questions. It investigated the best methods to use recent advancements in RL techniques to
advance education technology, and researchers will be able to compare the usefulness and
effectiveness of commonly employed RL applications and techniques in education, which
will guide them in new directions. The review started by introducing the application of
RL in education and explaining the different techniques involved, including the Markov
decision process, partially observable Markov decision process, Markov chain, and deep
RL framework.

Additionally, the literature review illustrated one of the specific topics within the
application of RL in education: the restructuring of STEM program curricula based on
the complexity and momentousness of courses and learning outcomes. The importance
and challenges of this restructuring were discussed in detail, with a particular emphasis
on the use of graph theory to calculate the complexity of the curriculum. The aim was to
restructure the curriculum so that graduation rates improved without affecting the learning
outcome. In conclusion, this literature review provides a comprehensive examination of
the potential benefits and challenges of using RL algorithms in the field of education. By
highlighting the various applications and techniques of RL in education, this review aims
to answer the questions of how successful RL has been in facilitating education and what
future directions the field may have. Finally, the main objective of this review was to
provide both experienced and new researchers in the field with a thorough understanding
of the use of RL in education, guiding future research and development in this area.
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