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Abstract: This article focuses on the use of data gloves for human-computer interaction concepts,
where external sensors cannot always fully observe the user’s hand. A good concept hereby allows to
intuitively switch the interaction context on demand by using different hand gestures. The recognition
of various, possibly complex hand gestures, however, introduces unintentional overhead to the
system. Consequently, we present a data glove prototype comprising a glove-embedded gesture
classifier utilizing data from Inertial Measurement Units (IMUs) in the fingertips. In an extensive
set of experiments with 57 participants, our system was tested with 22 hand gestures, all taken from
the French Sign Language (LSF) alphabet. Results show that our system is capable of detecting the
LSF alphabet with a mean accuracy score of 92% and an F1 score of 91%, using complementary filter
with a gyroscope-to-accelerometer ratio of 93%. Our approach has also been compared to the local
fusion algorithm on an IMU motion sensor, showing faster settling times and less delays after gesture
changes. Real-time performance of the recognition is shown to occur within 63 milliseconds, allowing
fluent use of the gestures via Bluetooth-connected systems.

Keywords: gesture recognition; data gloves; inertial sensing; hand articulation tracking

1. Introduction

A large number of systems that rely on hand gestures as input technologies for wearable
computers were proposed during the past two decades of research. The advantages of these gestures
include that they are easy to learn and enable the adoption of common gestures used in everyday
life or existing alphabets for sign languages, relying on a significant user base. However, as these
gestures tend to use the full articulation of the hand, requiring the detection of the exact position and
motion of all fingers, such systems are not straightforward to implement. Systems that are placed in
the environment tend to suffer from occlusion and only cover a selected region. Previously-proposed
wearable approaches on the other hand, have used reduced alphabets, less-accurate but small-enough
sensors, and mostly rely on offline processing of the sensor readings on other ’back end’ devices.

A large amount of data gloves and glove-based systems have been proposed for interaction
methods, though most of these have been focusing on sensors that measure bending [2–4].
These sensors are generally straightforward to integrate in fabric, but offer less precision as they
measure changes in the bending of the fingers, and suffer from hysteresis effects and accumulating
measurement errors [5–7]. Few systems have thus far utilized fully integrated sensor chips that contain
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tri-axial accelerometers, gyroscopes, and magnetometers on all fingers, while none have been designed
or evaluated for distinguishing different hand articulations on the glove itself in real-time.

In this article, we introduce a novel sensing glove design (Figure 1) that detects its wearer’s hand
postures and motion at the fingertips with high accuracy, while keeping a small size with respect to the
amount and size of hardware components. Our proposed system is designed to handle the data from
the fingertip-located inertial measurement units (IMUs) as efficiently as possible to achieve real-time
behaviour. The system is evaluated by detecting all hand shapes from the french sign language alphabet
and a background class. Unlike other glove-based systems, this detection is performed on a minimal
embedded sensing system in the glove itself, allowing it to be used as a stand-alone gesture recognition
system, and with a high accuracy (overall 92% accuracy for 22 finger-signs) when dealing with large
collections of signs to be recognized. We furthermore illustrate possible applications by connecting the
glove via Bluetooth to a smartphone to immediately display the glove’s detected gestures.

Figure 1. This article’s self-contained data glove is capable of detecting and distinguishing between
fine-grained signs in real-time through a set of miniature IMU units, one per finger. Detection is
performed on an integrated system placed in the back of the glove, powered from a flat Li-Po battery
integrated under the wrist. Shown are four different gestures (out of the 22 we consider in the
evaluation) including those that for most gloves are not easily distinguishable from each other.

The remainder of this article is structured as follows: After situating our work within similar past
research in data glove systems, the system design choices we made in both hardware and software are
discussed with particular emphasis on the sensor data fusion. Furthermore, the design is evaluated for
accuracy and speed of the hand shape detection on 57 study participants, as well as a more in-depth
look into the fusion of the inertial data, and subsequently the results are discussed. After an illustrative
example how our system works, the final chapter concludes with our main findings in this work and
an outlook on future research.
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2. Related Work

Glove-based systems have been popular for more than three decades and are already being used
in numerous applications (e.g., [8] or [2]). Research into augmented gloves can be broadly divided into
vision-based and sensor-based approaches. Most vision-based systems require external infrastructure,
rendering them unfit for mobile application. The first sensor gloves were primarily used as input
devices, though haptic gloves later were introduced as well that provide the user with vibration-based
feedback. In this article, the focus lies on using the glove as a pure input device, capable of recognizing
any short gestures [9] that the user might perform locally. The earliest sensor glove was developed
in 1977 by de Fanti and Sandin [3], based on flexible tubes with a light source and photocell. Finger
movements modulated the amount of light passing to the photocell causing a change in voltage. By the
end of the decade, advancements in camera-based approach that can track the LEDs placed on the
hand were designed at the MIT Media Lab [3].

The idea of sensing the inflection of fingers then was continued by Zimmerman et al. [4] in 1987,
who commercialized the first data glove. Five to fifteen resistive flex sensors measured each finger and
provided a novel interface to PCs. Kuroda et al., 2004 [10] proposed the StrinGlove equipped with
24 inductcoders (sensing displacement based on the principle of magnetic induction) and 9 contact
sensors on the fingertips of both hands. Calibration is performed automatically after obtaining
minimum and maximum ranges of values from the sensor readings. Around 48 finger characters
were examined in this work and the accuracy was found to be about 85%. Khambaty et al. [11] had
presented Ges-TALK in 2008—a glove to capture and process the finger movements to distinguish
24 sign language static gestures and to output the corresponding voice of the respective gesture.
An assembly of 11 resistive bend sensors were setup to gather the readings. Here, a potentiometer
is used to calibrate the system for every new user. Results showed an accuracy of 90% with a
response rate of 750 ms based on template matching along with statistical pattern recognition. In 2011,
Huang et al. [12] used a 5DT (Dimensional Technologies) data glove with 5 flex sensors for each
finger. They proposed a concept grounding method using a data fusion approach called Clustering
Ensembles and multi-class classifiers [13] for the gesture recognition. A total of 32 gestures were
chosen by limiting to two states for each finger and a classification performance was achieved with
72.2% accuracy.

Different materials allowed better integration into gloves, and sign language applications were
targeted increasingly to evaluate such systems. In 2011, Jeong et al. [14] made a gesture recognition
glove with ‘Velostat’ material, which can measure the finger inflection through changes in resistance.
The glove also embedded a 5-Degrees of Freedom (DOF) IMU to measure the motion angle for
American Sign Language (ASL) and Korean Sign Language. Voltage differences are recorded for the
finger movements and used to recognize the gestures. The sign language letters were recognized
using the ’Velostat’, which after a short delay delivers stable readings. In 2014, Park et al. [15] used
10 linear potentiometers, flexible wires and linear springs on each finger to calculate the joint angles
and thereby measuring the motion of fingers. In 2012, Kadam et al. [16] made a bend sensor-based
glove that emulates a sign language teacher for those who would like to learn the language. For this
purpose, a bend sensor-based glove was designed to be able to learn 26 English sign gestures from the
American Sign Language (ASL) and stored them into the EEPROM of its microcontroller. The finger
movements of a user are recorded from flex sensors mounted on the glove. The study was examined
with 86% accuracy on 14 selected gestures.

A system using inertial Micro-Electro-Mechanical Systems (MEMS) sensors to estimate individual
finger motion and position has been argued for as a wearable interaction system in as early as
1999 in [17]. Most proposed systems, however, relied on combining multiple modalities to achieve
higher accuracies. Jiangqin et al. [18] recognized in 1998 for instance 26 Chinese sign language words
using a Cyberglove with 18 sensors and a 3D-Tracker, employing a multi-layer perceptron to remove
noise from the sensor data that can be passed as input to Hidden Markov Models to classify the words.
The reported recognition performance was over 90%. In [19], Hrabia et al. studied the relationship between
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bio-mechanically modeled finger joints and report that it is possible to track the hand gesture using eight
motion sensors with 9 DOF sensors comprising accelerometer, gyroscope and magnetometer.

Several projects have combined an inertial unit with bend sensors. In [5], the 5DT Data Glove 5
Ultra along with an accelerometer was used to obtain each finger’s flexion degree and information
about wrist orientation. These readings afterwards were processed offline with an artificial neural
network to test classification of 24 ASL static hand gestures for fingerspelling. A classification
rate of 94.07% accuracy was obtained on 1200 test patterns provided the network was trained on
5300 patterns. In [6], Vutinuntakasame et al. recognized fingerspelling with 5 flex sensors and a
3-DOF accelerometer connected to a Body Sensor Network (BSN). They proposed a hierarchical
framework using multivariate Gaussian distribution coupled with bigram and set of rules to detect
a particular padgram with an accuracy of about 72.7–73.6%. Tanyawiwat et al. [7] designed in 2012
a glove to recognize ASL fingerspelling hand gestures with 5 Contact sensors, 5 Flex Sensors and
a 3-DOF accelerometer installed on it and also presented a concept of combined sensory channels.
A combination of Multivariate Gaussian Distribution and the multi-objective Bayesian Frame network
is used to classify the gestures and helped to improve the recognition accuracy rate to 77.4%. Here, six
calibration steps were defined to adapt to different hand sizes. More recently, Tubaiz et al. [20] worked
on the DG5-VHand data glove system, which consists of 5 bend sensors and a 3-DOF accelerometer
for both hands to recognize 40 sentences in the Arabic sign language. The data glove communicates
with a computer via Bluetooth and a camera is used to collect the data. Sentences were classified with
K-Nearest Neighbour with resampled feature vectors, achieving a 98.9% accuracy.

Glove-based accelerometers and inertial units have also been combined with several other
modalities to achieve more accurate detection of gestures. In [21], a 3-axis accelerometer and
Electromyogram (EMG) was examined to figure out their complementary functionality and their
potential in recognizing a small set of 7 German sign language words collected from 8 subjects. KNN
Classification results produced an average accuracy of 98.9% on subject-dependent recognition whereas
subject-independent recognition resulted in 54.82% accuracy. A vision-based sign language recognition
using a hat-mounted camera coupled with the integration of an accelerometer was proposed by
Brashear et al. [22]. The noise in recognizing hand gestures on 5 sets of words representing a vocabulary
along with calibration gestures was ruled out. Using these sensors, it was shown that the accuracy is
90.48%. In 2007, Oz et al. [23] translated 60 ASL words into English using the Cyberglove and a 3D
motion tracker. Gesture classification was performed by two artificial neural net classifiers obtaining a
95% accuracy. Later systems such as [24] have displayed similar gains in accuracy.

In contrast to the above approaches, we focus on designing a data glove to primarily sense the
articulated hand via single IMUs placed on the fingertips. As IMUs have become extremely small,
self-contained, and power-efficient, such a system lends itself well to be miniaturized. Unlike other,
wrist-worn solutions for wearable gesture recognition that target a few gestures, such as [25], we focus
on the recognition of sizable sets of gestures (more than 20). Furthermore, rather than capturing
the raw data and processing it elsewhere, we developed an embedded sensor fusion technique that
combines the data of each of the five fingers’ IMUs to obtain stable and accurate information about the
articulated hand. The classification is carried out through on-board computation as well, making the
system function in real-time without a need for any external processing units. Using a trained classifier
on a factory-provided calibrated IMU sensor also means that no personal calibration is required for
this approach as we rely on the local frame of reference.

3. System Design

3.1. Hardware Design

Our goal is to design our glove with on-board computation capability, while being comfortable to
wear and modularly built. The hardware components of the glove are shown in Figure 2 and described
as below:
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Figure 2. (Left): The presented prototype, equipped with Intel’s Edison module, connects serially with
five IMUs at all finger tips that are bridged with a multiplexer. The glove has a 1000 mAh rechargeable
battery that lasts at least 8 h with both processors, Bluetooth and WiFi on. (Right): The hardware
design of the system, showing the combination of the Edison module and five IMU sensors, through
the I2C interface bus. Connections for the IMU are as follows: VCC—3.3 V, VLOGIC—1.8 V, SDA, SCL
and Ground GND. The Edison’s SDA is shared among the IMUs through a multiplexer, where all
IMUs have a common address. Power is sourced by the Edison’s internal Power Supply Unit.

Microprocessing Unit (MPU): A powerful on-board computation unit is the key component to
make the glove functionally independent: Intel’s Edison was chosen, as it provides both processing
and integrated wireless capabilities. Delivering high performance, the Edison features a dual-core
CPU along with integrated WiFi and Bluetooth support. The MPU runs Ubilinux, a stripped-down
version of the Debian Linux distribution for embedded applications. These characteristics enable the
MPU to perform gesture recognition in real-time.

Inertial Measurement Unit (IMU): The IMU comprises a 3D accelerometer (ACC), 3D gyroscope
(GYRO) and 3D magnetometer, which can measure acceleration, rate-of-turn and magnetic field
respectively. For signs, the orientation of each finger relative to magnetic north are less critical,
so the magnetometer readings are ignored and only orientation in the vertical planes are used.
The magnetometer data might, on the other, have benefits for detecting gestures in certain environments
where the user location and orientation is crucial for discerning gestures; This is left for future work.
ACC and GYRO readings are 16-bit in resolution and are fused using a Complementary Filter to
generate Euler angles (Roll and Pitch) as will be specified in the Sensor Fusion section. The MPU-9250
by InvenSense is used to collect the raw 9D inertial data from each finger.

Multiplexer (MUX): The IMU has only 2 selectable I2C addresses and on the MPU’s side
there are two I2C buses available for communication, allowing at most 4 IMUs to be interfaced.
Introducing 5 IMUs thus requires to multiplex the I2C data line of the MPU to transmit data between
the IMUs. To facilitate this, a 16-bit bi-directional multiplexer is used.

Power: The power consumption of the glove at 5 V and in full-speed mode is approximately
130 mA without an active WiFi connection, and 250 mA with an active WiFi connection. Bluetooth
connectivity with a throughput of 0.27 Mbit/s is used to send the detected signs to the smartphone
whereas WiFi currently just serves debugging purposes. The Lithium Polymer battery with 7.2 V
@1000 mAh therefore can provide continuous power for at least 8 h. In real-time detection mode,



Informatics 2018, 5, 28 6 of 18

in which raw sensor data is not stored locally and all processing units are put into low-power modes
when idle, this figure is much lower.

Glove: To accommodate the IMUs, a cotton glove was extended with elastic pockets on the finger
tips and cable hooks along the fingers to manage the cables.

3.2. Sensor Fusion Approach

Our goal is to obtain precise orientation data of each finger. When used independently from
each other, the raw readings from the ACC and GYRO are not reliable. The ACC unit measures any
acceleration due to gravity or motion. In steady state, the earth’s gravitational field causes a 1 g
(or 9.81 m/s2) acceleration on the axes to which the ACC is oriented. Moreover, the ACCs on the
glove are under constant minor fluctuations due to involuntary quivering of the hand, registered as
high-frequency noise. The GYRO measures angular rotations and, unlike the ACC, is hardly affected
by external forces. However, the GYRO tends to drift from its mean value in the long run as it lacks a
reference frame, which is visualized in Figure 3.

Figure 3. Accelerometer noise and gyroscope drift in static conditions (y axis), plotted over time (x axis,
in equidistant sensor samples).

Sensor fusion combines the sensor data from different sources to reduce their uncertainty and
improves the overall quality of any individual series of readings. In our case, the ACC and GYRO data
are fused with a digital filter to minimize noise and drift respectively. Among different available filters,
the Complementary Filter (CF) [26] is best suited for the problem at hand, as it primarily operates on
signals having opposite noise levels. When applying the CF, high frequency noise in the ACC data
and low frequency drift of the GYRO data are filtered out simultaneously. The Complementary Filter
thus acquires each finger’s acceleration and rotation readings from the sensors and delivers less noisy
data with low drift.

Among the various ways of representing an orientation in 3D Euclidean space, Euler angles (EA)
are chosen as a simple and expressive alternative. A body’s orientation is described by a sequence of
rotations around the main axes, namely Pitch θ around the x-axis, Roll φ around the y-axis and Yaw ψ

around the z-axis respectively. This also is illustrated in Figure 4. The Yaw angle in this case is neglected
as the z-axis, being parallel to the yaw axis of reference, is not affected by the gravitational force.



Informatics 2018, 5, 28 7 of 18

Figure 4. Euler Angle representation of each finger for measuring the absolute orientation. The IMUs
are placed on the finger tip of the glove and track the hand motion.

The Euler angles can be calculated from the inverse tangent of the ACC data and the angular
position or Gyro rate is obtained by integrating the angular velocity over time:

Pitch(θ) = atan

 ACCx√
ACC2

y + ACC2
z

×
(

180
π

)

Roll(φ) = atan

(
ACCy√

ACC2
x + ACC2

z

)
×
(

180
π

)

Gyro_X_Rate =
∫ t

0
Gyro_X(t)× dt

Gyro_Y_Rate =
∫ t

0
Gyro_Y(t)× dt

With the sampling period dt, the raw GYRO angular velocities in the θ and φ axes
Gyro_X(t) and Gyro_Y(t), and the uncompensated θ and φ angular positions Gyro_X_Rate and
Gyro_Y_Rate respectively.

The Complementary Filter (Figure 5) introduces a coefficient factor α that controls the amount of
influence of ACC and GYRO against one another. The high frequency fluctuations of the accelerometer
data is attenuated by multiplying the unfiltered accelerometer value with a fraction of the time constant
(Figure 6). This value was empirically determined to be α = 0.93 (compare Figure 7).
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Figure 5. Working model of the Complementary Filter: Sensor fusion is performed on low-pass filtered
accelerometer data and, after being integrated over time, high-pass filtered gyroscope data to obtain
the filtered signal.

Figure 6. The Complementary Filter returns a smooth and consistent signal, by fusing both
accelerometer (ACC) and gyroscope (GYRO) data.

Figure 7. Comparison of eight different gyroscope to acceleration ratios for the complementary filter.
The ratio is computed in the range 91 < X < 100 with X·Gyro

(100−X)·Acc .
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θt = α × (θt−1 + Gyro_X(t)× dt)︸ ︷︷ ︸
HPF

+ (1 − α)× (ACCθt)︸ ︷︷ ︸
LPF

φt = α × (φt−1 + Gyro_Y(t)× dt)︸ ︷︷ ︸
HPF

+ (1 − α)× (ACCφt)︸ ︷︷ ︸
LPF

With the current estimate of Pitch θt and Roll φt, the previous estimate of Pitch θt−1 and Roll φt−1,
and the current estimate of ACC Roll ACCθt and Pitch ACCφt.

Pitch and Roll angles are continuously calculated from the readings of each finger with a sampling
rate of approximately 3 ms (mostly due to the more processing-intensive use of the arctangent function,
which we did not optimize). For every newly polled GYRO and ACC data, the angles are iterated
using the CF. The HPF only allows the GYRO readings to pass through if their rate of change is large
enough to be captured within the sampling period and likewise the LPF only lets ACC data pass
whose rate of change is small. The Complementary Filter with its coefficient factor α = 0.93 hereby
relies to 93% on the previous angle integrated with the current angular position given by GYRO and to
7% of the current ACC angle to filter out the short-term noise and long-term drift.

As an alternative to any external filtering, InvenSense provides a proprietary sensor fusion code
in form of a Binary Blob (Blob = Binary Large Object, closed-source binary piece of software) that is
called Dynamic Motion Processing (DMP) and can be loaded onto the MPU-9250. The Binary Blob
(BB) will be executed on the sensor itself and has a sampling rate of 20 ms. It requires up to 20 s settle
time initially, whereas the CF is available instantaneously (see Figure 8, left). Furthermore, the BB has
a slightly higher gesture change delay and tends to produce less stable results when compared to the
CF (see Figure 8, right). As the Complementary Filter outperforms the Binary Blob, the CF is chosen as
final filtering and sensor fusion approach.

Figure 8. (Left): The Complementary Filter instantaneously provides a stable signal, whereas the
Binary Blob needs up to 20 s settle time. (Right): The Complementary Filter reacts faster to a gesture
change than the Binary Blob and returns more stable results.

3.3. Data Communication and Interface Design

The glove’s intention is to use it as a novel input device to a computer system. To show its
capabilities, an Android app integration was made that utilizes the glove to receive letters from the
LSF alphabet. The glove detects the handshapes as described above, encodes them to a character and
communicates them via Bluetooth to the smartphone. The app then visualizes the detected letters on
screen provided the certainty of prediction is high (if the predicted probability for the classification
crosses a threshold of 0.7), otherwise the data is classified as belonging to a null class, and a null
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character is shown to indicate the undefined gesture. The flowchart presented in Figure 9 depicts a
detailed description of the working model for the whole arrangement in real-time scenarios. The glove
and a Smartphone (SP) are paired with each other at the beginning of the control routine via Bluetooth,
where the glove acts as a server and waits for a Bluetooth-enabled glove to start sending.

Glove
Start

Wait for new
BT Connection

Connection
initiated?

Initialize &
Configure IMUs

Read raw data
from IMUs

Perform
Complementary

Filtering

Predict the
gesture using
RF classifier

Transmit the
prediction to SP

Is the BT
connection
still open?

Stop

Smartphone (SP)

Start

Initiate BT
connection

Wait for
predicted data

Has the new
prediction
arrived?

Display the sign

Stop connection?

Stop

yes

no

data

yes

no

yes

no

no

yes

Figure 9. The flowchart describing the entire setup and communication process between smartphone and
our glove prototype (BT—Bluetooth, IMU—Inertial Measurement Unit, RF—Random Forest classifier).

The following steps illustrate the sequence of actions presented in the flowchart:

Step 1: The glove acts as a server and waits for a Bluetooth-enabled device to initialize the program.
Thereafter, the smartphone can connect to the glove and will wait for the first set of
predicted data.

Step 2: After the connection prompt, the glove starts to initialize and configure the IMUs.
Step 3: Once the sensors are set, the raw data (ACC & GYRO) for each finger is read in cyclic manner.
Step 4: The sampling time to fetch the readings from each IMU is measured precisely and the CF

is performed.
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Step 5: The sensor-fused data from the above step is fed to RF classifier to predict the gesture from
the obtained readings.

Step 6: The corresponding sign of the predicted gesture is transmitted to the smartphone
via Bluetooth.

Step 7: Smartphone displays the currently received sign if it is not same as the previous one.
Step 8: This cycle is repeated indefinitely until the connection is terminated by the smartphone.

4. Evaluation

The proposed glove system’s gesture recognition capabilities are in this section examined
in detail on data collected from 57 study participants performing gestures from the french sign
language (LSF) alphabet, in order to validate how well such a system would work for larger sets of
gestures. The following will detail the experiment’s scope, after which it covers the setup of the data
collection, the experiment design, and the experiment results from all classifiers and classification
parameters tested.

4.1. Experiment Scope and Goals

The following experiment intends to investigate the classification aspects of the system that was
discussed thus far. First and foremost, the aims of our experiments are (1) to find the classification
algorithm that performs best for this paper’s fingerspelling hand gestures; as well as (2) to investigate
which gestures perform well and (3) the impact of the amount of training data on the classification
performance. The best-performing classification algorithm needs to be measured from the point of
view of accuracy in the detection of performed gestures, as well as the speed at which the classification
model can be trained and used during testing. The accuracy performance of all signs’ gestures is
required to obtain insights into the confusion that might occur between individual, hard-to-distinguish
gestures. In addition to the single performance figures for all gestures, an empirical investigation in the
influence of the amount of training data on the performance of the model was performed. The goal of
this is to identify how much data, in particular in terms of the number of participants that is required
to build up a sufficiently strong training dataset.

4.2. Data Collection and Experiment Design

Choice of hand gestures: The finger spelling alphabet. For validation of the gesture recognition
capabilities of the embedded glove, 22 out of the 26 possible gestures from the french sign language
alphabet were chosen to obtain a significantly large amount of gestures. The four gestures for “J”,
“P”, “Y”, “Z” were left out due to their non-static nature. The sensor readings from all five IMUs are
mapped to one of the gestures that are uniquely described by a set of angles assumed by the fingers.
More precisely, each data sample is represented by a 10-dimensional vector, which contains the roll and
pitch Euler angles for each finger tip. Each gesture hereby will have minor offsets from the ideal finger
positions, especially when compared between different users. For the training of the classification
models, it therefore is crucially important to repeat the capture of each gesture for a sufficient amount
of times and for a high variety of users in order to capture these slight deviations.

Experiment design: leave-one-user-out, 57-fold cross validation. To obtain experiment results
that includes the high variability of gesture instances, a large amount of data samples including all
possible orientations in which a user could perform a particular sign language gesture were recorded
from 57 participants in total. Of these 57 participants, one participant who was a native LSF instructed
the hand gestures and movements of each gesture to the remaining 56 participants before the start of
the study, such that each participant was shown a short demonstration to make them familiar with the
french sign language signs before gathering the glove’s sensor samples.

We created the dataset so that classification results could be created from using 57-fold cross
validation, more specifically by following a leave-one-user-out approach (as suggested by [27] as a
proper methodology): For each fold, the model was trained with the gesture data of 56 subjects and the
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gesture data of the remaining subject was used for testing. Each subject’s gesture data hereby amounts
to 22,000 samples (1000 samples for each of the previously discussed handshapes).

It is important to note that the samples involving transition between the gestures were ignored
and no calibration was required as the sensors were initialized with their default factory calibration.
To support the variability of the training and testing data in the dataset, the participants were instructed
to assume a resting position for about 10 s between performing all gestures, and each gesture was
performed five times by the same user. For each of the single gesture instances that was performed,
200 data samples were retained for the dataset to ensure that all classes in the evaluation would
be balanced. This thus results in every gesture having training data from 1000 samples (since every
gesture was performed five times) per participant, or 57,000 data points across all participants. The total
dataset contains approximately 1.25 million samples in total. The data collection from each participant
took about 15 min and the sensor readings were stored as a CSV file on the onboard Intel Edison
module. To prepare the dataset for the Random Forest classifier, as detailed in the next section, manual
data annotation was performed afterwards of all gestures.

4.3. Classification Algorithms, Parameters, and Performance

Classifiers. Different machine learning approaches like Support Vector Machines (SVM), Naive
Bayes (NB), Multi Layer Perceptrons (MLP) and Random Forest (RF) models [28] were examined to
classify the hand gestures as shown in Table 1. Among them, MLP and RF showed the most promising
results, whereas the SVM with different kernels took a substantial amount of time to train with all
the data and was not further evaluated. The MLP had been reconfigured with a different number
of hidden layers and neurons and also by tuning various hyperparameters to achieve satisfactory
results. A stochastic gradient descent algorithm with a learning rate of 1.0 × 10−5 and 0.5 momentum
along with the total of 100 neurons in each of the two or three hidden layers was shown as a best MLP
classifier for our task. The performance of RF with a varying number of 5 to 75 trees was tested. The
accuracy of validation results on the dataset showed minor improvements with the increase in number
of trees. As a trade-off, the computation time of the RF was gradually increased with increasing
number of trees resulting in a delay in performing the gesture classification. Since the aim of our work
is to design a real-time gesture recognition glove, an RF with 15 trees was found to be a reasonable
decision to balance accuracy and response rate. The performance and accuracy produced by both,
MLP with 100 neurons and RF with 15 trees on the validation data was comparable. The rate of false
positives for MLP was relatively high compared to RF and thus the RF with 15 trees was chosen as a
final classifier.

Table 1 summarizes the training times and the accuracy results for these different classifiers.
The accuracy of our gesture recognition approach with the random forest (RF) algorithm is detailed
further in the confusion matrix in Table 2. Several 1000 samples representing a gesture is predicted in
each fold of the cross-fold validation, the confusion matrix depicts the average prediction count of
each sign over 57 iterations. The overall mean accuracy of all the gestures was 92.4% with a standard
deviation of 0.042, the F1 score was 91.3% with a standard deviation of 0.048. Although our study’s
focus is limited to validating the embedded classification performance, an additional step that could
have been carried out is to measure the accuracy of the Euler angles that were obtained from the IMU
data. This is however notoriously hard to obtain for hand articulation. Given the results in this section,
we furthermore argue that these estimates are exact enough for the task of gesture classification.
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Table 1. Overall comparison of the performances, in training time and in classification accuracy,
from different types of classifiers on the glove’s IMU data, by training on the data from 56 participants
and testing it on the remaining 57th participant. Based on these results from this cross-validation study,
the Random Forest (RF) classifier with 15 sub-trees was chosen as it gave the highest accuracy (92.95%)
for a negligible training time (105 s per fold 1).

Classifier Parameters
Training Time

(Seconds/Fold 1)
Testing Time

(Seconds/Sample)
Accuracy

(%)
F1 Score

(%)

Naive
Bayes - 2.2 0.002 89.1 87

MLP

No. of layers

2 layers with 50–50
units and final layer

with 10 classes
3144.8 0.16 90.9 89.7

2 layers with 100–50
units and final layer

with 10 classes
3630 0.19 91.8 90.3

2 layers with 150–50
units and final layer

with 10 classes
3860 0.23 92.2 91.1

RF

No. of sub-trees

5 20 0.12 90.3 89.0

10 50 0.13 92.3 91.3

15 105 0.14 92.95 91.98
1—Timings are averaged across all folds in the cross-validation procedure.

Individual gestures’ results. The per-class accuracy data show good results for most hand shape
signs, with 12 of the hand shapes having an average accuracy of more than 95%, six of them account in
the range of 89% to 95% and four hand shapes vary between 75% to 80% (Table 3). With the evidence
provided by the confusion matrix, the reason for the accuracy drop found in the gestures ’F’, ’T’, ’L’, ’U’
can be analyzed more thoroughly: The trained model has most difficulties with the ’F’-’T’ and ’L’-’U’
hand shapes. The gestures of the signs ’F’ and ’T’ find more similarity with each other resulting in a
mean prediction count of ’F’ as ’T’ for 184 times and ’T’ as ’F’ for 163 times out of 1000 in the confusion
matrix. While measurements from all the other fingers remain the same, pitch angle readings from the
thumb are the only apparent measurements that would differentiate both of the gestures. On the other
hand, a similar behavior can also be observed for ’L’ and ’U’. Here, uncertainty is introduced since the
difference of orientation can be noticed only for the thumb and middle fingers. As we gathered data
from distinct people having different hand structures varying in length, width and thickness, the pitch
of the thumb and the roll of middle finger for a few subjects would not reveal great variance in the
measurements, with the same holding for ’F’ and ’T. Hence, the random forest classifier exhibited
some ambiguity in recognizing these four hand shapes during cross validation.

Impact of training set size. Table 4 shows accuracy and standard deviation over 10 folds, as the
training set is increased from 5 participants to 40. As is shown in this table and Figure 10, our study
data indicates that at least 30 participants were needed to achieve an accuracy of at least 90%.

The evaluation results in Table 4 on these subsets of our full dataset, when compared with the
accuracy scores in Table 3, shows that a model with only five subjects’ data resulted in a significant
drop in the accuracy and F1 score to 79% and 77% respectively. After obtaining these validation results
on the total dataset of 57 volunteers, the glove-based system has also been tested on further people
in real-time studies: the time taken to predict the gesture was found to be performed within 65 ms,
where 23 ms were spent on gathering the sensor readings from all 5 IMUs, and the random forest
classifier predicting the hand shape from the obtained readings within 42 ms.
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Table 2. The confusion matrix for the random forest classifier’s 24 recognized fingerspelling signs. Visible are minor confusions between ’L’ and ’U’, and ’T’ and ’F’.
Overall accuracy is 92.4% (with a standard deviation of 0.042), the overall F1-score is 91.3% (with a standard deviation of 0.048).

A B C D E F G H I K L M N O Q R S T U V W X

A 986.63 0.00 0.02 0.00 0.00 0.54 0.00 0.00 12.25 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B 0.00 900.46 16.86 22.35 56.68 0.32 0.00 0.00 0.05 0.00 0.00 0.09 0.00 0.00 0.42 0.00 0.02 0.19 0.00 1.25 0.00 1.32

C 0.02 1.58 978.89 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1.05 0.14 0.00 17.49 0.00 0.00

D 0.00 9.51 1.79 953.98 34.32 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.00

E 0.00 33.21 0.11 36.70 928.79 0.88 0.00 0.02 0.00 0.26 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F 12.84 13.56 0.05 0.21 0.79 754.32 0.51 0.00 13.67 0.00 0.05 0.00 0.00 0.00 1.54 11.07 3.33 183.19 0.00 3.44 0.04 1.39

G 0.02 0.07 0.00 0.11 0.00 0.37 998.67 0.35 0.04 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.05 0.00 0.00 0.02

H 0.00 0.05 0.00 0.00 1.49 0.00 0.74 893.67 3.93 0.00 0.00 94.30 3.56 0.00 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00

I 35.33 0.16 0.00 0.00 0.21 4.05 0.00 0.61 956.21 0.02 0.00 0.00 0.04 0.00 0.05 0.00 0.00 3.32 0.00 0.00 0.00 0.00

K 0.86 0.00 0.00 0.04 0.00 0.05 0.00 0.00 0.19 993.35 0.04 0.00 0.00 0.00 0.02 5.35 0.00 0.05 0.00 0.04 0.02 0.00

L 0.09 0.00 0.00 0.04 0.02 0.04 0.00 0.00 1.09 0.23 791.82 0.00 0.00 0.00 0.00 0.00 0.00 0.02 206.54 0.09 0.00 0.04

M 0.00 0.00 0.00 0.00 1.28 0.00 0.00 23.16 0.04 0.02 0.72 932.30 38.56 0.00 3.75 0.02 0.00 0.00 0.16 0.00 0.00 0.00

N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.54 0.00 0.00 0.00 34.60 961.51 0.07 1.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.16 1.23 996.33 2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q 0.00 4.70 0.02 0.00 0.00 0.07 0.00 0.84 11.32 0.00 0.00 10.84 8.65 1.07 962.33 0.12 0.00 0.02 0.00 0.02 0.00 0.00

R 2.74 0.18 0.00 0.00 0.00 64.82 0.12 0.00 0.00 19.53 0.12 0.00 0.00 0.00 0.05 897.40 0.89 13.82 0.02 0.00 0.30 0.00

S 0.00 0.51 43.86 0.00 0.00 0.47 0.00 0.00 0.00 1.67 0.00 0.65 0.02 0.00 0.11 13.35 933.93 1.98 0.00 0.00 3.46 0.00

T 0.00 10.19 0.16 0.23 0.00 163.46 3.91 0.00 25.82 5.96 0.02 0.00 0.00 0.00 0.04 21.26 11.86 752.79 0.02 0.00 3.02 1.26

U 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.12 0.19 236.28 0.00 0.00 0.00 0.02 0.18 0.00 0.68 761.77 0.09 0.00 0.00

V 0.00 1.58 5.89 0.00 0.00 0.07 0.00 0.00 0.00 0.04 0.58 0.02 0.00 0.00 0.00 0.04 0.00 0.00 0.58 987.46 3.75 0.00

W 0.04 0.14 1.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.05 0.00 0.86 994.65 2.88

X 0.00 4.63 0.00 0.00 0.00 0.58 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 1.00 993.72
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Table 3. Mean accuracy scores (denoted as acc, in %) and standard deviations (denoted as σ) of all
57-fold cross validation results given for each gesture in the french sign language (LSF) alphabet.

A B C D E F G H I K L

acc 98.6 90.0 97.8 95.3 92.8 75.4 99.8 89.3 95.6 99.3 79.1
σ 0.0632 0.2526 0.0875 0.1703 0.1712 0.3156 0.0026 0.2070 0.1390 0.0241 0.3162

M N O Q R S T U V W X

acc 93.2 96.1 99.6 96.2 89.7 93.3 75.2 76.1 98.7 99.4 99.3
σ 0.1019 0.1043 0.0102 0.1463 0.2677 0.1972 0.3674 0.3304 0.0502 0.0200 0.0326

Table 4. The following table shows the relation between the accuracy and the number of participants
chosen for evaluation. The number of participants was selected for 10 folds, and performance was
evaluated on test data from a fixed number of 17 participants.

No. of Participants Accuracy in % σ No. of Participants Accuracy in % σ

5 79 0.02 30 90 0.0055
10 84 0.0141 35 91 0.0025
20 88 0.011 40 91 0.0024

Figure 10. The relation between the number of participants’ data and the accuracy. For an accuracy of
90% or above, a minimum of 30 participants were needed for our study.

5. Conclusions and Future Work

This article has contributed with a data glove design that enables the on-glove detection of
fine-grained hand shapes based on IMU sensors on all fingertips. It takes advantage of recent
System-on-Chip designs that are powerful enough to perform data fusion and classification routines in
real-time within the glove. The total number of components with 5 IMUs, a multiplexer, and the built-in
microprocessor accounts for entire configuration of the glove. To improve the noisy and drift-prone
sensor readings from the IMUs, a Complementary Filter was employed to generate a smooth and
consistent signal. Fusing the data moreover yields a precise measure of the finger orientation and
movements. To evaluate the glove’s capabilities, it was trained to 22 different hand gestures from
the french sign language alphabet. It was shown that the gesture recognition performs poorly when
there is not enough variance in the training data, especially in a scenario where the wearer did not
train the glove. So to account for the differences in individuals’ hand movements, a dataset from
57 people was collected to capture the variations of gestures made while fingerspelling. The system
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is trained and executed fully on the glove, making it thus capable of recognizing the non-dynamic
hand gestures from the LSF signs. The performance was evaluated using 57-fold (leave-one-user-out)
cross-validation, resulting in 92% mean accuracy and an F1 score of 91%. Some complications however
were found on similar signs that are not easily distinguishable for the glove. The proposed system has
shown a real-time detection performance with gesture recognition being performed on-board within
65 milliseconds.

The evaluation results lead to the conclusion that the glove is able to learn and thereafter recognize
various different hand gestures in real-time. As advise for a transferable system, the hand gestures
should not be too similar and it is essential to train the glove with highly diverse data possibly coming
from multiple people. Furthermore the developed glove can easily be utilized as an input device to any
Bluetooth-enabled system as shown on the Android app example that was developed to immediately
visualize the recognized gestures. A demo highlighting the glove’s fingerspelling functionality can be
found here (https://youtu.be/RW4J5zOLeDg).

Although our focus was to investigate the use of on-glove fusion and classification of gestures,
the proposed idea of on-glove gesture recognition can further be investigated to make the model
more reliable and energy-efficient. Examining different variants of sensor fusion might produce
more accurate measurements than the Complementary Filter. Training the system to also recognize
dynamic gestures would not only allow to detect all signs in sign language but would also enhance
the space of possible gestures and helps resolving ambiguity in similar hand shapes. To achieve
better classification results for the gestures used in this article’s study, we expect that well-selected
touch or proximity sensors in the glove would enable an improved detecting of the hand articulation.
The prototype’s form factor can drastically be reduced by shrinking the PCBs and replacing the wires
by conductive ribbons. The glove-embedded microprocessor is capable of allowing a more interactive
design, that could be controlled by the system the glove currently is utilized for as input device.
In various realistic applications, such as home-automation or multimedia interfaces, it would be
beneficial to calculate quaternions from the IMU readings to better represent the fingertip orientations
and thus any articulated hand model. Finally, the presented system can be complemented with hand
articulation tracking in 3D, to widen such a system to gestures that use relative distances between the
hands (e.g., zooming in gestures where the distance between hands is decreased).

Both data set and source code for the system and evaluations in this paper are publicly available
online on: http://ubicomp.eti.uni-siegen.de/home/datasets to facilitate reproduction of our results.
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