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Abstract: Credit scoring is generally recognized as one of the most significant operational research
techniques used in banking and finance, aiming to identify whether a credit consumer belongs to
either a legitimate or a suspicious customer group. With the vigorous development of the Internet
and the widespread adoption of electronic records, banks and financial institutions have accumulated
large repositories of labeled and mostly unlabeled data. Semi-supervised learning constitutes an
appropriate machine- learning methodology for extracting useful knowledge from both labeled and
unlabeled data. In this work, we evaluate the performance of two ensemble semi-supervised learning
algorithms for the credit scoring problem. Our numerical experiments indicate that the proposed
algorithms outperform their component semi-supervised learning algorithms, illustrating that reliable
and robust prediction models could be developed by the adaptation of ensemble techniques in the
semi-supervised learning framework.

Keywords: semi-supervised learning; self-labeled methods; ensemble learning; credit scoring;
classification

1. Introduction

In today’s competitive economy, credit scoring constitutes one of the most significant and successful
operational research techniques used in banking and finance. It was developed by Fair and Isaac in the
early 1960s and corresponds to the procedure of estimating the risk related to credit products which
is evaluated using applicants’ credentials (such as annual income, job status, residential status, etc.)
and historical data [1,2]. In simple terms, credit scoring produces a score which can be used to classify
customers into two separate groups: the “credit-worthy” (likely to repay the credit loan), and the “non
credit-worthy” (rejected due to its high probability of defaulting).

The global financial crisis of 2008 (which resulted in the collapse of many venerable names in the
industry) caused a ripple effect throughout the economy and demonstrated the potential large losses
when a credit applicant defaults on a loan [3,4]. Therefore, the credit scoring systems are of great
interest to banks and financial institutions, not only because they must measure credit risk, but also
because any small improvement would produce great profits [5–7]. For this task, many researchers in
the past have developed credit- scoring models by exploiting the knowledge acquired from individual
and company records of past borrowing and repaying actions gathered by the banks and financial
institutions [8–14]. In the field of credit scoring, imbalanced datasets frequently occur as the number
of non-worthy applicants is usually much smaller than the number of worthy. In order to address this
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difficulty, ensemble learning methods have been proposed as a new direction for obtaining a better
composite global model with more accurate and reliable decisions than can be obtained from using a
single model [15]. The basic idea of ensemble learning is the combination of a set of diverse prediction
models for developing a prediction model with improved classification accuracy. Nevertheless, the
vigorous development of the Internet, the emergence of vast collections and the widespread adoption
of electronic records have led to the development of large repositories of labeled and mostly unlabeled
data. Most conventional credit-scoring models are based on individual supervised classifiers or a
simple combination of these classifiers which exploit only labeled data, ignoring the knowledge hidden
in the unlabeled data.

Semi-Supervised Learning (SSL) algorithms constitute a hybrid model which comprises
characteristics of both supervised and unsupervised learning algorithms. More specifically,
these algorithms efficiently exploit the hidden knowledge in the unlabeled data with the explicit
classification knowledge from the labeled data. To this end, they are generally considered as the
appropriate machine learning methodology to build powerful classifiers by extracting information
from both labeled and unlabeled data [16]. Self-labeled algorithms constitute the most popular and
frequently used class of SSL algorithms, thus have been efficiently applied in several real-world
problems [17–24]. These algorithms wrap around a supervised prediction base learner and exploit
the unlabeled data via a self-learning philosophy. Recently, Triguero et al. [25] presented an in-depth
taxonomy focusing on demonstrating their simplicity of implementation and their wrapper-based
methodology [16,26].

In this work, we examine and evaluate the performance of two ensemble-based self-labeled
algorithms for the credit risk scoring problem. The proposed algorithms combine/fuse the
predictions of three of the most productive and frequently used self-labeled algorithms, using different
methodologies. Our experimental results demonstrate the classification accuracy of the presented
algorithms on three credit scoring datasets.

The remainder of this paper is organized as follows: Section 2 presents a survey of recent studies
concerning the application of data mining in credit scoring problem. Section 3 presents a brief
description of self-labeled methods and the proposed ensemble-based SSL algorithms. Section 4
presents a series of experiments to evaluate the accuracy of the proposed algorithms for the credit
scoring problem. Finally, Section 5 sketches our concluding remarks and our future work.

2. Related Work

During the last decades, the developments and advances of machine learning systems in
credit decision making have gained popularity, addressing many issues in banking and finance.
Louzada et al. [27] presented an extensive review, discussing the chronicles of recent credit scoring
financial analysis and developments and analyze the outcomes produced by a machine learning
approach. Additionally, they described in detail the most accurate prediction models used for gaining
significant insights on credit scoring problem and conducted a variety of experiments, using three
real-world datasets (Australian credit scoring, Japanese credit scoring and German credit scoring).
A number of rewarding studies have been carried out in recent years; some useful outcomes of them
are briefly presented below.

Kennedy et al. [28] evaluated the suitability of semi-supervised one-class classification algorithms
against supervised two-class classification algorithms on low-default portfolio problem. Nine banking
datasets were used and class imbalance is artificially created by removing 10%of the defaulting
observations from the training set after each run. Additionally, they also investigated the suitability
of oversampling, which constitutes a common approach to dealing with low-default portfolios.
Their experimental results demonstrated that semi-supervised techniques should not be expected to
outperform the supervised two-class classification techniques and they should be used only in the near
or complete absence of defaulters. Moreover, although oversampling improved the performance of
some two-class classifiers, it does not lead to an overall improvement of the best performing classifiers.
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Alaraj and Abbod [29] introduced a model based on the combination of hybrid and ensemble
methods for credit scoring. Firstly, they combined filtering and feature selection methods to develop
an effective pre-processor for machine learning models. In addition, they proposed a new classifier
combination rule based on the consensus approach of different classification algorithms, during the
ensemble modeling phase. Their experimental analysis on seven real-world credit datasets illustrated
that the proposed model exhibited better predictive performance than the individual classifiers.

Abellán and Castellano [30] performed a comparative study on several base classifiers used in
different ensemble schemes for credit scoring tasks. Additionally, they evaluated the performance of
Credal Decision Tree (CDT) which uses imprecise probabilities and uncertainty measures to build a
decision tree. Via an experimental study, they concluded that all the investigated ensemble schemes
present better performance when they use CDT model as a base learner on credit scoring problems.

In more recent works, Tripathi et al. [31] proposed a hybrid credit scoring model based on
dimensionality reduction by Neighborhood Rough Set algorithm for feature selection and layered
ensemble classification with weighted voting approach to enhance the classification performance.
They have proposed a novel classifier ranking algorithm as an underlying model for representing
ranks of the classifiers based on classifier accuracy. The experimental results revealed the efficacy and
robustness of the proposed method in two benchmarked credit scoring datasets.

Zhang et al. [32] proposed a new predictive model which is based on a novel technique for
selecting classifiers using a genetic algorithm, considering both the accuracy and diversity of the
ensemble. They conducted a variety of experiments, using three real-world datasets (Australian
credit scoring, Japanese credit scoring and German credit scoring) to explore the effectiveness of their
proposed model. Based on their numerical experiments the authors concluded that their proposed
ensemble method outperforms classical classifiers in terms of prediction accuracy.

J. Levatić et al. [33] proposed method for semi-supervised learning of classification trees.
The trees can be trained with nominal and/or numeric descriptive attributes on binary and multi-class
classification datasets. Additionally, they performed an extensive empirical evaluation of their
framework using an ensemble of decision trees as base learners obtaining some interesting results.
Along this line, they extended their work, presenting some ensemble-based algorithms for multi-target
regression problems [33,34].

3. A Review of Semi-Supervised Self-Labeled Classification Methods

The basic aim of semi-supervised self-labeled methods is the enrichment of the initial labeled
data through labeling of unlabeled data via a self-learning process based on supervised prediction
models. In the literature, several self-labeled methods have been proposed each one based on a
different philosophy on exploiting knowledge from unlabeled data. In the sequel, we briefly describe
the popular and frequently used semi-supervised self-labeled methods.

3.1. Self-Labeled Methods

Self-training [35] is a semi-supervised learning algorithm characterized by its simplicity and its
good classification performance. In self-training, a supervised base learner is trained using the labeled
data and iteratively augmented its training set gradually with the most confident predictions on
unlabeled examples and re-trained. Nevertheless, this methodology can lead to erroneous predictions
if noisy examples are classified as the most confident examples and incorporated into the labeled
training set.

To address this difficulty, Li and Zhou [36] proposed SETRED (Self-trained with editing), which
is-based on the adaptation of data editing in the self-training framework. This method constructs a
neighboring graph in D-dimensional feature space and at each iteration a hypothesis test filters the
candidate unlabeled instances. Finally, the unlabeled instances which have successfully passed the
test, are added in the training set.
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The standard Co-training [37] is a multi-view learning method, based on the assumption that the
feature space can be split into two different views which are conditionally independent. Under the
assumption about the existence of sufficient and redundant views, Co-training trains separately a
base learner in each specific view. Then, iteratively each base learner teaches the other with its most
confidently predicted unlabeled examples, hence augmenting their training sets. However, in most
real-case scenarios this assumption is a luxury hardly met [21].

Zhou and Goldman [38] have adopted the idea of incorporating majority voting in the
semi-supervised framework and proposed Democratic co-learning (Demo-Co) algorithm. This algorithm
although it belongs to the multi-view algorithm, it operates in a different manner. Instead of demanding
for multiple views of the corresponding data, it uses multiple algorithms for producing the necessary
information and endorses a voted majority process for the final decision. Based on the previous work,
Li and Zhou [39] proposed Co-Forest, in which a number of Random trees are trained on bootstrap
data from the dataset and the output is defined as the combined individual prediction of each tree,
via a simple majority voting. The basic idea behind this algorithm is that during the training process,
the algorithm assigns a few unlabeled instances to each Random tree. Notice that, the efficiency of
Co-Forest is mainly based on the use of Random trees, although the number of the available labeled
instances is significantly reduced.

Another approach which is also based on an ensemble methodology is the Tri-training
algorithm [40] which constitutes an improved single-view extension of the Co-training algorithm.
This algorithm uses a labeled dataset to initially train three base learners which are used to make
predictions on the instances of the unlabeled dataset. Then, if two base learners agree on labeling an
example, then this is labeled for the third base learner too. The “majority teach minority strategy” has
the advantage of avoiding the explicitly measuring the confidence of labeling, since such measuring
is sometimes a quite complicated and time-consuming process; therefore, the training process is
efficient [21].

3.2. Ensemble Self-Labeled Methods

The development of an ensemble of classifiers consists of two main steps: selection and
combination. The selection of the component classifiers is considered essential for the efficiency
of the ensemble while the key point for its efficacy is based on the diversity and the accuracy of the
component classifiers [41]. Furthermore, the combination of the individual predictions of the classifier
takes place through several techniques and methodologies with different philosophy and classification
performance [15,42].

By taking these into consideration, Kostopoulos et al. [43] and Livieris et al. [18,20] proposed two
ensemble SSL algorithms, called CST-Voting and EnSSL, respectively. Both ensemble SSL algorithms
exploit the individual predictions of three self-labeled algorithms i.e., Self-training, Co-training and
Tri-training using a difference combination technique and mechanism.

CST-Voting [20,43] is based on the idea of combining the predictions of the self-labeled algorithms
which constitute the ensemble using a simple majority voting methodology. Initially, the classical
self-labeled algorithms are trained using the same labeled L and unlabeled U sets. Next, the final
hypothesis on an instance from the testing set combines the individual predictions of the self-labeled
algorithms, using a simple majority voting. Hence, the output of the ensemble is the one made by more
than half of them. A high-level description of the proposed CST-Voting is presented in Algorithm 1.

EnSSL [18,44] combines the individual prediction of the same self-labeled algorithms using
a maximum probability-based voting scheme. More specifically, the self-labeled algorithm which
exhibits the most confident prediction over an unlabeled example of the test set is selected. In case the
confidence of the prediction of the selected classifier meets a predefined threshold then the classifier
labels the example otherwise the prediction is not considered reliable enough. It is worth mentioning
that the way in which the confidence predictions are measured depends on the type of used base
learner (see [45–47] and the references there in). In this case, the output of the ensemble is defined
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as the combined predictions of three self-labeled learning algorithms via a simple majority voting.
A high-level description of the En-SSL algorithm is presented in Algorithm 2.

Algorithm 1: CST-Voting

Input: L − Set of labeled training instances.
U − Set of unlabeled training instances.

Output: The labels of instances in the testing set.

/* Phase I: Training */
1: Self-training(L, U)
2: Co-training(L, U)
3: Tri-training(L, U)

/* Phase II: Voting-Fusion */
4: for each x ∈ T do
5: Apply Self-training, Co-training, and Tri-training on x.
6: Use majority vote to predict the label y∗ of x.
7: end for

Algorithm 2: EnSSL

Input: L − Set of labeled training instances.
U − Set of unlabeled training instances.
ThresLev − Threshold level.

Output: The labels of instances in the testing set.

/* Phase I: Training */
1: Self-training(L, U)
2: Co-training(L, U)
3: Tri-training(L, U)

/* Phase II: Voting-Fusion */
4: for each x ∈ T do
5: Apply Self-training, Co-training, and Tri-training on x.
6: Find the classifier C∗ with the highest confidence prediction on x.
7: if (Confidence of C∗ ≥ ThresLev) then
8: C∗ predicts the label y∗ of x.
9: else

10: Use majority vote to predict the label y∗ of x.
11: end if
12: end for

4. Experimental Methodology

In this section, we conducted a series of experiments to evaluate the performance of CST-Voting
and EnSSL algorithms against the most popular and frequently used self-labeled algorithms.

The implementation code was written in JAVA, making use of the WEKA 3.9 Machine Learning
Toolkit [46]. To study the influence of the amount of labeled data, three different ratios (R) of the
training data were used, i.e., 10%, 20% and 30% and all self-labeled algorithms were evaluated using
the stratified 10-fold cross-validation.

The experiments in our study took place in two distinct phases. In the first phase, we evaluated
the classification performance of CST-Voting and EnSSL against the most popular SSL algorithms
namely Self-training, Co-training, and Tri-training; while in the second phase, we compared their
performance against some state-of-the-art self-labeled algorithms, namely SETRED, Demo-Co and
Co-Forest. Table 1 reports the configuration parameters of all evaluated self-labeled algorithms while
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all base learners were used with their default parameter settings included in the WEKA 3.9 Machine
Learning Toolkit (University of Waikato, Hamilton, New Zealand) for minimizing the effect of any
expert bias.

Table 1. Parameter specification for all SSL methods.

SSL algorithm Parameters

Self-training MaxIter = 40.

c = 0.95.

Co-training MaxIter = 40.

Initial unlabeled pool = 75.

Tri-training No parameters specified.

Democratic-Co Classifiers = kNN, C4.5, NB.

SETRED MaxIter = 40.

Threshold = 0.1.

Co-Forest Number of Random Forest classifiers = 6.

Threshold = 0.75.

All algorithms were evaluated using three different benchmark datasets: Australian credit,
Japanest credit and German credit which are publicly available in UCI Machine Learning
Repository [48], concerning approved or rejected credit card applications. The first has 690 cases,
with 14 explanatory variables (6 continuous and 8 categorical); the second one has 653 instances,
with 14 explanatory variables (3 continuous, 3 integer and 9 categorical); while the third one has
1000 instances, with 20 explanatory variables (7 continuous and 13 categorical). With regards to the
cardinality of each class, in Australian dataset there is a small imbalance of rejected and accepted
instances, namely 383 and 307, respectively. In Japanese dataset there is a small imbalance of rejected
and accepted instances, namely 357 and 296, respectively; while in German dataset a sharper imbalance
is observed, with 300 negative decisions and 700 positive.

The performance of the classification algorithms was evaluated using the following four
performance metrics: Sensitivity (Sen), Specificity (Spe), F1 and Accuracy (Acc) which are respectively
defined by

Sen =
TP

TP + FN
, Spe =

TN
TN + FP

, F1 =
2TP

2TP + FN + FP
Acc =

TP + TN
TP + TN + FP + FN

,

where TP stands for the number of instances which have been correctly classified as positive, TN stands
for the number of instances which have been correctly classified as negative, FP (type I error) stands
for the number of instances which have been wrongly classified as positive, FN (type I I error) stands
for the number of instances which have been wrongly classified as negative.

It is worth mentioning that Sensitivity of classification is the proportion of actual positives which
are predicted as positive; Specificity represents the proportion of actual negatives which are predicted
as negative, F1 consists of a harmonic mean of precision and recall while Accuracy is the ratio of correct
predictions of a classification model.
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4.1. First Phase of Experiments

In the sequel, we focus our interest on the experimental analysis for evaluating the classification
performance of CST-Voting and EnSSL algorithms against its component self-labeled methods,
i.e., Self-training, Co-training, and Tri-training. All SSL algorithms were evaluated by deploying as base
learners the Naive Bayes (NB) [49], the Sequential Minimum Optimization (SMO) [50], the Multilayer
Perceptron (MLP) [51] and the kNN algorithm [52]. These algorithms probably constitute the most
effective and popular machine learning algorithms for classification problems [53]. Moreover, similar
to Blum and Mitchell [37], a limit to the number of iterations of all self-labeled algorithms is established.
This strategy has also been adopted by many researchers [18–22,25,47,54,55].

Tables 2–4 present the performance of each compared SSL algorithms for Australian, Japanese,
German datasets, respectively, relative to all performance metrics. Notice that the highest classification
accuracy is highlighted in bold for each base learner. Firstly, it is worth mentioning that the ensemble
SSL methods, CST-Voting and EnSSL, exhibited the best performance, regarding all datasets and
improved their performance metric as the labeled ratio increased. In more detail:

• CST-Voting exhibited the best performance in 10, 8 and 8 cases for Australian dataset, Japanese
dataset and German dataset, respectively, while EnSSL exhibited the highest accuracy in 6, 8 and
8 cases in the same situations.

• Depending upon the base classifier, CST-Voting is the most effective method using NB or SMO as
base learner, while EnSSL reported the highest performance using MLP as base learner.

In machine learning, the statistical comparison of several evaluation algorithms over multiple
datasets is fundamental and it is frequently performed by means of a statistical test [20,21,56]. Since
our motivation stems from the fact that we are interested in evaluating the rejection of the hypothesis
that all the algorithms perform equally well for a given level based on their classification accuracy
and highlighting the existence of significant differences between our proposed algorithm and the
classical self-labeled algorithms, we used the non-parametric Friedman Aligned Ranking (FAR) [57]
test. Moreover, the Finner test [58] is applied as a post-hoc procedure to find out which algorithms
present significant differences.

Table 5 presents the information of the statistical analysis performed by nonparametric multiple
comparison procedures for Self-training, Co-training, Tri-Training, CST-Voting and EnSSL algorithms.
Notice that the control algorithm for the post-hoc test is determined by the best (e.g., lowest) ranking
obtained in each FAR test. Moreover, the adjusted p-value with Finner’s test (pF) was presented based
on the corresponding control algorithm at the α = 0.05 level of significance. The post-hoc test rejects
the hypothesis of equality when the value of pF is less than the value of a.

Clearly, CST-Voting and EnSSL demonstrate the best overall performance, as they outperform
the rest self-labeled algorithms. This is because it reports the highest probability-based ranking by
statistically presenting better results, relative to all used base learners. CST-Voting exhibited the best
performance using NB and SMO as base learners while EnSSL presented the best performance using
MLP and kNN as base learners. Furthermore, the FAR test but mostly the Finner post-hoc test revealed
that CST-Voting and EnSSL perform equally well.
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Table 2. Performance evaluation of Self-training, Co-training, Tri-training, CST-Voting and EnSSL on the Australian credit dataset.

Base Alg. Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

Learner Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

NB

Self 73.9% 88.3% 78.4% 81.9% 78.2% 91.4% 82.8% 85.5% 78.2% 90.3% 82.2% 84.9% 78.5% 90.6% 82.5% 85.2%
Co 78.2% 83.6% 78.7% 81.2% 77.5% 92.7% 83.1% 85.9% 78.8% 91.4% 83.2% 85.8% 79.2% 91.4% 83.4% 85.9%
Tri 61.2% 91.6% 71.3% 78.1% 76.2% 86.7% 79.1% 82.0% 79.8% 86.7% 81.3% 83.6% 80.1% 87.2% 81.7% 84.1%

CST 75.6% 90.3% 80.6% 83.8% 78.2% 91.9% 83.0% 85.8% 79.2% 91.6% 83.5% 86.1% 79.8% 92.2% 84.2% 86.7%
EnSSL 74.6% 90.6% 80.1% 83.5% 78.5% 90.6% 82.5% 85.2% 79.8% 90.9% 83.5% 85.9% 80.5% 91.4% 84.2% 86.5%

SMO

Self 88.9% 79.1% 82.7% 83.5% 85.7% 83.3% 83.0% 84.3% 88.9% 81.7% 84.0% 84.9% 88.9% 82.0% 84.1% 85.1%
Co 92.2% 79.1% 84.5% 84.9% 94.1% 79.1% 85.5% 85.8% 94.1% 79.1% 85.5% 85.8% 94.1% 79.1% 85.5% 85.8%
Tri 77.5% 86.7% 79.9% 82.6% 89.3% 83.0% 84.8% 85.8% 89.3% 80.9% 83.8% 84.6% 89.6% 81.2% 84.1% 84.9%

CST 89.9% 84.9% 86.1% 87.1% 90.6% 80.4% 84.2% 84.9% 93.8% 82.0% 86.7% 87.2% 94.1% 82.2% 87.0% 87.5%
EnSSL 88.9% 83.6% 84.9% 85.9% 89.3% 83.3% 85.0% 85.9% 88.9% 84.3% 85.3% 86.4% 90.9% 84.9% 86.6% 87.5%

MLP

Self 82.1% 87.7% 83.2% 85.2% 80.1% 88.0% 82.1% 84.5% 82.7% 86.9% 83.1% 85.1% 82.7% 87.2% 83.3% 85.2%
Co 80.8% 87.7% 82.4% 84.6% 79.8% 91.4% 83.8% 86.2% 79.5% 91.1% 83.4% 85.9% 80.5% 91.4% 84.2% 86.5%
Tri 71.3% 89.0% 77.1% 81.2% 83.1% 82.2% 81.0% 82.6% 89.3% 83.0% 84.8% 85.8% 89.6% 83.6% 85.3% 86.2%

CST 82.4% 88.0% 83.5% 85.5% 82.4% 88.0% 83.5% 85.5% 85.0% 87.2% 84.6% 86.2% 87.9% 88.0% 86.7% 88.0%
EnSSL 82.7% 90.3% 84.9% 87.0% 85.0% 88.0% 85.0% 86.7% 87.9% 87.5% 86.4% 87.7% 89.3% 88.8% 87.8% 89.0%

kNN

Self 73.9% 88.3% 78.4% 81.9% 73.3% 88.3% 78.0% 81.6% 73.3% 91.4% 79.6% 83.3% 73.6% 91.4% 79.9% 83.5%
Co 78.2% 83.6% 78.7% 81.2% 77.5% 84.6% 78.8% 81.4% 78.8% 87.5% 81.1% 83.6% 79.2% 86.9% 81.0% 83.5%
Tri 61.2% 91.6% 71.3% 78.1% 67.8% 91.6% 76.1% 81.0% 74.9% 89.3% 79.6% 82.9% 75.9% 90.1% 80.6% 83.8%

CST 75.6% 90.3% 80.6% 83.8% 74.6% 90.9% 80.2% 83.6% 78.5% 92.2% 83.4% 86.1% 79.8% 92.4% 84.3% 86.8%
EnSSL 74.6% 90.9% 80.2% 83.6% 73.9% 89.8% 79.2% 82.8% 78.5% 90.9% 82.7% 85.4% 79.2% 91.4% 83.4% 85.9%

Notice that the highest classification accuracy is highlighted in bold for each base learner.
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Table 3. Performance evaluation of Self-training, Co-training, Tri-training, CST-Voting and EnSSL on the Japanese credit dataset.

Base Alg. Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

Learner Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

NB

Self 75.3% 88.2% 79.5% 82.4% 79.1% 90.2% 82.8% 85.1% 79.1% 90.8% 83.1% 85.5% 79.1% 91.0% 83.3% 85.6%
Co 83.1% 86.8% 83.5% 85.1% 78.7% 90.8% 82.9% 85.3% 79.7% 91.6% 84.0% 86.2% 80.1% 91.6% 84.2% 86.4%
Tri 74.3% 88.2% 78.9% 81.9% 73.6% 91.6% 80.1% 83.5% 73.0% 90.5% 79.1% 82.5% 73.6% 91.6% 80.1% 83.5%

CST 79.4% 90.8% 83.3% 85.6% 78.0% 91.3% 82.8% 85.3% 79.1% 92.2% 83.9% 86.2% 79.7% 92.4% 84.4% 86.7%
EnSSL 79.4% 89.1% 82.5% 84.7% 76.7% 91.6% 82.1% 84.8% 79.7% 92.2% 84.3% 86.5% 80.1% 92.4% 84.6% 86.8%

SMO

Self 92.2% 81.0% 85.7% 86.1% 91.9% 81.0% 85.5% 85.9% 92.9% 80.7% 85.9% 86.2% 92.6% 81.0% 85.9% 86.2%
Co 93.9% 79.8% 86.1% 86.2% 93.9% 79.8% 86.1% 86.2% 93.9% 80.1% 86.2% 86.4% 93.9% 80.1% 86.2% 86.4%
Tri 86.5% 86.3% 85.2% 86.4% 79.7% 86.0% 81.1% 83.2% 74.7% 84.0% 77.0% 79.8% 76.0% 85.7% 78.7% 81.3%

CST 93.6% 80.7% 86.3% 86.5% 93.2% 80.1% 85.8% 86.1% 93.2% 86.6% 89.0% 89.6% 93.6% 87.1% 89.5% 90.0%
EnSSL 93.2% 81.2% 86.4% 86.7% 93.2% 81.2% 86.4% 86.7% 93.2% 85.4% 88.5% 89.0% 93.6% 86.0% 88.9% 89.4%

MLP

Self 84.1% 87.4% 84.4% 85.9% 86.1% 85.7% 84.7% 85.9% 86.1% 87.7% 85.7% 87.0% 86.5% 88.0% 86.1% 87.3%
Co 81.1% 88.8% 83.3% 85.3% 82.8% 89.9% 84.9% 86.7% 82.8% 89.6% 84.8% 86.5% 83.4% 89.6% 85.2% 86.8%
Tri 69.3% 88.0% 75.4% 79.5% 65.2% 91.6% 74.4% 79.6% 65.2% 93.3% 75.2% 80.6% 65.5% 93.8% 75.8% 81.0%

CST 80.7% 90.2% 83.9% 85.9% 84.1% 89.9% 85.7% 87.3% 84.1% 90.2% 85.9% 87.4% 84.5% 90.5% 86.2% 87.7%
EnSSL 81.4% 90.8% 84.6% 86.5% 85.1% 90.8% 86.7% 88.2% 85.1% 92.2% 87.5% 89.0% 85.5% 92.7% 88.0% 89.4%

kNN

Self 75.7% 88.2% 79.7% 82.5% 76.4% 88.5% 80.3% 83.0% 75.3% 89.6% 80.2% 83.2% 75.7% 88.2% 79.7% 82.5%
Co 79.4% 85.4% 80.6% 82.7% 79.1% 86.6% 81.0% 83.2% 83.1% 85.4% 82.8% 84.4% 83.4% 85.7% 83.2% 84.7%
Tri 56.1% 88.2% 65.9% 73.7% 59.8% 93.0% 71.1% 77.9% 74.3% 95.2% 82.6% 85.8% 76.0% 94.4% 83.2% 86.1%

CST 76.0% 90.8% 81.2% 84.1% 76.7% 90.2% 81.4% 84.1% 79.4% 92.2% 84.1% 86.4% 79.7% 92.4% 84.4% 86.7%
EnSSL 75.0% 89.6% 80.0% 83.0% 75.7% 90.2% 80.7% 83.6% 78.4% 92.4% 83.6% 86.1% 79.1% 92.4% 84.0% 86.4%

Notice that the highest classification accuracy is highlighted in bold for each base learner.
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Table 4. Performance evaluation of Self-training, Co-training, Tri-training, CST-Voting and EnSSL on the German credit dataset.

Base Alg. Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

Learner Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

NB

Self 80.7% 45.3% 79.1% 70.1% 84.6% 48.7% 81.9% 73.8% 84.6% 50.3% 82.2% 74.3% 84.7% 50.0% 82.2% 74.3%
Co 80.0% 45.0% 78.6% 69.5% 85.7% 46.7% 82.2% 74.0% 86.4% 51.7% 83.4% 76.0% 86.6% 51.7% 83.5% 76.1%
Tri 81.6% 45.7% 79.6% 70.8% 86.0% 46.0% 82.2% 74.0% 87.1% 51.0% 83.7% 76.3% 87.4% 50.7% 83.8% 76.4%

CST 81.7% 46.0% 79.8% 71.0% 86.4% 47.7% 82.8% 74.8% 87.9% 51.7% 84.2% 77.0% 88.0% 51.7% 84.3% 77.1%
EnSSL 81.9% 45.3% 79.7% 70.9% 86.1% 46.7% 82.4% 74.3% 87.4% 52.0% 84.1% 76.8% 87.6% 51.7% 84.1% 76.8%

SMO

Self 84.6% 44.7% 81.2% 72.6% 86.4% 45.0% 82.3% 74.0% 87.1% 46.0% 82.9% 74.8% 87.3% 46.7% 83.1% 75.1%
Co 84.3% 45.0% 81.1% 72.5% 86.0% 47.3% 82.5% 74.4% 87.0% 48.3% 83.2% 75.4% 87.1% 48.3% 83.3% 75.5%
Tri 84.4% 45.7% 81.3% 72.8% 86.7% 46.7% 82.8% 74.7% 87.4% 47.3% 83.3% 75.4% 87.6% 47.7% 83.4% 75.6%

CST 86.4% 46.0% 82.5% 74.3% 87.0% 47.0% 83.0% 75.0% 87.4% 48.0% 83.4% 75.6% 88.0% 49.0% 83.9% 76.3%
EnSSL 86.3% 46.0% 82.4% 74.2% 86.4% 46.7% 82.6% 74.5% 87.3% 47.7% 83.2% 75.4% 87.4% 48.3% 83.4% 75.7%

MLP

Self 84.6% 47.0% 81.6% 73.3% 86.4% 47.3% 82.7% 74.7% 87.1% 48.3% 83.3% 75.5% 87.3% 48.3% 83.4% 75.6%
Co 85.4% 43.3% 81.5% 72.8% 86.0% 44.0% 81.9% 73.4% 87.4% 44.3% 82.8% 74.5% 87.9% 44.3% 83.0% 74.8%
Tri 87.4% 45.0% 82.9% 74.7% 86.7% 44.0% 82.3% 73.9% 87.9% 45.0% 83.1% 75.0% 88.0% 46.0% 83.4% 75.4%

CST 87.0% 46.0% 82.8% 74.7% 87.1% 45.0% 82.7% 74.5% 88.3% 47.0% 83.7% 75.9% 88.3% 47.3% 83.7% 76.0%
EnSSL 87.4% 47.0% 83.1% 75.2% 87.6% 47.0% 83.3% 75.4% 88.1% 47.3% 83.7% 75.9% 88.6% 48.3% 84.1% 76.5%

kNN

Self 84.6% 40.0% 80.4% 71.2% 86.4% 42.3% 81.9% 73.2% 86.1% 43.3% 81.9% 73.3% 86.4% 43.7% 82.1% 73.6%
Co 85.4% 40.7% 81.0% 72.0% 86.0% 41.7% 81.5% 72.7% 87.4% 43.7% 82.6% 74.3% 87.7% 43.7% 82.8% 74.5%
Tri 87.4% 40.7% 82.1% 73.4% 86.7% 42.7% 82.1% 73.5% 87.9% 44.0% 82.9% 74.7% 88.0% 44.3% 83.1% 74.9%

CST 85.0% 47.7% 82.0% 73.8% 87.0% 46.7% 82.9% 74.9% 86.4% 46.0% 82.5% 74.3% 86.7% 46.3% 82.7% 74.6%
EnSSL 87.4% 48.3% 83.4% 75.7% 87.3% 47.0% 83.1% 75.2% 88.1% 46.7% 83.5% 75.7% 88.1% 47.0% 83.6% 75.8%

Notice that the highest classification accuracy is highlighted in bold for each base learner.
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Table 5. Friedman Aligned Ranking (FAR) test and Finner post-hoc test for Self-training, Co-training,
Tri-training, CST-Voting and EnSSL.

Algorithm FAR
Finner Post-Hoc Test

pF -Value Null Hypothesis

CST-Voting 12.7917 - -
EnSSL 19.8333 0.323326 accepted
Co-training 29.0833 0.029637 rejected
Self-training 42.3333 0.000068 rejected
Tri-training 48.4583 0.000002 rejected

(a) using NB as base learner

Algorithm FAR Finner Post-Hoc Test
pF -Value Null Hypothesis

CST-Voting 14.375 - -
EnSSL 15.9583 0.824256 accepted
Co-training 32.75 0.013257 rejected
Tri-training 44.1667 0.000060 rejected
Self-training 45.25 0.000060 rejected

(b) using SMO as base learner

Algorithm FAR
Finner Post-Hoc Test

pF -Value Null Hypothesis

EnSSL 9.9167 - -
CST-Voting 22.2917 0.082620 accepted
Self-training 34.7083 0.000675 rejected
Co-training 36.6667 0.000351 rejected
Tri-training 48.9167 0.000000 rejected

(c) using MLP as base learner

Algorithm FAR
Finner Post-Hoc Test

pF -Value Null Hypothesis

CST-Voting 14.5417 - -
EnSSL 14.7083 0.98135 accepted
Co-training 38.7083 0.000933 rejected
Tri-training 41.8333 0.000312 rejected
Self-training 42.7083 0.000312 rejected

(d) using kNN as base learner

4.2. Second Phase of Experiments

Next, we evaluated the classification performance of the presented ensemble algorithms,
CST-Voting and EnSSL, against some other state-of-the-art self-labeled algorithms such as SETRED,
Co-Forest and Democratic-Co learning. Notice that CST-Voting and EnSSL uses SMO and MLP as base
learners, respectively which exhibited the best performance, relative to all performance metrics.

Tables 6–8 report the performance of each tested self-labeled algorithm on Australian dataset,
Japanese dataset and German credit dataset, respectively. As above mentioned, the accuracy measure
of the best performing algorithm is highlighted in bold. Clearly, the presented ensemble SSL algorithms
illustrate the best performance, independent of the used labeled ratio. Furthermore, it is worth noticing
that EnSSL exhibits slightly better average performance than CST-Voting.



Informatics 2018, 5, 40 12 of 16

Table 6. Performance evaluation of SETRED, Co-Forest, Democratic-Co learning, CST-Voting and EnSSL on the Australian credit dataset.

Algorithm Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

SETRED 87.9% 78.3% 81.8% 82.6% 87.6% 82.2% 83.5% 84.6% 91.2% 82.8% 85.8% 86.5% 91.5% 82.8% 85.9% 86.7%
Co-Forest 81.4% 87.5% 82.6% 84.8% 80.5% 89.0% 82.9% 85.2% 81.4% 91.4% 84.7% 87.0% 81.8% 91.4% 84.9% 87.1%
Demo-Co 82.7% 82.0% 80.6% 82.3% 83.1% 85.4% 82.5% 84.3% 84.0% 86.9% 83.9% 85.7% 84.0% 87.2% 84.0% 85.8%
CST 89.9% 84.9% 86.1% 87.1% 90.6% 80.4% 84.2% 84.9% 93.8% 82.0% 86.7% 87.2% 94.1% 82.2% 87.0% 87.5%
EnSSL 82.7% 90.3% 84.9% 87.0% 85.0% 88.0% 85.0% 86.7% 87.9% 87.5% 86.4% 87.7% 89.3% 88.8% 87.8% 89.0%

The accuracy measure of the best performing algorithm is highlighted in bold.

Table 7. Performance evaluation of SETRED, Co-Forest, Democratic-Co learning, CST-Voting and EnSSL on the Japanese credit dataset.

Algorithm Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

SETRED 91.2% 81.2% 85.3% 85.8% 92.2% 81.2% 85.8% 86.2% 92.9% 81.5% 86.3% 86.7% 92.9% 81.8% 86.5% 86.8%
Co-Forest 84.5% 88.5% 85.2% 86.7% 85.1% 89.4% 86.0% 87.4% 85.1% 89.9% 86.3% 87.7% 85.1% 90.5% 86.6% 88.1%
Demo-Co 85.5% 84.6% 83.8% 85.0% 84.5% 85.7% 83.8% 85.1% 84.8% 85.7% 83.9% 85.3% 86.1% 86.0% 84.9% 86.1%
CST 93.6% 80.7% 86.3% 86.5% 93.2% 80.1% 85.8% 86.1% 93.2% 86.6% 89.0% 89.6% 93.6% 87.1% 89.5% 90.0%
EnSSL 81.4% 90.8% 84.6% 86.5% 85.1% 90.8% 86.7% 88.2% 85.1% 92.2% 87.5% 89.0% 85.5% 92.7% 88.0% 89.4%

The accuracy measure of the best performing algorithm is highlighted in bold.

Table 8. Performance evaluation of SETRED, Co-Forest, Democratic-Co learning, CST-Voting and EnSSL on the German credit dataset.

Algorithm Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

SETRED 84.3% 44.7% 81.0% 72.4% 86.7% 45.0% 82.5% 74.2% 87.4% 46.7% 83.2% 75.2% 87.6% 47.0% 83.3% 75.4%
Co-Forest 85.7% 45.0% 81.9% 73.5% 87.1% 45.0% 82.7% 74.5% 87.3% 46.7% 83.1% 75.1% 87.4% 47.3% 83.3% 75.4%
Demo-Co 83.6% 43.7% 80.5% 71.6% 86.0% 45.3% 82.1% 73.8% 87.0% 48.0% 83.1% 75.3% 87.1% 48.3% 83.3% 75.5%
CST 86.4% 46.0% 82.5% 74.3% 87.0% 47.0% 83.0% 75.0% 87.4% 48.0% 83.4% 75.6% 88.0% 49.0% 83.9% 76.3%
EnSSL 87.3% 47.0% 83.1% 75.2% 87.6% 47.0% 83.3% 75.4% 88.1% 47.3% 83.7% 75.9% 88.6% 48.3% 84.1% 76.5%

The accuracy measure of the best performing algorithm is highlighted in bold.
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Table 9 presents the statistical analysis for SETRED, Co-Forest, Democratic-Co learning,
CST-Voting and EnSSL, performed by nonparametric multiple comparison procedures. As mentioned
above, the control algorithm for the post-hoc test is determined by the best (e.g., lowest) ranking
obtained in each FAR test while the adjusted p-value with Finner’s test (pF) was presented based on
the corresponding control algorithm at the α = 0.05 level of significance. The interpretation of Table 9
illustrates that CST-Voting and EnSSL exhibit the highest probability-based ranking by statistically
presenting better results. Moreover, it is worth noticing that CST-Voting and EnSSL perform similarly
with EnSSL presenting slightly better performance according to the FAR test.

Table 9. Friedman Aligned Ranking (FAR) test and Finner post-hoc test for SETRED, Co-Forest,
Democratic-Co learning, CST-Voting and EnSSL.

Algorithm FAR Finner Post-Hoc Test
pF -Value Null Hypothesis

EnSSL 10.375 - -
CST-Voting 18.7917 0.237802 accepted
Co-Forest 28.2083 0.016466 rejected
SETRED 44.2917 0.000004 rejected
Democratic-Co 50.8333 0.000000 rejected

5. Conclusions

In this work, we evaluated the performance of two ensemble SSL algorithms, entitled CST-Voting
and EnSSL, for the credit scoring problem. The proposed ensemble algorithms combine the individual
predictions of three of the most efficient and popular self-labeled algorithms, i.e., Co-training,
Self-training, and Tri-training, using two different voting methodologies. The numerical experiments
presented the efficacy of the ensemble SSL algorithms on three well-known credit score datasets,
illustrating that reliable and robust prediction models could be developed by the adaptation of
ensemble techniques in the semi-supervised learning framework.

It is worth noticing that we understand the limitations imposed on the generalizability of the
presented results due to the use of the only three free available data sets as compared to other
works [26–29]. Furthermore, since we do not know whether the values of the key parameters of the
base learners within WEKA 3.9 are randomly initialized, optimized, or adapted, one may generally
consider this approach as a limitation when comparisons of algorithms are conducted using only three
datasets. We certainly intend to investigate this further in the near future.

Additionally, another interesting aspect for future research could be the development of a
decision-support tool based on an ensemble SSL algorithm, concerning the credit risk scoring problem.
The use of a predictive tool could assist financial institutions to decide whether to grant credit to
consumers who apply. Since our numerical experiments are quite encouraging, our future work is
concentrated on evaluating the proposed algorithms versus relevant methodologies and frameworks
addressing the credit score problem such as [27–32] and versus recently proposed advanced SSL
algorithms such as [59–61].
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