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Abstract: Gene networks have become a powerful tool for the comprehensive examination of gene
expression patterns. Thanks to these networks generated by means of inference algorithms, it is
possible to study different biological processes and even identify new biomarkers for such diseases.
These biomarkers are essential for the discovery of new treatments for genetic diseases such as cancer.
In this work, we introduce an algorithm for genetic network inference based on an ensemble method
that improves the robustness of the results by combining two main steps: first, the evaluation of the
relationship between pairs of genes using three different co-expression measures, and, subsequently,
a voting strategy. The utility of this approach was demonstrated by applying it to a human dataset
encompassing breast and prostate cancer-associated stromal cells. Two gene networks were computed
using microarray data, one for breast cancer and one for prostate cancer. The results obtained revealed,
on the one hand, distinct stromal cell behaviors in breast and prostate cancer and, on the other hand, a
list of potential biomarkers for both diseases. In the case of breast tumor, ST6GAL2, RIPOR3, COL5A1,
and DEPDC7 were found, and in the case of prostate tumor, the genes were GATA6-AS1, ARFGEF3,
PRR15L, and APBA2. These results demonstrate the usefulness of the ensemble method in the field of
biomarker discovery.

Keywords: bioinformatics; gene co-expression network; biomarkers; breast cancer; prostate cancer;
stromal tissue

1. Introduction

The incidence rates of breast and prostate cancer are among the highest among women
and men, respectively. The number of breast cancer cases is expected to increase from
2.3 million in 2020 to over 3 million by 2040 [1], while prostate cancer cases will double from
1.4 million to 2.8 million during the same period [2]. Despite improvements in therapeutic
strategies, it remains essential to increase our understanding of the mechanisms underlying
cancer progression and to identify new targets for cancer therapy, such as molecules in the
tumor microenvironment (TME). The TME plays a key role in tumor growth, development,
and progression and includes different cell types, including stromal cells. Stromal cells and
their associated components, such as the extracellular matrix (ECM), interact with cancer
cells to create a permissive microenvironment that supports cancer progression and may
even serve as potential biomarkers for cancer research [3–6]. However, it is essential to
keep in mind that the tumor stromal is not a static entity but a dynamic and constantly
changing one. Therefore, to better understand the functions and mechanisms by which
stromal components and their interactions with tumor cells drive cancer initiation and
progression, it is necessary to identify potential biomarkers.
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For the discovery of diagnostic, prognostic, and predictive biomarkers for diseases
such as cancer, as well as for testing the efficacy of potential therapeutic agents, sequencing
technologies such as RNA-Seq, microarrays, and single-cell sequencing have become es-
sential tools [7]. These technologies allow comprehensive analysis of the genetic profile,
gene expression, and gene–gene interactions when computational (in-silico) approaches are
used to analyze these data. These computational approaches, such as gene co-expression
networks (GCNs), can enhance this analysis using the data generated by sequencing tech-
nologies to predict and model gene–gene interactions. This can facilitate the understanding
of biological processes and help identify biomarkers involved in different diseases [8].

GCNs depict the relationship between genes using a graph, in which the vertices
represent the genes and the edges represent their relationship. These relationships exhibit
similar patterns of expression. For a relationship to be deemed significant, the degree of
relationship between each pair of genes must surpass a minimum threshold of required
expression pattern similarity. Common methods for measuring the degree of co-expression
between two genes include Pearson’s, Spearman’s, and Kendall’s correlation coefficients [9].
For the reconstruction of the GCN, mutual information and other methods have also been
extensively employed [10]. The development of hypotheses has been aided by GCN models
validated through empirical methodologies. Thus, the dependability of GCNs is supported
by the subsequent experimental confirmation of numerous predicted interactions [11]. As
a result, algorithms and computational techniques for GCN reconstruction have gained
prominence within the bioinformatics community [12].

In this context, the traditional methods for reconstructing GCNs using one of these
correlation coefficients frequently have the drawback that the inference of gene–gene
interactions is wholly dependent on the results of the selected correlation coefficient. For
instance, the weighted gene co-expression network analysis (WGCNA) method allows
the construction of a network utilizing the Pearson correlation coefficient [13], whereas
Spearman is used in another GCN reconstruction method [14]. It is common knowledge
that these correlation coefficients have certain limitations, such as the degree of dependence
on the normalization of the data in the Pearson coefficient [15] or the inability of the
Spearman coefficient to obtain monotonic relationships [16]. The use of a single correlation
coefficient in GCN reconstruction methodologies may therefore produce unreliable results,
as significant relationships may exist even if one of these correlation coefficients has a value
of zero. In order to overcome these limitations, the combination of multiple correlation
coefficients to measure the degree of gene–gene interaction may help to improve the
reliability of the results and provide more accurate biological information by overcoming
the individual limitations of the coefficients [17].

This paper presents a study for the identification of candidate biomarkers for breast
and prostate cancer using an ensemble co-expression network algorithm. The expression
data used were obtained from stromal tissue within the respective tumor microenviron-
ments. The algorithm applied to infer gene networks consists of an ensemble strategy
combining three widely used correlation coefficients, in order to classify gene–gene inter-
actions. As a result, a network was generated from stromal tissue surrounding invasive
primary breast and prostate tumors and compared with another network generated from
non-cancerous breast and prostate stromal tissues. Cross-analysis of these networks pro-
vided significant information on the biological functions affected in both situations, helping
to identify potentially novel breast and prostate carcinoma biomarkers.

The main contributions of this work can be summarized as follows:

• We propose a case study based on three different widely GCN-inferred algorithms.
• The use of the ensemble strategy derives from a more reliable inferred GCN.
• A case study of breast and prostate cancer is presented.
• We propose several genes as potential biomarkers for both breast and prostate cancers.

The rest of the paper is organized as follows: The main related works are presented in
Section 1. The datasets and the case study used are detailed in Section 2. The results related
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to the generation and analysis of the GCNs are described in Section 3, while the discussion
of the work is presented in Section 4. Finally, the conclusions are given in Section 5.

Related Works

GCNs have emerged as a useful instrument for data analysis and the discovery of new
biomarkers. For instance, despite a high computational cost as a result of its reliance on
permutation tests to determine significance [18], the WGCNA method [13] is widely used,
as highlighted in studies such as Tang et al. [19] in metastatic breast cancer, identifying key
modules and core genes. In addition, Zhou et al. [20], Adhami et al. [21], and Ye [22] found
biomarkers associated with breast cancer progression and subtypes. In prostate cancer,
WGCNA was also used by the authors in Song et al. [23], Xu et al. [24], and Liu et al. [25] to
identify key genes and biomarkers for diagnosis and prognosis.

Other works related to the identification of biomarkers for breast and prostate cancer
have used other methods or networks. Protein–protein interaction (PPI) networks have been
used to determine that the mitotic cell cycle and the epithelial-to-mesenchymal transition
pathway are associated with breast cancer progression [26]. The authors Hsu et al. [14]
discovered that integration between gene co-expression network analysis (GCNA) and
integrated microarray analysis [27] can yield more accurate diagnoses. The ARACNE
network reconstruction method [28] has also been used to identify drug targets to advance
the treatment of prostate cancer patients [29].

Inferring gene–gene relationships can be hampered by the reliance on works that
employ a single network reconstruction method or a single correlation coefficient. One
solution to this problem is the development of new ensemble strategies. In one work,
for instance, the authors used a combination of methods to infer with high confidence
connections between dynamically active factors [30]. Their strategy employed the following
methods: PLSR [31], similarity index [32], TIGRESS [33], random forest [34], ARACNE,
CLR [35], and MRNET [36]. The studies conducted by Hsu et al. [14] in breast cancer and
Ferraz et al. [37] in prostate cancer demonstrated that the combination of methodologies and
correlation measures improved the robustness of the results. In another work, the authors
chose to implement an ensemble strategy at the level of co-expression measures, as opposed
to the level of methods [17]. The correlation between each deferentially expressed gene–
gene interaction was determined using Pearson’s, Kendall’s, and Blomqvist’s correlation
coefficients. This ensemble strategy reconstructed two GCNs, one corresponding to the
cancer state and the other to the normal state, which could be used as a control network
for further gene analysis. The EnGNet approach [38] was another work that employed an
ensemble strategy to generate gene co-expression networks. The co-expression network
was generated using Spearman, Kendall, and NMI correlation measurement combinations
and then optimized using a greedy approach.

In summary, the preceding works highlighted the importance of GCNs in breast and
prostate cancer biomarker discovery. While the use of WGCNA in breast and prostate cancer
research has yielded promising results, there has been a trend towards the diversification
of network analysis methodologies. The use of alternative network types and correlation
coefficients increases the robustness of results, ensuring that the identified biomarkers
are not artifacts of a particular method or dataset. Indeed, relying on a single network
reconstruction technique or correlation coefficient can lead to biased results and make it
difficult to identify gene–gene relationships with precision. Ensemble strategies, which
utilize a variety of correlation methods and measurements, have emerged as a viable
response to this situation. These strategies ensure that connections between dynamically
active factors are inferred with a high degree of confidence, thereby contributing to the
more precise identification of potential biomarkers and cancer treatment targets.

2. Materials and Methods

This section describes the dataset used and outlines the subsequent stages of the
analysis. Specifically, the microarray dataset came from research on breast and prostate
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cancer. Additionally, the workflow used to carry out the study (depicted in Figure 1)
is also detailed in the following subsections, as follows: First, the employed dataset is
described in Section 2.1, followed by the exploratory analysis performed on the expression
data in Section 2.2. Subsequently, Section 2.3 provides an explanation of the differential
expression analysis; the method used for GCN reconstruction and candidate GCN selection
is described in Sections 2.4 and 2.5, respectively. Finally, in Section 2.6, the analysis of
GCNs is conducted. Figure 1 depicts the entire pipeline, including all the previously
mentioned steps.

Figure 1. General overview of the pipeline that was implemented during the execution of this study.
After the exploratory analysis, a differential expression analysis was conducted, followed by GCN
generation via three different co-expression measures using an inference algorithm based on a major
voting strategy. Validation and selection of the best candidate GCNs for both breast and prostate
cancer were performed with a Thrscore. Finally, an analysis including hub identification, clustering,
and enrichment analysis was conducted.

2.1. Sample Dataset

The microarray dataset used in this study was published by Planche et al. [39].
It was obtained from the National Centre of Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) database with the accession number GSE26910. The gene
profiling data were obtained using the Affymetrix Human Genome U133 Plus 2.0 Array
(Platform GPL570). The dataset contained 24 samples, including 6 samples of stroma
surrounding invasive breast primary tumors, 6 matching samples of normal stromal breast
tissues, 6 samples of stroma surrounding invasive prostate primary tumors, and 6 matching
samples of normal stromal prostate tissues, for a total of 20,824 genes. The breast and
prostate data were provided by the authors as raw CEL files and normalized with the RMA
algorithm (quantile normalization at probe level data).

2.2. Data Preprocessing and Exploratory Analysis

A preliminary exploratory analysis was carried out with the aim of obtaining an initial
and detailed understanding of the data to be analyzed. This prior exploratory analysis of
the expression data obtained from the dataset aimed to identify the quality of the data,
detect patterns and trends, as well as determine their distribution. To carry out this analysis,
the R programming language was employed. Multidimensional scaling plots (MDS) were
applied to further separate examples according to their features. The R plotMDS function
was used from the Limma package [40].

The next step involved examining whether the data had been correctly normalized
after applying the RMA algorithm. This is crucial to obtaining accurate and reliable results
in gene expression analysis because it guarantees the comparability of gene expression
values between samples. The R function boxplot was used for this purpose [41].
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2.3. Differential Gene Expression Analysis

Differential expression analysis is a statistical technique that enables the investigation
of normalized data, to identify quantitative alterations in the expression levels between
different samples. The primary objective of this task was to identify the genes that show
differential expression in our sample sets. This filter is crucial to the analysis of pathologi-
cally relevant genes. The samples were grouped into two categories for analysis, male and
female, resulting in two sets of differentially expressed genes (DEGs).

The Limma [40] R package was also employed to execute this task, which involved
several steps. First, a design matrix was created in our study to specify the contrasts of
interest. Specifically, these contrasts were defined as the comparison of normal tissue
against tissue derived from cancer patients, both male and female. A linear model was
fitted to the expression values of each gene, and empirical Bayes moderation was carried
out by borrowing information across all the genes to obtain more precise estimates of gene-
wise variability [42]. Subsequently, genes that exhibited statistically significant changes
in their expression levels, significantly upregulated or downregulated (with FC > 1 and
FC < −1), were detected. This involved determining a threshold for statistical significance
based on an adjusted p-value, which was set to 5% for breast stromal samples and 10%
for prostate stromal samples to obtain a list of DEGs of comparable size, as explained in
Planche et al. [39].

After identifying the DEGs in both prostate and breast tissues, we generated four
distinct datasets from the log2-transformed DEG data. These four datasets represented
the gene expression profiles of normal prostate, prostate tumor, normal breast, and breast
tumor samples.

From the DEGs generated for breast and prostate, respectively, four datasets were
produced: normal breast, tumor breast, normal prostate, and tumor prostate, containing
the DEGs with symbol correspondence for the Affy names, no duplicates, and the different
samples for each condition.

2.4. Gene Co-Expression Network Reconstruction

In this section, the proposed method for ensemble GCNs is introduced. For the
generation of GCNs, an algorithm was developed in Python. The algorithm used comprised
two main steps: evaluation of the relationship between each gene pair based on three
different co-expression measures, followed by a major voting strategy. As a result, the
final co-expression network exhibited more reliable interactions and sparseness than other
techniques that adopt single co-expression measurements.

In the first phase, the algorithm made an evaluation of the gene–gene relationship
using three different evaluation measures. The co-expression measures used for this task
were Pearson’s, Spearman’s, and Kendall’s coefficients [43,44]. This choice was motivated
by the following observations: The Pearson coefficient is widely used to test dependencies
between gene expression levels. It allows us to quantify the strength of the linear relation-
ship between two variables, which in this case corresponds to the expression level of each
gene that is being compared. The Spearman coefficient does not require assumptions of
linearity in the relationship between variables. Thus, it can identify monotonic relation-
ships between pairs of genes, meaning that as the expression level of one gene increases, so
does the expression level of the other, but not necessarily at a constant rate. This property
makes it particularly useful for capturing complex relationships between genes that are not
strictly linearly correlated. Finally, the Kendall measure evaluates the degree of strength
of monotonic relationships. However, it differs in that it is a non-parametric measure,
which implies that it does not necessitate an assumption about the distribution of the genes
expression levels being compared, making it more robust to outliers and non-normality.

The Python SciPy.stats library was used to evaluate the correlation values of each gene
pair using the correlation coefficients contained in the stats subpackage [45].

• Pearson’s correlation coefficient: The values of Pearson’s correlation coefficient range
from −1 to 1, with a score of −1 indicating a perfectly negative correlation, a score of
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1 indicating a perfectly positive correlation, and a score of 0 indicating no correlation
between the expression levels of the two genes under consideration.

ρ =
∑(xi − x̄)(yi − ȳ)√

∑(xi − x̄)2
√

∑(yi − ȳ)2

where ρ refers to Pearson’s correlation value between gene x and gene y.

• Spearman’s correlation coefficient: The values of Spearman’s correlation coefficient
range from −1 to 1, as in the case of Pearson’s.

ρ = 1 −
6 ∑ d2

i
n(n2 − 1)

where ρ refers to Spearman’s correlation value, d2 to the differences between the ranks
of x and y and n to the number of observations.

• Kendall’s correlation coefficient: this coefficient ranges from −1 to 1 and represents a
valuable parameter for detecting non-linear relationships among genes.

τ =
nc − nd

1
2 n(n − 1)

where τ refers to Kendall’s correlation value, nc to the number of concordant pairs of
observations and nd to the number of discordant pairs of observations.

Upon calculation of the three correlation measurements for each pair of genes, a
correlation threshold was established.

The final significance assessment was carried out through a voting system, wherein
a relationship between a pair of genes was considered significant if two of the three
correlation values exceeded a chosen threshold [38]. Hence, a relationship was added to
the final co-expression network if it was considered correct.

Multiple co-expression networks were constructed for each group of deferentially
expressed genes using varying threshold values. A total of 20 networks were generated
by applying threshold values ranging from 0.7 to 0.9. Specifically, we constructed five co-
expression networks using gene expression data from stromal tissue surrounding invasive
primary breast tumors, another five networks from normal breast stroma, five networks
from gene expression data derived from stromal tissue surrounding invasive primary
prostate tumors, and the last five networks from normal prostate stroma.

2.5. Candidate Gene Co-Expression Network Selection

This section outlines the process employed to select the most suitable GCNs for further
analysis. To evaluate the GCNs from the different thresholds, we employed the Cytoscape
GNC-app [46] to calculate the gene network coherence (GNC) value. This software lever-
ages network representations of biological databases to evaluate the biological coherence
of the selected GCNs. In this study, BioGrid (human) served as the reference network
for our analysis because it is a repository of biomedical interaction data that have been
meticulously curated [47]. It is crucial to note that, during this evaluation, the co-expression
networks were not explicitly filtered against the BioGrid network.

For this purpose, a mathematical formula was derived (obtaining a value called
Thrscore). The Thrscore provided the corresponding value, representing the percentage by
which the GNC value decreased per deleted edge concerning the network generated with
the preceding lower threshold. Upon reaching minimal values, this indicated that the
removed edges made minimal contributions to the GNC value in comparison to the prior
network. Consequently, it became feasible to select this network for further analysis.

Thrscore =
% decrease in GNC value

number of eliminated edges concerning the prior network
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With the above, it is important to note that the threshold with the lowest Thrscore value
was the one selected for network generation.

2.6. Gene Co-Expression Network Analysis

The final GCNs, upon which the topological analysis was conducted, were derived
through the juxtaposition of network values for GNC [48], nodes, and interactions. A
unique cancer-specific network was derived by excluding shared interactions between
normal and tumor samples and exclusively retaining interactions specific to the tumor
context in breast and prostate cases. The final collection of GCNs for breast and prostate
was carried out in the R programming language.

In order to examine the selected co-expression networks, topological and enrichment
analyses were conducted. The topological analysis entailed the identification of hubs and
clustering, followed by an enrichment analysis of the clusters generated within each co-
expression network. In a GCN, hubs are highly connected nodes that have a large number
of edges or connections with other nodes and may be considered key components of the
co-expression network [49].

Hub genes were selected using Cytoscape software named CytoHubba according to
the degree algorithm [50]. This method calculates the degree of connectivity of each node
within the co-expression network and ranks them according to this value. The top 20 hub
genes were filtered.

Clustering evaluation was performed in order to identify densely connected nodes.
The clustering method used was community clustering (GLay) [51], implemented through
Cytoscape’s ClusterMaker app [52].

The gene ontology (GO) [53,54] and KEGG [55] enrichment analyses carried out on the
previously generated gene clusters were performed using the clusterProfiler [56] R package
for comparing biological themes among gene clusters.

3. Results

The generation and analysis of GCNs implemented for this study involved a variety
of stages that are described in detail in the following sections. Specifically, Section 3.1 illus-
trates the exploratory analysis conducted on the dataset used, while Section 3.2 identifies
the DEGs. Section 3.3 uses the GNC metric to assess and compare the coherence of the
results with other GCN methods and to determine the best threshold. The succeeding
Section 3.4 undertakes network reconstruction and selection. Finally, the analysis of the
candidate co-expression networks for stromal tissues corresponding to both breast and
prostate in a tumor context is performed in Section 3.5.

The primary objective of this study was to identify novel biomarkers through the
creation and comprehensive analysis of co-expression networks. To construct these co-
expression networks, we employed an algorithm that assessed the associations between
gene pairs using three distinct co-expression measures, subsequently employing a majority
voting strategy. This case study was applied to a dataset encompassing stromal cells
within the context of both breast and prostate cancer [39], with the intent of elucidating the
contrasting behaviors observed in these two cancer types.

3.1. Exploratory Analysis

The microarray analyses used in this study were obtained from expression data of
stromal cells in breast and prostate cancer. Twelve samples from women (6 controls and
6 cases with breast cancer) and 12 samples from men (6 controls and 6 cases with prostate
cancer) were analyzed.

To ensure the quality of the data used for this analysis, an exploratory analysis was
carried out using an MDS plot for data transformation into log2 (Figure 2) to validate any
discrepancies between the gene expression profiles from breast and prostate samples. Each
point corresponds to a sample, and the distance between the points reflects the similarity
or difference between the samples; closer points are more similar, while distant points are
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more dissimilar. The MDS plot shows the resulting plot, where there is a clear distinction
in the stromal expression profiles between breast and prostate, but the difference between
normal and tumor samples is much greater in the breast group than in the prostate group.
The close proximity between normal and tumor samples of prostate stromal cells suggests
minimal differences between the two conditions. Therefore, we opted for a FDR threshold
of 10%, in contrast to the breast cancer samples, where an FDR of 5% was chosen. This
pattern of sample distribution aligns with those observed in previous studies that employed
the same dataset [39]. This suggests that breast and prostate tumors have a distinct stromal
reaction to tumor invasion that could be used to classify the samples used for this study
and that the overall stromal response in breast cancer is stronger than in prostate cancer.

Figure 2. MDS plot analysis for the log−2 transformed data from microarray analysis. The stromal
tissue surrounding invasive primary breast tumors is in red; those corresponding to normal breast
stroma are shown in blue; samples corresponding to stromal tissue around invasive primary prostate
tumors are shown in purple; and samples of normal prostate stroma are shown in green.

3.2. Differential Gene Expression Analysis

The DEGs of the two groups consisting of normal prostate compared to tumor prostate
(NP vs. TP) and normal breast compared to tumor breast (NB vs. TB) were identified.
A total of 218 DEGs were identified for the prostate stromal cases, of which 89 were
upregulated and 129 were downregulated. For the breast stromal cases, a total of 776 DEGs
were identified, of which 325 were upregulated and 451 were downregulated (Table A1
and Figure 3). The total DEGs obtained for prostate samples were significantly lower than
for breast samples.

Among the total number of DEGs identified, only those with the corresponding
symbol were taken into account for this study. The approach to handling duplicate genes
involved simplifying the dataset by selecting the maximum value among repeats. This
method assigned greater importance to the probe with the highest intensity, ensuring more
accurate capture of the dominant gene expression. Therefore, for the study of breast stromal
tissue, 776 DEGs were used as a starting point, and for prostate stromal tissue, 218 DEGs.
Although the analysis of differential expression pertains to distinct organs specific to each
gender, we identified a common set of 17 DEGs shared between both types of cancer
(Figure A1). Furthermore, a GO enrichment analysis was conducted on the genes, showing
shared expression profiles between the two organs (Figure A1).
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Figure 3. Identification of the DEGs for stromal breast tumors (NB vs. TB, left) and stromal prostate
tumors (NP vs. TP, right). The top section displays volcano plots representing gene data, where each
dot represents a gene. Blue dots indicate downregulated DEGs, while red dots indicate upregulated
DEGs. The bottom section presents a Venn diagram illustrating the common DEGs for each con-
trast without duplicates, revealing the identification of fourteen shared DEGs. DEG, differentially
expressed gene; NB, normal breast; TB, tumor breast; NP, normal prostate; TP, tumor prostate.

3.3. Performance Comparison between Different GCN Methods

The aim of this section is to evaluate the GCNs generated both by our case study
and by other co-expression network methods used in other works, WGCNA [57,58] and
EnGNet [38,59].

To initiate the generation of co-expression networks using WGCNA, pickSoftThreshold
function was executed to identify the appropriate power value that maximized the scale-
free topology criterion for constructing the adjacency matrix. The thresholds chosen for
the algorithm comparative analysis were then applied to derive the definitive outcomes
from the adjacency matrix. For the generation of co-expression networks using EnGNet,
the CyEnGNet application [60] was utilized. The default Hub threshold value remained
unchanged at 3, while the remaining parameters were adjusted based on the selected range
for the comparative study.

For each of these methods, multiple co-expression networks were generated using
correlation values between 0.7 and 0.90, with an increment of 0.05 for each co-expression
network. To evaluate the biological coherence of these networks, the GNC metric was
employed, utilizing the human BioGrid as a reference network. Subsequently, the mean
GNC and the highest value were calculated for each tissue group in the study: prostate
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tissues (normal and tumor) and breast tissues (normal and tumor). These coherence values
are listed in Table 1.

Table 1. Comparison of the GNC among the methods used in this study, WGCNA, and EnGNet. Bold
text indicates the highest GNC values for each respective group.

Group Metric Proposed Method WGCNA EnGNet

Prostate Normal Mean 0.26044 0.26575 0.10877
Maximum value 0.50309 0.47667 0.22808

Prostate tumor Mean 0.24832 0.26014 0.09970
Maximum value 0.52010 0.49204 0.22293

Breast Normal Mean 0.32993 0.13133 0.11581
Maximum value 0.51614 0.30467 0.28765

Breast tumor Mean 0.33407 0.12499 0.13853
Maximum value 0.51646 0.26190 0.35152

The maximal GNC value observed in normal stromal prostate tissue was 0.5. On the
other hand, the tissue surrounding invasive primary prostate tumors exhibited a mean
GNC value of 0.24, with a maximum value of 0.52. In contrast, using the WGCNA method,
maximal values of 0.47 and 0.49 were observed, with mean GNC values of 0.26 in both
cases. The EnGNet approach produced slightly lower values, with a maximum of 0.22 and
a mean of 0.1. These results indicate that EnGNet produced notworks with lower coherence
compared to WGCNA.

For breast tissues, mean and maximum GNC values of 0.33 and 0.52, respectively, were
observed in the normal breast stroma and stromal tissue surrounding invasive primary
breast tumors. Conversely, the WGCNA method yielded a mean of 0.13 and a maximum of
0.30 for normal stroma, and a mean of 0.12 and a maximum value of 0.26 when applied to
tumor stroma. The EnGNet method produced mean and maximum values of 0.12 and 0.28,
respectively. Despite this, for both normal and tumor breast tissues, mean values of 0.14
and maximum value of 0.35 were observed. However, the coherence of the co-expression
networks generated by our study outperformed these two methods.

The results obtained with the proposed method exhibited consistent values across all
four study cases. In contrast, WGCNA showed variations in values obtained for the normal
or tumor prostate and normal or tumor breast datasets. Our method consistently produced
more coherent co-expression networks, demonstrating robust performance regardless of
the dataset used.

Based on this comparison and evaluation, it was determined that the co-expression
networks produced by our method exhibited a higher degree of coherence compared to
those generated by alternative GCN methods. In subsequent phases of the results, this
enables us to select candidate co-expression networks that exhibit a greater degree of
coherence compared to alternative methodologies of network reconstruction.

3.4. Gene Co-Expression Network Reconstruction and Candidate Co-Expression Network Selection

Four experimental conditions were generated for co-expression network reconstruc-
tion using the two sets of identified DEGs. The datasets were created for the stromal breast
and stromal prostate tissue samples in both non-tumor and tumor contexts, with the DEGs
identified for female and male samples. The algorithm that calculated the different correla-
tion methods with different thresholds (from 0.7 to 0.90 increased by 0.05) was employed
to generate the different GCNs. The results obtained from the analysis of the 20 GCNs
generated by the ensemble of correlation methods (Spearman, Pearson, and Kendall) for
the five selected threshold values and the results for the GNC value results are presented in
Table A3.
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As can be seen in the table, the best Thrscore value was achieved using a threshold
of 0.75 (marked in bold) for all cases. Therefore, for the rest of the study, the candidate
networks were selected using this threshold.

3.5. Gene Co-Expression Network Analysis

Following the selection and refinement of the most appropriate stromal breast tumoral
GCN and stromal prostate tumoral GCN, the next step involved conducting a series of
analyses to gain insights into the biological mechanisms represented in the networks, with
the aim of biomarker discovery. For this purpose, topological and enrichment analyses were
performed. Topological analysis involved the identification of hubs and clustering, which
was followed by an enrichment analysis of the clusters generated in each co-expression
network.

Comparing the final co-expression networks chosen under the 0.75 threshold for
both normal and tumor stromal breast samples, we found a total of 16,646 interactions in
the normal co-expression network, of which 15,975 were interactions unique to this co-
expression network; the tumor co-expression network was made up of 18,595 interactions,
of which 17,924 were unique to this co-expression network.

The node degree distributions among the four reconstructed co-expression networks
are detailed in Figure A2. Above 20 nodes with higher degree values were considered hubs
in each co-expression network. These hubs are shown in Tables A6–A9.

Tables A6 and A7 display the top 20 most connected genes in each of the normal and
tumor-specific breast co-expression networks. The average number of interactions among
the hub genes selected for the breast normal stromal cell co-expression network was 98,
while for the breast cancer stromal cell co-expression network, this was 107 degree. Of the
20 hubs selected for normal and tumor co-expression networks, no common genes were
found; therefore, the hubs highlighted are network-specific.

Despite the lack of complete concurrence among the 40 hub genes identified indepen-
dently in both co-expression network types, a substantial overlap of 36 hub genes existed
within the shared interactions.

The majority of hub genes identified in both normal and tumor co-expression networks
exhibited elevated values of closeness and eigenvector centrality. This indicates their prox-
imity to all other genes in the co-expression network, facilitating efficient communication
and connectivity with other crucial genes.

Comparing the final co-expression networks chosen under the 0.75 threshold for both
normal and tumor stromal prostate samples, we found a total of 1678 interactions in the
normal network, of which 1619 were interactions unique to this co-expression network;
the tumor co-expression network was made up of 1352 interactions, of which 1333 were
unique to this co-expression network.

Tables A8 and A9 display the top 20 most connected genes in each of the normal and
tumor-specific networks. The average number of interactions among the hub genes selected
for the normal stromal prostate co-expression network was 42, while for the prostate cancer
stromal co-expression network, this was 30.

Among the 40 hub genes identified independently in both co-expression network
types, half were found as part of the shared interactions between the normal and tumor
graphs, and the other half were found without shared interactions in the normal graph and
in the tumor graph.

The majority of hub genes identified in both normal and tumor co-expression networks
exhibited elevated values of closeness and eigenvector centrality. This indicates their prox-
imity to all other genes in the co-expression network, facilitating efficient communication
and connectivity with other crucial genes.

The subsequent step in the topological analysis involved clustering the co-expression
networks to identify groups of highly connected genes that may participate in similar
biological processes. This method enabled the identification of functional modules and
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sub-networks, thus simplifying the subsequent enrichment analysis. Table A5 contains a
summary of the clusters obtained for each breast and prostate tumor interaction network.

Two clusters with more than 10 genes were generated for stromal breast tumor
(Figure 4), and four clusters with more than 10 genes were generated for the stromal
prostate tumor GCN (Figure 5), which had a lower density in comparison. GO enrichment
and KEGG analysis were performed on each of the clusters generated, allowing for the
identification of functional genetic profiles within the co-expression network. This step
enabled a better understanding of the biological mechanisms and pathways associated
with the different clusters generated for each GCN.
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Figure 4. Cluster details in breast stromal tumor tissue. DEGs are highlighted in blue, hub genes are
marked in yellow, and connector genes are highlighted in red. The lower section displays the GO
terms influenced by the genes in the green cluster (left) and brown cluster (right).
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Figure 5. Cluster details in prostate stromal tumor Tissue. DEGs are highlighted in blue, hub genes
are marked in yellow, and connector genes in red. The lower section displays the GO terms associated
with the green cluster (top left), pink cluster (top right), and purple cluster (down center).
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In the context of the clusters generated within breast stromal cells (Figure 4), two
clusters are related due to the interaction of some of their genes, but the metabolic processes
in which the genes of each cluster are involved are different. The green cluster contains all
the hub genes found in this GCN and is associated with the regulation of cellular differenti-
ation. The other brown cluster is associated with the extracellular matrix, pathways such
as focal adhesion, and ECM–receptor interaction. The bridging genes, identified as the top
genes with high betweenness centrality values, are distributed in all three clusters of the
co-expression network. However, it is noteworthy that the green cluster and brown cluster
have the highest presence of these genes.

For green cluster, pink cluster, and purple cluster related to prostate stromal cells,
two clusters particularly stand out due to the distribution of hub genes (Figure 5). The
green cluster emerged as the most noteworthy, harboring 13 out of the 20 hub genes with
GO terms associated with prostate gland morphogenesis, and the pink cluster has seven
hub genes and GO terms related to regulation of cell differentiation. Genes facilitating
connections between distinct segments of the co-expression network, highlighted in red,
were found in five out of the six clusters. Notably, the purple cluster stands out with
the highest abundance of these connecting genes. The genes present in this cluster are
related to the regulation of different metabolic pathways of cellular proliferation growth
factor signaling.

4. Discussion

Tumors develop a unique TME that features different compositions of cancerous, non-
cancerous, stromal, and immune cells in each phase of cancer progression. The different
cell subtypes of the TME interact with each other but also with components of the ECM
surrounding the cells [61]. The TME plays a crucial role in the progression of tumors,
influencing key processes such as tumor growth, invasion, and metastasis. Additionally,
the TME significantly impacts the immune response against the tumor, either by creating
an immunosuppressive environment or by stimulating anti-tumor immune responses [4].

The objective of this study was to compare the stromal responses in breast and prostate
cancer. Additionally, the study aimed to propose novel biomarkers related to the tumor
microenvironment of both cancer types using an in silico approach following the pipeline
illustrated in Figure 1. The following topics can be discussed based on the results obtained.

4.1. Differential Expression Analysis Revealed Significant Differences between Stromal Breast
Tumor and Stromal Prostate Tumor

According to the results obtained in the exploratory analysis and the differential
expression analysis performed on the expression data, there is a difference in the way the
stromal reaction to invasion by breast and prostate tumors may impact tumor progression.

The MDS plot (see Figure 2) reveals substantial variation in the distances between
the breast and prostate sample groups, particularly in terms of logFC. The large distances
between the samples in the female group and the samples in the male group stand out.
Additionally, the distance between normal and tumor samples in the female group is larger
than that observed between normal and tumor samples in the prostate group. Furthermore,
the differential expression analysis highlighted a significantly higher number of DEGs in
stromal tissue surrounding invasive breast tumors (776 DEGs) compared to stromal tissue
surrounding invasive prostate tumors (218 DEGs). These findings suggest a major role for
stromal cells in the development of breast cancer over that in prostate cancer. This disparity
may stem from inherent biological differences between male and female individuals,
including sex-specific hormonal, genetic, and physiological factors that contribute to the
pathogenesis and progression of breast and prostate cancers.

It is important to note that the heterogeneity within the breast tumor samples was
higher in comparison with the prostate tumor samples. In the first case, the majority of
the patients exhibited lymph node metastasis, indicating an advanced disease stage [39].
Although both sample groups—breast tumor and prostate tumor samples—were obtained
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from primary tumor sites, the difference in disease stage could have influenced the number
of DEGs identified within both tumor types.

Of the DEGs obtained from breast and prostate samples, most were organ-exclusive.
They had only 17 genes in common (see Figure 3). Furthermore, a GO enrichment analysis of
the 17 genes revealed common cellular annotations (Figure A1). The majority of these genes,
which are shared between stromal cells in prostate and breast cancers, exhibited consistent
regulatory patterns. However, there were exceptions, such as TGFB3 (Transforming growth
factor beta-3 proprotein), PTGS1 (Prostaglandin G/H synthase 1), DUSP6 (Dual specificity
protein phosphatase 6), SASH1 (SAM and SH3 domain-containing protein 1), and FIGN
(Fidgetin), which demonstrated distinct regulations depending on the type of tumor (see
Table A2), which could be linked to the progression of the tumor. These genes have been
associated with growth factors, the gene regulation that promotes cell differentiation, cell
migration, and microtubule regulation, respectively [62–66]. Nevertheless, these DEGs
require further experimental validation in both types of cancer.

4.2. Exploratory Analysis in Stromal Breast and Prostate Co-Expression Networks

The differences observed in the MSD plots and after differential expression analysis
were confirmed after modeling the co-expression networks obtained for each of the case
studies: stromal normal breast and prostate and stromal tumor breast and prostate.

A comparative analysis between the normal stromal and stromal breast tumor co-
expression networks shed light on those hub genes present in both co-expression networks
but that did not share interactions. This discovery implies that the four genes excluded
from shared interactions may exert a critical role in distinct contexts, contingent on their
expression levels. Specifically, the SPP1 (Osteopontin) and ARSA (Arylsulfatase A) genes
were discerned in the normal stromal breast network, while RIPOR3 (RIPOR family member
3) and LGALS1 (Galectin-1) were identified in the tumor stromal breast network.

Specifically, in the case of the hub genes present in the tumor breast (Table A7), 65%
of them have previously been found to be biomarkers in breast cancer studies. SUN1
(SUN domain-containing protein 1) serves as a constituent of the Linker of Nucleoskeleton
and Cytoskeleton complex, participating in the linkage between the nuclear lamina and
the cytoskeleton [67]. In a study conducted by Matsumoto et al., upregulation of this
component was observed in human breast cancer tissues. The authors proposed that
the expression of SUN1, along with other cytoskeleton complex genes, may play pivotal
pathological roles in the progression of breast cancer [68]. The LGALS1 gene was suggested
as a biomarker by Jung et al. [69] in human breast carcinoma tissues, where an elevated
expression of Galectin 1 was observed in all cancerous stromal tissues associated with
breast cancer. The MAP7D1 (MAP7 domain-containing protein 1) gene was previously
proposed as a biomarker by Wu et al. [70] in breast cancer.

Out of the 20 hub genes obtained from both the normal and tumor prostate networks,
only the GATA6-AS1 gene is shared; the remaining hub genes are specific to each co-
expression network. It is noteworthy that the hub genes derived from the normal network
exhibited downregulation, with the exception of GATA6-AS1. In contrast, the hub genes
identified in the tumor network displayed overexpression, except for GATA6-AS1 and
APBA2 (Amyloid-beta A4 precursor protein-binding family A member 2).

Specifically, in the case of the hub genes present in the tumor prostate co-expression
network (Table A9), 60% of them were previously found to be biomarkers in prostate
cancer studies. HOXC6 (Homeobox protein Hox-C6), which was reported as a biomarker in
another prostate cancer study [71], and GPR160, a G protein-coupled receptor, were overex-
pressed in prostate cancers, and their effect does not require the involvement of androgen
receptors. There inhibition induces apoptosis in prostate cancer cells and therefore has
significant effects on cancer cell proliferation and survival [72].
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4.3. Gene Expression of Stromal Cells in Breast Tumors Is Related to Focal Adhesion Modifications,
While That of Stromal Cells in Prostate Tumors Is Related to Organ Formation and
Cell Differentiation

In the context of breast stromal cells, the central genes of the co-expression network
were identified as part of one of the three clusters comprising the final co-expression net-
work, as summarized in Figure 4. The green cluster was associated with the regulation of
proteins present in the extracellular matrix, where stromal cells were embedded. Based on
the ontogenetic study of the two main clusters obtained, it is suggested that the affected
components are those directly involved in extracellular adhesion, possibly in response to
a regulatory process facilitated by a collaborative interaction between stromal and tumor
cells [73]. Some genes present in the co-expression network contribute to microenvironment
remodeling, including HPSE (Heparanase), which enhances cell adhesion to the extracellu-
lar matrix independently of its enzymatic activity. This induces Akt1/PKB phosphorylation
through lipid rafts, consequently increasing cell motility and invasion [74,75]. Another
gene, RHOU (Rho-related GTP-binding protein RhoU) plays a role in the regulation of cell
morphology and cytoskeletal organization [76].

In the case of the prostate stromal cells, hub genes of the co-expression network were
found to form part of two of the six clusters of which the final co-expression network
was composed, a summary of the co-expression network annotation is given in Figure 5.
In contrast to breast cancer stromal cells, there were fewer differential genes expression
difference between the normal and tumor prostate stromal tissue. This suggests that
breast cancer stromal cells have a much greater role in tumor cell development than
prostate stromal cells. The hub genes found within the main prostate network were
distributed between the green cluster and pink cluster. Both clusters were related to
organ maintenance, epithelial tissue differentiation, and morphology. A distinctive pattern
is observed that reveals a close relationship with cell morphology and the process of
mesenchymal development. Those present in both clusters appear to be intrinsically linked
to the regulation of cell shape and structure, being themselves responsible for the stromal
abnormality in prostate cancers rather than being mediated in response to the environment,
as in the case of breast cancer. Some of the genes involved in this process are S100A4, a
calcium-binding protein that plays a role in various cellular processes, including motility,
angiogenesis, cell differentiation, apoptosis, and autophagy [77]; and HPN, which plays
a role in cell growth and maintenance of cell morphology [78]. These findings highlight
the importance of stromal cell differentiation in the plasticity of prostate tumors. This
modulation of stromal cell morphology is observed in histological sections. Some of the
patterns include hypercellular stroma with scattered atypical but degenerative atypical
cells mixed with benign prostatic glands, and hypercellular strychoma consisting of soft
spindle-shaped stromal cells mixed with benign glands, and they may also contain atypical
and degenerative stromal cells that may be associated with a variety of benign epithelial
proliferations, including basal cell hyperplasia, adenosis, and sclerosing adenosis [79,80].

In summary, our network-generation method was able to generate the study co-
expression networks from differentially expressed genes of stromal cells in the context of
both breast and prostate cancer and find patterns of differences in the mode of stromal cell
development relative to each case in particular.

4.4. ST6GAL2, RIPOR3, COL5A1, and DEPDC7 Are Potential Biomarkers in the Breast
Tumor Microenvironment

As mentioned earlier, a comprehensive literature review was conducted to investigate
the association of the identified hub genes with stromal cells in breast cancer. From the
study of the GCN, we can highlight the hub genes ST6GAL2, RIPOR3, COL5A1, and
DEPDC7 as possible biomarkers in the context of stromal cells in breast tumors, as they
have been characterized in other cancer cases.

There is no specific literature about ST6GAL2 (Beta-galactoside alpha-2,6-sialyltransferase
2) with breast cancer evidence, but this gene has been highlighted in follicular thyroid
carcinoma [81].
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While there is limited specific literature evidence about the role of the RIPOR3 gene
in breast cancer, it has been studied in other cancer types. Notably, RIPOR3 has shown a
disregulation at oral squamus cell carcinoma of the mobile tongue [82]. At present, reports
in the literature on the RIPOR3 gene are limited.

Another possible biomarker is COL5A1 (Collagen alpha-1(V) chain), and though there
is no specific literature about this gene associated with breast tumor, it was associated with
the progression of gastric cancer in humans [83].

Finally, DEPDC7 (DEP domain-containing protein 7) is proposed as a biomarker, but its
function is poorly understood. Liao et al. investigated the disregulation of this gene in two
hepatoma cell lines, as well as the cell proliferation, cell cycle progression, cell migration,
and invasion of these cells, suggesting that DEPDC7 is a tumor suppress gene [84].

4.5. GATA6-AS1, ARFGEF3, PRR15L, and APBA2 Are Potential Biomarkers in the Prostate
Tumor Microenvironment

A comprehensive literature review was conducted to investigate the association of the
identified hub genes with stromal cells in prostate cancer. From the study of the GCN, we
can highlight the hub genes GATA6-AS1, ARFGEF3, PRR15L, APBA2, and LINC03026 as
possible biomarkers in the context of stromal cells in prostate tumors, as they have been
characterized in other cancer cases.

The GATA6-AS1 lncRNA has been linked to the expression of F-box proteins [85],
which play an important role in the degradation of key proteins in cellular regulation
and tumorigenesis [86]. It has been studied in the context of lung, gastric, and ovarian
cancer in association with the inhibition of signaling pathways and prevention of epithelial–
mesenchymal transition [87,88]. The hub gene GATA6-AS1 was in the green cluster and
had 26 interactions. Of these interactions, fifteen were hub genes. It should be noted that
GATA6-AS1 is also one of the hub genes found in the results obtained for normal stromal
breast and stands out in this dataset as the only one of the calculated hub genes that showed
upregulation with respect to the rest. The genes with which they were related within the
co-expression network were found both in the green cluter and pink cluster, so they
participated in the regulation of both clusters. This gene interacts with the gene HOXC6,
which was present in the pink cluster, which was previously reported as a biomarker in
another prostate cancer study [71].

ARFGEF3 or BIG3 (Brefeldin A-inhibited guanine nucleotide-exchange protein 3). Kim
et al. identified BIG3 as significantly overexpressed in the great majority of breast cancer
cases and breast cancer cell lines [89].

The bibliographical information regarding PRR15L (Proline-rich protein 15-like pro-
tein) gene is scarce. We can highlight the study in Mizuguchi et al. [90], where PRR15L-
RSPO2 fusion was identified, which expands the variations of RSPO fusions in colorectal
neoplasms. This gene was present in the green cluster and interacted with 29 genes, some of
which are closely related to studies on prostate cancer, for example, DKK1 (Dickkopf-related
protein 1), whose protein negatively regulates the Wnt/β-catenin signalling pathway, with
therapeutics targeting of it in clinical trials for cancer patients [91].

Finally, APBA2 (Amyloid-beta A4 precursor protein-binding family A member 2) was
proposed as an epigenetic regulatory gene involved in multiple cancer-related pathways in
breast cancer [92]. This gene was present in the pink cluster and interacted with another
characterized gene like FOXQ1 (Forkhead box protein Q1), which is a transcription factor
that has been studied in several types of cancer, has been found to be upregulated or
downregulated in different types of cancer, and has therefore already been suggested as a
prognostic biomarker for several types of tumors [93].

5. Conclusions

In this work, we presented a computational study of GCNs to identify breast and
prostate cancer biomarkers. To do so, we also introduced an ensemble method for the
inference of GCNs. The method is based on three different correlation algorithms (Pearson,
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Kendall, and Spearman). Thus, only if two or more coefficients determine that the relation-
ship is significant will it be established as valid. As a result, the final co-expression network
obtained offered a higher level of reliability than if only a single coefficient had been used.

On the other hand, the main results of the study revealed different behaviors depend-
ing on the organ in which the cancer develops. It was found that breast cancer stromal
cells are related to the maintenance of the extracellular matrix through modifications in
the focal-adhesion that are part of the stromal tissue. On the other hand, prostate can-
cer stromal cells are related to cell differentiation, leading to abnormal development of
stromal cells. Finally, potential biomarkers were suggested; in the case of breast tumor,
ST6GAL2, RIPOR3, COL5A1, and DEPDC7 were found, and in the case of prostate tumor,
the genes were GATA6-AS1, ARFGEF3, PRR15L, and APBA2. These results demonstrate the
usefulness of the method in the field of biomarker discovery.

As future work, we are currently working on two main points in the context of this
work: delving deeper into the study of prostate and breast cancer, and in another sense,
improving the co-expression network inference method to achieve better results. To obtain
a better understanding of these cancers, we are using additional datasets, such as RNA-
Seqs and even single-cell, to verify the results obtained in the present study. On the other
hand, we are also working to improve the inference algorithm from two points of view: (a)
using other algorithms or correlation coefficients in the ensemble co-expression network
generation step to enhance the results, and (b) allowing multi-input of data to improve the
reliability of the conclusions obtained.
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Appendix A. Detailed Results from Experiments

In this appendix, figures (Appendix A.1) and tables (Appendix A.2) are presented in
order to clarify the data and results obtained in Sections 3 and 4.

Appendix A.1. Figures

All the images presented below are referenced in the main text.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26910
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26910
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Figure A1. Results obtained from GO term enrichment analysis for the common 17 DEGs expressed
in breast and prostate stromal cancer.
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Figure A2. Cont.
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Figure A2. Distribution of node’s degree throughout the co-expression networks reconstructed from
stromal normal breast (top left), stromal tumor breast (top right), stromal normal prostate (down
left), and stromal tumor prostate (down right). The distribution trendline is shown in blue.

Appendix A.2. Tables

All tables presented below are referenced in the main text.

Table A1. Comparison of DEGs between breast stromal (NB vs. TB) and prostate stromal (NP vs. TP) groups.

Type NB vs. TB NP vs. TP

Downregulated 451 129
Not significant 20,048 20,606
Upregulated 325 89

Table A2. Common differential genes and their regulation in breast stromal (NB vs. TB) and prostate
stromal (NP vs. TP) groups.

Gene ID Regulation NB vs. TB Regulation NP vs. TP

KLHL14 downregulated downregulated
TGFB3 upregulated downregulated

PDLIM5 upregulated upregulated
PPL downregulated downregulated

PTGS1 upregulated downregulated
CFD downregulated downregulated

ASPA downregulated downregulated
FAM107A downregulated downregulated

DUSP6 downregulated upregulated
GPM6A downregulated downregulated
BMPR1B upregulated upregulated
SASH1 downregulated upregulated
PENK downregulated downregulated
FIGN downregulated upregulated
MAL2 upregulated upregulated

C16orf89 downregulated downregulated
BCO2 downregulated downregulated
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Table A3. GNC analysis was performed on 20 co-expression networks generated for each dataset
using various correlation ranges (0.7–0.9). Bold text highlights the selected GNCs for further analysis.

Group Threshold GNC Value-BioGrid Num. Nodes Num. Edges Thrscore

0.7 0.503094 218 2693 0.285671
0.75 0.419838 218 1677 0.082137

Prostate Normal 0.8 0.342942 217 1303 0.218407
0.85 0.182962 205 659 0.082843
0.9 0.079346 186 428 0.187738

0.7 0.520096 218 2325 0.333839
0.75 0.41008 218 1391 0.084419

Prostate tumor 0.8 0.328616 218 1120 0.2957
0.85 0.157933 211 571 0.087541
0.9 0.058878 203 385 0.200432

0.7 0.508661 776 29320 0.026487
0.75 0.516137 776 16,645 0.008006

Breast Normal 0.8 0.468251 776 12,818 0.023706
0.85 0.305834 776 5799 0.009305
0.9 0.159673 772 3640 0.024182

0.7 0.50731 776 31,345 0.024690
0.75 0.516461 776 18,594 0.007984

Breast tumor 0.8 0.469527 776 14,098 0.020221
0.85 0.317097 775 6811 0.009268
0.9 0.162074 770 4047 0.018492

Table A4. Size of the GCNs retained for further analysis, including interactions specific to the stroma
normal and tumor context in both breast and prostate.

Nodes Edges Density Avg Cluster
Coef. Community Degree

Assortativity

Breast normal 776 15,975 0.053 0.43 0.21 0.63

Breast tumor 776 17,924 0.059 0.45 0.47 0.61

Prostate normal 218 1619 0.067 0.47 0.37 0.64

Prostate tumor 218 1333 0.055 0.48 0.55 0.55

Table A5. Clustering analysis summary for breast and prostate Tumor networks.

Cluster Avg Nodes Avg Edges

Breast tumor 3 257.67 5418.33

Prostate tumor 6 36.33 188.83

Table A6. The top 20 genes based on co-expression network centrality measures in the stromal breast
normal GCN with a 0.75 threshold value without common interactions.

Stromal Breast Normal

Degree Hubs Score Betweenness Score Closeness Score Eigenvector Score

DOC2B 98.0 AEBP1 5352 ARSA 352.5 DOC2B 0.13
SH2D3C 95.0 GSN 4042.1 SH2D3C 352.3 SH2D3C 0.12

ARSA 94.0 LMO2 3853.0 ADCK2 351.6 ANKRD2-
0A11P 0.12

MYH9 94.0 MMP11 3844.5 ANKRD2-
0A11P 350.9 MYH9 0.12

ANKRD2-0A11P 91.0 CRTAM 3702.3 RGMA 350.6 ARSA 0.12
RGMA 91.0 SH3BGRL2 3672 SHISA2 350.1 C1orf122 0.12
FAM110D 91.0 ENTREP1 3489.3 C1orf122 350.1 DACT3 0.11
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Table A6. Cont.

Stromal Breast Normal

Degree Hubs Score Betweenness Score Closeness Score Eigenvector Score

GRP 89.0 NLRC3 3411.1 DOC2B 349.9 SPP1 0.11
ADCK2 88.0 CAVIN2 3403.9 GRP 349.8 RGMA 0.11
C1orf122 88.0 USP36 3377.1 CCDC178 347.9 FAM110D 0.11
LY86 88.0 RGS10 3303.2 SPP1 347.9 GRP 0.11
FDX2 87.0 RSAD2 3251.7 MFAP2 346.8 FDX2 0.11
DACT3 87.0 LEPR 3237.0 EVC 346.7 EVC 0.11
SPP1 87.0 ANLN 3199 LY86 346.5 RAPGEF3 0.11
SHISA2 85.0 JPT1 3168.7 OTULINL 346.4 ITGA7 0.11
RAPGEF3 85.0 TLL2 3159.5 MYH9 346.4 LY86 0.11
EVC 85.0 EXOC6 3146.4 RAPGEF3 346.2 CCN4 0.11
CCN4 85.0 C19orf53 3131.7 DACT3 345.7 OTULINL 0.11
FAM110C 85.0 FICD 3116.9 FAM110C 345.6 ADCK2 0.10
CCM2L 84.0 THBD 3065.2 LOXL2 345.1 FAM241A 0.10

Table A7. The top 20 genes based on co-expression network centrality measures in the stromal breast
tumor GCN with a 0.75 threshold value without common interactions.

Stromal Breast Cancer

Degree Hubs Score Betweenness Score Closeness Score Eigenvector Score

LONP2 107.0 HMGN3 7460.8 LONP2 361.1 CRNDE 0.20
ST6GAL2 105.0 LOXL2 6723.3 ST6GAL2 360.4 PRR15L 0.19
SUN1 104.0 CMTM3 4674.1 SUN1 359.9 PDLIM5 0.18
GPR137B 102.0 GLMP 4422.6 GPR137B 358.9 SPON2 0.18
RIPOR3 99.0 MYO5B 4365.5 MAP7D1 357.6 GATA6-AS1 0.18
DYRK2 99.0 PTGS1 4295.2 MCTS1 355.8 LEF1-AS1 0.17
MAP7D1 99.0 NKTR 4222.7 COL5A1 355.0 CDH1 0.17
SNRK 98.0 SEMA3C 4044.4 LGALS1 353.6 APBA2 0.16
SYNDIG1 97.0 CCR5 3963.5 DYRK2 353.5 GPR160 0.16
MATN3 97.0 KIF26B 3924.3 SNRK 352.6 ARFGEF3 0.16
MCTS1 96.0 VOPP1 3832.7 CLK1 352.6 RAB25 0.16
SH3BGRL2 96.0 JPT1 3769.8 INPP1 351.8 HOXB13 0.16
CLK1 95.0 FNDC1 3662.7 SYNDIG1 351.5 HOXC6 0.16
COL5A1 95.0 PCNA 3603.4 MMP13 351.3 EHF 0.16
LGALS1 95.0 SLIT3 3500.1 MATN3 350.9 IER5L 0.15
ALDH1L2 94.0 LINC01614 3395.4 LRRC59 350.8 SPDEF 0.15
DEPDC7 93.0 PIGP 3349.7 ALDH1L2 350.4 FOLH1B 0.15
PROS1 92.0 SPP1 3322.5 PGM1 349.3 DUSP6 0.15
NAP1L5 92.0 NR2F2 3260.2 DEPDC7 349.2 PCDH10-DT 0.14
LRRC59 92.0 LOC1053-77134 3246 HECW2-AS1 348.9 SORD 0.14

Table A8. The top 20 genes based on co-expression network centrality measures in the stromal
prostate normal GCN with a 0.75 threshold value without common interactions.

Stromal Prostate Normal

Degree Hubs Score Betweenness Score Closeness Score Eigenvector Score

TIMP4 42.0 PENK 1862.6 TIMP4 101.5 RBP4 0.20
SMTNL2 40.0 STAC 1796.2 SMTNL2 99.9 NAT2 0.20
RBP4 39.0 AGR2 1771.1 RBP4 99.1 TIMP4 0.20
NAT2 38.0 MB 1691.4 CCDC85A 99.1 SMTNL2 0.20
CCDC85A 37.0 PCDH10-DT 1613.0 NAT2 98.2 ARHGA-P28 0.19
KLHL14 36.0 TBX5-AS1 1601.9 ARHGA-P28 97.3 CCDC85A 0.19
IGSF1 35.0 ERG 1517.0 PDE3B 96.8 CFD 0.18
PDE3B 35.0 PEX14 1364.4 MLC1 96.5 IGSF1 0.18
ARHGA-P28 35.0 SPDEF 1349 TRHDE 96.2 LOC10192-7668 0.18
RSPH9 33.0 LINC03026 1334.4 GRTP1-AS1 96.1 PDE3B 0.18
TRHDE 33.0 CLGN 1311.5 IGSF1 96.0 KLHL14 0.18
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Table A8. Cont.

Stromal Prostate Normal

Degree Hubs Score Betweenness Score Closeness Score Eigenvector Score

ODAD3 33.0 FXYD6 1300.3 RNF112 95.7 RSPH9 0.17
CFD 33.0 PPL 1287.9 LY6G6D 94.9 FBXO2 0.17
LOC10192-7668 33.0 PRSS35 1270.1 KLHL14 94.9 ODAD3 0.17
LINC01082 32.0 FAM107A 1257.9 RSPH9 94.8 CHGB 0.17
FBXO2 32.0 ADGRD1 1246.4 FBXL21P 94.6 LINC01082 0.17
GRTP1-AS1 31.0 C9orf24 1239.1 LOC10192-7668 94.3 GATA6-AS1 0.16
GATA6-AS1 31.0 TRHDE 1203.1 CFD 94.2 GRTP1-AS1 0.15
CLGN 31.0 TMSB15A 1150.5 ODAD3 94.1 TRHDE 0.15
MLC1 30.0 LRP1B 1150.4 LINC01082 94.0 CLGN 0.15

Table A9. The top 20 genes based on co-expression network centrality measures in the stromal
prostate tumor GCN with a 0.75 threshold value without common interactions.

Stromal Prostate Cancer

Degree Hubs Score Betweenness Score Closeness Score Eigenvector Score

CDH1 30.0 SMIM31 2940.4 EHF 90.5 CRNDE 0.20
ARFGEF3 29.0 NELL2 2244.7 CDH1 90 PRR15L 0.19
PRR15L 29.0 SMOC1 2212.8 ARFGEF3 89.7 PDLIM5 0.18
EHF 28.0 PRKAR2B 2178 HOXB13 88.5 SPON2 0.18
SPON2 28.0 LOC10192-7668 2165.4 PRR15L 87.9 GATA6-AS1 0.18
CRNDE 28.0 PTGS1 2016.1 CRNDE 87.8 LEF1-AS1 0.17
HOXB13 27.0 ST8SIA1 1826.6 LEF1-AS1 87.8 CDH1 0.17
PDLIM5 27.0 ADGRD1 1823.9 SPON2 87.2 APBA2 0.16
CXADR 26.0 LRP1B 1771.2 PDLIM5 87.1 GPR160 0.16
FOXA1 26.0 PRAC1 1676.0 HOXC6 87 ARFGEF3 0.16
GATA6-AS1 26.0 MCF2 1549.7 DUSP6 87 RAB25 0.16
LEF1-AS1 26.0 EHF 1505.7 CXADR 86.8 HOXB13 0.16
HOXC6 26.0 TSLP 1492.5 APBA2 86.6 HOXC6 0.16
GPR160 25.0 CSGALN-ACT1 1487.7 GATA6-AS1 86.6 EHF 0.16
APBA2 25.0 PENK 1467.1 SORD 86.4 IER5L 0.15
SORD 24.0 FRRS1L 1429.8 RBM47 86.1 SPDEF 0.15
RAB25 24.0 RBP4 1419.3 MAP2 85.8 FOLH1B 0.15
DUSP6 24.0 RAB37 1304.7 TRPM8 85.4 DUSP6 0.15
LINC03026 23.0 PLA1A 1300.7 GPR160 85.3 PCDH10-DT 0.14
TRPM8 23.0 FOXF2 1299.4 DKK1 84.9 SORD 0.14
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