
  informatics

Article

Misalignment Detection for Web-Scraped Corpora:
A Supervised Regression Approach

Arne Defauw 1,*, Sara Szoc 1, Anna Bardadym 1, Joris Brabers 1, Frederic Everaert 1, Roko Mijic 2,
Kim Scholte 1, Tom Vanallemeersch 1, Koen Van Winckel 1 and Joachim Van den Bogaert 1

1 CrossLang NV, 9050 Gentbrugge, Belgium
2 Independent Data Science Consultant, 9000 Ghent, Belgium
* Correspondence: arne.defauw@crosslang.com

Received: 30 April 2019; Accepted: 29 August 2019; Published: 1 September 2019
����������
�������

Abstract: To build state-of-the-art Neural Machine Translation (NMT) systems, high-quality parallel
sentences are needed. Typically, large amounts of data are scraped from multilingual web sites
and aligned into datasets for training. Many tools exist for automatic alignment of such datasets.
However, the quality of the resulting aligned corpus can be disappointing. In this paper, we present
a tool for automatic misalignment detection (MAD). We treated the task of determining whether
a pair of aligned sentences constitutes a genuine translation as a supervised regression problem.
We trained our algorithm on a manually labeled dataset in the FR–NL language pair. Our algorithm
used shallow features and features obtained after an initial translation step. We showed that both
the Levenshtein distance between the target and the translated source, as well as the cosine distance
between sentence embeddings of the source and the target were the two most important features for
the task of misalignment detection. Using gold standards for alignment, we demonstrated that our
model can increase the quality of alignments in a corpus substantially, reaching a precision close to
100%. Finally, we used our tool to investigate the effect of misalignments on NMT performance.
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1. Introduction

A machine translation (MT) system usually increases its performance when more training data
is added. Especially in the context of statistical machine translation (SMT), the motto is: “the more
data, the better”, e.g., Goutte et al. [1]. However, previous research showed that the performance of a
neural machine translation (NMT) system decreases when the training data contains noisy sentence
pairs [2,3], as an NMT model tends to assign high probabilities to rare events.

Data crawled from the web typically contains a variety of noise: untranslated sentences, language
and encoding errors, short segments, and misalignments. The effect of these types of noise on NMT
and SMT was systematically investigated by Khayrallah and Koehn [4]. Untranslated sentences and
wrong language in the target were found to harm NMT performance the most, while SMT performance
was hardly affected. Misalignments, the focus of this paper, seemed to decrease NMT performance by
1 to 2 BLEU, depending on the amount of misalignments added to a clean corpus, while having almost
no effect on SMT performance. In another study, however, it was shown that alignment errors can
impact SMT performance as well [5].

Detecting misalignments has been the focus of a large body of research and was tackled by
combining bilingual data and automatic classifiers [6], lexical translation and the Jaccard similarity
index [7], machine translation [8] or word and sentence embeddings [9,10]. Further, Carpuat et al. [11]
introduced the concept of similarity classification by building a supervised classifier using annotations
of Cross-Lingual Textual Entailment.
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Based on the ideas introduced in References [9–11], different neural network architectures that
compute cross-lingual sentence similarity scores, after mapping sentences to a (cross-lingual) embedding
space, were proposed for the task of misalignment detection and parallel corpus mining [12–19].

In this work, we combined ideas introduced in References [6–11] to build a model for misalignment
detection. Our work is different than previous studies, as we reformulated the problem of misalignment
detection as a supervised regression task, rather than a (unsupervised) classification task. Therefore,
we introduced a misalignment detection score (MAD score) and labeled a dataset consisting of parallel
and divergent sentence pairs accordingly.

We used our gold standard for misalignment detection to investigate the importance of different
features and take into account both shallow features and features obtained after an initial translation
step carried out by a baseline NMT system. This translation step is necessary in order to calculate the
Levenshtein distance between the target and the translated source, and to calculate cosine distance
between the sentence embeddings of the (translated) target and the translated source. We showed
that the Levenshtein distance and the cosine distance between sentence embeddings are the two most
important features. Next, we evaluated our model against gold standards for alignment (EN–FR and
EN–GA language pairs). This intrinsic evaluation showed that our model can increase the quality
of alignments in a corpus substantially, reaching a precision close to 100% for both language pairs.
Our results were compared to the ones obtained with BiCleaner [20], another tool for misalignment
detection used in the official release of the ParaCrawl corpus (https://paracrawl.eu).

Finally, we used our model to investigate the effect of misalignments on NMT performance.
Our experiments showed that although removing misalignments can be beneficial in terms of data
selection, leaving misalignments in the training data did not result in a decrease in NMT performance.

The aim of this work was not to attain state-of-the-art performance, but to present a methodology
for misalignment detection that has the potential to produce easier interpretable scores and which is
lightweight enough for practical use.

2. Materials and Methods

The problem of misalignment detection is treated as a supervised regression problem. In this
section, we provide more details on the labeled dataset, and introduce a score for misalignment
detection (MAD score). Next, we give an overview of the engineered features that are used for
misalignment detection. Finally, we describe the data used for intrinsic and extrinsic evaluation.

In order to make the relation between the various datasets and experiments clearer, we provide two
schemes. In Figure 1, we illustrate the relation between the various datasets and models. Our model for
misalignment detection (https://github.com/CrossLangNV/MAD will be trained on a FR–NL labeled
dataset, after which it will be applied on two language pairs (GA–EN and FR–EN). As the calculation of
some of the features of our model relies on an initial translation step (GA→EN, FR→EN), MT models
were used. We refer to Section 2.2 for an overview of all the features. In Figure 2, we show how our
model (MAD) could be used to detect misalignments in an English–Irish (EN–GA) corpus. Applying
our model on a pair of sentences yields a score (0–4), indicative of the quality of the suggested alignment.
By setting a threshold on this score one obtains a MAD cleaned corpus. We will apply our model both
on the EN–GA ParaCrawl corpus, as on a EN–FR web-scraped corpus.

https://paracrawl.eu
https://github.com/CrossLangNV/MAD
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2.1. Labeled Dataset 

A labeled dataset in the FR–NL language pair was created by manual annotation involving one 
fluent speaker of both languages (native in NL, fluent in FR) and one machine translation expert 
according to levels of misalignment (see Table 1). As the annotators have a complementary 
background, we chose to let them work together to annotate the sentences, so a single annotation per 
sentence pair was obtained (both annotators read the sentence pairstogether, after which they agreed 
upon a score). Sentence pairs falling in between two categories were labeled as such (e.g., sentence 
pairs with a perceived MAD score between 1 and 2 were labeled with a MAD score 1.5), although the 
annotators were encouraged to give integer values. We noted that assigning a score (0–4) instead of 
a yes/no label to each pair of sentences avoids serious disagreements among different annotators for 
marginal cases (since these can be given an appropriate 0–4 score. 
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2.1. Labeled Dataset

A labeled dataset in the FR–NL language pair was created by manual annotation involving one
fluent speaker of both languages (native in NL, fluent in FR) and one machine translation expert
according to levels of misalignment (see Table 1). As the annotators have a complementary background,
we chose to let them work together to annotate the sentences, so a single annotation per sentence
pair was obtained (both annotators read the sentence pairstogether, after which they agreed upon a
score). Sentence pairs falling in between two categories were labeled as such (e.g., sentence pairs with
a perceived MAD score between 1 and 2 were labeled with a MAD score 1.5), although the annotators
were encouraged to give integer values. We noted that assigning a score (0–4) instead of a yes/no label
to each pair of sentences avoids serious disagreements among different annotators for marginal cases
(since these can be given an appropriate 0–4 score.



Informatics 2019, 6, 35 4 of 21

Table 1. Description of criteria used for labeling of the sentence pairs (S,T) from the dataset. In brackets,
we show the translation into English of the French andDutch sentences respectively for the non-French
and/or Dutch speaker.

MAD Score Criteria Example (S) Example (T)

0

• There is no missing or differing
information. AND

• The information is presented in
basically the same way without errors.

Vous avez un permis de
conduire valide.

(You have a valid driving license.)

U hebt een geldig rijbewijs.
(You have a valid driving license.)

1

• There is a slight difference in
information content. OR

• There is disagreement about whether
the translation is correct. OR

• There is a slight error on one side such
as a single misspelling.

Vous avez un permis de
conduire valide.

(You have a valid driving license.)

U hebt een geldig rijbewijs.
(You have a valide driving license.)

2

• There is a more significant difference
in content/meaning. OR

• There is a more significant error on
one side such as a single garbled or
missing word.

Vous avez un permis de conduire
valide du FNI.

(You have a valid driving license from
the FNI.)

U hebt een geldig rijbewijs van de
DVLA in Swansea.

(You have a valid driving license from
the DVLA in Swansea.)

3

• There are major additions and/or
omissions on one side. BUT

• There is still some
common information.

Vous avez un permis de conduire
valide ou vous êtes en train de

demander une licence provisoire.
(You have a valid driving license or you
are applying for a temporary license.)

U hebt een geldig rijbewijs.
(You have a valid driving license.)

4
• The source and target have nothing to

do with each other (apart from
perhaps topic).

Vous avez un permis de
conduire valide.

(You have a valid driving license.)

Formulier C-63 moet ingediend
worden drie weken op voorhand.
(Form C-63 must be submitted three

weeks in advance.)

The labeled datasets consist of 3406 sentence pairs (FR–NL) collected from a bilingual website
(www.rva.be) of which some are perfectly aligned, and some suffering from various misalignment
errors. We refer to Figure 3 for the distribution of the MAD scores. If we consider sentence pairs with a
MAD score strictly larger than 2 as misaligned, then 14% of the sentence pairs in our labeled dataset
are misaligned. For the training of our model, we sampled a balanced training set of 866 sentence
pairs, where 28% of the sentence pairs were labeled as misaligned. The other sentences were assigned
to the test set for evaluation (2540 sentence pairs with 10% misaligned sentences).
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2.2. Features

The used features can be split in two groups: those that are calculated after a translation step and
represent lexical or semantic similarity of the two sides of a parallel corpus (S-T); and features based
on shallow properties such as sentence length and number match. We investigated many features and
list the best performing features below.

www.rva.be
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• Ft_senlength_av: Average sentence length (in characters) of the S-T sentence pair.
• Ft_senlength_diff: Absolute difference among sentence length of S and T (in characters).
• Ft_number_match: Hand-crafted hard rule score between −1 and 1. Equal to 0 if S and T do not

contain numbers; and closer to −1 or 1 if there is a big mismatch, respectively match among the
detected numbers in S and T. For more details we refer to Appendix A.

• Ft_source_cross_levenshtein: Levenshtein distance between the target sentence T and the translation
of the source sentence S in the target language.

• Ft_semantic_sim_infersent: Cosine similarity between the sentence embedding of the source and
target sentences translated into English. Sentence embeddings are calculated using a pre-trained
sentence encoder, InferSent (https://github.com/facebookresearch/InferSent), trained with fastText
(https://github.com/facebookresearch/fastText). InferSent is a sentence embeddings method that
provides semantic representations for English sentences. For more information about the sentence
encoder we refer to Conneau et al. [21].

To calculate these features on the labeled dataset, three translation steps are required: NL→FR,
for the calculation of Ft_source_cross_levenshtein and NL→EN and FR→EN for the calculation of
Ft_semantic_sim_infersent. Translations were performed by a neural MT engine.

As none of these features explicitly use language-specific properties related to French or Dutch,
we can expect that the resulting model can be applied to other language pairs, provided the required
MT engines are available. This will be further investigated in Sections 3.2.2 and 3.3.

2.3. Supervised Regression

We used the balanced training set described in Section 2.1 to train a regression model and used
5-fold cross validation on this set for tuning of the hyper-parameters, with R2 as our metric. Several
types of models were tested via Scikit-learn [22], of which Support Vector Regression with a Radial
Basis Function kernel proved a slightly better performance than Random Forest Regression. Note that
we considered using a classifier instead of a regression model, but noticed a decrease in performance
during intrinsic evaluation, therefore a regression model was chosen.

For evaluation of our best performing model, the held-out test set was used. In the context of
misalignment detection, it is clear that the false negative rate (FNR) (if a misalignment is considered a
positive label) is the most important metric to minimize, as we want to avoid classifying misalignments
as aligned. Therefore, we also defined a utility score equal to TNR(1−p)

× TPRp, with TNR the true
negative rate (specificity) and TPR (= 1 − FNR) the true positive rate (recall), and p equal to 0.33; i.e.,
a metric biased towards the TPR (FNR). This utility score was used to decide on the optimal threshold
for classifying sentences as aligned or misaligned by our model.

2.4. Data for Machine Translation

Our model for misalignment detection (MAD) was evaluated on two language pairs, EN–FR and
EN–GA. To calculate the required features, an initial translation step is required: X→EN. Therefore,
we trained MT engines using the RNN (Recurrent Neural Network) architecture in OpenNMT [23]
on the baseline training data listed in Table 2, after removal of a test set of 3k sentence pairs.
We use the following abbreviations in the table: DCEP (Digital Corpus of the European Parliament),
DGT (Directorate-General for Translation of the European Commission), ECDC (European Centre
for Disease Prevention and Control), and EAC (Directorate General for Education and Culture of the
European Commission).

https://github.com/facebookresearch/InferSent
https://github.com/facebookresearch/fastText
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Table 2. Overview of the data used for training of X→EN engines necessary for document alignment
and calculation of MAD features. A sample of this data was also used for training of our baseline
engines EN→X. Columns two and three show the number of unique sentence pairs (EN–FR, EN–GA).

Corpus EN–FR EN–GA

DCEP (https://wt-public.emm4u.eu/Resources/DCEP-2013/DCEP-Download-Page.html) 3,728,978 46,418
DGT (http://opus.nlpl.eu/DGT.php) 3,071,997 44,309

ECDC (https://ec.europa.eu/jrc/en/language-technologies/ecdc-translation-memory) 2499 -
EAC (https://ec.europa.eu/jrc/en/language-technologies/eac-translation-memory) 4476 -

Eubookshop (http://opus.nlpl.eu/EUbookshop-v2.php) - 133,363

Total (deduplicated) 4,258,861 139,404

For evaluation of MAD, a web-scraped corpus was used for each language pair (EN–FR, EN–GA).
For EN–FR, we scraped and aligned data ourselves from various bilingual websites related to the
legal domain. This data was scraped using Scrapy (https://scrapy.org) and then documented aligned
using Malign (https://github.com/paracrawl/Malign), a tool for document alignment that makes use of
MT. Sentence alignment of these document pairs was subsequently performed using Hunalign (http:
//mokk.bme.hu/en/resources/hunalign) [24]. More details are provided in References [25]. For EN–GA
the raw ParaCrawl data (https://paracrawl.eu, https://s3.amazonaws.com/web-language-models/
paracrawl/release3/EN--GA.classify.gz) was used. We refer to Table 3 and to Appendix B for a more
detailed overview of the web-scraped corpus EN–FR.

Table 3. Overview of the corpora used for extrinsic evaluation of MAD.

Language Pair Corpus #Sentence Pairs

EN–FR web-scraped corpus 1,472,511
EN–GA Raw ParaCrawl corpus v4.0 156,189,807

2.5. Gold Standard for Sentence Alignment

Typically, the cleaning/misalignment detection step will be executed after an initial sentence
alignment step of document pairs. In terms of evaluation of our model, it is therefore crucial that we
investigate to what extent our model can improve the quality of alignments of a corpus. Therefore,
we created a gold standard for sentence alignment from a set of document-aligned document pairs.

Sentence alignment involves several types of links. A typical link has a single source and a
single target sentence (1-to-1 link), but there are also 1-to-many, many-to-1, many-to-many, and null
links (0-to-1 or 1-to-0 links). For instance, two source sentences may have been translated into one
target sentence:

Source: Payment can be made in person. However, the office should be contacted beforehand.

Target: Le versement peut être effectué en personne, mais le bureau doit être contacté en avance.

Evaluating automatic sentence alignment takes place by comparing the output to a manually
created gold standard. This manual alignment involves establishing links between one or more
subsequent source sentences and one or more subsequent target sentences [24], in such a way that the
links cannot be divided further into smaller links; Brown et al. [26] refer to such sets of subsequent
sentences as “beads”. Therefore, the above example may be part of a manual alignment. However,
the below example would lead two beads to be added to the manual alignment:

Source: Payment can be made in person.

Target: Le versement peut être effectué en personne.

Source: However, the office should be contacted beforehand.

https://wt-public.emm4u.eu/Resources/DCEP-2013/DCEP-Download-Page.html
http://opus.nlpl.eu/DGT.php
https://ec.europa.eu/jrc/en/language-technologies/ecdc-translation-memory
https://ec.europa.eu/jrc/en/language-technologies/eac-translation-memory
http://opus.nlpl.eu/EUbookshop-v2.php
https://scrapy.org
https://github.com/paracrawl/Malign
http://mokk.bme.hu/en/resources/hunalign
http://mokk.bme.hu/en/resources/hunalign
https://paracrawl.eu
https://s3.amazonaws.com/web-language-models/paracrawl/release3/EN--GA.classify.gz
https://s3.amazonaws.com/web-language-models/paracrawl/release3/EN--GA.classify.gz
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Target: Toutefois, le bureau doit être contacté en avance.

The automatic sentence alignment is compared to the manual alignment based on the beads that
are present in both alignments or in just one of them. Based on this comparison, precision/recall figures
can be calculated, as shown in Section 3.2.2. Null beads in the automatic or manual alignment are
ignored during evaluation, as we do not want to bias towards this trivial type of link. Partial links,
only produced by the manual alignment, are also ignored during evaluation.

For EN–FR, we manually aligned 13 document pairs initially scraped from the European e-justice
portal (https://e-justice.europa.eu); 11 document pairs scraped from the website of the Irish Department
of Education and Skills were manually aligned for EN–GA (https://www.education.ie). In Table 4,
we show the statistics of the gold standards (note that these gold standards for sentence alignment
were already communicated in the context of previous research by our group [23]).

Table 4. Gold standard statistics (EN–FR and EN–GA). Note that partial links involve two partially
equivalent sentences that are not part of a bead; they are considered as a combination of a 0-to-1 bead
and a 1-to-0 bead, hence they are ignored.

Type #Sentence Pairs

EN–FR:
English sentences 723
French sentences 716
1-to-1 beads 629
Many-to-1 beads 16
1-to-many beads 18
Many-to-many beads 1

Total number of beads used for evaluation 664
1-to-0 beads 35
0-to-1 beads 32
English sentences in partial links 5
French sentences in partial links 5
Total number of beads 731

EN–GA:
English sentences 746
Irish sentences 778
1-to-1 beads 631
Many-to-1 beads 18
1-to-many beads 19
Many-to-many beads 3

Total number of beads used for evaluation 671
1-to-0 beads 38
0-to-1 beads 67
English sentences in partial links 13
Irish sentences in partial links 15
Total number of beads 776

2.6. BiCleaner

BiCleaner detects noisy sentence pairs in a parallel corpus by estimating the likelihood of a pair of
sentences being mutual translations (value near 1) or not (value near 0). Very noisy sentences are given
the score 0 and are detected by means of hand-crafted hard rules. These rules are addressed at detecting
evident flaws such as language errors, encoding errors, short segments, and very different lengths in
parallel sentences. In a second step, misalignments are detected by means of an automatic classifier,
making use of features extracted from probabilistic bilingual dictionaries and shallow properties such
as sentence lengths, capitalized words, and punctuation marks. Finally, sentences are scored based on
fluency and diversity. More details are provided in Reference [20].

https://e-justice.europa.eu
https://www.education.ie
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Training a classifier with BiCleaner requires a clean parallel corpus (100k sentences is the
recommended size) as well as source-target and target-source probabilistic dictionaries. Pre-trained
classifiers for 23 language pairs (https://github.com/bitextor/bitextor-data/releases/tag/bicleaner-v1.0)
are already provided.

For application of BiCleaner on the EN–FR and EN–GA sentence pairs (Sections 3.2.2 and 3.3) we
used the pre-trained classifiers provided by the authors. For the FR–NL language pair (Section 3.2.1),
no pre-trained classifier was available, so we trained one ourselves. We used the FR–NL DGT corpus
(http://opus.nlpl.eu/DGT.php) and sampled 2M sentence pairs, on which we ran GIZA++ (https:
//github.com/moses-smt/giza-pp) to obtain our probabilistic dictionaries. Entries with a probability
10 times lower than the maximum translation probability for each word were removed in order to speed
up the process, as recommended on the BiCleaner GitHub page (https://github.com/bitextor/bicleaner).
A BiCleaner classifier was then trained on 150k sentence pairs sampled from the FR–NL DGT corpus
using our probabilistic dictionaries.

The main difference between BiCleaner and MAD is that the former is not designed specifically
for misalignment detection, but also removes other types of noise (by means of a set of hand-crafted
rules) and scores sentences based on fluency and diversity, making it more than a tool for misalignment
detection. Therefore, in practice, BiCleaner could be used in combination with MAD (we refer
to Sections 3.2 and 3.3). The second main difference is that, although both require a parallel
corpus, our methodology leverages an MT engine, while BiCleaner makes use of probabilistic
bilingual dictionaries.

3. Results

This section is divided in three sections. In the first section we explain the details of our machine
learning pipeline and assess the importance of each of the features described in Section 2.2 for the task
of misalignment detection. Then, we performed two types of intrinsic evaluation. First, we evaluated
our model on the labeled held-out test set described in Section 2.1 and compared our results with those
obtained using another tool for misalignment detection, BiCleaner. Second, we evaluated our model
on two gold standards for alignment for the EN–FR and EN–GA language pairs. Finally, we performed
an extrinsic evaluation by applying MAD on two web-scraped corpora, and examined the effect of
removing misalignments on NMT performance.

3.1. Machine Learning Pipeline

As we have a labeled dataset at our disposal, an interesting contribution of this paper is the
assessment of the importance of each of the features for the task of misalignment detection. We refer to
Table 5 for the F-scores and Mutual Information (MI) among each of the features and the MAD score.

Table 5. Normalized F-score and MI.

Feature F-Score MI

Ft_source_cross_levenshtein 1.00 1.00
Ft_semantic_sim_infersent 0.49 0.76

Ft_number_match 0.21 0.51
Ft_senlength_diff 0.10 0.16
Ft_senlength_av 0.01 0.03

From Table 5 it is clear that the shallow features contain much less information than those obtained
after a translation step. To get some more insight about the importance of each feature when combined
with others, we also fitted a Random Forest Regression model (with a maximum depth of 10 to
avoid overfitting) to the training data and calculated how much each feature decreased the weighted
variance in a tree (see Figure 4). As our features are correlated (we refer to Appendix C), these results
are somewhat biased, though they are still in line with the results shown in Table 5. Note that the

https://github.com/bitextor/bitextor-data/releases/tag/bicleaner-v1.0
http://opus.nlpl.eu/DGT.php
https://github.com/moses-smt/giza-pp
https://github.com/moses-smt/giza-pp
https://github.com/bitextor/bicleaner
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Levenshtein distance between the source and the translation of the target in the source language was
also considered as a feature (i.e., Ft_target_cross_levenshtein). However, its importance was comparable
to the feature Ft_source_cross_levenshtein, and due to the high correlation of these features and because
it would involve another translation step, it was not withheld.
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Next we used the calculated features to train a Support Vector Regression model. We used
5-fold cross-validation to tune the hyper-parameters and found that a Radial Basis Function with
C = 10, γ = 0.19, and ε = 0.1 gave the best performance. A Random Forest Regression model was also
considered; however, its performance was slightly worse. In Figure 5, we show the learning curve,
where we show training and validation R2 for different sizes of the balanced training set. We observed
that training and validation R2 converge for an increasing number of training samples, which indicates
that our model does not show clear signs of over- or underfitting, and that the model would not benefit
much from adding extra data to our training set.
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Finally, a Support Vector Regression model was trained on the complete balanced training set,
with the hyper-parameters listed above. In the next sections, we evaluated the performance of this
model, both intrinsically and extrinsically.
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3.2. Intrinsic Evaluation

As mentioned above, two types of intrinsic evaluation were performed: on the held-out labeled
test set (FR–NL) and on two gold standards for alignment for the EN–FR and EN–GA language pairs
described in Section 2.5.

3.2.1. Intrinsic Evaluation on the Gold Standard for Misalignment Detection

In this section, we evaluate the performance of our model on the labeled held-out test set (FR–NL).
We refer to Figure 6 for an overview of the Misalignment Gold Standard score (MAD score) versus
the Predicted Misalignment score for sentence pairs in the held-out test set. We observed that our
model was very good at detecting misalignments with a MAD score equal to 4. Also, perfectly aligned
sentences (MAD score equal to 0) were scored as such. However, making the distinction among the
intermediate scores proved to be a somewhat harder task.
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Next, we calculated different metrics for various thresholds of our model and compared our
results with the ones obtained when BiCleaner was run on the same data (see Figure 7). We calculated
sensitivity, specificity, and precision. Also, a utility score was calculated (see Section 2.3), a classification
metric biased towards sensitivity, which we want to maximize, as we want to minimize the number of
misalignments classified as aligned. In order not to confuse the reader, we note that in this section,
a misalignment was considered a positive label.

We observed that our model was better at the task of misalignment detection: although BiCleaner
seemed to be able to detect misalignments if the threshold sufficiently increased (see Figure 7A), it also
classified many aligned sentences as misaligned, i.e., lower precision and specificity, see Figure 7B,D.
At the threshold level where the utility score was maximized (classification threshold equal to 2.21 for
MAD and 0.51 for BiCleaner), our model performed better, especially in terms of precision.



Informatics 2019, 6, 35 11 of 21
Informatics 2019, 6, x 11 of 21 

 

 
Figure 7. Evaluation of our model (MAD) on a held-out test set (2540 sentence pairs, 10% misaligned 
sentences) from the labeled dataset for misalignment detection described in Section 2.1. Black crosses 
show performance for various thresholds of MAD; gray crosses show performance for various 
BiCleaner thresholds. Note that a misalignment is considered a positive label. Horizontal, dotted 
black and gray lines show performance for MAD resp. BiCleaner thresholds for which the utility score 
is maximal. (A) Sensitivity for various MAD (black, lower x-axis) and BiCleaner (gray, upper x-axis) 
thresholds. (B) Specificity. (C) Utility score. (D) Precision. 

3.2.2. Intrinsic Evaluation on Gold Standards for Alignment 

In this section, we examine to what extent MAD/BiCleaner can improve the alignment quality 
of a bilingual corpus. We present recall and precision scores for various thresholds of BiCleaner and 
our model (MAD) on gold standards for alignment. 

For the creation of the set of gold standard beads, we manually sentence aligned 13 document pairs 
for EN–FR and 11 document pairs for EN–GA (we refer to Section 2.5). To obtain the set of predicted 
beads, we initially sentence aligned the document pairs, using Hunalign, after which MAD or BiCleaner 
were run on these alignments. We also refer to Figure 8 for an illustration of our adopted methodology. 

Figure 7. Evaluation of our model (MAD) on a held-out test set (2540 sentence pairs, 10% misaligned
sentences) from the labeled dataset for misalignment detection described in Section 2.1. Black crosses
show performance for various thresholds of MAD; gray crosses show performance for various BiCleaner
thresholds. Note that a misalignment is considered a positive label. Horizontal, dotted black and gray
lines show performance for MAD resp. BiCleaner thresholds for which the utility score is maximal.
(A) Sensitivity for various MAD (black, lower x-axis) and BiCleaner (gray, upper x-axis) thresholds.
(B) Specificity. (C) Utility score. (D) Precision.

3.2.2. Intrinsic Evaluation on Gold Standards for Alignment

In this section, we examine to what extent MAD/BiCleaner can improve the alignment quality of a
bilingual corpus. We present recall and precision scores for various thresholds of BiCleaner and our
model (MAD) on gold standards for alignment.

For the creation of the set of gold standard beads, we manually sentence aligned 13 document pairs
for EN–FR and 11 document pairs for EN–GA (we refer to Section 2.5). To obtain the set of predicted
beads, we initially sentence aligned the document pairs, using Hunalign, after which MAD or BiCleaner
were run on these alignments. We also refer to Figure 8 for an illustration of our adopted methodology.
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Figure 8. Intrinsic evaluation on Gold Standard for alignment.

To calculate recall, we took the set of gold standard beads and the set of predicted beads for a
certain threshold of BiCleaner and MAD. Next, the total number of shared beads was divided by
the total number of beads in the gold standard. Precision was calculated by taking the set of shared
beads for a certain threshold of BiCleaner and MAD and dividing this number by the total number
of predicted beads (see Figures 9 and 10). The reported thresholds need to be interpreted as follows:
all sentence pairs with a BiCleaner score lower than or with a MAD score higher than the corresponding
threshold were ignored during evaluation.
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shows recall/precision when no threshold was set for BiCleaner, the first column shows recall/precision
when no threshold was set for MAD. (A) Recall. (B) Precision.

By looking at the first row of Figures 9 and 10 (A,B), we can already conclude that our model can
improve the precision of the alignments produced by Hunalign for both language pairs, while still
retaining a sufficiently high recall: both for EN–FR and EN–GA a precision of 98–99% could be reached,
with a recall of around 90–85% for EN-FR and 70–60% for EN-GA (the actual value depends on the
chosen threshold). If we compare the first row with the first column, we observe that the obtained
precision using MAD was higher than the precision obtained using BiCleaner, especially if the recall
scores are taken into account, e.g., for EN–FR a precision of 99% could be reached with a recall of
85%, while BiCleaner only reaches a precision of 98%, with a recall of 73%. For EN–GA a precision
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of 98–99% with a recall of around 70–60% was obtained using MAD, while BiCleaner only reaches a
precision of 95% with a comparable recall.Informatics 2019, 6, x 13 of 21 
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For completeness, we mention that the tool used for sentence alignment, Hunalign, also yielded
a score, providing an indication of the quality of the produced alignment. However, we observed
that using a threshold for Hunalign, in an effort to remove misalignments, did not result in a more
qualitative corpus in terms of alignment. We refer to Appendix D, Figures A2 and A3 for an evaluation
on the gold standards.

3.3. Extrinsic Evaluation

In this section we describe the extrinsic evaluation of our model, MAD, on two language pairs
(EN–FR, EN–GA). Extrinsic evaluation was carried out by examining the effect of removal of detected
misalignments from a web-scraped corpus on MT performance. Results will be compared to the ones
obtained using another tool for misalignment detection, BiCleaner.

We trained EN > FR and EN > GA neural MT engines with OpenNMT-tensorflow (https:
//github.com/OpenNMT/OpenNMT-tf) using the Transformer architecture during 20 epochs and
default training settings. Preprocessing was done with aggressive tokenization, and joint subword
(BPE) and vocabulary sizes set to 32k. The translation quality of the MT models is measured by
calculating BLEU scores on a held-out test set of 3k sentence pairs, sampled from the baseline training
data (see Table 2). The reported BLEU score is the maximal BLEU reached in the last 10 epochs of
training; convergence of our systems was observed after a few epochs (<10) of training.

For the EN–FR language pair we applied MAD and BiCleaner on the web-scraped corpus described
in Section 2.4 (Table 3). Alignments with a MAD score higher, resp. BiCleaner score lower than a given
threshold were removed from the corpus. The resulting corpus was then added to a sample of the
baseline training data. The chosen threshold for MAD was the optimal threshold found via intrinsic
evaluation (we refer to Section 3.2.1), while we used the BiCleaner threshold used in the official release
of the clean ParaCrawl corpus (0.7). We reduced the baseline size to 1000k sentence pairs in order for
it to have a similar weight as the web-scraped data. We refer to Table 6 for the results. We see that
adding 1118k sentence pairs, selected by MAD, to the baseline training data results in an increase in
BLEU of 0.7. However, adding the web-scraped corpus to the baseline data without removing possible

https://github.com/OpenNMT/OpenNMT-tf
https://github.com/OpenNMT/OpenNMT-tf
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misalignments, either with MAD or BiCleaner, results in an increase in BLEU of 1.0. The increase in
BLEU when using BiCleaner instead of MAD was 0.5. A first conclusion that can be drawn from this
experiment, is that, although misalignments were removed from the corpus, it does not result in an
increase in BLEU compared to the situation when all unprocessed data were added: the increase in
training data seemed to outweigh the decrease in alignment quality.

Table 6. Extrinsic evaluation of MAD and BiCleaner (EN–FR), with highest score shown in bold.

Type of Data (EN–FR) BiCl
Threshold

MAD
Threshold

Unique
Sentence Pairs

Unique Sentence Pairs
Added to the Baseline BLEU

baseline sample training data - - 1000k 0k 40.5
+web-scraped corpus (MAD) - 2.21 2118k 1118k 41.2
+web-scraped corpus (BiCl) 0.7 - 1787k 787k 41.0

+web-scraped corpus - - 2472k 1472k 41.5

To further investigate the effect of the removal of misalignment on NMT performance, we did
another set of experiments for the low resource EN–GA language pair using the ParaCrawl data, known
to be very noisy. ParaCrawl data contains a diversity of noise: misalignments, untranslated sentences,
non-linguistic characters, wrong encoding, language errors and short segments. It was shown in [4]
that these other types of noise harm NMT performance to a much larger extent than misalignments,
especially language errors and untranslated sentences. Because the focus of the present paper is on
misalignment detection, we filter out these other types of noise by setting a BiCleaner threshold of 0.0
(setting a BiCleaner threshold of 0.0 will also remove sentence pairs with very different sentence lengths,
i.e., misalignments that are easy to detect). This, combined with the removal of duplicates, reduces
the size of the ParaCrawl corpus from 156M sentence pairs to 1234k. In this way our comparison to
BiCleaner is less biased towards the effect of other types of noise not related to misalignments.

In Table 7 we show the results of our experiments (the number of an experiment is shown in the
first column, the third and fourth column indicate the BiCleaner threshold and the MAD threshold).
In all our experiments we added ParaCrawl data to the baseline training data for EN–GA. Due to the
limited amount of baseline data, adding any data to the baseline already results in a minimum increase
in BLEU of 10.6.

For a fair comparison of MAD and BiCleaner, the best scoring 500k sentence pairs (experiments
2 and 3) in terms of MAD, resp. BiCleaner score were considered. The performance in terms of
BLEU score was similar, with BiCleaner performing 0.3 BLEU better. Taking a random sample of 500k
sentences from the pre-filtered ParaCrawl corpus results in a worse performance (see experiment 4).
As an interesting extra experiment, we trained an NMT engine on the 500k sentences assigned with
the highest MAD score (i.e., sentences considered misaligned, see experiment 5), resulting in a BLEU
4.9–5.2 lower than the systems trained on the best scoring sentences.

The same experiments were performed with 600k sentence pairs instead of 500k (Experiments
6–8). It is interesting to see that adding sentences scoring worse in terms of misalignment score (either
MAD or BiCleaner score), still add information to the NMT system, increasing the BLEU score by
0.6–0.3 BLEU.

If we add all the sentence pairs from the pre-filtered ParaCrawl corpus (1234k sentence pairs,
experiment 10), we obtain a BLEU of 43.4, which is approximately the same BLEU as obtained when
adding the 600k sentence pairs labeled as aligned by MAD or BiCleaner. So similarly as observed in
our experiments for the EN–FR language pair, we see that adding sentences considered as misaligned
does not seem to harm NMT performance. However, in terms of data selection, misalignment detection
could be more important as we were able to obtain the same BLEU by adding only half of the data to
the baseline system.

In a final set of experiments we investigated the effect of raw crawl data (i.e., misalignments
and other types of noise present in ParaCrawl) on NMT performance. Therefore we sampled 1234k
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unique sentence pairs from the set of 156M raw ParaCrawl sentence pairs, and added this data to the
baseline (Experiment 9) and to the top 600k sentences selected by MAD (experiment 11): we observe
that adding these noisy sentence pairs to a fairly good performing NMT engine results in a decrease in
BLEU of 1.8 (compare Experiment 11 with Experiment 6).

Table 7. Extrinsic evaluation of MAD and BiCleaner (EN–GA) with highest scores shown in bold.

Exp nr Type of Data (EN–GA) BiCl
Thresh.

MAD
Thresh.

Unique Sentence
Pairs, Total

Unique Sentence Pairs
Added to the Baseline BLEU

1 baseline training data - - 133k 0k 25.0
2 +ParaCrawl data (top500k MAD) 0.0 2.27 633k 500k 42.9
3 +ParaCrawl data (top 500k BiCl) 0.76 - 633k 500k 43.2
4 +ParaCrawl data (random 500k) 0.0 - 633k 500k 41.8
5 +ParaCrawl data (top 500k misaligned MAD) 0.0 - 633k 500k 38.0
6 +ParaCrawl data (top 600k MAD) 0.0 2.80 733k 600k 43.5
7 +ParaCrawl data (top 600k BiCl) 0.7 - 733k 600k 43.5
8 +ParaCrawl data (random 600k) 0.0 - 733k 600k 42.3
9 +ParaCrawl data (random noise) - - 1367k 1234k 35.6

10 +ParaCrawl data (all, BiCl score > 0.0) 0.0 - 1367k 1234k 43.4

11 +ParaCrawl data (top 600k
MAD)+ParaCrawl data (random noise)

0.0,
-

2.80
- 1967k 600k + 1234k 41.7

4. Discussion

In this paper, we investigated the problem of misalignment detection in the context of NMT.
In contrast to previous research on this topic [6–11], we reformulated the problem as a supervised
regression task, rather than a classification task. By assigning a score to various degrees of misalignments,
we constructed a labeled dataset on which a regression model could be trained. Following this
methodology, the predicted misalignment score was possibly easier to interpret, reflecting the degree
of alignment/misalignment.

Our model for misalignment detection, MAD, makes use of several features, both shallow
features (such as sentence length and matching numbers), as well as features calculated after an initial
translation step. Using our labeled dataset, we showed that two features proved the most value for the
task of misalignment detection, both obtained after a machine translation step: (1) the Levenshtein
distance between the source/target and the translation of the target/source in the source/target language;
(2) a feature that measures the semantic sentence similarity, using the cosine distance of sentence
embeddings, similarly to References [9,10].

Note that in order to calculate the second feature, we used precomputed sentence embeddings
in combination with a translation step, while in References [9–19] (cross-lingual) embeddings were
trained directly on the task of misalignment detection. These (cross-lingual) embeddings fine-tuned to
the task are likely to deliver better performance. However, such an approach could be more difficult to
deploy compared to our model, especially if an MT model is already available.

We evaluated our model using two types of intrinsic evaluation. One involved a held-out labeled
test set for FR–NL, the other gold standards for alignment for the EN–FR and EN–GA language pair.
On the held-out labeled test set, our model showed to be promising, being able to detect more than
90% of the misalignments in the test set, depending on the chosen threshold, with a precision higher
than 80%. Compared to another frequently used tool for misalignment detection, BiCleaner, our model
performed better. However, we noted that these results should be interpreted with caution, as the
held-out test set is, in terms of domain and language pair, close to the labeled training set used for
training of our model. Therefore, we performed another type of intrinsic evaluation for the EN–FR and
EN–GA language pair. We showed that our model could indeed increase the quality of alignments of a
corpus, reaching a precision close to 100% when evaluated on a gold standard. Compared to BiCleaner
our model showed better performance, especially if the recall was taken into account.

The effect of removing misalignments on NMT performance was investigated for the two language
pairs EN–FR and EN–GA. In the case of EN–FR, we observed that removing alignments from a
web-scraped corpus did not result in an increase in NMT performance, on the contrary, the decrease
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in data size outweighed the increased alignment quality. This result differs from previous work on
misalignment detection and data cleaning in an NMT context, e.g., [4,11,14,20]. However, we noted
that the web-scraped corpus EN–FR used for extrinsic evaluation was much cleaner in terms of
misalignments and other noise than the corpora used in previous work, such as the OpenSubtitles
and ParaCrawl corpus: the amount of misalignments and degree of misalignment (in terms of MAD
score) present in the web-scraped corpus was probably too low to harm NMT performance, as is
clear from the amount of data labeled as aligned by MAD (76% of the sentence pairs). We also refer
to Reference [4] where it was shown that a considerable amount of misaligned sentences, all with a
perceived MAD score of 4, need to be added to a clean corpus in order to obtain a decrease in BLEU;
adding 20–50% (ratio of original clean corpus) of misaligned sentences to a clean corpus resulted in a
decrease of 0.9–1.1 BLEU.

For the low resource EN–GA language pair, experiments were performed on the ParaCrawl
corpus, known to contain a considerable number of misalignments and other types of noise. Our results
were in line with the results obtained for the EN–FR language pair: adding misalignments did not
result in a significant decrease in NMT performance. However, in terms of data selection, removing
misalignments could be beneficial: similar BLEU scores were obtained using approximately half of the
data, in line with Reference [13].

It should be noted that our model is specifically tuned for the task of misalignment detection,
whereby parallel corpus mining and corpus cleaning (we refer to the WMT shared task on parallel
corpus filtering [27,28] and the BUCC shared task on parallel corpus mining [29]), involve other
important factors such as selection of sentences based on fluency and diversity anddetection of
language errors, which possibly have a more profound effect on NMT performance, (e.g. [4]).

Because our proposed methodology requires a MT system, the question arises to what extent the
parallel data used to train the MT system affects the performance of MAD. By applying MAD on two
different types of data: i.e., a clean (EN–FR) corpus, related to the legal domain, and a noisy (EN–GA)
corpus, containing more generic data, we tried to answer this question. We demonstrated that MAD
could achieve fairly good performance on both types of data (i.e., legal and generic), while using an
MT system trained on the same type of data (Table 2). Moreover, we applied MAD on the language
pair EN–GA, using only 133k parallel sentences, illustrating the usability of the proposed methodology
in a low-resource scenario.

In this work, we developed a model that tried to characterize the nature of misalignment
beyond binary predictions. Identifying the degree of misalignment proved to be an important task:
our experiments showed that adding misalignments to a corpus did not result in a significant decrease
in NMT performance. Although we were able to detect misalignments with high precision, it turned
out to be a difficult task to quantify the degree of misalignment. This should be addressed further
in future work. Related to this, it would be useful to investigate what types of misalignment harm
NMT performance the most, and, vice versa, what types of misalignments NMT could benefit from.
Especially in the context of a low-resourced NMT, this could be of importance.
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Appendix A

Algorithm A1. Pseudo-code to calculate the feature Ft_number_match.

def get_numbers(sentence):
‘Function that returns a set containing all the unique numbers in a given sentence.’
return set_numbers

def get_size(set):
‘Function that returns the amount of numbers in a given set.’
return size

def calculate_ft_number_match(source_sentence, target_sentence)
‘Function that calculates Ft_number_match given a source and target sentence.’
set_numbers_source=get_numbers(source_sentence)
set_numbers_target=get_numbers(target_sentence)

‘Calculate total amount of numbers in source and target sentence.’
total_number=size(set_numbers_source)+size(set_numbers_target)

‘Calculate size of symmetric difference, union and intersection of the set of numbers in source and
target sentence:’

num_symdiff=size(symmetric_difference(set_numbers_source, set_numbers_target))
num_union=size(union(set_numbers_source, set_numbers_target))
num_intersect=size(intersection(set_numbers_source, set_numbers_target))

‘Calculate the number match score:’
if total_numbers==0:

score=0.0
else if total_numbers!=0 and num_symdiff==0:

score=round(1.0-(1.0+num_union)**(-0.3333),2)
else if total_numbers >1 and num_symdiff >=1:

score=-(num_symdiff - num_intersect)/num_union

return score

We show some examples in Table A1:

Table A1. Some examples to illustrate calculation of Ft_number_match.

Source Sentence Target Sentence Ft_Number_Match

I was born on the 4th of May. I was born on the 5th of May. −1.00
I was born on the 4th of May. I was born on the 4th of May. 0.21

I was born on the 4th of May. I have 2 sisters. I was born on the 4th of May. I have 2 sisters. 0.31
I was born on the 4th of May. I have 5 sisters. I was born on the 4th of May. I have 2 sisters. −0.33

The feature Ft_number_match will thus assign a score of 0 if there are no numbers in the source or
target sentence and a score of −1.0 if there are no matching numbers, and will increase/decrease if the
number of matching numbers increases/decreases relative to the total amount of numbers present in
the source and the target sentence.

Appendix B

Overview of the web-scraped corpus EN–FR.
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Table A2. Overview of the scraped corpus EN–FR on domain/url-level.

Domain/Url
EN–FR Description # Unique Sentence Pairs # Tokens (EN)

https://e-justice.europa.eu European e-justice portal 50,884 1,376,827
laws-lois.justice.gc.ca Consolidated Acts and regulations 66,346 2,300,404

http://justice.gc.ca Department of Justice 142,458 3,571,748
www.noscommunes.ca House of commons 1,042,797 23,074,752

https://sencanada.ca Senate 123,570 2,802,562
www.legifrance.gouv.fr Government entity responsible for publishing legal texts online 25,321 827,434

www.oecd.org Org. for Economic Co-operation and Development. 21,511 571,287

Total (deduplicated) 1,472,511 34,520,231

Appendix C

Correlation matrix of the features described in Section 2.2.
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