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Abstract: Micro-Ribonucleic Acids (miRNAs) are small non-coding Ribonucleic Acid (RNA)
molecules that play an important role in the cancer growth. There are a lot of miRNAs in the
human body and not all of them are responsible for cancer growth. Therefore, there is a need to
propose the novel miRNA subset selection algorithms to remove irrelevant and redundant miRNAs
and find miRNAs responsible for cancer development. This paper tries to propose a novel three-stage
miRNAs subset selection framework for increasing the cancer classification accuracy. In the first stage,
multiple filter algorithms are used for ranking the miRNAs according to their relevance with the
class label, and then generating a miRNA pool obtained based on the top-ranked miRNAs of each
filter algorithm. In the second stage, we first rank the miRNAs of the miRNA pool by multiple
filter algorithms and then this ranking is used to weight the probability of selecting each miRNA.
In the third stage, Competitive Swarm Optimization (CSO) tries to find an optimal subset from the
weighed miRNAs of the miRNA pool, which give us the most information about the cancer patients.
It should be noted that the balance between exploration and exploitation in the proposed algorithm
is accomplished by a zero-order Fuzzy Inference System (FIS). Experiments on several miRNA cancer
datasets indicate that the proposed three-stage framework has a great performance in terms of both
the low error rate of the cancer classification and minimizing the number of miRNAs.

Keywords: miRNA subset selection; hybrid filter-wrapper; three-stage framework; high-dimensionality;
Competitive Swarm Optimization; cancer classification

1. Introduction

Micro-Ribonucleic Acids (miRNAs) are small Ribonucleic Acids (RNA) molecules that play
an important role in the cancer growth. There are more than one thousand miRNAs in the human body
and only some of them are responsible for cancer growth. Therefore, there is a need to propose the
novel methods to find a subset of responsible miRNAs, which helps us to obtain better classification
when classifying a new patient. In the other words, it is necessary to remove irrelevant and redundant
miRNAs from data and find an optimal subset of relevant miRNAs that gives us the most information
about the cancer patients. There are many reasons why we should use the miRNA subset selection as
a pre-processing phase for cancer classification:

• In most classification algorithms, the complexity of the algorithm depends on the dimensions
of data. So, in order to reduce the memory and computational time, we are interested in removing
the irrelevant and redundant miRNAs from the dataset.
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• When it has been determined that a miRNA does not have a positive effect on the cancer diagnosis,
the time and biochemical cost required to extract this miRNA can be saved. It should be noted
that this can significantly accelerate the process of the cancer diagnosis.

• When it is possible to represent the data without losing the information in a small number
of miRNAs, they can be plotted visually and this can help extracting the useful knowledge
about cancer.

• When data are represented by fewer miRNAs, it is easier to analyze the processes that generate
the data and this helps to extract useful knowledge about cancer.

One of the best ways to remove irrelevant and redundant miRNAs is to use the feature subset
selection algorithms [1]. So far, the various algorithms have been proposed for feature subset selection.
The first algorithm that comes to mind is the exhaustive search algorithm which tests all feature
subsets one by one and then chooses the best feature subset. Although this algorithm has a simple
logic, but directly evaluating all subsets of features generates an algorithm with exponential time
complexity [2,3], because there are 2d different feature subsets when we have a feature set with
size d. Since it is not rational to use exhaustive search for high-dimensional feature subset selection,
there are very few algorithms that use exhaustive search in feature space [1]. It is noteworthy that
exhaustive search algorithms can only solve small and medium size datasets and cannot be used
for miRNAs datasets because exhaustive search in high-dimensional space is practically impossible.
In such a case, approximate methods are suggested to remove redundant and irrelevant miRNAs
in a reasonable time [2]. The approximate feature subset selection algorithms can be classified into
three categories: filter methods, wrapper methods, and embedded methods [1]. Filter methods act as
a preprocessing phase to rank all features wherein the highly ranked features are selected and used by
a learning algorithm. In wrapper methods, the feature subset selection criterion is the performance
of a learning algorithm, i.e., the learning algorithm is wrapped on a search algorithm which will
find a subset which gives the highest performance. In the other words, wrapper methods use the
learning algorithm as a black-box and the learning algorithm performance as the objective function
to evaluate the feature subset. The embedded methods tries to use the advantages of both filter and
wrapper methods.

Although filter algorithms are computationally efficient in selecting a feature subset, they are
highly susceptible to being trapped in a local optimum feature subset because their performance
is heavily affected by the “feature interaction problem”. This problem means that the optimization of
a feature is affected by its interaction with other features. It is noteworthy that the interactions among
different features can be in two-way, three-way or complex multi-way interactions. For example,
a miRNA that individually is not recognized as an important miRNAs to predict cancer can
dramatically increase the cancer prediction accuracy if combined with other complementary miRNAs.
In contrast, a miRNA that individually is recognized as an important miRNA, may be a redundant
miRNA in combination with other miRNAs.

The wrapper algorithms are divided into two categories: sequential selection algorithms and
metaheuristic algorithms [1,4]. The sequential selection algorithms start their work with a complete
set (or an empty set) and remove features (or add features) until the maximum value of an objective
function is reached. Specific examples of these algorithms are the sequential forward selection (SFS) [5]
and the sequential backward selection (SBS) [5]. It should be noted that although feature interaction
problem for sequential selection algorithms is not as large as in the filter algorithms, but there is still
a kind of feature interaction problem with these algorithms. The greedy approach used in sequential
selection algorithms causes these algorithms suffer from the “nesting effect”, because an added or
deleted feature cannot be deleted or added at a later stage [6]. As we mentioned before, the interaction
between the features has a great impact on the accuracy of the learning algorithm. Therefore, in order
to find an optimal subset of features, the algorithm must be able to remove and add any arbitrary
attribute over time [4]. Metaheuristic search algorithms are a kind of intelligent search algorithms
that, in contrast to the sequential selection algorithms, can evaluate different subsets to optimize
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the objective function [7,8]. The class of metaheuristics includes, but is not restricted to, Genetic
Algorithms (GAs) [9], Particle Swarm Optimization (PSO) [10], Competitive Swarm Optimization
(CSO) [11], Gravitational Search Algorithm (GSA) [12], and Ant Colony Optimization (ACO) [13].

PSO is one of the most widely used metaheuristics which is initially proposed for solving
problems with continuous search spaces [10]. So far, various PSO algorithms have been proposed for
feature subset selection, where either Continuous PSO (CPSO) or Binary PSO (BPSO) have been used.
The previous comparison between CPSO and BPSO in [14,15] showed that CPSO can generally achieve
better results than BPSO because in the binary version some main essences of the algorithm has
been removed. For example, the position updating of a particle in CPSO is done based on both its
velocity and its current position while the current position of a particle in BPSO plays no role in its
position updating. In solving the feature subset selection problem by CPSO and its different versions
like Competitive Swarm Optimization (CSO) [11], the most important component is the “threshold
parameter λ” which is applied to specify the selection status of a feature.

In this paper, we propose a novel three-stage framework which combines the filter and wrapper
feature selection methods to increase the cancer classification accuracy. Experiments on several
miRNAs datasets indicate that proposed three-stage framework has a great performance in terms of
both the error rate of the cancer classification and minimizing the number of miRNAs. The two main
contributions of this paper can be summarized as follows:

• A novel three-stage feature subset selection framework is proposed. In the first stage of
the proposed framework, an algorithm consisting of multiple filters are used to evaluate the
relevance of each miRNA with the class label, to rank miRNAs according to their relevance value,
to select the top-ranked miRNAs obtained from each filter algorithms, and finally to generate
a miRNAs pool. In the second stage, another algorithm is used to rank the miRNAs of miRNA
pool and then to weight the probability of selecting each miRNA. In the third stage, a wrapper
algorithm tries to find an optimal subset from the weighed miRNAs of miRNA pool which gives
us the most information about cancer. The third stage provides a situation in which top-ranked
miRNAs of miRNA pool have a higher chance of being selected than low-ranked miRNAs. To the
best of our knowledge, no empirical research has been conducted on the using feature importance
obtained by the ensemble of filters to weight the feature probabilities in the wrapper algorithms.

• A novel method is proposed to assign different threshold value to each miRNA according to the
importance of that miRNA in the dataset. For this purpose, the knowledge extracted about the
miRNA importance is used to adjust the value of threshold parameter in CSO for each miRNA.
In the best of our knowledge, the value of threshold parameter in all previous works is considered
the same for all features. It should be noted that when we set the same threshold values for all the
miRNAs, the algorithm does not initially distinguish between relevant and irrelevant miRNAs
and therefore requires a lot of time to find the optimal miRNAs subset.

The structure of this paper is organized as follows. In Section 2, the fundamental backgrounds
and literature review of the paper is presented. In Section 3, the proposed three-stage feature subset
selection framework is introduced. Section 4 contains the experimental results of the paper, in which
the numerical performance of proposed algorithm is evaluated for high-dimensional feature subset
selection and obtained results are compared with results of other feature subset selection algorithms.
Finally, in Section 5 the conclusion and future work are given.

2. Fundamental Backgrounds and Literature Review

In this section, we first introduce the basic concepts of CSO, and then describe the literature
review of paper.
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2.1. Competitive Swarm Optimization (CSO)

In 2015, Cheng and Jin [11] proposed a new version of PSO, called the Competitive Swarm
Optimizer (CSO) algorithm, for solving large-scale continuous optimization problems by simulation
a swarm of particles that learn from randomly selected competitors. At the beginning of CSO a swarm
of particles is randomly generated. Then, in each iteration, the swarm is randomly partitioned into
two groups, and pairwise competitions between particles from each group are performed. After each
competition, the winner particle is directly transmitted to the swarm of next iteration, while the
loser particle updates its velocity by learning from the winner particle. Let we show each particle

as Pt
i =

(→
Xi(t),

→
V i(t)

)
in an n-dimensional search space where

→
Xi(t) and

→
V i(t) are the position and

velocity vectors of the i-th particle, and defined as follows:

→
Xi(t) =

(
x1

i (t), x2
i (t), . . . , xd

i (t), . . . , xn
i (t)

)
, f or i = 1, 2, . . . , N, (1)

→
V i(t) =

(
v1

i (t), v2
i (t), . . . , vd

i (t), . . . , vn
i (t)

)
, f or i = 1, 2, . . . , N, (2)

where N is the swarm size or number of particles.
Suppose two random selected particles are compared by their value of the objective function,

and the particle that has a better quality is called winner particle and one that has a worse quality is

called loser particle. Let we show a loser particle as Pt
L =

(→
XL(t),

→
VL(t)

)
and a winner particle as

Pt
W =

(→
XW(t),

→
VW(t)

)
. The next velocity of the loser particle in dimension d is calculated as follows:

vd
L(t + 1) = r1 × vd

L(t) + r2 ×
(

xd
W(t)− xd

L(t)
)
+ ϕ× r3 ×

(
xd

M(t)− xd
L(t)

)
, (3)

where vd
L(t + 1) and vd

L(t) are the next and current velocities of the loser particle in dimension d,
respectively, r1, r2, r3 are three randomly generated numbers in range [0, 1], xd

W(t) and xd
L(t) denote the

current positions of winner and loser particles, respectively, xd
M(t) shows the mean position of swarm

in current iteration, and ϕ is a user-specified parameter to control the influence of xd
M(t). It should

be noted that r1 manage the balance between exploration and exploitation, so that a larger value
of this parameter encourages exploration, while a smaller value of it provides exploitation. In the
original CSO algorithm, r1 parameter is randomly generated, which can mislead the balance between
exploration and exploitation. To solve this problem, we propose a fuzzy inference system to adjust the
value of r1 in Section 3.4.

Finally, to update the next position of i-th particle, the current position of this particle, i.e., xd
L(t),

and its next velocity, vd
L(t + 1), is used as follows:

xd
L(t + 1) = xd

L(t) + vd
L(t + 1). (4)

2.2. Literature Review

The study of solving feature subset selection with metaheuristics algorithms is begun in
the 1989s. However, these methods did not have much fame until 2007, when the size of the
datasets was relatively large. As far as our knowledge permits, Genetic Algorithms (GAs) are the first
metaheuristic which widely used to select the near-optimal feature subsets. The results of the first
study on the feature subset selection by GA were published in 1989 by Siedlecki and Sklansky [16].
Subsequently, a lot of study was done to increase the performance of GA in selecting a feature subset.
For example, Li et al. [17] developed a GA with multiple populations to select a feature subset,
in which every two neighbor populations share their acquired knowledge by exchanging two solutions.
Kabir et al. [18] developed a hybrid GA (HGA), where GA was combined with a local search algorithm.
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Eroglu and Kilic [19] proposed a novel Hybrid Genetic Local Search Algorithm (HGLSA) in
combination with the k-nearest neighbor classifier for simultaneous feature subset selection and
feature weighting, particularly for medium-sized data sets. Phan et al. [20] proposed a framework,
named the GA–SVM, to improve the classification ability, in which the GA is hybridized with Support
Vector Machine (SVM) for simultaneously parameter optimization and feature weighting. The other
research on selection of feature subset using GA can be found in [21,22].

Particle Swarm Optimization (PSO) is another metaheuristic algorithm that is widely used to
select a feature subset. In previous research, both binary PSO and continuous PSO have been used
to solve this problem [4]. When continuous PSO is used to select the near-optimal feature subset,
we must use a threshold λ to specify the status of selecting a feature. If a feature value of a particle
is larger than λ, the corresponding feature will be selected. Otherwise, if the feature value of the
particle is smaller than λ, the corresponding feature will be not selected. Huang and Dun [23]
developed a framework, named the PSO–SVM, to improve the classification ability, in which the PSO
is hybridized with Support Vector Machine (SVM) for simultaneously parameter optimization and
feature subset selection. Chuang et al. [24] injected two different chaotic maps into binary PSO to
determine its inertia weight in order to solve feature subset selection problems. Gu et al. [25] developed
a novel version of PSO algorithm, named Competitive Swarm Optimizer (CSO), for high-dimensional
feature subset selection. Wei et al. [26] proposed a mutation enhanced BPSO algorithm by adjusting
the memory of local and global optimum (LGO) and increasing the particles’ mutation probability
for feature selection to overcome convergence premature problem and achieve high-quality features.
The other research on feature subset selection using PSO can be found in [27–29].

There are many more works on other metaheuristics for feature subset selection.
Sivagaminathan and Ramakrishnan in [30] proposed an Ant Colony Optimization (ACO) algorithm
for feature subset selection in which the fitness of each ant was calculated by its classification accuracy.
Kashef and Nezamabadi [31] proposed a novel graph-based representation for ACO in which each
feature had two nodes in graph, one node for selecting that feature and the other for removing
that feature. Ghosh et al. [32] proposed an adaptive Differential Evolution (DE) algorithm for feature
subset selection in hyperspectral image data, in which the parameters of DE are adjusted by the
algorithm itself depending on the type of problem at hand. Shunmugapriya and Kanmani [33]
proposed a hybrid algorithm which combines ACO and Artificial Bee Colony (ABC) algorithms for
feature subset selection in classification, where each ant exploit by the bees to find the best ant of
colony and each bee adapts their food source by the ants. Zorarpacı and Özel [34] proposed a hybrid
algorithm that combines ABC and DE for feature subset selection in classification.

In previous literature, some researchers model the feature subset selection as a multi-objective
optimization problem which has two main objectives: (1) minimizing the classification error rate,
and (2) minimizing the number of features. For example, Vieira et al. [35] proposed a multi-objective
ACO algorithm for feature subset selection in which ACO tries to minimize both the classification
error and the number of features. Research on PSO for multi-objective feature subset selection started
only in the last four years, where Xue et al. [36] conducted the first work to optimize the classification
performance and the number of features as two separate objectives. Xue et al. have also been applied
DE to multi-objective feature subset selection [37], which showed that the multi-objective DE can
obtain a better subset of features than single objective DE in terms of the classification performance
and the number of features.

All the algorithms mentioned above have good performance only for low-dimensional or
medium-dimensional feature subset selection. For this reason, they are not able to find the optimal
feature subset in high-dimensional datasets. Most of existing methods for high-dimensional feature
subset selection use a two-stage algorithm. In the first stage, one or multiple filter algorithms are
used to evaluate the relevance of each feature with the target, then ranks them according to the
relevance value. In the second stage, only the top-ranked features are used as the candidate features for
wrapper algorithm. Sahu and Mishra [38] proposed a PSO-based feature subset selection algorithm for



Informatics 2018, 5, 13 6 of 19

classification of high-dimensional cancer microarray data. In the first stage, the dataset is clustered by
k-means algorithm, then a filter algorithm is applied to rank each gene in every cluster. The high-ranked
genes of each cluster are selected and a feature pool is constructed. In the second stage, the PSO tries
to find a near optimal feature subset from this feature pool. Oreski et al. [39] proposed a hybrid genetic
algorithm for feature subset selection to increase the classification prediction in credit risk assessment.
In the first stage, multiple filter algorithms are applied to determine irrelevant features of the dataset.
Then, the GA is prevented from spending time to explore the irrelevant regions of the feature space.
Tan et al. [40] proposed a genetic algorithm (GA) for feature subset selection which combines various
existing feature subset selection methods. In the first stage, multiple filter algorithms are used to
select the high-ranked features of the dataset. Then the feature subsets obtained from filter algorithms
generate a feature pool. In the second stage, the GA will try to find a near optimal feature subset from
this feature pool.

As can be seen, the first stage in the two-stage algorithms generates a feature pool from the
most relative features, but this stage provides no knowledge for wrapper about the importance of
features in feature pool. With this method, the wrapper does not distinguish between relevant and
irrelevant features and therefore requires much time to find optimal feature subset. In this paper,
we propose a novel three-stage framework. In the first stage of the proposed framework, like previous
methods, a feature pool is generated. In the second stage, we weight the features of feature pool, where
the weight of a feature means the probability of selecting that feature. In the third stage, wrapper
algorithm, the CSO, tries to find an optimal subset from the weighed features of feature pool. In the
best of our knowledge, no empirical research has been conducted on the using feature importance
obtained by the ensemble of filters to weight the feature probabilities in the wrapper algorithms.

3. The Proposed Framework

Algorithm 1 shows the general steps of proposed algorithm. The steps of the proposed algorithm
are discussed in more detail below.

Algorithm 1. General outline of proposed algorithm.

// first stage: miRNA pool generation
Calculate the rank of each miRNA by every filter algorithms;
Construct miRNA pool by high-ranked miRNAs;

// second stage: miRNA weights calculation
Calculate the rank of each miRNA of miRNA pool by every filter algorithms;
Calculate the miRNA weights for each member of miRNA pool;

// third stage: search to find the best miRNA subset of miRNA pool
t = 0;

Randomly generate the initial swarm
→
Xi(t), i = 1, . . . , N;

Evaluate the initial swarm with the evaluation function;
While stopping criterion is not satisfied Do

Randomly partition the swarm into two groups;
Perform pairwise competitions between particles from each group;
Directly transmit the winner particles to the swarm of next iteration;
Update the position of each loser particle by learning from its corresponding winner particle;
Evaluate the swarm with the evaluation function;

t = t + 1;
End while
Output: The best solution found.



Informatics 2018, 5, 13 7 of 19

3.1. Generation the miRNA Pool

So far, many filter-based rankers have been proposed for feature subset selection. The previous
research results confirmed that each filter-based ranker is suitable only for a subset of datasets.
In the other words, a filter-based ranker may excellently rank the features of a specific dataset while
performing poorly in another dataset. Therefore, choosing the best filter-based ranker for a certain
dataset may be difficult due to insufficient knowledge about the dataset. In the case that we want to
use only one filter-based ranker for feature subset selection, it is required to perform the numerous
trial-and-error runs to choose a suitable filter algorithm. This approach clearly suffers from high
resource consumption, because feature subset selection is a computationally expensive problem.
Motivated by these observations, we propose an algorithm for miRNA selection which combines
several existing filter algorithms in order to reduce the variability of the ranked miRNAs and generate
a more robust filter algorithm. Our purpose is to utilize the brainstorms of different filter algorithms to
select a most informative subset of miRNAs. It is noteworthy that the output of proposed ensemble
method is used as the knowledge to select the highest-ranked miRNAs of each filter.

In this paper, we use six filter algorithms to construct miRNA pool, including Mutual Information
Feature Selection (MIFS) [41], Joint Mutual Information (JMI) [42], Max-Relevance Min-Redundancy
(MRMR) [43], Interaction Capping (ICAP) [44], Conditional Infomax Feature Extraction (CIFE) [45],
and Double Input Symmetrical Relevance (DISR) [46]. Figure 1 illustrates the flowchart of miRNA
pool generation. As can be seen in this figure, at first some ranking lists are generated using different
filter algorithms, then 5% of top-ranked miRNAs of each ranking list is extracted, and finally, all of the
extracted top-ranked miRNAs are integrated using the well-known union operator.
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Figure 1. Flowchart of the ensemble of filter algorithms to generate the Micro-Ribonucleic Acids
(miRNA) pool.

3.2. Weighting the miRNAs of miRNA Pool

Figure 2 illustrates the flowchart of calculating the weight vector for features of the dataset.
As can be seen in this figure, some ranking lists are generated using different filter-based algorithms
for miRNA ranking and then these different ranking lists are integrated by the well-known arithmetic
mean, where the final score of feature d is calculated by the mean of the ranking scores of this miRNAs
in each ranking list. To calculate the weight vector, we normalize the final miRNA ranking vector
obtained between 0.01 and 0.2 using min-max normalization method [47].
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3.3. Solution Representation

To design a metaheuristic, representation is necessary to encode each solution of the problem.
The representation used in the proposed algorithm is the well-known real-valued representation.
During the execution of the algorithm, all particles are allowed to have a real value between [0, 1].
It should be noted that the algorithm performs the entire search operation in continues space. Therefore,
to solve miRNA subset selection problem with proposed algorithm a threshold parameter is needed to
map solutions in continuous space to solutions in binary (miRNA) space. This threshold parameter is
obtained weight vector described in the previous section.

3.4. Fuzzy Balancer to Balance between Exploration and Exploitation

In this section, we propose a fuzzy inference system to intelligently manage the balance between
exploration and exploitation by adjusting the value of r1 [48–51]. For this purpose, a zero-order T–S
fuzzy inference system with two inputs and one output is used [52]. Two inputs for the proposed
fuzzy inference system are the normalized current iteration of the algorithm and the normalized
diversity of swarm in decision space. The reason for selecting the current iteration as first input is
clear: each algorithm must explore the search space with a diverse swarm at the beginning and change
into convergence by lapse of iterations. In this paper, the normalized current iteration is calculated for
fuzzy balancer as follows:

iter =
t
T

, (5)

where t is the number of iterations elapsed and T is the maximal number of iterations. It is necessary
to mention that iter is equal to “0” if algorithm is in the first iteration, is equal to “1” if algorithm is in
the last iteration, and in general we have 0 ≤ iter ≤ 1.

The main reason for selecting the diversity of swarm as a second input of fuzzy balancer is that
whatever the swarm diversity is, we have good exploration and it does not require more exploration.
In this paper, we propose a new equation to calculate the diversity as follows:

diversity =
4
n

n

∑
d=1

variance(xd
1 , xd

2 , ..., xd
N), (6)

where N is the number of particles, n is the number of miRNAs, and variance(xd
1 , xd

2 , ..., xd
N) is the

variance between all particles in dimension d. It is noteworthy that diversity is equal to “0” if all
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particles converge to a single solution, is equal to “1” if for each dimension of all particles we have
variance(xd

1 , xd
2 , ..., xd

N) =
1
4 in which 1

4 is the upper bound on the variance of each variable that takes
on values in range [0, 1] (Note that we can calculate the upper bound on the variance of each variable

which takes its values in range [a, b] by (b−a)2

4 ) [53]. Therefore, in general we have 0 ≤ diversity ≤ 1.
The output of the proposed fuzzy inference system is the value of r1, because the exploration

ability of proposed algorithm depends on the its value. As we know, a larger value of this
parameter encourages exploration, while a smaller value of it provides exploitation. Using these
facts, the following rule-base is proposed to calculate the value of r1 by fuzzy inference system:

1. If iter is Low and diversity is Low, then r1 = VHigh.
2. If iter is Low and diversity is Med, then r1 = High.
3. If iter is Low and diversity is High, then r1 = Med.
4. If iter is Med and diversity is Low, then r1 = High.
5. If iter is Med and diversity is Med, then r1 = Med.
6. If iter is Med and diversity is High, then r1 = Low.
7. If iter is High and diversity is Low, then r1 = Med.
8. If iter is High and diversity is Med, then r1 = Low.
9. If iter is High and diversity is High, then r1 = VLow.

For partitioning the input spaces of iter and diversity variables, we use a general rule where
the resulting fuzzy term sets for both variables are orthogonal with ε-completeness equal to 0.5.
Figure 3 shows the input membership functions of the proposed fuzzy inference system. The rule’s
consequences are set as: VHigh = 1, High = 0.5, Med = 0.2, Low = 0.1, and VLow = 0.01.
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3.5. Particle Evaluation

Each metaheuristic must use a fitness (or cost) evaluation function which associates with each
solution of the search space a numeric value that describes its quality. An effective fitness (cost)
evaluation function must yield better evaluations to solutions that are closer to the optimal solution
than those that are farther away.

To evaluate the cost of the miRNAs subset selection and avoid the over-fitting, we use the average
error rates of n-fold cross-validation (with n = 10) on training data. In this case, we use the k-Nearest
Neighbors (k-NN) classifier [54] with k = 5 as learning algorithm for wrapper. The k-NN is a type of
instance-based machine learning algorithm where its input is the k training instances in the miRNAs



Informatics 2018, 5, 13 10 of 19

space and its output is a class label. In k-NN, an instance is labeled by the majority class of its k
nearest neighbors.

3.6. Algorithmic Details and Flowchart

Algorithm 2 shows the detailed algorithmic steps of proposed algorithm, and Figure 4 illustrates
the system architecture of it. Algorithm 3 shows the general steps of n-fold cross-validation.

Algorithm 2. Outline of proposed algorithm for feature selection in classification.

// first stage: miRNA pool generation
Calculate the rank of each miRNA by every filter algorithms;
Construct miRNA pool by high-ranked miRNAs;

// second stage: miRNA weights calculation
Calculate the rank of each miRNA of miRNA pool by every filter algorithms;
Calculate the miRNA weights for each member of miRNA pool and threshold vector

→
threshold;

// third stage: search to find the best miRNA subset of miRNA pool
t = 0;
For i = 1 to N Do

Randomly generate the initial solution
→
Xi(t);

Randomly generate the initial velocity
→
V i(t);

End for
While stopping criteria is not satisfied Do

Pt+1 = ∅;
While Pt 6= ∅ Do

Randomly choose two different particles Pt
i and Pt

j from Pt;

/* algorithmic steps of n− fold− cost is shown in Algorithm (3) */

If n− fold− cost
(→

Xi(t),
→

threshold
)
< n− fold− cost

(→
Xj(t),

→
threshold

)
Pt

W = Pt
i ;

Pt
L = Pt

j ;

Else
Pt

W = Pt
j ;

Pt
L = Pt

i ;
End if
For each dimension d of Pt

L update vd
L(t + 1) by Eq. (3);

For each dimension d of Pt
L update xd

L(t + 1) by Eq. (4);

Pt+1 = Pt+1 ∪
{

Pt
W, Pt+1

L

}
;

Pt = Pt\
{

Pt
i , Pt

j

}
;

End while
t = t + 1;

End while
Output: Best solution found.
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Algorithm 3. Outline of 10− fold− cost algorithm.

Inputs: vector
→
X and vector

→
threshold.

F = ∅;
For d = 1 to n Do

If xd > thresholdd

F = F ∪ {d};
End if

End for
Cost = the cost of k-NN by 10-fold cross-validation;

Output: Cost of
→
X.
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4. Experimental Study

In this section, the effectiveness of the proposed algorithm on the high-dimensional miRNA
subset selection problem is evaluated in terms of both the error rate of the k-NN classification and
minimizing the number of miRNAs. In the following, we first present the characteristics of the selected
datasets and experimental settings. Then, numerical results from the implementation of the proposed
algorithm are presented and compared with the results obtained by other several miRNA subset
selection algorithms.

4.1. Dataset Properties and Experimental Settings

To evaluate the numerical performance of the proposed algorithm, we conducted several
experiments on three cancer datasets, i.e., lung, nasopharyngeal, and melanoma. Table 1 lists the main
properties of these datasets. It should be noted that all of these datasets are publicly available and
can be easily downloaded from the gene expression omnibus (GEO) [55]. No preprocessing has been
performed on datasets. For each dataset, training data is randomly generated with 70% instances being
used as the dataset, and the remaining instances are considered as testing set.

Table 1. The main properties of benchmark datasets.

Dataset No. of miRNAs No. of Normal Patients No. of Cancer Patients No. of Classes

Lung 866 19 17 2
Nasopharyngeal 887 19 31 2

Melanoma 864 22 35 2

In the comparison, 17 algorithms are implemented and tested on Matlab 2015b, all based on
the well-known k-NN classifier with k = 5. To show the performance of the proposed algorithm,
we compare it with the standard GA, the original CSO algorithm [25], the original PSO, DE [32],
ABC-DE [34], ACO-FS [31], ACO-ABC [33], GSA [56], BQIGSA [57], four variants of PSO proposed by
Xue’s for bi-objective feature subset selection [36] (Xue1-PSO, Xue2-PSO, Xue3-PSO, and Xue4-PSO),
and three two-stage algorithms include 2S-GA [40], 2S-HGA [41], and 2S-PSO [39]. Based on
Xue et al. [36], the major difference between Xue’s algorithms is the number of features selected in the
initial swarm, while Xue1-PSO uses the normal initialization method where approximately half of the
features are chosen in each particles, Xue2-PSO applies a little initialization method in which only about
10% features are chosen in each particles, Xue3-PSO applies heavy initialization method in which more
than half (about 2/3) of the features are chosen in each particles, and Xue4-PSO applies a combined
initialization in which a major (about 2/3) of the particles are initialized with the little initialization
method, while the remaining particles of swarm are initialized with the heavy initialization method.
Another important difference between Xue’s algorithms and canonical PSO-based algorithms is that
in Xue’s algorithm, the threshold parameter λ is set to 0.6, while this parameter is set to 0.5 as the
threshold parameter in canonical PSO.

The population or swarm size is set to 100 for all metaheuristics, and the maximum number
of fitness evaluation is set to 20,000. Other parameters of some algorithms are: w in the PSO is set
to 0.7298, both c1 and c2 in the PSO are set to 1.49618. The particles in all algorithms are randomly
initialized and the threshold parameter λ = 0.5 is used for the original PSO, while λ = 0.6 is used for
Xue’s algorithms. Also, the experimental settings of other algorithms are adopted exactly as in their
original works. To obtain statistical results, each algorithm is run for 30 times independently.

4.2. Results and Comparisons

Although there are several criteria for assessing the quality of a classifier, however, the main
goal of a classifier is to improve the generalization capability, which means a high accuracy or low
misclassification rate on the unseen data. Therefore, here we are going to obtain the average error
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rate or misclassification rate of all the compared feature subset selection algorithms. The generated
results by all feature subset selection algorithms are presented in Table 2. We also apply the statistical
Wilcoxon rank sum test [58] to compare the results of the proposed algorithm and other compared
algorithms for feature subset selection. The result is also listed in Table 2, where the symbols “+”, “≈”,
and “−” represent that other methods are statistically inferior to, equal to, or superior to the proposed
algorithm, respectively. The average positive predictive value of different algorithms is presented
in Table 3.

The experimental results show that the proposed algorithm has a lower statistical misclassification
rate than other compared miRNA subset selection algorithms on all benchmark datasets. The main
reason for the superiority of the proposed algorithm is that this algorithm removes lowly-ranked
miRNAs from the search process and weight top-ranked miRNAs.

Table 2. Average error rate of different algorithms in cancer classification.

Dataset Lung Nasopharyngeal Melanoma

Proposed algorithm 0.1931 0.3257 0.1605
(0.0159) (0.0317) (0.0179)

GA
0.3312 + 0.4623 + 0.2981 +

(0.0393) (0.0396) (0.0296)

CSO
0.2607 + 0.3393 ≈ 0.2350 +

(0.0236) (0.0352) (0.0284)

PSO
0.3515 + 0.4625 + 0.3173 +

(0.0442) (0.0342) (0.0342)

DE
0.3227 + 0.3902 + 0.3092 +

(0.0371) (0.0325) (0.0307)

ABC-DE
0.3073 + 0.3721 + 0.3217 +

(0.0481) (0.0362) (0.0374)

ACOFS
0.3406 + 0.3916 + 0.3686 +

(0.0361) (0.0403) (0.0391)

ACO-ABC
0.3204 + 0.3993 + 0.2730 +

(0.0382) (0.0381) (0.0311)

GSA
0.3372 + 0.3931 + 0.3511 +

(0.0423) (0.0350) (0.0368)

BQIGSA
0.3007 + 0.3384 ≈ 0.2761 +

(0.0299) (0.0301) (0.0273)

Xue1-PSO
0.3603 + 0.4321 + 0.3154 +

(0.0490) (0.0314) (0.0491)

Xue2-PSO
0.3249 + 0.3791 + 0.2920 +

(0.0405) (0.0424) (0.0301)

Xue3-PSO
0.3618 + 0.4412 + 0.3064 +

(0.0506) (0.0376) (0.0429)

Xue4-PSO
0.3242 + 0.3918 + 0.2796 +

(0.0345) (0.0350) (0.0307)

2S-GA
0.2785 + 0.3341 ≈ 0.2532 +

(0.0272) (0.0366) (0.0291)

2S-HGA
0.2804 + 0.3393 ≈ 0.2699 +

(0.0316) (0.0348) (0.0254)

2S-PSO
0.2523 + 0.3478 + 0.2382 +

(0.0205) (0.0351) (0.0232)

Better 16 13 16
Worse 0 0 0
Similar 0 3 0

The symbols “+”, “≈”, and “−” represent that other methods are statistically inferior to, equal to, or superior to the
proposed algorithm, respectively.
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Table 3. Average positive predictive value of different algorithms in cancer classification.

Dataset Lung Nasopharyngeal Melanoma

Proposed algorithm 0.8852 0.6949 0.9217
(0.0317) (0.0317) (0.0253)

GA
0.7021 + 0.5731 + 0.7326 +

(0.0437) (0.0482) (0.0491)

CSO
0.7419 + 0.5874 + 0.7147 +

(0.0379) (0.0391) (0.0572)

PSO
0.7112 + 0.5730 + 0.7492 +

(0.0512) (0.0462) (0.0420)

DE
0.6826 + 0.5592 + 0.7718 +

(0.0417) (0.0418) (0.0325)

ABC-DE
0.6991 + 0.5973 + 0.7930 +

(0.0454) (0.0427) (0.0458)

ACOFS
0.6592 + 0.6881 ≈ 0.7504 +

(0.0459) (0.0425) (0.0429)

ACO-ABC
0.6811 + 0.5347 + 0.8271 +

(0.0357) (0.0452) (0.0342)

GSA
0.6927 + 0.5696 + 0.7906 +

(0.0448) (0.0406) (0.0394)

BQIGSA
0.7284 + 0.5872 + 0.8985 ≈

(0.0521) (0.0397) (0.0294)

Xue1-PSO
0.6268 + 0.5303 + 0.7892 +

(0.0457) (0.0472) (0.0426)

Xue2-PSO
0.6995 + 0.5605 + 0.8427 +

(0.0452) (0.0403) (0.0368)

Xue3-PSO
0.6817 + 0.5482 + 0.8244 +

(0.0481) (0.0495) (0.0401)

Xue4-PSO
0.7393 + 0.5881 + 0.8625 +

(0.0479) (0.0573) (0.0429)

2S-GA
0.7692 + 0.6822 ≈ 0.8751 +

(0.0472) (0.0415) (0.0284)

2S-HGA
0.7824 + 0.6798 ≈ 0.8901 +

(0.0385) (0.0381) (0.0372)

2S-PSO
0.7924 + 0.6402 + 0.9063 ≈

(0.0322) (0.0493) (0.0371)

Better 16 13 16
Worse 0 0 0
Similar 0 3 2

The symbols “+”, “≈”, and “−” represent that other methods are statistically inferior to, equal to, or superior to the
proposed algorithm, respectively.

The removing all irrelevant and redundant miRNAs to improve the classifier is the second goal
of miRNAs subset selection problem. Therefore, we also look at the statistical number of chosen
miRNAs generated by the compared miRNAs subset selection algorithms. The obtained results are
listed in Table 4. In this comparison, it is visible that the proposed algorithm chooses fewer average
miRNAs than most compared algorithms. The main reason for this superiority is that the irrelevant
miRNAs have a little chance of being selected, and many of them are not selected during the search due
to their inefficiencies in classification. From Table 4, it is visible that the number of miRNAs chosen by
the PSO-based algorithms are proportional to the number of miRNAs initialized in the first generation.
In other words, if we initialize the particles of swarm with a small number of miRNAs, the number
of miRNAs chosen in the final swarm will be smaller and vice versa. By contrast, the proposed
algorithm is not sensitive to the number of miRNAs initialized in the first iteration, which can always
find the near-optimal miRNA subset regardless the number of miRNAs chosen during the particle
initialization phase. Given that the proposed algorithm is a randomized algorithm, different miRNAs
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may be selected in each replication. Therefore, the most frequently selected miRNAs by the proposed
algorithm are given in Table 5.

Table 4. Average number of selected miRNAs by different algorithms.

Dataset Lung Nasopharyngeal Melanoma

Proposed algorithm 9.74 15.58 15.21
(5.36) (3.18) (7.82)

GA
35.62 + 292.26 + 41.65 +

(18.52) (16.02) (19.23)

CSO
14.27 + 15.22 ≈ 20.52 +

(13.43) (5.41) (10.29)

PSO
30.44 + 267.18 + 37.93 +

(19.17) (13.36) (21.16)

DE
31.15 + 225.48 + 35.19 +

(15.66) (12.15) (18.80)

ABC-DE
47.91 + 261.37 + 42.01 +

(20.41) (13.83) (21.13)

ACOFS
50.14 + 261.31 + 40.24 +

(23.62) (12.21) (17.91)

ACO-ABC
32.81 + 251.07 + 36.74 +

(19.60) (14.11) (19.05)

GSA
52.83 + 290.18 + 41.10 +

(25.12) (16.33) (24.16)

BQIGSA
30.05 + 242.36 + 37.35 +

(17.91) (15.13) (16.87)

Xue1-PSO
29.37 + 266.31 + 36.13 +

(17.44) (15.32) (18.65)

Xue2-PSO
17.64 + 31.06 + 23.18 +

(21.49) (8.42) (15.75)

Xue3-PSO
28.14 + 322.19 + 34.92 +

(19.62) (26.52) (16.35)

Xue4-PSO
24.02 + 273.21 + 30.44 +

(16.71) (32.04) (17.32)

2S-GA
15.67 + 28.21 + 22.47 +

(12.74) (7.15) (10.79)

2S-HGA
17.05 + 15.66 ≈ 24.10 +

(14.25) (5.73) (12.32)

2S-PSO
16.31 + 23.14 + 21.52 +

(13.27) (7.35) (11.26)

Better 16 14 16
Worse 0 0 0
Similar 0 2 0

The symbols “+”, “≈”, and “−” represent that other methods are statistically inferior to, equal to, or superior to the
proposed algorithm, respectively.

To understand the effect of ensembling the filter algorithms, a comparison is made between
the proposed algorithm and the filter algorithms individually. The results of these experiments are
presented in Table 6. As can be seen in this table, ensembling the filter algorithms often improves
the results.
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Table 5. The most frequent selected miRNAs by proposed algorithm.

Lung Nasopharyngeal Melanoma

hsa-let-7d hsa-miR-638 hsa-miR-17
hsa-miR-423-5p hsa-miR-762 hsa-miR-664

hsa-let-7f hsa-miR-1915 hsa-miR-145
hsa-miR-140-3p hsa-miR-92a hsa-miR-422a

hsa-miR-25 hsa-miR-135a hsa-miR-216a
hsa-miR-98 hsa-miR-181a hsa-miR-186
hsa-miR-195 hsa-miR-1275 hsa-miR-601
hsa-miR-126 hsa-miR-940 hsa-miR-1301
hsa-miR-20b hsa-miR-572 hsa-miR-328

hsa-let-7e hsa-miR-29c hsa-miR-30d
hsa-let-7c hsa-miR-548q hsa-let-7d

Table 6. Average error rate of individual filter algorithms and proposed algorithm.

Dataset Lung Nasopharyngeal Melanoma

Proposed algorithm 0.1931 0.3257 0.1605
0.0159 0.0317 0.0179

MIFS-k-NN 0.1822 − 0.3741 + 0.2173 +

0.0121 0.0324 0.0198
JMI-k-NN 0.2274 + 0.3499 + 0.2394 +

0.0213 0.0327 0.0219
MRMR-k-NN 0.2182 + 0.3807 + 0.2201 +

0.0195 0.0351 0.0214
ICAP-k-NN 0.2418 + 0.3305 ≈ 0.1994 +

0.0269 0.0319 0.0201
CIFE-k-NN 0.2362 + 0.3677 + 0.2319 +

0.0275 0.0359 0.0237
DISR-k-NN 0.2479 + 0.3803 + 0.2505 +

0.0304 0.0381 0.0241
Better 5 5 6
Worse 1 0 0
Similar 0 1 0

The symbols “+”, “≈”, and “−” represent that other methods are statistically inferior to, equal to, or superior to the
proposed algorithm, respectively.

5. Conclusions and Future Work

To solve the miRNA subset selection problem with continuous optimization algorithms,
a threshold parameter is needed to map solutions in continuous space to solutions in binary
(miRNA) space. In all previous continuous optimization algorithms, the threshold parameter is
set with the same value for all features. This causes the algorithm to not distinguish between relevant
and irrelevant miRNAs, and therefore requires significant time to find optimal miRNAs subsets.
This paper tries to increase the cancer classification accuracy by a novel three-stage framework. In the
first stage of the proposed framework, multiple filter algorithms are used for ranking the miRNAs
according to their relevance with the class label, and generating a miRNA pool obtained based on
the top-ranked miRNAs of each filter algorithm. In the second stage, we rank the miRNAs of the
miRNA pool by multiple filter algorithms and then this ranking is used to weight the probability of
selecting each miRNA. In the third stage, Competitive Swarm Optimization (CSO) tries to find an
optimal subset from the weighed miRNAs of the miRNA pool, which gives us the most information
about cancer. Experiments on several high-dimensional datasets indicate that using the importance of
miRNAs to adjust threshold parameters in CSO has a great performance in terms of both the error rate
of the cancer classification and minimizing the number of miRNAs.

For future research, the proposed three-stage framework can be studied on other continuous
optimization algorithms such as Artificial Bee Colony (ABC), Deferential Evolution Algorithm (DEA),



Informatics 2018, 5, 13 17 of 19

and so on. Also, the effectiveness of the proposed algorithm for solving the multi-objective feature
subset selection and multimodal feature subset selection can be investigated. Finally, one can research
how to use the three-stage framework to help other operators of an optimization algorithm. If you
have a requirement that you don’t see on the paper or if you have questions, please send an email to
mb.dowlatshahi@stu.yazd.ac.ir.
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